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Abstract

Multimodal AI represents a significant milestone in human-machine interaction. One of

the fundamental task in Multimodal AI is Visual grounding (VG), a vision-languange

task focusing on locating objects based on a given query expression. In simple VG,

all the necessary information to locate the object is contained in the query through

visual description or spatial information. In this project we focus on VG with reasoning

requirement, where the model must comprehend a scene story first as knowledge to

accurately understand the query.

We evaluate the performance of vision-language pre-trained model, specifically

Kosmos-2 and OFA in solving the VG task. The evaluation is conducted in two settings:

zero shot and fine-tuned. Additionally, we investigate the effect of query modification

by leveraging Llama 3’s reasoning capability. Our findings shows that Kosmos-2 and

OFA has capability in VG, outperforming LeViLM, an existing model, in zero shot

setting. We also discover that query modification with Llama 3 improves the accuracy

in detecting bounding box. In fine-tuned setting, our fine-tuned OFA, a generalized

model, achieves competitive results compared to LeViLM, a specialized model that

built for VG.

i



Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(William Sutanto)

ii



Acknowledgements

Spending a year pursuing my Master’s degree in Edinburgh has been one of the greatest

experience of my life. I am grateful for the opportunity to meet remarkable and wonder-

ful people and to live in this lovely city.

To Prof. Frank Keller—

Thank you for all the insight, guidance, and support throughout the project. I really

appreciate your humbleness and approachability despite your extensive knowledge.

Your egalitarian approach made it easy for me to collaborate in this project.

To LPDP / Indonesia Endowment Fund for Education—

Thank you for awarding me a scholarship to study abroad, at the University of Edin-

burgh. This opportunity has been a truly life-changing experience for me.

To my friends in Edinburgh—

Thank you for the fun, support, laughter, and our memorable trips together. Despite

being far from home, you has made me feel at home.

Lastly, to my family—

Thank you for your unwavering support throughout the year.

iii



Table of Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Timeliness and Novelty . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4
2.1 Types of Visual Grounding . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Phrase Grounding . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Specific Visual Grounding or Referring Expression Compre-

hension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Visual Grounding with Scene Knowledge . . . . . . . . . . . 5

2.2 One-For-All (OFA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Dataset and Input Representation . . . . . . . . . . . . . . . 7

2.2.2 Model Architecture and Training . . . . . . . . . . . . . . . . 8

2.3 Kosmos-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Dataset and Input Representation . . . . . . . . . . . . . . . 9

2.3.2 Model Architecture and Training . . . . . . . . . . . . . . . . 12

2.4 Llama 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Dataset 15
3.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Dataset Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Methodology 17
4.1 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Evaluation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iv



4.3.1 Zero Shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.2 Fine-Tuned Model . . . . . . . . . . . . . . . . . . . . . . . 19

5 Results and Discussion 21
5.1 Zero Shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Query Only . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.2 Adding Knowledge by Simple Concatenation . . . . . . . . . 23

5.1.3 With Modified Query Generated by LLM Reasoning . . . . . 24

5.1.4 Effect of Providing Examples in Llama 3 Prompting . . . . . 24

5.2 Fine Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.1 Fine Tuning by Providing Query and Knowledge . . . . . . . 27

5.2.2 Fine Tuning Using Modified Query . . . . . . . . . . . . . . 27

5.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion and Future Works 34
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography 36

A Fine-Tuning Hyperparameter 48

B More Visual Grounding Results 49

v



Chapter 1

Introduction

1.1 Motivation

The advent of Multimodal AI has represented a significant landmark in human-machine

interaction. With its capability to emulate human perception and understanding from

multiple types of data simultaneously, including image, text, and audio, multimodal AI

boosts the efficiency of AI systems and opens new possibilities that were unimaginable

previously. For example, a robot equipped with multimodal understanding could

navigate more naturally and navigate through complex environments [1], or improve

personalization and safety in autonomous driving [2].

One of the fundamental tasks in multimodal AI is visual grounding (VG), illustrated

in Figure 1.1 (left), a visual-language understanding to locate an object inside an image

by bounding a box based on a given text phrase query. In a simple VG task, all the

information needed to understand the object is available from the image and the short

text query with simple vision-language alignment. It locates the position through visual

appearance or spatial information. This is a fundamental task in multimodal AI, with

wide potential for better human computer interaction [5], image retrieval, visual QA,

and autonomous vehicle [6].

Song et al., [4] introduce a new task on VG that requires complex reasoning abilities,

along with the new dataset, called Scene Knowledge Visual Grounding dataset (SKVG

dataset). To identify the referenced object, the model must comprehend a narrative

backstory provided alongside the image and the query. For example, in the given image

illustrated in Figure 1.1 (right), the query is ”Alan’s dog”. Simple VG might understand

the semantics of ”dog”, but this information is not enough since there are multiple

dogs in the image. The system must identify Alan first from the scene knowledge to

1



Chapter 1. Introduction 2

Figure 1.1: Left: In basic VG on RefCOCO Dataset [3], the model identify the correct

bounding box solely based on physical appearance mentioned in the query. Right: In

VG with Scene Knowledge [4], the model must have reasoning ability to understand the

given background story in order to identify the object provided in query. In this particular

example, identification of Alan is needed.

determine which dog to choose.

In recent years, the ”pretrain-finetune” paradigm has demonstrated significant

success across various domains, including in vision-language[7]. Following this ap-

proach, OFA (”One-for-All”)[8] introduced a modality-agnostic model that unifies

vision and language representation. Pre-trained on multiple language and vision task,

OFA achieved a remarkable performance in basic VG task after fine-tuning phase.

Another key advancement in multimodality is the emergence of Multimodal Large

Language Models (MLLMs), such as LLaVA [9], Flamingo [10], BLIP-2 [11], Kosmos-

2 [12], and GPT-4V[13]. These models have shown its advancement in understanding

multimodal perception and have successfully widened the Large Language Model

(LLM) potential to other tasks, such as image captioning, text-to-image generation,

visual question answering, and also visual grounding. Notably, Kosmos-2 has shown its

capability in basic visual grounding even in zero-shot setting.

