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Abstract

Forests play a critical role in maintaining ecological balance, providing numerous

ecological services such as carbon sequestration, biodiversity preservation, water cycle

regulation, and soil stabilization. Given these vital functions, precise and efficient forest

management practices are essential. To support such practices, this project explores

the use of high-resolution satellite imagery combined with deep learning models to

classify tree species in the Forest of Dean within a multi-label setting. Convolutional

Neural Networks (CNNs) such as ResNet-34 and DenseNet-40 were utilized to perform

the multi-label classification, successfully identifying multiple tree species within

individual image patches. The classification accuracy for different tree species was

then analyzed, and a comparative evaluation of the models was conducted. To address

the challenge of high annotation costs for multi-label datasets, the Single Positive

Multi-Label Learning (SPMLL) approach was implemented. SPMLL models, trained

with only one positive label and no confirmed negatives per data instance, achieved

performance metrics competitive with fully labeled supervised models, demonstrating

the potential to significantly reduce annotation efforts while maintaining comparable

classification accuracy. The results validate the practical utility and efficiency of

combining satellite imagery with deep learning techniques for tree species detection,

while the integration of the SPMLL approach provides a cost-effective method for tree

species classification.
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Chapter 1

Introduction

1.1 Motivation

Forests are a vital and irreplaceable resource integral to ecological health, playing a

crucial role in climate regulation [1], oxygen production, providing habitats for diverse

species, and supporting biodiversity [35]. They also contribute significantly to water

cycle regulation [8] and soil preservation, thereby enhancing environmental stability

and human well-being [37]. The fundamental unit for forest inventories is the forest

stand, which represents a large area of uniform tree species composition [6]. Accurate

and timely identification of forest stand types and tree species is crucial for better

understanding, managing, and preserving forests [50]. This identification supports

effective forest management through precise tree species classification and growing

stock volume estimation, which are critical for assessing forest resources [38] and also

play a key role in evaluating carbon sequestration capacity [30]. Additionally, individual

tree species identification is vital for forest inventory and monitoring [40]. The creation

of these comprehensive inventories is instrumental in resource management, biodiversity

assessment, and conservation efforts [51, 10].

In traditional forest surveys, determining the distribution of different tree species

and forest stands involved extensive fieldwork which involved creating stand maps

using traditional land survey techniques, which is both time-consuming and labor-

intensive [42]. Compared to the traditional methods, there are simpler and more

cost-effective approaches for detecting tree species, addressing an ongoing need in

forest management [18]. Remote sensing technology offers a more efficient solution by

gathering forest data over extensive areas, even in dense and hard-to-reach locations.

Spectral images from remote sensing systems provide a practical and cost-effective

1



Chapter 1. Introduction 2

means to map tree species distributions [18, 16], thereby reducing the need for extensive

fieldwork [4, 43]. By leveraging the unique spectral characteristics of different tree

species [21], it is possible to extract species distribution information from these images.

Spectral images encompass both multispectral and hyperspectral varieties and recent

advancements in these imaging methods have increased their application in tree species

detection studies.

Building on these advancements, deep learning (DL) techniques have been increas-

ingly integrated with multispectral satellite images to further enhance tree species

detection and classification. By applying convolutional neural networks (CNNs) [28]

to the rich spectral data provided by multispectral images, researchers can accurately

identify and map tree species across vast forested areas [52, 13, 29]. This integration

allows for the automatic extraction of spectral and spatial features, significantly im-

proving the precision and efficiency of forest monitoring and management [34, 31].

While these advancements have primarily focused on enhancing classification accuracy,

it’s important to note that much of this research has traditionally been conducted in a

multi-class setting, where each image is assigned a single class from multiple distinct

categories. However, real-world scenarios often involve more complexity, where images

frequently contain multiple objects or, in the case of satellite images, various tree species

simultaneously.

Multi-label classification is a machine learning approach that assigns multiple

labels to each data instance simultaneously [58, 56, 32]. This differs from multi-class

classification, where each data instance is assigned only one label out of many possible

classes. In ecological studies, multi-label classification is particularly useful because it

allows for the identification of multiple tree species within a single area in a satellite

image. This approach captures the complexity of forest ecosystems more accurately by

accommodating multiple labels for each image segment. However, obtaining multiple

ground truth labels for multi-label classification is a significantly challenging task.

