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Abstract

Advancements in neurotechnology have enabled the recording of neuronal activity with

unprecedented detail, using high-density multi-electrode arrays (HD-MEAs). Spike

sorting, the process of distinguishing and categorizing neuronal action potentials, is

pivotal for interpreting these complex signals. This dissertation investigates various

feature extraction and clustering methods to enhance spike sorting accuracy in neural

data obtained from HD-MEAs. Techniques such as Principal Component Analysis

(PCA), Independent Component Analysis (ICA), Uniform Manifold Approximation

and Projection (UMAP), and Isometric Mapping (Isomap) were evaluated alongside

clustering algorithms including K-means, Agglomerative Clustering, HDBSCAN, and

Mean Shift. Systematic parameter tuning and rigorous performance evaluation, includ-

ing accuracy, precision, and recall measures, reveal that combining HDBSCAN with

PCA offers superior performance with an accuracy of 0.87, by efficiently minimizing

noise while preserving essential data features. The study also considers the computa-

tional complexities of these methods, ensuring a balance between effectiveness and

efficiency. The findings highlight the importance of choosing the appropriate methods

and parameters, that can guide future developments in brain-machine interfaces and

neurological research.
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Chapter 1

Introduction

The brain is made up of a vast network of specialized cells called neurones or neurons.

These neurons are responsible for the daily functioning of our lives. Advances in

technology have enabled us to record the activity of these cells and specifically the

electrical impulses they generate called spikes. Spikes or action potentials are the

electrical impulses generated by neurons when they communicate, this indicates the

transmission of information. We can think of spike as a notification on a cellphone.

When the mobile receives a message, it makes a sound to alert the user. Similarly,

when a neuron fires a spike, it’s similar to sending a signal to the brain to alert it about

an event, such as sensing a touch, hearing a sound, or seeing an object. Just like the

notification sound alerts a person to check the message, spikes alert different parts of

the brain to process information and respond [1].

The frequency and pattern of spikes convey information that the brain uses to process

sensory signals, make decisions and control motor functions. Analysis of spikes can

help us design the Brain-Machine Interface (BMI) where real-time intercommunication

between each neuron is required for predicting motor movement and possibly complex

neural processes involved in decision-making and sensory perception [2] (elaborated in

detail in Appendix A.1).

The extraction of spikes is made possible by a device known as the high-density

(HD) multi-electrode array (MEA). The HD-MEA consists of a grid of closely spaced

electrodes that simultaneously record many neurons’ activity. They are placed in close

contact with the neural tissue, where they detect extracellular electrical signals generated

by neurons. HD-MEAs have a much higher density of electrodes, allowing for more

precise spatial mapping of neuronal activity. These arrays are typically placed in close

contact with neural tissue, enabling the recording of extracellular electrical signals

1



Chapter 1. Introduction 2

generated by neurons. These signals can be analyzed to study brain functions and neural

networks in detail [3].

Spike sorting is a Machine Learning technique for monitoring, capturing, and

processing multiple neuron’s activity simultaneously. This technique allows for the

dissection of activities from several neurons situated in juxtaposition with each other,

which with further processing can help to obtain an individualized view of the activity of

a single cell. The main challenge lies in analyzing neural data, as neurons are extremely

small. Even with closely spaced recording sites in HD-MEAs (extracellular electrodes),

the tiny size of neurons results in multiple channels recording spikes from several

neurons at once [4]. As a result, when recording neural signals, a single electrode may

pick up spikes from multiple neurons at the same time, leading to overlapping signals.

This overlap makes it difficult to accurately identify which neuron each spike belongs

to.

Another issue with processing neural data is that, given the billions of neurons in

the brain, each producing their respective spikes during the triggering of a particular

activity, it becomes increasingly difficult to decipher whether the spikes detected by

multiple channels are associated with different neurons or the same neuron [5].

To address the aforementioned issues, feature extraction is implemented to handle

the complexities pertaining to high-dimensional neural recordings. Since neurons

generate overlapping spikes for closely spaced recording sites, feature extraction can

assist in separating and identifying these overlapping spikes by reducing the data

dimensionality [6]. This facilitates a clear distinction between signals from different

neurons. By focusing on the most informative features (like spike time, amplitude,

shape and spike patterns), feature extraction can enhance the accuracy of spike sorting

and result in a more optimised spike analysis system. Here, features represent the

characteristics of spikes recorded from neurons.

For instance, analyzing the location and shape features of the spike waveform

might reveal important details about neural activity. A spike waveform is the visual

representation of the electrical potential (spike) generated by a neuron when it fires. It

captures the shape of the spike over time, including its amplitude, duration, and specific

phases such as the rise, peak, and fall. The location feature refers to the spatial position

of the neuron within a small volume of brain tissue, which is crucial for distinguishing

spikes from different neurons. By identifying these key features, we can enhance data

representation and reduce computational requirements for analysis [5].

This leads to addressing the following research questions:
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• How can spike data be efficiently analyzed to reveal distinct patterns?

• What methods are potentially reliable for categorizing neural activity based on

spike data analysis?

Feature extraction followed by clustering of spike data can enhance our understand-

ing of neural recordings because it empowers us to isolate and analyze the behaviour of

each and every neuron signal from the HD-MEA recordings. This process can aid in

reducing the noise and redundancy in spike data and can make it easier to understand

the interrelationship in neurons. Application of dimension reduction techniques can

compress the data while ensuring that essential information is not lost, this results in a

faster and more efficient clustering system (grouping of data that exhibit similar traits).

Thus optimising the spike sorting mechanisms (study of neural activity at the single-

cell level) by increasing the accuracy and speed at which data is analyzed, potentially

addressing major challenges in neuroscience [7].

The goal of this dissertation is to explore different dimension reduction techniques

and understand how they can improve the clustering at different parameter settings and

ultimately contribute towards more effective analysis of neural data. This is important

as it enables researchers to process large volumes of neural data efficiently and get more

insights into the operation of the brain and the development of cutting-edge neurological

systems.

The upcoming section includes the Background section, which offers insights into

the general understanding of the project and its context. The Related Work section

reviews relevant existing literature about the project. The Methodology section expands

on the approach that has been employed for this dissertation. The Results section

describes the outcomes observed and the Discussions section analyzes the implications,

and relevance of the results, highlights the limitations of the work, and the recommen-

dations for further research. Lastly, the Conclusion section provides an overview of the

major findings of the study.



Chapter 2

Background

This chapter lays a foundation on neural terminologies and the methods of spike

sorting implemented in this dissertation. It emphasizes the relevance of spike sorting

in understanding neural activity, providing essential background knowledge for the

subsequent sections.

2.1 Understanding Neural Activity

To achieve a holistic understanding of the brain, it is essential to distinguish and classify

the activity of every neuron from the extracellular recordings. This empowers scientists

and researchers to understand spikes, offering valuable insights into how neurons

transmit signals, analyze information, and contribute to diverse brain functions and

behaviours.

It is crucial to understand how spikes are generated to grasp their importance.

When a neuron receives input through structures called synapses (sites where signals

are transmitted between cells) it can lead to an accumulation of these inputs. If this

accumulation causes the membrane potential (the electrical charge difference across the

neuron’s membrane) to exceed a specific threshold, the neuron responds by generating

a brief, transient electrical pulse known as a spike or action potential. The neuron

essentially integrates excitatory and inhibitory signals from multiple synapses, and if the

summed input surpasses this threshold, the neuron fires, similar to how a McCulloch-

Pitts neuron model operates [8].

Figure 2.1 demonstrates the activity of a spiking neuron. The neuron receives

stimuli as represented in coloured arrows, in response to this a bump or membrane

voltage is observed. Membrane voltage occurs when the difference in the electric

4



Chapter 2. Background 5

potential between the external and internal environment of the cell is beyond the neuron

threshold(ϑ, represented in dotted lines). This induces an exchange of ions across the

cell membrane thereby resulting in the generation of spikes. After the occurrence of the

action potential, the neuron enters the refractory phase where the chances of another

spike occurring soon after are unlikely [9].

Figure 2.1: Illustration of the dynamic behaviour of a neuron that generates spikes.

Source: Adapted from Scholarpedia article [9].

Modern technology has made it possible to record these neural impulses through

devices like multi-electrode array (MEA). MEAs comprise thousands of microscopic

electrodes spanning a small surface in each MEA plate or chip. When the cells exhibit

electrical activity, the spikes are captured by each electrode on a microsecond time

frame. Thereby, recording both temporally and spatially accurate data [3].

One issue that arises from the extracellular recordings of the MEAs is that they

typically encompass the neural activity of multiple neurons simultaneously, making

it difficult to separate the potentials of individual neurons. Despite capturing a vast

amount of data, no meaningful insights can be observed. This calls for a system that

studies the spike shape, firing rate, timing, and pattern of neural electrophysiological

activity. Spike sorting is one such neuroscience technique implemented to record and

analyze the collective electrical activity of a group of neurons, known as ensemble neural

activity. This technique can identify and classify the electric potentials of neurons. They

detect, identify, and isolate the neural potentials generated, and distinguish them from

the background noise and with each other, even when multiple neurons are recorded

simultaneously on the same electrode [5, 4].
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2.2 Spike Sorting Pipeline

The traditional spike sorting pipeline consists of a series of stages to identify and classify

the extracellular spike records generated by each neuron while being able to separate

them from recordings of neighbouring cells and noisy signals. It aims to reconstruct

the spike trains (series of action potentials generated by a specific neuron over a time

frame) of all neurons with a clear signal absent of noise. It can be thought of similar to

a scenario where we have an orchestra with multiple instruments playing concurrently;

spike sorting is analogous to listening to the orchestra and being able to identify which

symphony originates from a particular instrument, the spike train here is the instrument’s

sound over an interval. The general pipeline was derived from the articles published by

Alessio P. Buccino et al. and David Carlson et al. [7, 10], as illustrated in Figure 2.2.

Figure 2.2: The general pipeline for spike sorting. Source: Adapted from Alessio P.

Buccino et al. [7].

2.2.1 Pre-Processing

The pre-processing step is essential as it prepares the raw electrophysiological recordings

for the subsequent stages. This step involves transforming and sorting the data to ensure

accurate detection and classification of the spikes.

The first step involves passing the raw data through a band-pass filter; this ensures

that low-frequency data such as drifts, and high-frequency noise are separated, retaining

only the data of interest. Drifts are the recordings observed when there is a shift

in the position of the electrode during the spiking action of a neuron; this external

interference can result in an inconsistent shape or amplitude of the recorded spike

waveform. Effective correction is necessary to ensure that the spike recordings can be
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accurately attributed to the appropriate neuron. Following band-pass filtering, spatial

whitening is performed. Whitening separates the signals from the band-pass filter of

different electrodes and normalizes their variance. This is done to effectively minimize

the overlap of spikes from nearby neurons, ensuring that all signals contribute equally

[7].

Lastly, Common Average Reference (CAR) removal is performed. An average of all

the signals is subtracted from the signals of each of the electrodes. This normalization

step ensures that we isolate the true signals by removing the common-mode noise, a

noise that is consistent across all the recording electrodes due to the presence of external

or systemic issues [7, 10].