1.2 Objective

Since VG with reasoning requirement is a crucial part in human machine interaction and

pretrained visual language model has shown its potential in solving many multimodal

task in zero or few shot settings, we intend to deeply investigate the possibility and

performance of Kosmos-2 and OFA to solve this problem. The specific objective of

this research is to evaluate Kosmos-2 and OFA capability on VG task in these specific

settings: (1) zero-shot; (2) zero-shot with modified query generated by LLAMA-3 as

additional reasoning pipeline; (3) Fine tuning with SK-VG dataset.
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1.3 Timeliness and Novelty

The visual grounding with scene knowledge is a newly proposed task and dataset by

[4]. To the best of our belief, there is no research yet on evaluating Kosmos-2 and OFA

performance on this task type. Our proposed method of modifying the query by adding

a reasoning pipeline with Large Language Model (LLM) before grounding could be

the first. LLMs such as GPT[14, 15, 16], Vicuna[17], and Llama [18, 19, 20] have

shown remarkable performances across a range of language tasks, including reading

comprehension, question answering, common sense reasoning, code generation, natural

language inference, and many more.

1.4 Thesis Structure

This dissertation is organized into six chapters. Chapter 2 reviews related works on

visual grounding, previous approaches in solving SK with reasoning, as well as the

explanation of Kosmos-2 and OFA models. Chapter 3 described the datasets used

for training and evaluation. Chapter 4 proceeds with the methodology employed in

evaluating performances. Chapter 5 presents the results along with a discussion. Finally,

Chapter 6 draws conclusions and future work recommendations are offered.



Chapter 2

Related Work

2.1 Types of Visual Grounding

Visual Grounding(VG) aims to locate the region in the given image referred by the

query expression in natural language. Various datasets and task formulations have been

proposed to address the challenges of grounding.

2.1.1 Phrase Grounding

Phrase grounding aims to locate all of the objects contained in the text query. The

relation between query and the generated region is one-to-many. Some of datasets in

this formulation are Flickr30K [21] and PhraseCut [22]. An example of the query in

this task is ”A man with pierced ears is wearing glasses and an orange hat”. Phrase

grounding model will produce 4 bounding box in total, referring ”a man”, ”pierced

ears”, ”glasses”, and an orange hat” (See Figure 2.1 (Left)).

2.1.2 Specific Visual Grounding or Referring Expression Compre-

hension

In this type of visual grounding, also known as referring expression comprehension,

there is only one specific object in the image referred by the expression query in natural

language. As shown in Figure 2.1 (Middle), all necessary information to specify the

object is derived from the expression query. One of early works conducted by Yu

et al [3], by training a Fast-RCNN [23] detector for VG. They use three dataset to

build and evaluate the model, including RefCOCO, RefCOCO+, and RefCOCOg. To

locate an object, the model relies on visual attributes described in the query, such as the

4
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Figure 2.1: Left: Phrase grounding with Flickr30k [21], generating multiple bounding

box for each phrases in the query. Middle: In basic VG on RefCOCO Dataset [3], the

model identify exactly one correct bounding box, solely based on physical appearance

mentioned in the query. Right: In VG with Scene Knowledge [4], deep reasoning ability is

needed to understand the given scene knowledge in order to identify the object provided

in query.

object type (”girl”, ”orange”, ”dog”), shape (”sharp”, ”rectangular”), position (”back”,

”right”, ”under”), colour (”purple”, ”green”), and pose (”lay”, sit”). Deep reasoning

is not required for this task, it is addressed by mapping visual appearances to their

corresponding expressions.

2.1.3 Visual Grounding with Scene Knowledge

In VG with scene knowledge, the model needs capability to reason with the provided

scene knowledge to accurately identify the object referenced in a query. The different

with the previous type is shown in Figure 2.1. As described in [4], there are three criteria

of the query that differ it from basic VG. First, the phrase is not visually identifiable by

appearance, but highly relevant to scene knowledge (knowledge relevance). Second,

the phrase is unambiguous (uniqueness). Third, using specific terms such as ”friend”

instead of ”person” (diversity). To solve this formulation, [4] proposed two approaches

based in the number of stages, illustrated in Figure 2.2.

The first method only consist of one stage, called Knowledge-embedded Vision-
Language Interaction (KeViLI). This model is designed from scratch, consists of

vision encoder initialized from DETR[24], text encoder initialized from BERT[25],

cross attention transformer and self attention transformer. In this method, both query HT
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Figure 2.2: KeViLI and LeViLM methods, directly adapted from [4].

and scene knowledge HK are passed into with a language encoder. Concurrently, image

encoder generates the image patch features HI . Then, the image and encoded scene

data are embedded using a cross-attention transformer. It consists of cross-attention,

self-attention, and feed-forward sub-layers. In the self-attention sublayer, the attention

between each image patch is captured. Next, HI will be the query in the cross-attention

sublayer, with both key and value being HK . After that, HI and HT together with a

learnable token [REG], are fed into transformer to perform image-query interaction.

The transformer’s output is then passed through MLP layers to generate the coordinate.

The loss metrics is computed with following formula:

L = Lsmooth l1(b, b̂)+Lgiou(b, b̂) (2.1)

In formula 2.1, b and b̂ denotes label and prediction boxes, Lsmooth l1(.) and Lgiou l1(.)

are the smoothed L1 and GIoU loss.

The second approach, called Linguistic-enhanced Vision-Language Matching
(LeViLM) involves two phases. The first phase is region proposal stage, finding all

objects in the image. The second stage involve the scoring of the proposed regions. In

the region proposal stage, a prompt is built as "Query: T. Knowledge: K.". This

approach uses GLIP[26] as the backbone model, including initialization for language

encoder and vision encoder. First, the text prompt and the image are encoded with a

language encoder and vision encoder respectively. Then, both representations are passed

into image-text fusion through multiple layer. Each layer consist of a self-attention layer

to encode the text, a dynamic head layer to encode image, and two cross-attention layers

for the fusion. This process generates after fusion image features ZI and after fusion

text features ZP. The detail formulation can be found in [4]. In the region scoring stage,

subject is extracted by parsing the structured linguistic information from the query and

the scene knowledge, denoted as the head entity Eh . Then, to identify all mentions Em

in the knowledge that correspond to the same entity Eh, a connection between the entity
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in the query with all of its coreference that mentioned inside the knowledge is developed.

Representation of Eh and Em is taken from ZP, resulting in ZE ∈ R(E+1)×d . Finally, they

compute the alignment scores between entities in the prompt and the regions with the

following formula:

Score = ZIZT
E (2.2)

The model is trained to minimize the loss function Loss = Lxe(Score,Target) where

Lxe is the cross-entropy loss. Each element in L indicates the matching between region

and entity.