It requires expertise, is time-consuming, and can be expensive, often necessitating

specialists for accurate annotation [7]. In contrast to the multi-class scenario, which

requires only one positive label per instance, multi-label classification demands a

complete set of positive labels for each instance. To address this challenge, the Single

Positive Multi-Label Learning (SPMLL) approach [5] significantly reduces annotation

costs by requiring only one relevant label per example. By leveraging SPMLL methods

combined with the learning capabilities of deep neural networks (DNNs), recent studies

have empirically demonstrated that SPMLL can effectively lower annotation costs
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while maintaining comparable performance in practice to the fully labeled case in some

scenarios [5]. Compared to fully labeled datasets, SPMLL methods on single-positive

labeled examples incur only a slight drop in performance, yet they drastically reduce

the amount of supervision required to train multi-label classifiers in some cases.

1.2 Aims and Objectives

The aim of this project is to classify different tree species in the Forest of Dean using

high-resolution satellite imagery from Planet Labs’ SuperDove 8 CubeSats within

a multi-label classification setting. To achieve this, labels for different tree species

within the Forest of Dean sourced from the Sub-Compartment Database (SCDB) will

be utilized. The classification will be performed using Convolutional Neural Networks

(CNNs).

The objectives are:

1. First, utilize the high-resolution multispectral images from Planet Labs’ Super-

Dove 8 CubeSats and implement a multi-label classification approach using CNNs

to classify tree species with the fully labeled SCDB.

2. Next, apply the single-positive multi-label learning (SPMLL) approach to the

same SCDB and validate this approach by comparing its performance against the

fully labeled approach.

The hypothesis is that the single-positive multi-label learning (SPMLL) approach

can achieve performance close to that of the fully labeled case with significantly

reduced annotation for the SCDB. This would save substantial annotation effort for

forest department officials while maintaining comparable classification accuracy. By

aiming to reduce the annotation workload for further forestry applications, the SPMLL

approach is expected to prove itself as a practical and efficient alternative for forest

management.

1.3 Results Achieved

The experimental results of this project demonstrate the feasibility of using high-

resolution satellite imagery for the multi-label classification of tree species in the Forest

of Dean. By utilizing deep learning models such as ResNet-34 and DenseNet-40,
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multiple tree species were successfully identified within individual image patches. To

further validate these findings, a comparative evaluation of the models was conducted,

highlighting their effectiveness in handling complex, multi-label classification tasks.

Both ResNet-34 and DenseNet-40 delivered strong performance across various metrics.

While ResNet-34 performed slightly better in the evaluated classification metrics overall,

DenseNet-40 showed better performance for less abundant species when evaluated

across a range of thresholds.

Additionally, the classification accuracy for various tree species was analyzed.

The analysis revealed that Oak had the highest classification metrics. On the other

hand, Corsican pine and Scots pine had the lowest metrics, reflecting the challenges in

distinguishing these species due to their similar spectral features.

Furthermore, the implementation of the Single Positive Multi-Label Learning

(SPMLL) approach, which involves training models with only one positive label and

no confirmed negatives per data instance, demonstrated performance metrics that were

competitive with those of fully labeled supervised models. This underscores the ef-

ficiency of the SPMLL approach in leveraging limited supervision to achieve robust

classification performance. The findings suggest that SPMLL can substantially reduce

the annotation burden while making a small trade-off in classification accuracy for the

SCDB, making it a practical and cost-effective solution for forest management and

further forestry application. By minimizing the need for extensive manual labeling, the

SPMLL approach not only saves time and resources but also enhances the scalability of

tree species classification using satellite imagery.

1.4 Structure of Dissertation

This dissertation is structured into the following chapters:

1. Background: This chapter covers the theoretical foundations and literature re-

view relevant to this project. It discusses the concepts of Convolutional Neural

Networks (CNNs), Residual Networks (ResNets), and Dense Convolutional Net-

works (DenseNets), as well as multi-label classification, including its challenges

and specific techniques such as Single Positive Multi-Label Learning (SPMLL).

2. Methodology: This chapter describes the study area, the datasets used, and

the data pre-processing steps. It also details the problem setup for both multi-

label classification using the fully labeled dataset and the Single Positive Multi-
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Label Learning (SPMLL) approach, as well as the experimental environment and

settings.

3. Evaluation Metrics: This chapter describes the metrics used to evaluate the

performance of the multi-label classification models.

4. Results and Discussion: This chapter presents the experimental results, compar-

ing the performance of the ResNet-34 and DenseNet-40 models on fully labeled

datasets, followed by an evaluation of these models when trained under the

SPMLL approach against their fully labeled counterparts. The chapter concludes

with a detailed classification accuracy analysis of the individual tree species.

5. Conclusion and Future Work: This chapter summarizes the key findings of

the study and discusses the effectiveness of the methodologies used and outlines

potential future research directions based on the project’s findings.



Chapter 2

Background

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [28] have significantly advanced the field of

computer vision. These architectures are known for their proficiency in tasks such

as image recognition, object detection, and segmentation, CNNs excel by effectively

learning and extracting complex hierarchical features from input images [27].