2.2.2 Spike Detection

Once the recordings are pre-processed, the detection of spike potentials is executed. A

threshold detector is used, and spikes are detected when the potential exceeds a given

amplitude threshold. The threshold parameter ’Thr’ is set based on the Median absolute

deviation (MAD) [11]. The detection threshold is typically established as a multiple

of MAD, a robust estimator of noise variability (σn) (Equation 2.1 and Equation 2.2).

Commonly, this threshold is established within the range of 3 to 5 times MAD, with 5×
MAD being frequently used to balance sensitivity to spikes against minimizing noise,

corresponding to a false positive rate of about 1 spike per second per channel under

typical noise conditions [7].

Thr = 5σn (2.1)

σn = median
{

|x|
0.6745

}
(2.2)

Here, σn is derived from the MAD of the recorded signal values (x), scaled by

the constant 0.6745. This approach provides a percentile-based measure of variability

around the median, offering a more reliable threshold in noisy conditions compared to

the standard deviation, which is less robust to outliers [7].

However, the detected spikes tend to be misaligned with time because depending on

the spike shape or the noise ratio, the precise point at which they cross the threshold

varies. Thus, resulting in spikes being detected at varying points on the waveform.

A temporal alignment is performed where a feature (like the spike shape) is slightly

adjusted to a point where all the detected spikes occur at the same point in time. The

aligned spikes maintain consistency across all the detected spikes [7].
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2.2.3 Feature Extraction

In this step, we extract the features that best represent the spikes. These features

should have the ability to provide an optimal separation between the different clusters.

Additionally, the extracted features should be able to eliminate or separate the noise.

Dimensionality reduction is performed before the feature selection and extraction.

Retention of the most significant features is done while simultaneously lowering the

number of features or dimensions. This ensures the system is computationally efficient

and prevents the subsequent steps from being overloaded with large volumes of input

data. The goal is to eliminate the dimensions redundant with noise and improve the

scope of clustering [12].

To select the features, it’s important to understand the characteristics of the spike.

These characteristics could be the spatial location of the spike, the amplitude, the shape,

and the associated waveform, to name a few. Spike location is the spatial positioning

of the neuron that generates the spike in a small volume of brain tissue, recorded by

electrodes adjacent to one another. Studying them can give a better understanding of

the interactions of neurons. Amplitude refers to the intensity of the spike when the

neuron fires. Higher the amplitude, higher the neural activity. Amplitude shape tells

about the structure of the spike waveform, this could be the rise, peak and fall of the

waveform. All these features can help distinguish neurons and accurately sort spikes

during analysis [13].

As detailed by Rui-Qi Song et al. [14] Principal Component Analysis (PCA) is a

technique used to reduce the dimensionality of the spike waveform data. PCA transforms

the waveform, which typically consists of many samples, into a set of orthogonal

components that capture the most variance within the data. This process simplifies the

data while preserving the most important features. PCA is an eigendecomposition of

the covariance matrix of the data, identifying the directions (principal components) that

capture the most variance. This allows for effective dimensionality reduction while

preserving the most significant features. Other feature extraction techniques include

Uniform Manifold Approximation and Projection (UMAP) and Isometric Mapping

(Isomap).

UMAP is a dimensionality reduction technique used to project data into lower di-

mensional space, this can assist in better visualization and analysis of multidimensional

data. It aids in maintaining non-linear relationships that can uncover the underlying

structure of data [15].
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On the other hand, Isomap is a non-linear dimensionality reduction method that

preserves the intrinsic structure of data by projecting the high-dimensional space into

a low-dimensional manifold. It achieves this by calculating distances between points

using geodesic distances, which represent the shortest paths on a curved surface or

manifold rather than relying on straight-line (Euclidean) distances [16]. The Isomap

algorithm first constructs a neighbourhood graph of features and then computes the

geodesic distances between all points within the graph. Using multidimensional scaling

(MDS), the data is projected into a lower-dimensional manifold while maintaining the

same geodesic distances as in the high-dimensional space. This ensures that the intrinsic

structure of the features is preserved in the reduced space.

Figure 2.3, as described by Graf et al. [17], illustrates the process of extracting

features for spikes. An instance of a particular spike waveform is shown in Panel ’A’,

representing the raw data from which features are derived. Panel ’B’ demonstrates a

range of extracted features, such as peak-to-peak amplitude, maximum and minimum

peaks, slope, duration, and area under the curve (AUC). These features offer an in-depth

description of the spike’s shape and characteristics. In Panel ’C’, the result of applying

a dimensionality reduction technique (in this case, PCA) to the extracted features is

presented. The plot depicts the distribution of spikes in the reduced feature space, with

clear clusters indicating spikes from different neurons. This visual depiction empha-

sizes the significance of feature extraction and dimensionality reduction in accurately

recognizing and categorizing neural spikes.

Figure 2.3: Illustration depicting the process of extracting features from spikes, showcas-

ing the distinctive waveform properties of spikes and their clustering in a reduced feature

space. Source: Revolutionizing CNS Drug Discovery Research with Cutting-Edge Tech-

nology and Innovative Analysis Tools [17].
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2.2.4 Clustering

Now in this reduced feature space, spikes are arranged into clusters, such that each

cluster is associated with spikes belonging to a single neuron. This density-based

clustering process isolates the spike events into distinct groups by identifying areas with

high concentrations of similar spikes, based on the density of points in the feature space.

Each cluster centroid represents the average spatial and temporal pattern observed on

the channels (an electrode or sensor in a MEA that detects neural activity) when a

specific neuron generates a spike. This critical step in spike sorting distinguishes the

spike trains of individual neurons from the combined signals recorded by electrodes,

ensuring precise identification and categorization of neural activity [18].

Some clustering methods that can be implemented are K-means, DBSCAN, Mean-

Shift clustering, Agglomerative clustering, and HDBSCAN clustering. The choice of

clustering method largely depends on the characteristics of the neural recording, such as

the number of neurons, template waveform, spike shapes, and computational capabilities.

For example, K-means requires specifying the number of clusters in advance, which

can be problematic if the exact number of neurons is unknown. DBSCAN does not

need the number of clusters but relies on density, making it effective for varied spike

shapes. Mean-Shift automatically determines the number of clusters based on data

density, useful when the number of neurons is uncertain. Agglomerative clustering

does not require the number of clusters but is computationally intensive. HDBSCAN

clustering is effective for complex shapes but may require specifying the number of

clusters and is also computationally demanding [19, 20, 21, 22, 23].

2.2.5 Post-processing

After the clustering stage, the spike sorting system might terminate with the clusters

being assigned as units, or it can be continued by adding a template-matching step.

This additional step works by creating an average spike waveform (template) for each

cluster and then matching new incoming spikes to these templates. The advantage

of this method is that it helps to resolve collisions (overlapping spikes) by accurately

reconstructing the signal as a linear combination of the identified templates, particularly

improving the detection of spikes with low signal-to-noise ratio (SNR). SNR is a metric

used to compare the linearity of a signal with the noise; low SNR indicates that noise is

more prominent compared to the spikes [7].

Spikes that are newly detected are matched with the closest template, which helps
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improve the accuracy of spike sorting by taking into account overlapping spikes and

background noise. Utilizing templates for matching improves the dependability of

pinpointing spikes from the identical neuron in various recording sessions, thereby

maintaining consistent and precise spike classification [7].

The reconstructed spikes as seen in Figure 2.2 step 8 are obtained by positioning the

raw detected spikes (indicated by vertical lines) with the templates as observed in step 7.

Each detected spike is matched with the nearest template, and the signal is reconstructed

by summing these template matches. Certain spike sorting algorithms incorporate

iterative refinement stages where templates and clustering results are continuously

updated to enhance the accuracy of the sorting process.

Finally, validation is performed, and metrics like SNR and the distribution of

inter-spike intervals are employed to evaluate the quality of the sorted spikes and the

performance of the sorting algorithm. Usually, actual data does not provide a ground

truth about what is correct or incorrect, making it challenging and subjective to evaluate

the effectiveness of various spike sorting systems [24].



Chapter 3

Related Works

This chapter elaborates on some of the current implementations of varying techniques

in spike sorting, highlighting the drawbacks of each method and discussing the advance-

ments made to address these issues. The aim is to provide a comprehensive overview of

the evolution of spike sorting techniques and the solutions developed to overcome the

limitations of previous systems. This sets the stage for understanding the progression

and current state of spike sorting technology.

3.1 Template Matching

One of the earliest implementations of spike sorting was initiated by G.L. Gersteiand

and W.A. Clark in 1964 [25]. It initiated extensive research on spike patterns of multiple

neurons. A tungsten-structured micro-electrode was used, the electrode’s shaft had tiny

holes that supported the recording of signals from neurons that were within proximity

to each other.

In this algorithm, the user selected a characteristic spike shape for each cluster, and

the remaining spikes were then successively assigned by comparing with the selected

standardized waveform using the mean square distance measure. Here, a dissimilarity

value was estimated. Its value ranged from zero onwards, where zero indicated the

highest similarity to the standardized waveform, and higher values suggested more

disparity. Following waveform matching, sorting was performed, and computers were

used to automate the clustering of waveforms based on the previously calculated metric

value. An innovative approach was used to reduce the extent of overlapping clusters.

This was achieved using an ”iterative refinement” stage where waveforms most similar

to one another were averaged to produce a new standardized waveform for further

12
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sorting [25].

This method, while foundational for advanced spike sorting techniques, was limited

by its reliance on user-mediated template selection, making it impractical for large

datasets. Challenges in identifying representative templates in cases of overlapping

neuronal spike shapes further reduced its reliability. Modern systems now employ

unsupervised techniques to automate template matching and validation, enhancing

efficiency and accuracy [25].

3.2 Bayesian Clustering and Classification

Gray et al. clustering system implemented the use of tetrodes to improve the separation

of readings in an extracellular recording of a cat’s visual cortex. Tetrodes (consisting

of four electrodes) were placed in close proximity. Different channels associated with

each tetrode generated the readings. Once the spikes were recorded, the raw waveforms

were subjected to PCA, and clusters were created based on the principal components

of spike amplitude and waveform. Cluster separation is completely dependent on the

subjective view of the tester, requiring a human intervention to manually assign clusters.

Thus variability arose mainly because the definition of clusters and how the clusters

were cut for different systems varied for each user [26].

Harris et al. [27] enhanced spike differentiation by using tetrodes to capture the

spikes’ spatial locations and it required manual clustering through an interface called

’gclust,’ which allowed users to reallocate spikes. Despite the precision this approach

offered, it was time-consuming and susceptible to errors due to the limited dimensional-

ity of the visual clustering space and inherent human biases. The testers often struggled

to accurately define cluster boundaries in a high-dimensional feature space, leading to

significant errors. Nonetheless, compared to the system by Gray et al. [26], Harris et al.

[27] introduced a semi-automated feature, ’AutoClass,’ which initially automated the

clustering process. This was followed by human intervention for verification, effectively

combining the strengths of both automated and manual clustering methods.