2.2 One-For-All (OFA)

In recent years, there has been a shift in model development from task specific methods

to large scale pre-training. The ”pretrain-finetune” paradigm has demonstrated signif-

icant success across various domains. As mentioned in [7], following the advent of

BERT[25] in Natural Language Processing (NLP), vision-language research also moved

to transformer based model, including UNITER[27], CLIP[28], Flamingo[10], and

OFA ”One-for-All”[8]. OFA [8] is a pre-trained model aiming to unify varied modality

tasks, including vision-language, vision-only, and language only task. As illustrated in

Figure 2.3, it is represented as simple sequence-to-sequence learning framework with

common instruction format task representation. OFA is developed to have omnipotent

model with following properties:

1. Task Agnostic: has unified task representation supporting multiple task types and

agnostic to pretraining or finetuning.

2. Modality Agnostic: Image and text represented as unified format of input and

output.

3. Task Comprehensiveness: trained by enough task variety to have generalization

ability.

2.2.1 Dataset and Input Representation

The pretrain phase of OFA utilizes 20M image-text pairs from dataset of various tasks.

List of dataset for each task is shown in Table 2.2. To present multimodality without

outputting in task specific schema, texts and images are represented in a common space
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Figure 2.3: High level architecture of OFA, directly adapted from [8].

as tokens in unified vocabulary. For text sequence, byte pair encoding (BPE) is applied.

Image is represented as discrete code of smaller area or patches. Location coordinate for

bounding box also transformed as location tokens denoting the top left and bottom right

coordinate. As tokens, it could be also represented as BPE tokens. All the linguistic

and visual tokens are combined in unified vocabulary.

2.2.2 Model Architecture and Training

The architecture backbone of OFA is encoder-decoder transformers. The encoder layer

comprises self attention and feed-forward network, while decoder layer consists of self

attention, FFN, and cross attention as the connection bridge between decoder and en-

coder output representations. Head scaling is added to self attention, and normalization

layer is added after post attention and first layer of FFN in order to stabilize training and

accelerate convergence. In term of parameter size, OFA provides five different scale,

ranging from OFATiny (33M), OFAMedium (93M), OFABase (182M), OFALarge (472M),

OFAHuge (930M).

In order to unify various tasks and modalities, OFA is designed as sequence-to-

sequence learning with different modality. Five cross-modality tasks, comprises visual

grounding, grounded captioning, image-text matching, image captioning, and visual

question answering are used to pretrain OFA. Moreover, OFA is also pretrained with

three uni-modal tasks (image infilling, object detection, and text infilling). The unified

input and output format for each task is described on Table 2.1. OFA is optimized with

cross-entropy loss as presented in Formula 2.3, where x is input, s is instruction and y is
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output.

L =−
|y|

∑
i=1

logPθ(yi|y < i,x,s) (2.3)

Trie-based search, instead of beam search, is utilized as decoding strategy to achieve

better quality in generation.

2.3 Kosmos-2

Large Languange Models (LLMs), such as GPT [14, 15, 16], LLAMA [18, 19, 20],

and PaLM [43] have demonstrated exceptional abilities in handling NLP tasks using

zero-shot or few-shot learning. However, they still unintelligible with vision [44].

The integration of LLMs with vision model has given rise to field of Multiodal Large

Language Model (MLLMs), an LLM-based model with ability in perceive, reason,

and generate outputs using multimodal information. Kosmos-1[45] is one of the ear-

liest work in combining vision data with the large language models (LLMs) into

MLLMs. It is trained on massive web-scale multimodal dataset including text corpora,

image-caption pairs, and interleaved data of images and texts. Kosmos-1 demonstrated

remarkable performance in zero-shot and few-shot setting for various tasks, including

language (completion tasks, cloze, commonsense reasoning), vision (image classifica-

tion), and perception-language (image captioning, webpage question answering, and

visual question answering). However, the grounding capability was lack in this version

but was added in its subsequent release as Kosmos-2[12].

2.3.1 Dataset and Input Representation

To support the new task, GrIT dataset is constructed, containing image-text pairs

acquired from COYO-700M[46] and LAION-2B[47] subset. In Kosmos, input is

represented in a unified format as a sequence of token. Some special tokens such as <s>

and </s> used to indicate start and end of sequence. To denote image, they use <image>

and </image>. To support grounding functionality, Kosmos-2 represents location as

token. Initially, the image’s height and width are divided into P segments, creating PxP

discrete region. The bounding box is defined by the top-left and bottom-right points. As

a result, the grounded input representation in Kosmos-2 is structured as <p> TextSpan

</p><box><locupperle f t><locbottomright></box>. To indicate beginning and end of

phrase, <p> and </p> are used, while <box> signifies the bounding box associated with
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Type Pretraining Task Input Output

cross-modal visual grounding image and instruction

”Which region does

the text xt” describe

bounding box in for-

mat <x1,y1,x2,y2>

cross-modal grounded captioning image and in-

struction ”What

does the region

describe? region:

<x1,y1,x2,y2>”

region caption

cross-modal image-text matching image and instruction

”Does the image de-

scribe xt?”

”Yes” or ”No”

cross-modal image captioning image and instruction

”What does the image

describe?”

image caption

cross-modal visual question an-

swering

image and question answer

uni-modal image infilling image with masked

middle part and in-

struction ”What is the

image in the middle

part?”

sparse code for the

masked middle part

uni-modal object detection image and instruction

”What are the objects

in the image?”

sequence of object

position and label

uni-modal text infilling text with masked part masked part text

Table 2.1: Tasks and its input and output to pretrain OFA, adapted from [8].
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Type Pretraining Task Dataset Source

Vision & Language

Image Captioning, Image-

Text Matching

CC12M [29], CC3M[30],

SBU[31], COCO[32], VG-

Cap[33]

Visual Question Answer-

ing

VQAv2[34], VG-QA[33],

GQA[35]

Visual Grounding,

Grounded Captioning

RefCOCO[3],

RefCOCO+[3],

RefCOCOg[36], VG-

Cap[37]

Vision
Detection OpenImages[38],

Object365[39], VG[33],

COCO[32]

Image Infilling OpenImages[38],

YFCC100M[40],

ImageNet-21K[41]

Language Masked Language Model-

ing

Pile (Filtered)[42]

Table 2.2: Dataset sources for OFA pretraining, adapted from [8].
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Figure 2.4: Illustration of how to transform the bounding box as token input representation.

The upper left coordinate for the paddling pool is loc42 and the bottom right coordinate is

loc55. This example uses 8x8 grid for simplification. The actual implementation divides

the image into 32x32 location, resulting in 1024 different location tokens.

its text span. Table 2.3 explained some format representation used to train Kosmos-2.

Figure 2.4 illustrates the input representation of phrase and its bounding box.

2.3.2 Model Architecture and Training

Kosmos-2 follows a training approach closely aligned to Kosmos-1, which was con-

structed using the MetaLM [48] framework. This model is a transformer-based language

model that integrates the vision modules in its architecture. Kosmos-2 utilizes Torch-

Scale [49] as its base library, acts as the foundation of Transformer variant Magneto [50].