These networks are designed to process data with grid-like structures, such as

images [14]. Unlike traditional fully connected neural networks that rely on general

matrix multiplication, CNNs incorporate convolution operations in at least one of their

layers [14].

A CNN typically consists of three main layer types: convolutional, pooling, and fully

connected layers. The convolutional layers are responsible for producing feature maps.

Filters or kernels slide across the image during this process, executing the convolution

operation, expressed as h = f (x⊗w), where f is the activation function. These layers

help identify diverse features such as edges and textures within the image [24]. Each

individual filter produces a distinct feature map, revealing various attributes across

the image’s spatial domain [57]. The unique set of weights for each filter is applied

across different regions of the image, allowing the network to identify similar features

regardless of their location, thereby supporting translation invariance [20].

Neurons in convolutional layers of CNNs are sensitive to local receptive fields,

which correspond to particular regions of the input image to which each neuron is

responsive [28]. Unlike neurons in fully connected layers that connect to every input,

neurons in convolutional layers only connect to these localized receptive fields. This

selective connectivity allows CNNs to capitalize on the spatial structure of images,

6
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enhancing both feature detection and the network’s ability to generalize to new data [28].

Pooling layers follow the convolutional layers and work to reduce the spatial dimen-

sions of the feature maps while retaining vital information [47]. The most common

pooling technique is max pooling, which involves selecting the highest value from each

local region of the feature map, effectively highlighting significant features within that

region [15]. Another approach, average pooling, computes the average value across a

region [48].

This layered processing extracts features from the input, which are then handled by

fully connected layers to produce the final classification. Figure 2.1 represents a typical

CNN architecture, where an input image undergoes multiple stages of convolution and

pooling, refining and reducing the feature maps before they are sent to fully connected

layers for the classification output.

Figure 2.1: Architecture of a Convolutional Neural Network. (Figure created for this

project using Adobe Illustrator.)

2.2 Residual Networks (ResNets)

The pursuit of developing more effective neural networks naturally raises the question:

Is merely increasing the number of layers the key to improvement? However, this

approach faces significant hurdles, primarily due to the well-known vanishing/exploding

gradient problem [11]. This issue arises during the training of deep neural networks,

where gradients can diminish or explode exponentially as they propagate backward

through the network’s layers. This phenomenon is closely related to how gradients are

calculated during the backward pass of the backpropagation algorithm [45], which is
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crucial for updating the network’s weights. The backward pass involves computing the

gradient of the loss function L with respect to the weights of each layer, as described

by the equation:

∂L
∂W (l)

=
∂L

∂x(L)
∂x(L)

∂x(L−1)
· · · ∂x(l+1)

∂x(l)
∂x(l)

∂W (l)
. (2.1)

In this expression, certain partial gradient terms may significantly differ in mag-

nitude, being much larger or smaller than 1. The repeated multiplication of these

terms can either cause the gradients to become exceedingly small, approaching zero,

or excessively large, approaching infinity. Such extreme values of gradients hinder the

network’s ability to learn effectively by disrupting the proper adjustment of its weights,

thereby impairing the overall learning process. Even when deeper networks begin to

show signs of convergence, another problem emerges: the degradation of accuracy. As

the network depth increases, accuracy initially plateaus and then experiences a steep

decline. This drop in performance is not a result of overfitting; instead, it stems from the

fact that adding more layers to an already deep network often leads to higher training

errors [49].

Residual Networks (ResNets) [15] offer a solution to the vanishing gradient and

the degradation problem by introducing ”shortcut connections” that bypass some of

the layers in the network. These connections allow the network to retain the ability

to learn even as its depth increases. In a residual block, a convolutional layer (or a

sequence of convolutions) is coupled with an identity mapping. Let G(l) represent the

transformation applied by the lth block. The output of this block, h(l), is obtained by

adding the input feature map h(l−1) to the transformed output G(h(l−1)), resulting in

the expression h(l) = h(l−1)+G(h(l−1)).

When residual blocks are stacked within a deep network, they create dual pathways

for the input of each block: one through the convolutional layers and the other directly

to the subsequent layer. These shortcut connections are key to preserving the gradients

during backpropagation, as explained by:

∂h(l)

∂h(l−1)
= 1+

∂G(h(l−1))

∂h(l−1)
. (2.2)

The term 1 ensures that the gradients do not vanish, thereby enabling the network

to train effectively even as more layers are added.
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Figure 2.2: Architecture of a ResNet Model. (Figure created for this project using Adobe

Illustrator.)

Figure 2.3: Structure of the Residual Module. (Figure created for this project using

Adobe Illustrator.)