Michael S. Lewicki’s [28] clustering system addressed the limitations of manual

spike sorting by employing a Bayesian probabilistic model. Utilizing a glass-coated

platinum-iridium electrode in the zebra finch nucleus lMAN, Lewicki modelled spike

waveforms with a recursive linear function and Gaussian noise. This approach applied a

Bayesian method to determine the most plausible spike parameters, using a multivariate

Gaussian to model each cluster and calculate the probability of a data point’s cluster
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membership. This system facilitated clear boundary separation for classification and

managed overlapping spikes to some degree by treating them as outliers. Key challenges

tackled included defining the shapes of action potentials (APs), determining the number

of distinct AP shapes, and addressing issues with overlapping spikes [28].

The model assumes that clusters follow a Gaussian distribution, asserting that

variability in spike shape within a cluster is primarily due to Gaussian-distributed

background noise. While this assumption holds to some extent, Fee et al. [29] contend

that noise cannot always be strictly represented as Gaussian due to factors like electrode

drift, overlapping spikes, multi-cellular activity, and detection errors, which can lead

to non-Gaussian cluster distributions. Both Lewicki et al. [28] and Harris et al. [27]

systems also struggle with handling non-Gaussian clusters. This limitation stems from

their reliance on the assumption that feature vectors, which represent data points, adhere

to a normal (Gaussian) distribution. However, this assumption fails in scenarios where

spikes from different neurons overlap simultaneously, causing significant deviations

from the Gaussian model. Such overlap complicates accurate spike clustering due to

these deviations from the expected distribution pattern.

Despite this when compared to the template matching described in Section 3.1,

Bayesian methods implemented a probabilistic approach that minimized the extent of

overlapping spikes by treating them as outliers.

3.3 Principal Component Analysis (PCA)

The “Multispike Train Analysis” proposed by Abeles et al. [30] used PCA for the

projection of the spike signals to its principal components. The goal of the project

was to create clear and distinct clusters of spike shapes. The waveforms received were

used to create the principal components so that they could be used to represent the

input waveforms in a low-dimensional space. This low- dimensional representation

was done such that there was maximum differentiability between each component,

the average distance between the clusters for each waveform had to be the highest

possible distance. The system was able to identify spike shapes that displayed the most

significant variation, facilitating real-time processing and clustering of neural data even

in noisy environments.

The model [30] was able to distinguish low-amplitude spikes from noise and facili-

tated online monitoring, identification, and classification of multiple neurons simultane-

ously. However, it struggled with accurately detecting spike times for low-amplitude
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neurons, as these spikes were easily masked by noise in a dense spectral environment.

Moreover, the system faced challenges with overlapping spikes, which complicated

identifying individual spike times and mapping them to the correct neurons in high-

frequency settings due to the complex waveforms created by overlapping spikes.

E. M. Glaser et al. [31] enhanced a previous system by utilizing a sophisticated

PCA approach, which estimated optimal basis functions to maximize average cluster

distance and reduce waveform overlap. This improved system effectively handled noise

by handling EEG (Electroencephalogram) signals which complicate spike detection by

mimicking spike characteristics. PCA transformed the signal into a set of uncorrelated

and orthogonal principal components. By transforming the signal into these principal

components, arranged by maximum variance, the system could distinguish components

dominated by EEG noise. This capability allowed for the separation of actual spikes

from the EEG noise, a significant improvement over the Abeles et al. [30] model, which

struggled with this issue.

Additionally, it also optimized the real-time processing by allowing for immediate

feedback and correction, making it more optimal for real-time data analysis compared

to the more computationally intensive methods used in Abeles et al. [30] project.

However, one significant challenge was the initial selection of the basis function for

the identification of PCA. If the basis function implemented was not suitable to accu-

rately encapsulate the features of the neuronal spikes then the system would not be

able to efficiently filter out the noise. Realizing the appropriate basis function would

require a tedious trial-and-error approach, something that is very time-consuming and

computationally expensive.

3.4 Independent Component Analysis (ICA)

The algorithm implemented by Bell et al. [32] used unsupervised neural networks

supported by blind separation for higher-order statistics (HOS) and separation of signals.

The model aimed to satisfy the Infomax or Maximum Information Preservation Principle

[28], by maximizing mutual information, a measure of knowledge transfer between the

inputs and outputs of a neural network (formula 3.1), enabling the network to separate

independent sources (signals that are independent of one another) from mixed signals

This was done to allow the network to solve blind separation tasks, which involve

separating overlapping signals into their original independent sources without any prior

knowledge of the overlap, by reducing redundancy across the network layers.
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Bell et al. [32] utilized Independent Component Analysis (ICA) to achieve a high

Mutual Information (MI) score, a metric indicating the shared information between

input and output variables. In their model, the input variables were the mixed signals

received by the neural network, while the output variables were the signals separated

by the network. The MI score measures how much knowing one variable reduces

uncertainty about the other. The implementation of ICA improved the process by

training network layers to increase the entropy of the output signal H(Y ). This training,

achieved through stochastic gradient ascent on the parameters of a sigmoidal function in

high-density areas of the input layer, reduced redundancy between the output layer units.

This reduction in MI between outputs effectively addressed the issue of blind signal

separation, facilitating the distinct separation of signals in multichannel recordings.

I(Y ;X) = H(Y )−H(Y |X) (3.1)

Here, I(Y ;X) is the mutual information between the input X and the output Y . H(Y ) is

the entropy of the output, and H(Y |X) is the conditional entropy of the output given

the input. In a scenario where H(Y |X) is zero (i.e., there is no noise), H(Y ) increases,

reducing the redundancy among the output signals and thereby facilitating the separation

of independent sources in multichannel recordings.

ICA provided an effective solution for the separation of overlapping signals, a

limitation in Bayesian clustering as previously mentioned in Section 3.2. ICA addressed

the issue by assuming that all the signals are independent and have non-Gaussian

distribution. This practice as detailed by Takahashi et al. [33], where the decomposition

of overlapping signals into statistically independent components effectively isolates

individual neuron activities. This feature is especially useful for non-stationary signals.

The model proposed by Bell et al. [32] has some limitations, notably in how it

assumes that sources are combined in a straightforward, linear way. However, the model

is adaptable in situations where the number of measured signals (or recordings) doesn’t

match up exactly with the number of actual sources (like different sounds or electrical

signals from the brain). The model is also not equipped to handle adaptive time delay,

which refers to the latency due to the delay in the signal reception and propagation.

For an additional methodological approach utilizing Wavelet-based feature extrac-

tion, please see the Appendix A.2, which provides further insight into this technique.
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Methodology

This chapter outlines the methodologies used for feature extraction, clustering, and

validation in the dissertation, including dimensionality reduction techniques like PCA,

ICA, UMAP, and Isomap, and various clustering algorithms. It explains the selection

and mathematical formulations of these methods and describes the experimental setup

for validation and benchmarking, assessing the accuracy and reliability of the results.

The project’s workflow is illustrated in Figure 4.1.

4.1 Software Dependencies and Toolkits

The neural data analysis and spike sorting pipeline employed the SpikeInterface

toolkit (Version: 0.101.0), developed by Alessio Buccino and Samuel Garcia [7].

This Python toolkit is specifically designed for seamless integration into neural

data workflows, facilitating rapid data extraction, and quality control. Essen-

tial functions were managed using its modules: spikeinterface.extractors

for data extraction, spikeinterface.preprocessing for preprocessing, and

spikeinterface.qualitymetrics for evaluating quality metrics.

Electrode probe configurations were handled through the ProbeInterface pack-

age, ensuring precise control over probe layout and geometry. Visualizations employed

matplotlib for 2D graphics and mpl toolkits.mplot3d for 3D visualizations, offer-

ing clear representations of complex neural data. Data operations utilized NumPy for

numerical tasks and Pandas for structured data management. Further analysis leveraged

dimensionality reduction techniques like PCA and FastICA, and clustering methods such

as MeanShift from the scikitlearn library, with hierarchical clustering facilitated

by SciPy, enhancing the pipeline’s analytical depth.
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Figure 4.1: The figure illustrates the methodologies implemented in the dissertation,

including feature extraction, clustering, and validation processes.

4.2 Ground Truth Generation

To validate the spike sorting pipeline, synthetic neural data was generated using the

generate drifting recording function from the SpikeInterface library. This

simulation replicated a neural recording from 40 neurons over 600 seconds at a 30,000

Hz sampling rate. The probe layout featured 4 columns with 8 contacts each, arranged

with pitches of 16 µm in the x-direction and 40 µm in the y-direction, this bears similari-

ties to the design of Neuropixels probes introduced by Jun et al. [34]. Contacts were

configured as square with 12 µm widths. Spike templates followed an ellipsoid mode,

capturing 1.5 milliseconds pre-spike and 3.0 milliseconds post-spike. Waveforms varied

from 150.0 µV to 500.0 µV in amplitude, with decay between 10 µm and 45 µm.

Neuron positioning within the 6 µm to 25 µm z-axis range ensured realistic spatial

distribution, with the closest spacing of 12 µm. Neuron firing rates ranged from 0.1 Hz

to 1.0 Hz, incorporating a 4-millisecond refractory period. Environmental noise was

modeled between 5.0 µV and 10.0 µV, with spatial decay set at 25 µm.

This controlled synthetic dataset allows for rigorous testing of the spike sorting

algorithms, establishing the pipeline’s accuracy and reliability.

4.3 Feature Extraction

As outlined in Section 2.2.3, feature extraction is crucial for identifying essential fea-

tures and reducing dimensionality within the spike sorting pipeline. In this project,
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the spike detection steps were intentionally omitted and instead utilized events from

the ground truth dataset. While spike detection is a typical preliminary step in spike

sorting, it was omitted here because the main focus of this project was on the subse-

quent stages—feature extraction and clustering. This dissertation aligns with another

dissertation project that specifically focuses on spike detection, allowing this work to

concentrate on optimizing feature extraction and clustering methods. By collaborating

and integrating findings from both dissertations, the goal is to develop a comprehensive

system that effectively manages the entire spike sorting process. This structured task

division allows each project to refine specific aspects of the pipeline, enhancing the

system’s robustness and accuracy.

A structured approach was adopted to estimate spike sparsity, extract relevant

waveform features, and pinpoint spike locations. The estimate sparsity function,

with the best channels option, was utilized to identify the most relevant channels

for each unit, focusing on channels that best capture neural activity. This function is

integral to ensuring attention is directed towards channels containing the most signifi-

cant signals for each spike. The setup for feature extraction was configured using the

create sorting analyzer function in the SpikeInterface library, facilitating the

performance of subsequent tasks such as waveform extraction, feature calculation, and

spike location analysis. The results from recording extractors and analysis results were

managed within a sortinganalyser folder. The feature extraction sequence com-

menced with the analyzer variable, which spearheaded the extraction of waveforms

capturing data 0.2 milliseconds before and 2.0 milliseconds after each spike event. This

step is critical for analyzing the shape and abnormalities of individual spikes and helps

in distinguishing between different units.

Further, the command analyzer.compute("templates") was employed to

calculate the template for each unit. These templates are pivotal as they en-

capsulate the characteristic spike shape of neurons, serving as foundational el-

ements for later stages of clustering and classification. Following this, the

analyzer.compute("spike locations") function was used to estimate the spatial

positions of spikes. The sorting extractor then translated sorted spike data into a vector

of spike times using sorting extractor.to spike vector(). Once all pertinent

features were assessed, they were subjected to feature extraction methods for enhanced

dimensionality reduction and further analysis.