For position encoder, xPos [51] is used. Figure 2.5 illustrates the high level architecture

of Kosmos-2. First, a unified representation is constructed from both text and image

inputs before being processed into the Transformer-based decoder. The model generates

sequences in an auto-regressive manner, where predictions of subsequent tokens are

influenced by the preceding timesteps tokens. Causal mask is applied to prevent future

information leakage. Finally, a softmax layer is employed to choose tokens from the pre-

defined vocabulary. This architecture showcases flexibility in handling vision-language

data, as long as the inputs can be encoded as vectors.

As a next prediction token task, the training process aims to maximize the log-

likelihood of tokens present in the dataset. The vision encoder module consists of 24

layers of 2024 hidden size, and Feed Forward Networks (FFNs) of size 4096. This
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Model Prompt Format

Text <s>{Text}</s>
Image-Caption <s> <image> {ImageEmbedding} </image>

{Caption} </s>

Interleaved Image-Text <s> <image> {ImageEmbedding} </image>

{Caption1} {ImageEmbedding2} </image>

{Caption2} </s>

Grounding <s> <image> {ImageEmbedding} </image>

<grounding> <p> It </p> <box> <loctople f t>

<locbottomright> </box> is {expression} </s>

Table 2.3: Data input representation in Kosmos-2

Figure 2.5: High level architecture of Kosmos-2, directly adapted from [12] with additional

note.

Figure 2.6: Overall architecture and training of Llama3, directly adapted from [20].
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framework employ 24 layer Magneto transformer as MLLM part, featuring 32 attention

heads, an intermediate FFN size of 8192, and 2048 hidden dimensions. Overall,

the model contains 1.6B parameters, with weight initialization from Kosmos-1. To

enhance the alignment with human instructions, the model integrates two instruction

datasets: a vision-language instruction dataset LLaVA-Instruct [9] and the language-

only instruction dataset FLANv2 [52]. Additionally, specific grounded instruction

is incorporated to refine model capability. It consists of bounding box pairs and

expressions from GrIT.

2.4 Llama 3

Llama 3 [20] is a large language foundation model that supports a broad set of capa-

bilities, including solving complex reasoning problem, reading comprehension, code

generation, multilinguality, and many more. Figure 2.6 presented the overall architec-

ture and training of Llama 3. As mentioned in [20], there are two main stages in Llama3

development:

• Pre-training. In this phase, the model is trained with 15.6T tokens of large

multilingual text corpus using next token prediction task. During pre-training, the

model learns language structures and acquires world knowledge. The dataset is

curated from various web data with de-deplication, cleansing, and the removal of

personal identifiable information (PII) and adult content. Architecturely, Llama 3

closedly follows Lllama [18] and Lllama2 [19], which are based on Transformer

[53].

• Post-training. In order to make LLM behaved well according to the instructions,

Lllama3 is further applied with six round of post-training and enhanced with

human feedback on top of the pre-trained checkpoint. These rounds include super-

vised fine-tuning and direct preference optimization [54]. The post-training data

consists of specially targeted synthetic data, human annotations with rejection-

sampled responses, and human-curated datasets.

Llama 3 is available in various sizes, with parameter number ranging from 8 billion, 70

billion, to 405 billion. It also comes in two version (”Base” and ”Instruct”), depending

on whether it has been fine-tuned with instructions.



Chapter 3

Dataset

3.1 Dataset Description

To assess the capabilities of visual grounding combined with reasoning tasks, we utilize

the SK-VG dataset. It contains 4000 pairs of images, scene knowledge, queries, and

bounding boxes. This dataset consists of movies scenes from Visual Commonsense

Reasoning dataset [55] with some filtering criteria. As explained in [4], the scene must

have human as the main body of the story, have objects to describe the details of scene,

and the scene location background (e.g. park, classroom, beach). For the query, as the

dataset is built to evaluate VG with reasoning, it must be differ from traditional VG

query. There are 3 criteria for the expression:

1. Knowledge relevance: must be indirectly derived from the story rather than

visually distinguishable.

2. Uniqueness: should only refer to exactly one object or region in the image.

3. Diversity: general lexicon such as ”person” is replaced with more specific terms

(”colleague”, ”girl”, ”teacher”).

3.2 Dataset Splits

The dataset is splitted into train (2304 samples), validation (9180 samples) and test

(6598 samples). The test set is further categorized into three difficulty levels based on

the visual distinguishability of the expressions: easy (3028 samples, 45.89%), medium

(1828 samples, 27.71%), and hard (1742 samples, 26.30%). In the easy example, the

15
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Figure 3.1: The examples of three different levels of query difficulty. In this particular

example, the easy query does not need much reasoning since there is only one glasses

in the image. For the medium level, we need to look into the story and look for visual

description of Lisa. In the hardest level, the subject is not directly mentioned. It requires

more reasoning to know who is ”too tired to speak” from the knowledge, and then look

for visual (blonde hair) and spatial description (Lisa’s right) to detect the right object.

query contains obvious object or visual description. For medium, it contains weak

visual clues. Last, the scene knowledge is fully needed to derive the answer for the hard

difficulty.

The comparison of different difficulty is presented in Figure 3.1. In this particular

example, query 1 is classified as easy since there is only glasses in the image, the proper

noun ”Lisa” is not necessary to detect correct bounding box. Expression ”The sister

named Lisa” in query 2 is considered medium because the noun ”sister” alone is not

enough to identify the correct region, as there are two women in the image. In the hard

difficulty example, multiple steps reasoning is needed to accurately choose the referred

person. First, we need to know ”who is too tired to speak”, which is Ann. Second, we

look for Ann’s description to pick the right person, either by visual (”Ann has blonde

hair”), or position(”sits on Lisa’s right”).
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Methodology

In this chapter, we explained the preprocessing and evaluation method in comparing

Kosmos-2 and OFA for visual grounding with reasoning requrement. The explanation

for each evaluation settings is provided in Section 4.3.

4.1 Image Preprocessing

Kosmos-2 encoder is built on CLIP image processor which resize the image into the

size of 224 x 224. For OFA, each image is resize to 512 x 512.

4.2 Evaluation Metric

To evaluate the system, we use the Intersection over Union (IoU), which calculates

the fraction between the region of intersection and the region of union between the

predicted bounding box and the labeled bounding box. It is mathematically defined in

Equation 4.1.

IoU(Prediction,Label) =
Prediction∩Label
Prediction∪Label

(4.1)

To compare the accuracy of each model configuration, we choose IoU threshold of 0.5,

which means the prediction is considered correct if the IoU greater or equal to 0.5 and

considered incorrect otherwise.

4.3 Evaluation Settings

In this project, we compare the performance of VLMs under two different settings:

zero-shot and fine-tuned. The variations of input format in each setting are explained

17
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Model Prompt Format

Kosmos-2 <grounding><phrase>{query}</phrase>
Kosmos-2 <grounding>Knowledge:{scene knowledge}

<phrase>{query}</phrase>
Kosmos-2 <grounding><phrase>{revised query}</phrase>

OFA Which region does the text "{query}" describe?

OFA Which region does the text "{knowledge} {query}"
describe?

OFA Which region does the text "{revised query}" describe?

Table 4.1: Zero shot prompt format.

in each section below. We do not try few-shot approach because there is no available

implementation code for Kosmos 2. For OFA, the author in [8] said that few-shot

in-context learning is not possible due to its model and training design.

4.3.1 Zero Shot

With zero-shot learning, we intend to investigate model’s ability to perform visual

grounding without ever being exposed to the SKVG dataset, relying solely on the data

it was trained on during the pretraining phase. We compare the zero-shot capability of

Kosmos-2 and OFA in three different condition based on the text input to the model.

4.3.1.1 Zero Shot with Query Only

Merely providing the query in VG with SKVG dataset is very difficut, even impossible

for human to identify the correct bounding box in certain cases. As illustrated in Figure

1.1, even human will not be able to know which person is Alan without comprehending

more information from the scene knowledge. Nonetheless, we conduct this experiment

in order to examine the significance of scene knowledge in enabling the model to

accurately determining the bounding box.

4.3.1.2 Zero Shot with Query and Knowledge

In order to understand the impact of knowledge on the model’s ability to accurately

detect the bounding box, we conduct a comparative experiment with and without the in-

clusion of additional knowledge inside the prompt. Since there is no designated prompt
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template in Kosmos-2 for visual grounding with scene knowledge, we modify the exist-

ing example prompts as shown in Table 4.1. For OFA, we simply concat the knowledge

and the query with format "Knowledge: {knowledge} Query:{query}".

4.3.1.3 Zero Shot with Modified Query

Since Kosmos-2 and OFA are not inherently designed to handle VG task with reasoning

capability, we modify the query in order to make it distinguishable by visual description

or relative position. This modification would replace all pronouns based on visual cues

provided in the scene knowledge. As depicted in Figure 4.1, ”Alan” would be replaced

by its descriptive attributes, such as appearance (”the man”), action (”take out comb”),

or relative spatial location (”on the right picture”). To extract such information and

transform the expression, we do prompting with Large Language Model, particularly

LLAMA3-8B [18]. After that, we apply post-processing to eliminate some unnecessary

parts of the LLM’s response, retaining only the main intended answer, which is the

modified expression. Finally, we pass the revised query to the VLM and retrieve the

bounding box.

In building the prompt, we also try few shot learning by giving model some examples

at inference time without any gradient update, as shown in Figure 4.2. As suggested in

[16], few-shot setting in GPT-3 nearly matching some of the state-of-the-art fine tuned

systems. Giving few reduce ambiguity for model and help to understand specific answer

format. Llama also has shown promising few-shot results in many language tasks

[18, 19, 20]. To investigate the effect of including examples in Llama 3 on modified

query quality, we compare the grounding performance of both modified queries (with

or without examples in the Llama prompt) in Section 5.1.4.

4.3.2 Fine-Tuned Model

The pretrain-finetune paradigm is a widely used approach in machine learning, where

a large pretrained model is further trained on a task specific dataset. In contrast to

previous approaches where the model has not been exposed to the SKVG dataset, this

approach involves further training of the pretrained model with SKVG training data. To

analyze the impact of incorporating a reasoning pipeline with LLM, we fine-tune the

OFA pretrained model under two different conditions. First, we pass the original scene

knowledge and the query with format "Knowledge: scene knowledge. Query:

query" to investigate the OFA model’s ability to adapt to this new prompt format.
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Figure 4.1: We propose to add a reasoning pipeline to let the model comprehend subject

identity to modify the query before VG phase. In this particular example, the model need

to understand who ”Alan” is first then replace it with the descriptive attributes, such as

appearance (”the man”), action (”take out comb”), or relative spatial location (”on the

right picture”).

Figure 4.2: Prompt format for LLAMA3 as part of reasoning pipeline to revise the query

expression.

Second, we utilize a modified query format as explained in Section 4.3.1.3.

4.3.2.1 Fine-Tuning Configuration

Following the implementation setting in [8], we fine tune the model for 12 epochs with

learning rate of 3x10−5, warm up ratio of 0.06, label smoothing of 0.1, and drop out

rate of 0.1. More comprehensive list of hyperparameters can be found in the Appendix

A.
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Results and Discussion

5.1 Zero Shot

5.1.1 Query Only

As indicated in Table 5.1, Kosmos-2, OFALarge (ID: ZS9), and OFAHuge (ID: ZS12)

exhibit superior performance compared to LeViLM (ID: ZS1) in zero-shot with query

only setting. For OFABase, it achieved similar overall accuracy (29.17) compared to

LeViLM (29.75). Interestingly, when considering difficulty levels, OFABase performed

slightly better in medium cases and achieved approximately 75% higher accuracy in

hard difficulty.

In zero-shot setting, model size can be a significant factor affecting performance.

As discussed in [4], LeViLM is built following GLIP [26] as its backbone. Comparing

the model sizes, as shown in Figure 5.1, Kosmos-2, OFALarge, and OFAHuge are larger

than GLIP 1.

With more parameters, generally model possess a higher capacity to learn complex

pattern from data. The relation between model capacity and its accuracy is clearly

reflected in three version of OFA with different model size. Surprisingly, despite

having fewer parameters, OFAHuge (930M parameters) outperforms Kosmos-2 (1660M

parameters).

Model size is not the only factor affecting the performance, the dataset and type of

task during initial pretraining also plays crucial roles. GLIP is pretrained with phrase

grounding tasks, aims to detect multiple bounding boxes (not single) for each detected

1Since [4] does not specify which version of GLIP is used in LeViLM, we assume it is GLIP-Tiny
with 232M parameters.