Various feature extraction methods, detailed in the following sections, were then

applied to these features to evaluate each method’s ability to extract the most pertinent
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information from the data. The libraries imported for the usage of PCA, ICA, UMAP

and Isomap are sklearn.decomposition.PCA, sklearn.decomposition.FastICA,

umap.UMAP, and sklearn.manifold.Isomap, respectively. These libraries were used

to implement the feature extraction methods, the upcoming sections will detail the

reasoning behind applying these methods in the pipeline.

4.3.1 Principal Component Analysis

In the PCA analysis, principal components were computed with two compo-

nents using the analyzer.compute("principal components", n components=2,

mode="by channel local") command. After calculating the spike locations, a feature

vector was created by stacking the x and y coordinates of the spike locations with the

two principal components. The features were then scaled for consistency before being

used in further analysis. The feature set consisted of Spike location (x), Spike location

(y), PC1 and PC2 had a shape of (4,13909). 13,909 represents the total number of

spikes (or data points) in the dataset and 4 represents the four rows corresponding to the

features.

The graph in Appendix A.4 shows the reconstruction error relating to the number

of principal components used in PCA. By analyzing the mean squared error between

the original and reconstructed data with varying component numbers, we identified

that two components are optimal. This number marks where the error significantly

drops and stabilizes, suggesting minimal benefit from additional components. This

consistent component number was also applied across other methods for comparability

in analyses.

The paper by Rui-Qi Song et al. [14] discusses using PCA to extract spike fea-

tures, aiding classification by reducing overlap in spike amplitudes. PCA captured

essential waveform characteristics in a lower-dimensional space, enhancing the abil-

ity to distinguish spikes even when amplitude differences were subtle in the original

high-dimensional space.

4.3.2 Independent Component Analysis

ICA (detailed in Section 3.4) process began with extracting the relevant waveform

data (variable w). The waveform data was retrieved by accessing the pre-computed

waveforms. A channel-wise selection was necessary as ICA was applied locally to

each channel’s waveform data. ICA was conducted using the FastICA algorithm,
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configured to extract two components. This transformation was applied to the waveform

data w, resulting in two independent components that encapsulate critical features of

the waveform’s structure. To improve the interpretability of these components when

integrated with spike location features, they were scaled by a factor of 5. The final

feature vector was assembled by combining the x and y coordinates of the spike locations

with the scaled ICA components, thus forming a cohesive dataset ready for clustering

analysis.

Buccino et al. [35] explore how ICA effectively isolates individual neuronal signals

from different electrodes for spike sorting. This method proves crucial in extracellular

recordings where multiple neurons fire simultaneously. ICA also reduces the need

for manual intervention, thus eliminating biases in signal categorization, making it

particularly advantageous for handling complex, noisy data in HD-MEA recordings.

Furthermore, the study notes that ICA excels in environments with fewer overlapping

signals, improving signal-to-noise ratio (SNR).

4.3.3 Uniform Manifold Approximation and Projection

As explained in Section 2.2.3, UMAP ensure that we are preserving the original structure

of the data in high-dimensional space even when projecting it to a low-dimensional

manifold. The pipeline uses the UMAP function from the umap library. Similar to the

previous extraction methods, the UMAP function was applied to the waveform data.

The resulting UMAP features were scaled and combined with the spike locations (x and

y coordinates) to form a unified feature set for further analysis.

Zhao, Shunan, et al. [36] spike sorting model details how UMAP can project

data into non-linear space, something that PCA fails to achieve. This characteristic

gives UMAP the ability to identify patterns that are not visible in linear space and

aid in better separation of spikes. UMAP has better reproducibility, it can ensure that

the results generated will be consistent provided the environmental conditions remain

the same. This implies that cluster results will not change and are not dependent on

random initialization or variations within the data (though ICA and Isomap have slight

reproducibility issues).

4.3.4 Isometric Mapping

Isomap is a non-linear dimensionality reduction technique that expands on

MDS by retaining the geodesic distance of all spikes (Section 2.2.3). The
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sklearn.manifold.Isomap function constructs the neighbourhood graph using the

closest neighbour of each spike, then it uses geodesic distance to find the shortest

path between each pair of points. Lastly, MDS is applied to the previously calculated

distance to create a low-dimensional space that preserves the original manifold structure

of the data. A four-set feature set was obtained by scaling and merging of Isomap

components with the spike location to form a consolidated feature set.

Adamos, Dimitrios A., et al. [16] discusses how preserving the structure of the

original data is a very important feature for HD-MEA data as the spikes tend to be

muti-dimensional. Reducing dimensionality and being able to maintain the geometric

structure helps the algorithm identify patterns that would otherwise not be evident in its

original space. Furthermore, Isomap helps to form well-clustered shapes that are robust

and can accurately represent the ground truth. Lastly, the paper also mentions that

Isomap is well-equipped for handling non-linear data because of its ability to preserve

such relationships.

Despite the widespread use of PCA in numerous projects for spike sorting, the

goal behind exploring the less popular extraction methods was to evaluate whether

combining them with different clustering techniques could generate higher accuracy.

And if so, to hypothesize the reason behind such an occurrence.

4.4 Clustering

After feature extraction, the resulting dataset is fed into the clustering pipeline, under-

going multiple stages of analysis. The process starts with the extraction and analysis

of spike waveform features. It then progresses to applying dimensionality reduction

techniques as detailed in Section 4.3. Following this, the optimal parameter settings that

yielded the highest model performance were selected. The core of the pipeline focuses

on systematically tuning parameters for each clustering method used.

A specific function, analyze clustering, was developed to evaluate the per-

formance of each method’s parameter configurations. Key responsibilities of this

function include filtering out noise and outliers, such as -1 labels commonly used in

DBSCAN and HDBSCAN, and comparing the predicted clusters against ground truth

labels. Performance analysis is carried out using a NumpySorting object from the

SpikeInterface toolkit, enabling detailed evaluations through confusion matrices

and accuracy metrics. Beyond accuracy, precision and recall metrics are computed to

assess the trade-offs inherent in each clustering approach comprehensively. The optimal
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parameters resulting in the highest accuracy are then selected for further evaluation in

the Performance Evaluation function (explained in Section 4.5).

4.4.1 Density-Based Spatial Clustering of Applications with Noise

DBSCAN is used to cluster spikes based on the density of points. The algorithm can

mark noisy data separately, as they usually lie in low-density areas. Points that are within

a set radius ε are merged to form clusters, and a cluster is formed when the threshold for

the minimum number of points within ε is satisfied. The sklearn.cluster library is

imported to use the DBSCAN algorithm. As mentioned earlier, different parameter values

were selected for experimental purposes.

The parameters for DBSCAN included the ε range and minimum samples. Karami

et al. [37] examined methods for setting these parameters and emphasized the impact of

varying ε and minimum samples on clustering results. ε values ranged from 0.1 to 1.5,

a choice justified by literature, underscoring the algorithm’s sensitivity to this parameter

which can significantly affect cluster formation. The minimum number of samples(3, 5,

10, and 15) enabled the formation of clusters with varying point densities, balancing

the detection of smaller clusters and the exclusion of noise, as supported by previous

studies [38, 39, 40]. These parameter configurations were chosen to optimize clustering

effectiveness and minimize noisy clusters.

DBSCAN was implemented because it efficiently separates true spikes from noise,

ensuring that the clusters are not skewed by the presence of noise. Unlike other

clustering methods, DBSCAN is not constrained to spherical shapes, allowing it to form

non-linear cluster shapes makes it particularly suited for the complex and variable nature

of spike sorting [41]. Additionally, it adapts to the data by not requiring a predefined

number of clusters.

4.4.2 Agglomerative Clustering

Agglomerative clustering is a hierarchical clustering to form clusters by recursively

merging the closest cluster pair till the set number of clusters are formed. From the

sklearn.cluster library’s AgglomerativeClustering was imported and a range of

values was defined for the number of clusters.

The parameter for the number of clusters (n clusters range) was set to [40, 50,

60]. The paper by Ardelean et al. [42] discusses how different cluster sizes can affect

the quality and interpretation of clustering results. This range was chosen to balance
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granularity and generalization, aiming to distinguish clusters without overfitting noise

or small data variations. For the linkage criterion, ‘ward,’ ‘complete,’ ‘average,’ and

‘single’ were used. Blashfield et al. [43] paper evaluates these linkage methods and

highlights their strengths in different scenarios, emphasizing that the choice of linkage

can drastically impact cluster formation. The ward method, known for minimizing

variance within clusters, was included due to its robustness in generating compact and

spherical clusters. Meanwhile, the complete and average methods were selected for

their ability to handle varying cluster shapes, and single linkage was tested to observe

its impact on chaining effects.

4.4.3 K-Means Clustering

K-means clustering is an iterative method to break the dataset into k clusters. The

sklearn.cluster library’s KMeans algorithm was a recursive method where every

datapoint was assigned to the closest centroid and then the centroids were estimated

as the mean of all points. The algorithm continued until no points changed clusters,

and the centroids remained unchanged after recalculating the mean [21]. In the cluster-

ing algorithm, different parameter values were used to understand the behaviour and

performance of the algorithm.

One of the primary parameters is the number of clusters (n clusters range),

which was tested in the range of 20 to 60. A similar setting was used by Pedreira et

al. [44]. Another important parameter is the number of initializations (n init range),

which controls how many times the algorithm is executed with varying initial centroid

seeds. This is crucial for avoiding suboptimal clustering solutions that can arise due

to the K-means algorithm’s sensitivity to initial conditions. Studies like Arthur et al.

[45] have shown that using 10, 20, or 30 initializations can improve clustering stability

by ensuring that the best possible solution is found across multiple runs. Lastly the

maximum number of iterations (max iter range) was defined, commonly used values,

such as 300, 500, and 700 (like those from Arthur et al. [45] ). While 300 iterations are

often sufficient for typical convergence, extending this range to 500 and 700 allowed for

the examination of more complex cases where additional iterations might yield more

accurate clusters.

By adjusting these parameters, the K-means implementation was fine-tuned to

handle a diverse range of scenarios, ensuring robust clustering results. E Chah el

al. [46] study mentions that despite the simplistic nature of the algorithm, the ability
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to reassign cluster centres makes it optional for the spike pipeline as it groups spike

showing similar tendencies into one group. Additionally, when K-means is paired with

a feature extraction method it is robust and adaptable in handling sophisticated neural

data.

4.4.4 Hierarchical Density-Based Spatial Clustering of Applications

with Noise

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)

is an advancement of DBSCAN, it introduces a hierarchical approach to density-based

clustering. Unlike DBSCAN, it works on the global density parameter. The HDBSCAN

implemented used a range of density thresholds.