21
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VG Model ID Text Overall Acc
Difficulty Level

AccEasy AccMedium AccHard

Zero Shot

LeViLM
ZS1 Q 29.75 49.97 18.23 6.71

ZS2 Q+K 7.55 13.08 4.38 1.26

Kosmos-2

ZS3 Q 38.63 49.01 32.66 26.87

ZS4 Q+K 39.89 47.46 34.41 32.50

ZS5 MQ 40.03 48.08 34.85 31.46

OFABase

ZS6 Q 29.17 39.43 22.92 17.91

ZS7 Q+K 16.06 13.97 16.03 19.75

ZS8 MQ 33.28 41.11 28.12 25.09

OFALarge

ZS9 Q 42.47 58.09 33.21 25.03

ZS10 Q+K 18.72 17.24 18.05 21.99

ZS11 MQ 53.30 63.11 46.78 43.11

OFAHuge

ZS12 Q 48.14 64.60 39.28 28.82

ZS13 Q+K 20.93 17.01 21.39 27.27

ZS14 MQ 57.85 66.08 51.04 50.69

Fine Tuned

LeViLM

FT1 Q 57.18 80.35 46.80 27.83

FT2 Q+K 70.70 84.51 63.16 54.62

FT3 Q+K+S 72.57 83.72 65.52 59.95

OFABase
FT4 Q+K 53.15 69.35 44.26 34.33

FT5 MQ 59.56 66.55 51.86 55.51

OFALarge FT6 MQ 69.40 77.77 63.51 61.02

OFAHuge FT7 MQ 70.11 78.37 63.57 62.63

Table 5.1: Performance of Kosmos-2 and OFA towards SKVG Dataset in zero-shot

and fine tuned setting. In zero-shot, there are three different text input. Q represents

query only, Q+K represents concatenation of query and knowledge, and MQ represents

modified query. In fine tuned setting with LeViLM, S is linguistic structure. The modified

query is generated by Llama 3, utilizing its reasoning capability given the original query

and the scene knowledge.
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Figure 5.1: Model Size Comparison and Accuracy.

object mentioned in text queries. It is differs from visual grounding (also mentioned

as referring expression comprehension) task where the goal is identify exactly one

bounding box referred by the expression. The object phrases in GLIP are relatively

shorter and simple than SK-VG dataset, such as ”blow dryer”, ”protective goggles”, or

”beautiful carribean sea turqoise”. In contrast, Kosmos-2 is trained with one-to-one pair

of descriptive phrases (”a dog in a field of flowers”) and bounding boxes. OFA is also

pretrained with visual grounding task utilizing RefCOCO, RefCOCO+, and RefCOCOg.

Those datasets feature varied and linguistically rich examples, including sentences

with visually descriptive phrases (”white shirt guys”), spatial position (”building on

right behind guys”), or actions (”the little kids holding a racket”). This exposure to

diverse and complex expressions likely contribute to OFA’s superiority compared to

other models.

5.1.2 Adding Knowledge by Simple Concatenation

Similar with LeViLM [4], OFA struggles to detect bounding box accurately when the

knowledge is added by simple concatenation (ID: ZS7, ZS10, ZS13). The performance

in this scenario is worse than using the query alone. This does not imply that knowledge

harm the model, however the addition of knowledge results in a much longer text prompt
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compared to the text representation in OFA’s pretraining dataset. The average number

of words in the concatenated query is 65.62. In contrast, OFA VG pretraining task uses

RefCOCO[3], RefCOCO+[3], RefCOCOg[36], and VG-Cap [37] with only 3.5, 3.5,

8.4, and 5 words per query expression respectively, which are significantly shorter than

text in the Q+K setting. Interestingly, this phenomenon is not happen in Kosmos-2.

5.1.3 With Modified Query Generated by LLM Reasoning

As shown in Table 5.1, Kosmos-2 and OFA achieved superior performance compared

to LeViLM in zero-shot setting through query modification. Query rewriting slightly

increased Kosmos-2 (ID: ZS5) accuracy (3.5%) and significantly boosted the accuracy

for OFA (ID: ZS8, ZS11, ZS14). The overall accuracy improvements were 14.09% for

OFABase, 25.5% for OFALarge, and 20.17% for OFAHuge.

As shown in some examples depicted in Table 5.2, the reasoning capability of Llama

3 successfully revise the queries to exclude any proper nouns, making objects easier

to identify. It is replaced with visual descriptions (”in black suit” in example 1) or

spatial relationships (”Mark” is rewritten as someone who ”standing on the left of the

image”). However, we argue that some phrases in the modified query is unnecessary

and could be erased in order to get shorter prompts. For example, in example number 3,

the description ”the person with yellow hair” is specific enough to describe the referred

person without the needed of phrase ”being protected by the person with his arm around

him”. We also found that Llama 3 failed to correctly modify some queries. For instance,

in example 4 of Table 5.2, the pronoun ”Mark” should be replaced as ”The person

who sits on the chair opposite someone kneeling”. Table 5.3 presents the percentage

of revised queries that still contain proper nouns. As expected, Llama 3 struggles with

queries of high difficulty, with proper nouns remaining in 19.35% of the hard samples,

followed by 14.62% in medium difficulty, and 8.62% in easy category.

5.1.4 Effect of Providing Examples in Llama 3 Prompting

In this section, we discuss in-context learning by providing examples within prompt for

Llama 3. Table 5.4 presents the accuracy comparison of modified query generated by

Llama 3 with and without examples. In both scenarios, the Llama 3 was instructed to

transform the query as shown in Figure 4.2, with additional guidance such as ”using

visual description”, ”avoiding proper noun”, and ”thinking step by step”. The key

difference between the two setups is the presence of example. As stated in table 5.4,
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ID Knowledge, Query, and Modified Query

1 K The housekeeper Danny, who is a man in a black suit, comes out of

the house. The woman in front of him, Sunny, is walking towards her

husband Leon, who is wearing a gray suit. Leon has just come home

from work when he sees his wife walking towards him. He feels very

happy.

Q The man who is a housekeeper

MQ The man in black suit

Q The person who has just come home

MQ The person in gray suit who feels very happy.

2 K On the training ground, the officer Mark, standing on the left of the image

with a gun in his hand, arranges for Kevin to check why the soldier Alan

in front of Mark is lying on the ground. Kevin kneels next to Alan on

one knee, checking Alan’s body. Jack, the soldier standing on Mark’s

right, is Alan’s good friend and is very worried about Alan’s safety.

Q The officer named Mark

MQ The officer standing on the left of the image with a gun in his hand

Q The helmet worn by Jack

MQ The helmet worn by soldier standing on the right of officer with a gun

3 K Alan, a little boy with yellow hair on the middle of the image, is isolated.

Eric, wearing a gray vest behind Alan, keeps mocking him behind him.

Alan’s good friend Owen puts his arm around Alan on his left, trying

to protect him. But Frank, who is wearing a black coat to Owen’s right,

wants to stop them.

Q The person being protected by Owen

MQ The person with yellow hair being protected by the person with his arm

around him.

4 K The piano is on the left side of the image. Mark kneels on the right side

of the piano and is taking off his hat. He had just performed to Nick, who

is sitting across from him, and is greeting Nick at this time. Nick sits on

the chair opposite Mark and has watched the whole Mark’s performance.

He is satisfied with Mark’s performance.

Q The person who is satisfied with Mark’s performance

MQ The person who sits on the chair opposite Mark

Table 5.2: Some examples of modified query generated from Llama 3. K represents

knowledge, Q represents original query, and MQ represents modified query.
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Difficulty Number of Sample
Number of Sample Containing Pronoun

2 Examples Provided No Example Provided

Easy 3028 261 (8.62%) 776 (25.63%)

Medium 1828 249 (13.62%) 467 (25.55%)

Hard 1742 337 (19.35%) 524 (30.08%)

Table 5.3: Percentage of modified query that still containing proper noun. We compare

effect of providing examples in the Llama 3 prompt.

VG Model Text Overall Acc
Difficulty Level

AccEasy AccMedium AccHard

OFAHuge Modified query

without providing

example in prompt

47.91 48.25 46.55 48.74

OFAHuge Modified query

with 2 examples in

prompt

57.85 66.08 51.04 50.69

Table 5.4: Impact of including examples on grounding accuracy.

the overall accuracy significantly drops by around 10 points. The most notable decline

occurs in the easy category. One indicator of inaccurate query rewriting is the presence

of proper noun. Table 5.3 reveals that the number of expression that still containing

proper noun in the easy category increase substantially when no examples are provided.

It jumped from 8.62% to 25.62%, the highest increase compared to the medium and

hard category. We can conclude that providing examples significantly improve Llama

3’s responses. Examples clarify what exactly is being asked, reduce ambiguity, and help

model to understand intended format or specific requirement. This finding aligns with

findings in [18] and [16].

5.2 Fine Tuning

As explained in Section 4.3.2, we compared two different approaches in our fine-tuning

efforts. The first approach involved providing the model with both the query and the

knowledge to investigate whether the model has capability to learn the relationship

between the query and the knowledge, as well as the reasoning ability to solve the
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grounding problem. In this approach, the VG model is responsible for performing

the reasoning task. In the second approach, the reasoning task is handled by an LLM,

allowing the OFA model to focus solely on the grounding task tuning.

5.2.1 Fine Tuning by Providing Query and Knowledge

As shown in Table 5.1, compared to the zero-shot approach with the modified query of

OFABase (ID: ZS8), the fine-tuned model with concatenation (Q+K) (ID: FT4) achieved

an improvement in accuracy by 19.87 points. This aligns with the downstream tasks

results presented in OFA paper [8], which demonstrate that the OFA pretrained model

have general understanding of texts and images, and can effectively adapt to new

instructions with fine-tuning. In our case, the pretrained model is able to learn new

format of prompt and recognizing two keywords (”Knowledge” and ”Query”). It proved

that OFA could have a reasoning ability to understand the scene knowledge story and

choosing the correct bounding box.

5.2.2 Fine Tuning Using Modified Query

Although the fine-tuned OFA has shown its reasoning ability to understand the knowl-

edge as mentioned in Section 5.2.1, it does not match the LLM reasoning ability, in

this case Llama 3. As presented in Table 5.1, fine-tuning with a modified query using

OFABase (ID: FT5) outperforms the Q+K fine tuning technique (ID: FT4) by 6.41 points.

Llama3-8B-Instruct, with 8 billion parameters, has been pretrained on over 15T tokens,

and finetuned with human feedback, indeed has superior capability in reasoning.

In comparison with the fine-tuned version of LeViLM, our fine-tuned OFAHuge

(ID: FT7) achieves competitive result against the LeViLM Q+K (ID: FT2). While FT7

accuracy lags behind FT2 by around 6 points in easy category, it exhibits similar result

in medium category and shows significant superiority in hard category by around 8

points. It is also important to note that LeViLM is a specialized model, specifically

designed for visual grounding, whereas OFA is built as general purpose model that we

fine-tuned for visual grounding task.

Overall, the fine-tuned version of LeViLM involving linguistic structure (ID: FT3)

achieved the best accuracy, including the easy and medium category. Notably, our

fine-tuned OFAHuge (ID: FT7) holds its superiority in hard category. We argue that

the absence involvement of linguistic structure may contribute to its misfocusing the

correct bounding box in certain cases, showing its struggle to find the main noun of the
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expression. This issue is further discussed in Section 5.3, along with Figure 5.6 (row

2-3).

5.3 Qualitative Analysis

To further investigate the effects of query modification query and fine-tuning, we

perform a qualitative analysis on SK-VG dataset. We focus on OFALarge for the

comparison with some results presented in Figure 5.2. In first row, VG model with

all three settings correctly detects the bounding box. Despite the presence of proper

noun ”Carl” in the original query, our model accurately predicts the bounding box.

This accuracy is likely because the expression contain word the ”daughter” and there

is only one woman in the image. In the second case (row 2), the expression refer to a

hat worn by waiter Leon. However, since multiple hats are present, the model needs to

pick one. The zero shot attempt with the original query fails to identify the correct hat.

With the help from Llama 3 reasoning, the query is modified to make the referred hat is

less ambiguous. The modification replaces ”Leon” with ”the waiter in the middle of

image”, allowing model to accurately detect the hat based on its spatial position. In row

3, both zero-shot setting fail, but fine-tuned model succeeds. In the fine-tuned version,

the model has been trained with similar types of image (movie scenes) along with the

expressions. Finally, in the fourth row, all model failed. The Llama 3 reasoning also

generates a wrong rewriting by producing another proper noun (”Abby”).

Query modification using Llama 3 improve the model performance significantly,

particularly for categorically hard samples. We selected several hard samples and

present the grounding results in Figure 5.3. We notice that the majority of improvement

is due to expression transformation of ambiguous or abstract phrases into more concrete

visual description, such as what the person is wearing or their physical attributes. As

shown in Figure 5.3, the abstract phrase ”has just come home” is rewrite as ”the person

in gray”, which make it trivial for grounding model to comprehend. Similarly, the

phrase ”too tired to speak”, which is hard to imagined visually, is transformed into

”person with blonde hair”, making it easier for model to interpret.