Yuan et al. [22] publication examines the implication of selecting a flexible range

for the minimum cluster size, as this parameter directly affects the algorithm’s ability

to detect small but meaningful clusters without treating them as noise. The study

emphasizes the need to fine-tune the min cluster size parameter based on the data’s

structure to achieve optimal clustering stability. Similarly, the min samples plays an

important role in defining the core points. By experimenting with a range of 5 to 20,

the goal is to balance the detection of small, tightly-packed clusters against the risk of

treating larger, more distributed clusters as noise. Wang et al. [47] highlight that this

parameter is key to adapting HDBSCAN to diverse clustering scenarios without needing

extensive pre-tuning. Although less critical in HDBSCAN than in traditional DBSCAN,

the epsilon parameter epsilon range was also analysed. The range from 0.05 to 0.3

was selected, ensuring that clusters are detected even when density differences are

subtle, which is crucial in complex datasets.

HDBSCAN was selected due to its ability to handle variable data densities and

superior noise tolerance, making it ideal for analyzing extracellular spike recordings.

Unlike rigid methods like K-means or DBSCAN, HDBSCAN’s hierarchical structure

enables cluster detection at multiple resolutions, accurately identifying neuron groups

of different sizes [47]. Its proven effectiveness in challenging tasks like complex image

segmentation further supports its suitability for the dissertation’s objectives.

4.4.5 Mean Shift Clustering

Mean Shift Clustering is a clustering technique that does not require prior knowledge

of the number of clusters. The algorithm repeatedly shifts each data point towards
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the mode (the area of highest density) of the data points in its neighbourhood until

convergence, forming clusters where data points converge to the same mode [48].

For the dissertation two parameter values (bandwidth range and

min bin freq range) were defined. The bandwidth parameter determines the

specific area in which data points are considered while calculating the mode or peak

of density. For each feature set, an initial bandwidth estimate was calculated using a

quantile-based method. The ranges were then refined based on successful trial results.

The refined bandwidth ranges included 28 to 32 for ICA, 4.8 to 5.2 for PCA, 35 to 40

for UMAP, and 450 to 500 for Isomap. Georgescu et al. [49] emphasized that tuning the

bandwidth parameter is critical to achieving the right balance between noise filtering

and preserving cluster detail in high-dimensional spaces. Another essential parameter

is the minimum bin frequency, which controls the threshold for how many points must

be in a bin (or neighbourhood) for it to be considered a valid cluster. The range [1, 3, 5,

10] was selected. Lower values allow the detection of smaller clusters that may be more

prone to noise, while higher values filter out these smaller, potentially spurious clusters.

Mean Shift Clustering is effective in spike sorting due to its adaptability and non-

parametric nature, allowing it to handle data without predefined cluster assumptions—a

key advantage in neural data analysis where neuron cluster counts are often unknown.

This algorithm is skilled at uncovering the inherent structure in data, essential for

distinguishing between spikes from different neurons. It also effectively manages the

complex, non-linear shapes typical of spike clusters, which defy simple geometric cate-

gorization. By adjusting to data density, Mean Shift provides robust spike detection and

clustering, even in noisy environments, making it highly suitable for such applications

[48, 23].

4.5 Performance Evaluation

To test the performance of the pipeline, the comparison of the clustering results with the

ground truth dataset was conducted. Initially, the code filters noise and outliers (labelled

as -1) from spike time data, retaining only valid spikes for analysis. These filtered spikes

are then encapsulated in a NumpySorting object, facilitating ground truth comparison

via the SpikeInterface library’s GroundTruthComparison tool. This comparison

provides summaries and key performance metrics, such as accuracy (see Equation 4.1),

demonstrating how well the predicted spike labels match the actual spike labels.
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Accuracy =
T P+T N

T P+T N +FP+FN
(4.1)

Where (TP) stands for true positives (correctly identified spikes), (TN) for true nega-

tives (correct rejections of non-spikes), (FP) for false positives (non-spikes incorrectly

labelled as spikes), and (FN) for false negatives (spikes missed in the detection).

Precision =
T P

T P+FP
(4.2)

Here Precision measures the accuracy of positive predictions.

Recall =
T P

T P+FN
(4.3)

Lastly, the Recall measures the ability to identify all relevant instances (true positive

rate).

Visualization of results includes a confusion matrix displayed by the

ConfusionMatrixWidget, providing a clear view of how predicted clusters corre-

spond to actual spike labels. Additionally, a scatter plot showcases the relationship

between SNR and sorting accuracy. Plotted with SNR on the x-axis and accuracy

(Equation 4.1) on the y-axis, this visualization indicates how higher SNR, indicative of

clearer signals, enhances sorting performance, aligning with insights from Yang et al.

[24].

Following this, refined analysis using precision (Equation 4.2) and recall (Equation

4.3) metrics offers a comprehensive evaluation of clustering results. Precision measures

the proportion of correctly identified spikes within the detected units, while recall

assesses the completeness of detected true spikes against the total in ground truth,

aiding in understanding the trade-offs between false positives and false negatives.

Moreover, a comparative graph examines the accuracy across different feature

extraction and clustering techniques, exploring a wide range of parameter configurations.

This methodical testing aligns with ensemble learning principles, as described by Polikar

et al. [50], to pinpoint optimal combinations that maximize feature representation and

cluster delineation, thereby enhancing prediction reliability and performance. These

assessments are supported by detailed visualizations and directly guide the selection of

the most effective clustering approaches for neural spike sorting.
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Results

In this chapter, the efficacy of various clustering algorithms and feature extraction

methods for spike sorting is evaluated to identify the combination that maximizes

clustering quality and accuracy. The analysis begins with an examination of spatial

clustering results to assess the strengths and challenges of each method, especially in

handling overlapping clusters. It then explores the critical role of parameter tuning and

its influence on performance. Comparative graphs and tables are used to review key

metrics such as accuracy, precision, and recall across different method combinations.

These analyses provide detailed insights into the clustering landscape, guiding the

selection of optimal clustering methods.

5.1 Challenges with Spike Data

Figure 5.1 depicts the results of clustering spatial locations using Agglomerative Clus-

tering, with features extracted using Isomap. Each point in the plot represents a spike,

while the different colours represent distinct clusters. The x and y coordinates represent

the spatial location, offering insight into the distribution of spikes across this region.

The centroids of each cluster are marked with black crosses, highlighting the central

tendency of each grouping. Upon comparing the clustering results using Isomap (Fig-

ure 5.1) with the clustering of raw locations (Figure 5.2), it is evident that different

dimensionality reduction techniques and clustering parameters can influence the overall

clustering performance and separation of spike data (something that isn’t achieved in

Figure 5.2).

Upon close inspection of Figure 5.1, it is evident that there exist distinct clusters

that show clear separation in some regions. These clusters demonstrate high densities,
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Figure 5.1: Agglomerative Clustering on

Spatial Locations using Isomap with accu-

racy of 0.10. The clusters are represented

the visible overlap, highlighting the chal-

lenges in differentiating closely situated

spikes from nearby neurons.

Figure 5.2: Clustering of Raw Locations.

The spatial distribution of detected spikes

across the probe is visualized with clusters,

focusing on distinguishing nearby neurons

based purely on their coordinates.

indicating that spikes originating from these areas are consistent and well-defined,

making it easier to identify them as originating from a specific neuron or neuron

group. However, in other areas, there is a noticeable overlap between clusters. This

overlap is particularly evident in regions where spikes appear near one another. This

overlapping of clusters is a well-known challenge in spike sorting, particularly when

spikes originate from close neurons. When neurons are spatially adjacent, it would

seem as though the action potentials are originating from the same neuron, leading to

clustering ambiguity. The overlapping points demonstrate how spikes from different

neurons can be difficult to differentiate due to their spatial closeness. This pattern is

common in extracellular recordings, where spikes from neurons in close proximity can

be misclassified. As a result, even with a robust hierarchical clustering technique like

Agglomerative clustering, the resulting clusters can be blurred.

This overlap highlights the need for incorporating additional pre-processing tech-

niques. While spatial location provides valuable information, it alone is insufficient to

resolve the complexity of spike sorting, particularly when distinguishing between spikes

from closely located neurons. Implementing advanced pre-processing methods such as

parameter tuning becomes of utmost importance. With systematic modifications of clus-

tering parameters like bandwidth, minimum cluster size, and other algorithm-specific

settings, the performance can be significantly enhanced, leading to clearer distinctions
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between clusters and improved overall accuracy in spike sorting.

5.2 Parameter Tuning

To reduce the extent of overlapping tendencies in spikes and improve the clustering

performance, a recursive approach was developed that iterated through a range of

parameter values (as explained in Section 4.4 ). The goal was to identify the near-perfect

combination of parameters that could result in the highest clustering performance for

each extraction and clustering method combination.

The effectiveness of this approach lies in its ability to fine-tune the algorithm’s set-

tings, ensuring that the clusters are as distinct and well-separated as possible. Typically,

default settings can result in suboptimal clusters where overlap and ambiguity are more

dominant. This strategy was vital as it could handle the variability in spike data, where

even small changes in parameter values can significantly impact the clustering outcome.

The graph 5.3 presented illustrates the accuracy of HDBSCAN clustering as the

min samples parameter is scaled, specifically using PCA features. The x-axis repre-

sents the different values of min samples, ranging from 5 to 20, while the y-axis shows

the corresponding accuracy values.

Figure 5.3: Accuracy vs. Min Samples for HDBSCAN with PCA Features. The plot shows

how accuracy varies with changes in the min samples parameter. Initially, accuracy is

high at lower values but gradually declines as min samples increases.

Initially, the graph 5.3 shows high accuracy at around 0.89 when min samples is

set to 5. However, as the parameter value increases to 10, a noticeable drop occurs,

bringing the accuracy down to approximately 0.79. Beyond this point, the accuracy
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remains relatively stagnant up until the min samples value reaches 15, where it ranges

around 0.78. Finally, as the value reaches 20, a significant decline is observed, with the

accuracy falling to around 0.72. This pattern highlights the sensitivity of HDBSCAN to

this particular parameter, where smaller values result in better cluster formation, while

larger values deteriorate performance.

This analysis was systematically performed across all combinations of feature

extraction methods and clustering techniques. Interestingly, different combinations

exhibited varying trends in their accuracy versus parameter plots. For instance, while

some showed a clear peak followed by a decline similar to this graph (Agglomerative

clustering accuracy with linkage for ICA), others displayed erratic behaviour with

no observable trend (K-Means with maximum iterations for ICA ). The variety of

patterns observed emphasizes the importance of parameter tuning specific to each

feature extraction and clustering combination. The complete set of these accuracy-to-

parameter graphs and discussions can be found in Appendix B, providing a broader

context of the clustering behaviour across different settings.

5.3 Performance Evaluation

Given the multiple combinations of clustering algorithms and feature extraction methods,

each with a unique set of parameter configurations, it was essential to conduct a thorough

evaluation to determine which combination yielded the highest clustering accuracy.

As a result, a comprehensive accuracy graph was generated, which serves as a visual

summary of the performance of each combination.

By experimenting with a wide range of parameter settings, including variations in

the number of clusters, linkage methods, minimum samples, and other critical factors,

the analysis aims to uncover which methods consistently perform well and which

struggle to effectively handle the complexity and noise present in the data.

The graph 5.4 presents a comparative analysis of the clustering accuracy achieved

by various feature extraction and clustering method combinations. Each line represents

a specific feature extraction method, while the x-axis corresponds to different clustering

techniques and the y-axis represents the accuracy value. The top two best-performing

combinations (highlighted with green circles) and the worst two (highlighted with red

circles) are marked for clarity. From the graph 5.4, it is evident that HDBSCAN with

PCA features delivers the highest accuracy at around 0.87. This is closely followed by

K-means with ICA features, which achieves approximately 0.86 accuracy. In contrast,
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Figure 5.4: Accuracy Comparison Across Clustering Methods and Feature Extraction

Techniques. The graph shows PCA with HDBSCAN clustering has the highest accuracy,

while Isomap combinations perform with low accuracy

DBSCAN with Isomap features performs poorly, with accuracy dropping close to 0.0,

meaning all clusters were identified as noise. Similarly, MeanShift with Isomap features

shows low performance as well, emphasizing the challenge in using Isomap for this

type of spike data. On the other hand, PCA and ICA, when combined with K-means

and HDBSCAN, consistently show strong performance across the board. For example,

MeanShift with PCA achieves an accuracy of about 0.80, indicating that both MeanShift

and PCA are well-suited for capturing the structure of this dataset. The combination

of Isomap with Agglomerative clustering shows a sharp decline in accuracy to around

0.1, which highlights Agglomerative’s limitations in this context. This performance

drop suggests that Agglomerative clustering is unable to effectively group data when

the feature space is derived from Isomap.

While accuracy is a commonly used metric, it is not always reliable, especially in

imbalanced datasets where certain clusters might dominate the classification results.

Spike sorting often exhibits such skewness, where the distribution of neuron locations or

spike counts is uneven, potentially leading to inflated accuracy figures that do not reflect

true performance. In the context of spike location, clusters representing neurons with

more frequent spikes might overpower others, leading to misleadingly high accuracy.

To address this limitation, additional metrics like precision and recall were evalu-

ated. The table 5.1 provides detailed precision and recall values for each combination.

Notably, while K-means with ICA features shows high accuracy (0.86), it also maintains
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a solid balance with precision (0.75) and recall (0.75), making it a reliable choice. In

contrast, K-means with UMAP features, despite having an accuracy of 0.52 have a

precision and recall of 0.43, indicating that despite the decent accuracy, the precision

and recall metrics suggest less reliable detection of relevant spikes.

Method and Feature Set Precision Recall
DBSCAN PCA 0.102 0.500
DBSCAN ICA 0.706 0.600
DBSCAN UMAP 0.031 0.275
DBSCAN Isomap 0.000 0.000
Agglomerative PCA 0.480 0.600
Agglomerative ICA 0.750 0.750
Agglomerative UMAP 0.475 0.475
Agglomerative Isomap 0.050 0.050
K-means PCA 0.400 0.600
K-means ICA 0.750 0.750
K-means UMAP 0.425 0.425
K-means Isomap 0.050 0.025
HDBSCAN PCA 0.919 0.850
HDBSCAN ICA 0.758 0.625
HDBSCAN UMAP 0.742 0.575
HDBSCAN Isomap 0.077 0.025
MeanShift PCA 0.784 0.725
MeanShift ICA 0.289 0.600
MeanShift UMAP 0.537 0.550
MeanShift Isomap 0.000 0.000

Table 5.1: Precision and Recall for Various Clustering and Feature Extraction Combina-

tions

These metrics emphasise the importance of considering a broader range of perfor-

mance indicators rather than relying solely on accuracy. Methods like HDBSCAN

with PCA, which show both high precision (0.92) and recall (0.85), are more likely to

provide consistent clustering results, even in noisy datasets.
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Discussions

As evident in iFgure 5.4, HDBSCAN with PCA in parameter setting

min cluster size=5, min samples=5, epsilon=0.05 shows high accuracy(0.87),

recall(0.85), and precision(0.92). This high performance can be potentially attributed to

the specific characteristics of HDBSCAN and PCA, which are well-suited for handling

complex, high-dimensional datasets where cluster density and structure vary (explained

in Section 4.4.4). PCA, by reducing dimensionality while preserving essential features

and mitigating noise, has been shown in other studies, such as that by Ye et al. [22],

to enhance clustering results. This aligns with the consistent high accuracy observed

across various clustering methods using PCA, as documented in Abeles et al.’s project

[30] (detailed in Section 3.3).

A hypothesis for the observed performance could be related to the settings for

min cluster size and min samples, which might have enhanced the algorithm’s

ability to identify clean-cut clusters even for sparsely distributed spikes. These param-

eters aid in distinguishing true clusters from noise, crucial in cases with overlapping

neural spikes and tightly packed groups needing precise separation [14]. Furthermore,

the epsilon value may help refine cluster boundaries, ensuring a balance between noise

and cluster points [22, 47] (elaborated in Section 4.4.4). The strong correlation between

these parameter settings and the high performance observed suggests that HDBSCAN’s

adaptability to varying densities is well-suited for spike sorting, as supported by related

signal processing studies [14]. HDBSCAN’s ability to automatically adapt to changing

densities coincides with the need to handle the non-uniform, high-dimensional dis-

tributions typical in spike sorting. This flexibility, combined with the dimensionality

reduction afforded by PCA, likely contributed to the well-defined clusters noted in the

results.

34
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Apart from this K-means with ICA in parameter settings (n clusters=40,

n init=20, max iter=300) also generated high accuracy recall and precision val-

ues. The underlying hypothesis here is that ICA’s assumption that neuron spiking

activities are independent processes (discussed in Section 3.4) is particularly beneficial

for HD-MEA recordings with overlapping signals. By treating these overlapping signals

as independent, ICA effectively separates individual neuron contributions, enhancing

accuracy in spike sorting. These findings align with the findings by Buccino et al. [35]

(detailed in Section 4.3.2) that illustrated how ICA improves the SNR and increases the

sensitivity of identifying individual spikes.

But if that were the case, why is low accuracy observed for MeanShift and ICA?

This could perhaps be due to the parameter settings and the algorithm’s suitability.

One possible explanation is that Mean Shift clustering which targets high-density

regions within data, contrasts with K-means’ ability to adapt to a predefined number of

clusters, here 40. Because MeanShift is density-based and produces variable cluster

counts depending on the data distribution, it may struggle with the high-dimensional,

non-uniform densities created by ICA’s feature extraction. As noted by Toosi et al.

[23], Mean Shift clustering can struggle with non-uniform densities and skewed data

distributions, particularly in spike sorting tasks where clusters are not symmetrically

distributed. This hypothesis aligns with our situation, where ICA’s features do not cluster

effectively under Mean Shift, resulting in lower accuracy and indistinct clusters. Chah et

al. [46] stated that K-means when paired with dimension reduction techniques like ICA,

enhances spike separation due to its iterative updates and a fixed number of clusters,

producing stable and consistent results. This method efficiently handles data variability,

as K-means maintains consistent cluster boundaries through its iterative process and

fixed parameters, thus potentially improving the segregation of spike signals.

6.1 Computation Complexities

This brings us back to the research questions stated: How can spike data be efficiently

analyzed to reveal distinct patterns and what methods are potentially reliable for catego-

rizing neural activity based on spike data analysis? The results presented earlier provide

a comprehensive answer to these questions by identifying the optimal combinations of

feature extraction and clustering methods that maximize accuracy in spike sorting. The

findings indicate that combinations such as HDBSCAN with PCA and K-means with

ICA consistently yield high accuracy, precision, and recall, highlighting their reliability
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in handling complex spike data. However, it’s also important to consider additional

factors when selecting the most optimal methods to uncover key patterns in spike data.

To do so the pipeline can be expanded beyond the identification of the best com-

bination, additional insights could further aid in the selection of the most appropriate

method. This could be done by refining the decision process and wondering about the

computational complexities as well. By evaluating the time and space complexities

associated with each algorithm, one can determine the most computationally efficient

approach without sacrificing clustering quality.

From Table 6.1, we can analyze how the parameter settings correlate to performance

and computational complexities for different methods. The complexity variables n

(number of data points), k (number of clusters), t (iterations), and d (dimensions),

directly influence how the algorithms scale as dataset size and complexity increase.

DBSCAN’s complexity ranges from O(n · logn) in the best case (for efficient spatial

indexing) to O(n2) in the worst case (for poorly defined clusters) [19]. The pipeline

generates a moderately good performance for DBSCAN with PCA having eps=1.5 and

min samples=3. Although this setting doesn’t necessarily give the highest performance,

it balances out the computational efficiency. Contrasting, DBSCAN with Isomap with

an accuracy of 0 (identifies all the clusters as noise) highlights the worst-case scenario.

The parameter settings of eps=0.1 and min samples=3 results in high computational

costs without any benefit. Poor performance in this case shows that bad parameter

choices can greatly increase complexity without yielding meaningful outcomes

Agglomerative clustering’s worst-case complexity is O(n3), making it computa-

tionally demanding, especially for large datasets [51]. The best parameter setting for

Agglomerative Clustering with PCA involves n clusters=50 and linkage= ward,

giving an accuracy of 0.73. The significant computational effort required by this al-

gorithm, due to its cubic complexity in calculating pairwise distances and merging

clusters, underscores a clear trade-off. Although the method is effective, its heavy

computational demand reduces scalability when applied to larger datasets or a greater

number of clusters.

K-means algorithm operates with a complexity of O(n · k · t ·d). here the best-case

scenario occurs when convergence is achieved with few iterations t [52]. For instance,

best parameter settings for K-means with ICA include n clusters=40, n init=20 and

max iter=30 yielding an accuracy of 0.86. Although this setup yields high accuracy,

it comes at a significant computational cost due to the large number of clusters and

iterations. The trade-off lies in achieving better performance for higher computation
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resources, thus making K-means computationally expensive for large, high-dimensional

datasets.

HDBSCAN, with a complexity of O(n · logn), shows an optimal trade-off between

performance and computation [53]. The combination of HDBSCAN with PCA achieves

the highest accuracy (0.870442) using min cluster size=5, min samples=5, and

epsilon=0.05. This setup shows that HDBSCAN can provide superior performance

with moderate computational demands, particularly when parameters are well-tuned to

the data structure. The minimal trade-off makes this configuration highly efficient in

the analysis.

MeanShift, with a time complexity of O(n2 · t) [54], becomes computationally ex-

pensive as the bandwidth parameter increases and more iterations are required. For

example, with ICA, bandwitdh=4.8 and min bin freq=1, achieves an accuracy of

0.68. The computational time is high due to the quadratic scaling of pairwise dis-

tance calculations. Contrary to this, MeanShift with Isomap with bandwitdh=32 and

min bin freq=10 performs poorly (accuracy=0.063) despite high computational effort.

This suggests that increased computation does not necessarily lead to improved perfor-

mance unless the parameters are optimally configured to match the characteristics of

the dataset.