On the other hand, we also find that some samples from easy category which are

correctly predicted with original query, become incorrect after query modification. The

issue arises from inaccuracy in reasoning pipeline. As presented in Figure 5.4, query

rewriting can change the focus of the expression. This shift is likely to occur if the head

word of the expression is an object, rather than a person. We observe that there is a
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Figure 5.2: Qualitative Analysis on VG Performance in Various Examples. We compared

OFA Large Performance on 3 evaluation settings: 1. Zero shot with original query (left

column), 2. Zero shot with modified query (middle column), and 3. Fine Tuned version

with modified query.
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tendency for Llama 3 to transform it so that the main focus becoming the person. As

example, in row 1, the original query ”the black top hat worn by Leon” which focuses

on ”hat” is rewritten as ”the man in black top hat”, shifting the focus to ”the man”.

Additionally, there are some other samples that where query modification alters the

meaning of the expression, illustrated in Figure 5.5.

We also investigate how the parameter size affects the performance of the VG

models. Some VG results with modified query of OFABase, OFALarge, and OFAHuge

is shown in Figure 5.6. In the second row, unlike OFALarge and OFAHuge, OFABase

misfocuses the main object referred in the expression. In expression ”The colleague of

Jakson who wears a striped tie”, the focus should be on the person, not the striped tie.

A similar issue is observed in the third row, where OFABase and OFALarge focus on the

necklace, instead of the person (”the wife”), which OFAHuge correctly identifies. These

focus phenomenon may explain the performance improvement seen in LeViLM[4]

when linguistic structure is provided (see Table 5.1 ID: FT2 and FT3). By including

linguistic structure, the model has information to know what is the head or main noun of

a phrase, thereby enabling it to focus on the correct target when choosing thee bounding

box.

The size of the bounding box target also impacts the system performance. In the

fourth row, based on the IoU score, all model results are classified as incorrect. However,

a closer look suggests that the model likely actually know the right region referred by

the expression (”the watch”). The issues arises because the bounding box representation

in the system is built by transforming continuous coordinates into discrete location

token cell, which reduce granularity. Consequently, the model struggles in some cases

involving small bounding box that require more precise localization.
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Figure 5.3: The query modification from abstract and hard to imaged visually phrases

into visual description such as the clothing or physical attributes make it much easier for

VG model to interpret.
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Figure 5.4: We notice that there is a tendency for LLM to shift the focus from an object

to the person.

Figure 5.5: Some samples in easy category that were initially accurate in predicting

bounding box with original query, becoming incorrect after query modification due to

errors in the rewriting process.
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Figure 5.6: VG Performance of Various Model with Different Parameter Size. We

compare the results of OFABase, OFALarge, and OFAHuge. Row 2-3 shows the misfocus

problem of model in identifying the main noun of a phrase. In row 4, we observe that the

model struggles with small bounding box.
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Conclusion and Future Works

6.1 Conclusion

Our work shows that pretrained visual language models (VLMs), particularly Kosmos-2

and OFA has demonstrated capability in solving visual grounding task with reasoning

requirement. In zero-shot setting with query only, Kosmos-2, OFALarge and OFAHuge

outperform LeViLM, the previous existing method. Our study also indicates that the

involvement of Llama 3 to modify the query noticeably improves model accuracy.

The reasoning ability of Llama 3 successfully revises the query to replace the proper

noun with with visual descriptions or spatial relationship, making it much easier for

grounding model to accurately detect the bounding box. When building the prompt in

LLama 3 for query modification, our findings confirm that providing examples inside

prompt (in-context learning) boost the quality of rewritten query, aligning with previous

research on LLM in-context learning. As a result, it positively affects the performance

of visual grounding model at the end. Conversely, there are some examples where an

originally correct prediction becomes inaccurate after query modification. This issue

roots from Llama 3 reasoning inaccuracy, such as the tendency to shift the focus from

object to the person or completely alter the meaning of the original expression.

Compared to zero-shot, fine-tuning setting results in higher accuracy, as the model

learns the specific characteristic of images in the SKVG dataset (which consists of

movie scene) and the alignment of the bounding box and expressions. In comparison

with the fine-tuned version of existing approach(LeViLM), our fine tuned OFAHuge

achieves competitive result in the setting involving the query and knowledge only.

It is crucial to note that OFA is a generalized model, contrast with LeViLM, which

is specifically designed for visual grounding tasks. However, overall, the fine-tuned

34
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version of LeViLM that incorporates linguistic structure (Q+K+S version) still reach

the highest accuracy. Interestingly, our fine tuned OFAHuge show its superiority in

hard category. The absence of linguistic structure in our model may contribute to its

misfocusing issues while choosing the bounding box. We observe that in some examples

when the expression involves a person with object attributes, such as ”the man who

wears a striped tie”, the grounding model incorrectly choose the object (”tie”) instead of

focusing on the person (”the man”). Including the linguistic structure would provide the

model with the information needed to determine the main noun of a phrase, enabling

it to focus on the correct target. One possible method is to add a dependency parsing

pipeline and integrate its results as part of the text input of the OFA transformer.

6.2 Future Work

There is still some room for improvement and further research opportunities in this

project as visual grounding with reasoning requirements is a relatively unexplored

area. First, the modified query results generated by the LLM could be enhanced

through prompt engineering or by experimenting with different LLMs. There are many

pretrained models such as QWEN-VL[56], GroundingDINO[57], Florence 2[58] and

GPT-4[13] have demonstrated noticable performance and worth exploring. For the

grounding aspect, more extensive hyperparamater tuning could be explored, as this is not

the main focus of the current work. In our fine-tuning effort where we try to investigate

pretrained model ability in reasoning by providing knowledge and query, we only

tried one instruction format. Future research could experiment with other instruction

formats. Additionally, experimenting with Low Rank Adaption (LoRA)[59] instead

of full fine-tuning could be studied. Our findings also observe that, in some example,

OFA struggles in correctly choosing the main focus of the phrase. Experimenting

in fine-tuning involving linguistic structure might address this issue and improve the

accuracy. Last, the current prediction process still lacks of interpretability, which could

be an interesting topic for further research.
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Appendix A

Fine-Tuning Hyperparameter

Hyperparameter Value

label smoothing 0.1

learning rate 3e-5

warmup ratio 0.06

batch size 4

update freq 8

resnet drop path rate 0.0

encoder drop path rate 0.1

decoder drop path rate 0.1

attention dropout 0.0

max source length 80

max target length 20

num bins 1000

patch image size 512

Table A.1: Hyperparameter for OFA fine-tuning.
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Appendix B

More Visual Grounding Results

Figure B.1: Examples of Kosmos-2 VG Result in Zero Shot
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Figure B.2: Examples of Kosmos-2 VG Result in Zero Shot
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Figure B.3: VG Results with OFABase
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Figure B.4: VG Results with OFALarge
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Figure B.5: VG Results with OFAHuge