Clustering Algorithm Computational Complexity
DBSCAN O(n · logn) (best case) to O(n2) (worst case)
Agglomerative Clustering O(n3)
K-means O(n · k · t ·d)
HDBSCAN O(n · logn)
MeanShift O(n2 · t)

Table 6.1: Computational Complexities of Clustering Algorithms

Bring us back to the research question, to efficiently analyze spike data and catego-

rize neural activity, it’s crucial to balance the effectiveness and computational demands

of different techniques. The results show that while complex algorithms like HDB-

SCAN with PCA strike a good balance between performance and efficiency, methods

such as K-means with ICA and Agglomerative Clustering consume more resources

without necessarily offering better accuracy. Conversely, some computationally inten-

sive approaches like MeanShift with Isomap may fail to yield improved results if their

parameters don’t align well with the data structure. Ultimately, the choice of method

and parameter settings lies in balancing the computational speed against clustering

accuracy. This decision will determine the method’s effectiveness in revealing distinct
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neural patterns and its feasibility within practical limitations.

6.2 Limitations and Future Scope

A primary challenge in this dissertation was identifying the optimal combination of

feature extraction and clustering methods, as the best choice largely depends on specific

developer needs and priorities. For example, methods that offer quicker responses

might be preferred when speed is prioritized over precision. Conversely, if accuracy is

paramount, even at the expense of computational efficiency, different methods would

be more suitable. The contextual nature of these goals complicates the identification of

a universally best combination.

Another limitation lies in the use of simulated data for pipeline creation. While

simulated data provides a controlled environment where performance can be mapped

against known ground truth, it may not perfectly translate to actual data captured in

real-world scenarios. There is uncertainty regarding how well the pipeline will perform

when dealing with actual HD-MEA recordings, as the results generated might indicate

different patterns or behaviours. However, the use of simulated data was necessary, as

it is the only way to effectively benchmark the system’s performance with a known

reference(ground truth), something that is not possible with real-world HD-MEA data.

Additionally, the pipeline developed in this study primarily considers spatial loca-

tions as features. Although spatial information is significant, other features could have

been explored. Due to time constraints, the focus was narrowed, leaving other feature

dimensions underexplored.

The system can be expanded in the future to include diverse features, such as spike

shape, temporal patterns and other waveform characteristics. Moreover, incorporating

spectral clustering is another avenue worth exploring (refer Appendix A.3 for more

details). Although spectral clustering is computationally intensive, it could offer bet-

ter clustering performance, in cases with non-convex clusters [55]. Due to its high

computational demand, it was not implemented in this study, but it holds promise for

future iterations of this pipeline. Furthermore, integrating advanced algorithms like

Kilosort could significantly improve spike sorting accuracy. Kilosort is designed to

handle large-scale electrophysiological datasets, using template matching to refine spike

detection and clustering [56]. Kilosort can be integrated by incorporating its template

matching output as an initial clustering step within the pipeline, refining the spike

sorting process for higher accuracy (a similar template matching approach has been
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described in Section 3.1). Incorporating Kilosort could enhance the system’s adaptation

to complex, real-world datasets, improving spike sorting accuracy and reliability.



Chapter 7

Conclusion

This dissertation has extensively analyzed various spike sorting techniques and feature

extraction methods for enhancing the processing and usability of neural data from high-

density multi-electrode arrays (HD-MEAs). This research primarily investigated the

efficiency of different feature extraction methods such as principal component analysis

(PCA), independent component analysis (ICA), uniform manifold approximation and

projection (UMAP), and isometric mapping (Isomap). The effectiveness of multiple

clustering methods, including K-means, Agglomerative Clustering, HDBSCAN, and

Mean Shift, was also evaluated critically.

One of the key outcomes highlighted by this research is the superior performance

achieved by combining HDBSCAN with PCA feature extraction. This combination

emerged as highly effective due to its ability to preserve essential features while min-

imizing noise, which is crucial for accurately clustering complex and overlapping

neural data. Additionally, ICA, when used in conjunction with K-means clustering,

significantly improved clustering accuracy, demonstrating the importance of selecting

appropriate feature extraction techniques based on the clustering method used. The

complexity and overlapping nature of spikes in densely populated neural recordings

presents significant challenges.

This dissertation found that techniques that addressed spatial relationships, such

as HDBSCAN combined with PCA and ICA with K-means, effectively differenti-

ated signals from closely situated neurons. Furthermore, the research underscored

the computational costs linked to different spike-sorting algorithms. Techniques like

HDBSCAN were noted for offering a balance between computational demands and

high performance, making them preferable choices for real-time neural data analysis

applications. Exploring the sensitivity of the clustering algorithms to their tuning param-

40
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eters underscored a critical aspect of the research. It was observed that minor tweaks

in settings could significantly influence the accuracy of spike sorting, signalling the

importance of robust and adaptable algorithm configurations.

Moving forward, the integration of additional spike features like waveform shapes

and temporal patterns could be explored to refine clustering outcomes further. Applying

these methodologies to real-world data holds the promise of revealing new challenges

and enhancing the practical utility of spike-sorting techniques.

In conclusion, the outcomes of this dissertation make substantial contributions to

the advancement of neural data analysis, particularly in the realm of spike isolation and

classification. These advancements pave the way for improved brain-machine interface

technologies and deepen our understanding of neuronal networks, promising enriched

studies and applications in neuroscience. Future research should aim to build upon

these findings, optimizing and broadening the methodologies to adapt and respond to

emerging challenges in the field, thus ensuring continual improvements in both the

theory and application of neural signal processing.
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Appendix A

Appendix

A.1 Spike Sorting and Influence on Brain-Computer In-

terfaces

Spike sorting plays an important role in the development of Brain-Computer Interfaces

(BCIs) also known as Brain-Machine Interfaces (BMIs). Neural spike trains extracted

from extracellular recordings are the fundamental units of information in the brain. As

the efficiency of spike sorting improves the accuracy and reliability of BCIs increases.

As described by Daniel Valencia et al. [57] in their article, improved spike sort-

ing methods have had a huge impact on the performance of BCIs as they increase

the accuracy at which action potentials are identified and clustered. This increased

precision ensures that BCI can accurately interpret the user’s intentions by correctly

relating the spikes with a specific command. Real-time spike sorting algorithms have

empowered BCIs to process neural recordings with minimal lag, a characteristic that

is very much needed for applications requiring immediate response. This could be

controlling prosthetic limbs or communication between devices for individuals with

disabilities.

Modern BCIs utilize high-density multi-electrode arrays (HDMEAs) capable of

recording from millions of neurons concurrently. Advanced spike sorting methods can

efficiently handle this massive flow of data, allowing BCIs to keep up with complicated

tasks without compromising on performance. Spatial whitening and CAR in spike

sorting help reduce noise and improve signal clarity, which is essential for the identifica-

tion of precise and accurate neural signals, and for minimizing errors during command

execution.
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Despite these advancements, there exist many challenges that prevent us from

developing a ”perfect” spike sorting. One example of this is the overlapping spikes,

especially in densely packed recordings. Advanced template matching and clustering

algorithms are being developed to resolve this issue, but are we still a step away from

error-free systems. Another issue is neural drift. Neural signals can drift over time,

affecting the accuracy of spike sorting. Implementation of drift correction methods is

pivotal for the reliability of BCIs. The use of bench-marking and validation metrics is

important to ensure that the algorithms can perform well across different datasets and

external environmental conditions. [5]

In conclusion, the advances in spike sorting techniques have indeed improved the

functionality and reliability of BCIs. As the field of neuroscience continues to develop,

there is scope for a more responsive brain-computer interface to come.

A.2 Wavelet-based feature extraction

The project proposed by Quian Quiroga et al. [11] introduces a novel method for the

identification and clustering of spikes by combining the wavelet transform for feature

extraction with superparamagnetic clustering (SPC) for automatic classification. It was

designed to automate the spike sorting method and also increase the efficiency and

effectiveness of the system.

The wavelet transformation analyzed spikes by considering time and frequency,

proving a holistic multi-domain representation of the signals. A four-level wavelet

decomposition was implemented to get 64 wavelet units for each spike. The units

represented the hierarchical structure of spike shape in different time scales. This

transformation was sent to the feature extraction component to identify the most rel-

evant wavelet units using the Kolmogorov-Smirnov (KS) test. The top 10 units that

depicted more variance from normality were selected for clustering, as they would aid

in providing the best separation of spike class. The SPC clustering used the selected

wavelet units for clustering, it compared different threshold values to identify clusters.

SPC did not assume low variance, non-overlapping cluster, or Gaussian distribution like

the previously mentioned projects did (Section 3.2). The clustering method automati-

cally determined the optimal threshold value by determining the starting point for the

formation of largely dense and separated clusters [11].

Quian Quiroga et al. [11] also addressed the issues pertaining PCA (Section3.3) by

selecting high-variance and appropriate features to represent the characteristics of spikes.
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The combination of wavelet transformation with SPC improved the performance much

more effectively than the aforementioned system which only depended on PCA. Since

time-frequency domains were considered the decomposition of overlapping signals

was achieved across multiple scales and resolutions. Utilization of wavelets for feature

extraction gave the system the ability to capture and enhance the intrinsic variation

in spike shapes. The wavelet units supported the time-oriented analysis of spikes as

they were very accurate in identifying time stamps. This analysis was able to support

differentiating partially overlapping spikes.

Contrary to this PCA compressed the information regarding spike shapes by project-

ing them to very few principal components, this dimensional reduction failed to notice

necessary details as it fixated on increasing the variance rather than focusing on time

oriented characteristics. This resulted in less clear clusters that were not able to identify

the innate features of different spikes. Thus the study confirmed that wavelets provide

better performance for spike sorting and maintain the shape information an important

characteristic for classification.

Conclusion and Observations Overall, the advancements highlight the progressive

refinement of spike sorting techniques towards greater automation, efficiency, and

accuracy, paving the way for more robust and reliable analysis in neurophysiological

research. Early implementations like Template Matching by Gerstein and Clark (1964)

laid the foundation for spike sorting techniques but required significant manual interven-

tion and struggled with overlapping spikes. The introduction of Bayesian Clustering by

Lewicki (1994) marked a shift towards probabilistic models, providing better handling

of overlapping spikes but still faced limitations due to the Gaussian noise assumption.

ICA by Bell and Sejnowski (1995) elevated signal separation by assuming signal inde-

pendence and non-Gaussian distribution, but it was questioned by real-world recording

and noise handling. PCA used in the Multispike Train Analysis by Abeles et al. (1977)

and later improved by Glaser et al. (1968) offered effective real-time processing and

noise handling, but struggled with low-amplitude spikes and required complex basis

function selection. Finally, the wavelet-based feature extraction method by Quiroga et

al. (2004) demonstrated superior performance by leveraging time frequency domain

analysis and automatic clustering, addressing many of the issues faced by PCA and

offering a more holistic representation of spike characteristics.
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A.3 Spectral Clustering

Spectral clustering uses the eigenvalue and eigenvectors of the similarity matrix for

dimensionality reduction before performing clustering in low-dimensional space. The

eigenvectors are the directions in which data is projected (components generated from

the feature extraction methods) and the corresponding eigenvalues are representative

of the variance along each of these directions. The eigenvalues are extracted from

the Laplacian matrix (which is derived from the similarity matrix) and are used to

understand the characteristics of the data. Small eigenvalues and their corresponding

eigenvectors are used to effectively group similar spikes [58]. The pipeline’s cluster-

ing function was set with a default of 3 clusters, utilizing the SpectralClustering

algorithm from the sklearn.cluster library.

The SpectralClustering used the formula (A.1) to calculate the eigenvectors and

eigenvalues that are central to the spectral clustering process. In this formula, L is the

Laplacian matrix. Here, W is the similarity (affinity) matrix, where Wi j represents the

similarity between data points i and j, and D is the degree matrix, a diagonal matrix

where each entry Dii is the sum of the corresponding row in W . Eigenvectors are the

vectors obtained from the decomposition of the Laplacian matrix L. The corresponding

eigenvalues are the magnitude of variance along each of these directions. [58]

L = D−W (A.1)

A study conducted by Wood et al. [55] emphasizes that spectral clustering is needed

for complex data like Gaussian distributed recordings (like extracellular recordings) as

they can initialize parameters for such models. Determining parameters for the model to

best fit the data helps in determining the most optimal way to separate spikes in clusters

that represent individual neurons. They are resilient in noise filtration and can easily

differentiate noise from spikes, resulting in the identification and grouping of only firing

neurons. Since spectral clustering captures non-linear relationships they are ideal for

refined spike systems wherein relationships between spikes are not uniform. These

strengths might make spectral clustering a powerful tool for improving the accuracy

and reliability of this pipeline.
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A.4 Justification of Principal Component Selection Us-

ing Reconstruction Error Analysis

The graph A.1 illustrates the relationship between reconstruction error and the number

of principal components. The graph tracks how the reconstruction error changes as the

number of components varies, starting from 1 up to the dataset’s maximum permissible

components. On the x-axis, we see the number of components, while the y-axis indicates

the reconstruction error, which initially begins around 100 and gradually decreases to

approximately 20. A red dashed vertical line marks the proposed optimal number of

components, which is identified as 2.

Figure A.1: Reconstruction Error vs. Number of Principal Components. The plot shows

that the optimal number of components is 2, where the reconstruction error stabilizes,

indicating minimal benefit from additional components.

The selection of 2 components is primarily justified by the significant initial drop

in reconstruction error. As the number of components increases from 1 to 2, the error

sharply decreases from nearly 100 to around 80. This substantial reduction suggests

that the first two components capture most of the critical information within the data,

resulting in a marked improvement in reconstruction accuracy. Beyond 2 components,

the error reduction slows down significantly, indicating diminishing returns as more

components are added.

The plot also showcases a distinct ”elbow” at 2 components. The ”elbow” marks

the point where the curve transitions from a steep drop to a more gradual decline, which
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is a common indicator in PCA analysis of the optimal number of components. Beyond

this point, additional components contribute minimal improvements to reducing the

error, making them less efficient.

This graph was generated by applying PCA to the dataset, varying the number of

components, and calculating the reconstruction error for each setting. The red dashed

line emphasizes that 2 components represent the optimal trade-off, capturing most of

the essential information without introducing unnecessary complexity.

In summary, the graph demonstrates that using 2 principal components is the most

efficient approach for this dataset. The steep drop in reconstruction error for the first two

components, followed by a more gradual decline thereafter, confirms that most of the key

information is captured early on. The clear presence of an ”elbow” further supports this

conclusion, underscoring that 2 components strike the right balance between minimizing

error and avoiding excessive complexity.
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Additional Results

This appendix provides a detailed breakdown of the accuracy graphs corresponding to

various clustering methods discussed in the main body of the dissertation. Each section

delves into the performance of specific clustering algorithms—Agglomerative Cluster-

ing, DBSCAN, HDBSCAN, K-Means, and MeanShift—highlighting how the accuracy

of each method is influenced by different parameter settings. The comprehensive graphs

and accompanying explanations aim to visually represent and clarify the impacts of

each parameter choice, such as the number of clusters and eps values, across different

feature extraction techniques including PCA, ICA, UMAP, and Isomap. These detailed

results underscore the subtleties of each approach, offering a clearer understanding of

how each parameter adjustment affects the overall effectiveness of the spike sorting

process.

B.1 Agglomerative Clustering

When analyzing the performance of Agglomerative Clustering Figure B.1, a noticeable

trend emerges for PCA and ICA features: accuracy consistently improves as the number

of clusters increases. For PCA, accuracy climbs from around 0.21 with 40 clusters to

approximately 0.28 with 60 clusters. Similarly, for ICA, accuracy improves significantly

from 0.41 to 0.60 as the number of clusters increases. This pattern suggests that more

clusters help the algorithm capture finer distinctions within the data, particularly when

using PCA or ICA for feature extraction. However, the story is different for Isomap

features, where the accuracy steadily declines from 0.045 at 40 clusters to just 0.028 at

60 clusters. This highlights a key limitation of Isomap in high-dimensional spaces; it

struggles to maintain clear separations as the number of clusters increases, leading to
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less effective clustering.

Figure B.1: Agglomerative Clustering Accuracy vs. Number of Clusters. The accuracy

increases as the number of clusters increases for PCA and ICA features, reaching

around 0.48 and 0.60 respectively for 60 clusters. However, for Isomap, accuracy drops

from 0.045 at 40 clusters to around 0.028 at 60 clusters.

B.2 DBSCAN Clustering

DBSCAN’s performance is closely tied to the choice of eps and min samples parame-

ters as seen in Figure B.2. As eps increases, accuracy improves across most feature sets,
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with the most significant gains seen for ICA features, where accuracy rises from around

0.05 at eps=0.2 to a peak of 0.71 at eps=1.5. Similar trends, though less pronounced,

are seen for PCA and UMAP features. However, when increasing min samples, a

consistent decline in accuracy is observed. For instance, with PCA features, accuracy

falls from 0.28 at min samples=5 to 0.16 at min samples=15. This indicates that

requiring more neighbors to define a core point can lead to over-smoothing, where

meaningful small clusters are misclassified as noise.

Figure B.2: DBSCAN Accuracy vs. Epsilon and Min Samples for Different Features.

Accuracy rises steadily with increased eps across most feature sets, reaching 0.71

for ICA with eps=1.5. However, increasing min samples causes a consistent drop

in accuracy, particularly for PCA features, where accuracy decreases from 0.28 at

min samples=5 to 0.16 at 15.
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B.3 HDBSCAN Clustering

HDBSCAN shows stable accuracy for PCA features Figure B.3, remaining around 0.77

across varying cluster sizes. This stability indicates that HDBSCAN is effective at

identifying clusters regardless of small changes in the parameter settings, making it

less sensitive compared to other methods. For UMAP features, accuracy initially rises

from 0.53 at a cluster size of 5 to 0.60 at a cluster size of 20, but then begins to decline,

highlighting the importance of fine-tuning the cluster size parameter. In contrast, for

Isomap features, accuracy shows a continuous improvement as the cluster size increases,

suggesting that HDBSCAN’s adaptability to varying densities makes it more robust

when working with challenging feature spaces like those generated by Isomap.

Figure B.3: HDBSCAN Accuracy vs. Min Cluster Size and Min Samples. The accuracy

is relatively stable for PCA features around 0.77 across different cluster sizes. For UMAP,

accuracy increases from 0.53 to 0.60 as min cluster size grows from 5 to 20, but

declines thereafter.
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The confusion matrix Figure B.4provides a clear visualization of the classification

performance of HDBSCAN combined with PCA features. The strong diagonal pattern

indicates that the majority of data points are correctly classified, reflecting the high

accuracy observed for this combination. However, some off-diagonal elements are

visible, representing misclassifications. These errors typically occur where clusters

are close in feature space, leading to overlap in their boundaries. Despite these minor

misclassifications, the overall structure suggests that this configuration is effective at

distinguishing between distinct spike classes, which is further supported by the high

precision and recall metrics observed.

Figure B.4: Confusion Matrix for HDBSCAN with PCA Features. The matrix shows that

most data points are correctly classified along the diagonal, indicating high accuracy.

However, misclassifications are present, particularly where ground truth and predicted

clusters are close in feature space.

The SNR vs. accuracy plot B.5 shows a strong correlation between higher SNR val-

ues and better classification accuracy. For SNRs above 10, the accuracy is consistently

near 1.0, indicating almost perfect classification. Conversely, at lower SNR values
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(below 5), there is a sharp decline in accuracy, with some points showing zero accuracy.

This suggests that the algorithm struggles to correctly classify data when the signal is

buried in noise. The plot highlights the importance of having a high SNR for reliable

spike sorting and suggests that the success of HDBSCAN with PCA in this context is

closely tied to the quality of the signal being analyzed.

Figure B.5: SNR vs Accuracy for HDBSCAN with PCA Features. The plot demonstrates

that high SNR values (greater than 10) are correlated with near-perfect accuracy. How-

ever, lower SNR values lead to significant drops in accuracy, with some points showing

zero accuracy at very low SNRs.

B.4 K-Means Clustering

The performance of K-means is heavily influenced by the number of clusters and

initializations, especially for ICA features as observed in Figure B.6. With 40 clusters

and 20 initializations, accuracy peaks at around 0.86, demonstrating that having more

clusters allows K-means to better capture the inherent structure of the data. However,

the accuracy of Isomap features declines sharply as the number of clusters increases,

falling below 0.1, indicating that Isomap is less compatible with K-means clustering.

Additionally, varying the number of iterations has minimal impact on accuracy beyond

a certain threshold, indicating that convergence is achieved relatively quickly.
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Figure B.6: K-means Accuracy vs. Number of Clusters, Number of Initializations, and

Maximum Iterations. The plots show that for ICA features, accuracy peaks at around

0.86 with 40 clusters and 20 initializations, while accuracy remains constant despite

varying iterations. For Isomap, accuracy falls below 0.1 as clusters increase.

B.5 MeanShift Clustering

From Figure B.7 MeanShift’s performance is highly dependent on the bandwidth pa-

rameter. For ICA features, accuracy peaks at 0.68 with a bandwidth of 4.8, indicating

that this setting is optimal for capturing clusters. However, Isomap features continue to
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struggle, with accuracy barely improving from 0.02 to 0.03 even as the bandwidth in-

creases. This suggests that Isomap’s feature space does not align well with MeanShift’s

density-based approach, leading to poor clustering outcomes regardless of bandwidth

adjustments.

Figure B.7: MeanShift Accuracy vs. Bandwidth for Different Features. The accuracy

peaks at around 0.68 for ICA features with bandwidth=4.8. However, for Isomap

features, increasing bandwidth leads to only a minor improvement from 0.02 to 0.03.

The performance of MeanShift also varies with the minimum bin frequency (Figure

B.8). For PCA features, accuracy reaches its highest point at 0.20 with a min bin freq

of 2. However, for ICA features, accuracy peaks at 0.18 but drops sharply beyond

a min bin freq of 4. This rapid decline indicates that the algorithm becomes too

sensitive to noise as the bin frequency increases, leading to less effective clustering.

UMAP features show a similar pattern, with optimal performance occurring at lower

bin frequencies, highlighting that careful parameter selection is crucial for maintaining

clustering quality.
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Figure B.8: MeanShift Accuracy vs. Min Bin Frequency for Different Features. Accuracy

is highest for PCA features at around 0.20 with min bin freq=2. For ICA, accuracy

peaks at 0.18 but drops sharply beyond min bin freq=4.