2.3 Dense Convolutional Networks (DenseNets)

Dense Convolutional Network (DenseNet) [17] is a deep learning architecture that has

garnered significant attention for its innovative connectivity pattern, which facilitates

improved information flow and gradient propagation throughout the network.

DenseNet introduces direct connections between any two layers, In contrast, in a

traditional convolutional neural network, each layer receives input from the previous

layer and passes its output to the next. DenseNet deviates from this pattern by ensuring

that each layer obtains additional inputs from all preceding layers and passes on its

feature maps to all subsequent layers, effectively creating L(L+1)
2 connections, where L

is the depth of the network. This dense connectivity is expressed as:

hl = Hl([h0,h1, ...,hl−1]), (2.3)

where hl is the output of the l-th layer, Hl represents a composite function of
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operations such as batch normalization [19], ReLU activation [12], and convolution,

and [h0,h1, ...,hl−1] denotes the concatenation of feature maps from layers 0 to l −1

[17]. This method of concatenation ensures that the l-th layer has direct access to

the gradients and feature maps from all preceding layers, allowing for more efficient

training and better feature reuse [17].

A key hyperparameter in DenseNet is the growth rate [17], denoted by k. The

growth rate determines the number of feature maps added by each layer. Specifically,

each layer produces k new feature maps, which are then concatenated with the existing

feature maps from the previous layers. Therefore, the number of input feature maps for

layer l is k0 + k× (l −1), where k0 represents the number of input channels [17].

DenseNet’s architecture thus creates a global state within the network where each

layer has access to the collective knowledge accumulated by all preceding layers. This

global state allows the network to learn more robust features through feature reuse, as

each layer can directly build upon the features learned by earlier layers [17].

One of the notable advantages of DenseNet’s architecture is its ability to mitigate

the vanishing gradient problem, DenseNet’s direct connections between early and later

layers enable more straightforward gradient flow, effectively preserving the gradient

magnitude even in very deep networks. This enhanced gradient propagation not only

accelerates the training process but also allows for the training of deeper models without

encountering the typical difficulties associated with vanishing gradients.

Figure 2.4: Architecture of a DenseNet Model. (Figure created for this project using

Adobe Illustrator.)
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Figure 2.5: A dense block consisting of 4 layers with a growth rate of k = 4. Each layer

uses the feature maps from all previous layers as input. (Figure created for this project

using Adobe Illustrator.)

2.4 Multi-label Classification

The multi-class setting is a well-explored area in machine learning where each distinct

object, represented by a unique instance or feature vector, is linked to a single label.

If X denotes the input space and Y the label space, the goal of multi-class learning is

to derive a function f : X → Y from a training set {(xi,yi) | 1 ≤ i ≤ n}. Here, xi ∈ X
signifies the features of an object, and yi ∈ Y represents its corresponding label that

defines its semantics. The key assumption in a multi-class setting is that each example
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corresponds to only one label, implying it has a unique semantic meaning [58].

While traditional multi-class learning is prevalent and successful, it frequently falls

short in real-world scenarios where objects possess multiple semantic meanings at the

same time. For instance, a single satellite image might capture different types of trees

such as oak, beech, and birch. In text categorization, a document could cover various

topics like healthcare, technology, and politics. In healthcare, a medical image might

indicate multiple conditions like fractures, tumors, and infections. Similarly, in retail, a

product description might include multiple categories such as electronics, accessories,

and home appliances.

To handle the complexity of objects that can belong to multiple categories, a practical

approach is to assign a set of labels to each object. This method has given rise to multi-

label learning. In contrast to traditional supervised learning where each object is

associated with a single label, multi-label learning associates each object with multiple

labels. The objective is to develop a model capable of predicting the appropriate set of

labels for new, unseen instances [58, 56, 32]. Multi-label classification has applications

across various domains such as natural language processing [21, 22, 44], information

retrieval [41], bioinformatics [3] and audio classification [55, 2, 33].

However, acquiring ground truth labels in multi-label learning is challenging due

to the labor-intensive nature of annotating each instance with multiple labels, the need

for domain-specific expertise, and the risk of incomplete labeling, leading to false

negatives [54, 53]. Furthermore, it is often more difficult to confirm the absence of

certain labels than their presence [54].These factors make the annotation process time-

consuming and expensive, which can limit the scalability and accuracy of multi-label

learning models.

2.5 Single Positive Multi-Label Learning (SPMLL)

To tackle the challenge of high annotation costs in multi-label learning, the single-

positive multi-label learning (SPMLL) [5] approach offers an efficient alternative.

Instead of requiring annotators to label all possible categories for each instance, SPMLL

asks for only one relevant label per training example. This approach significantly

cuts down the labor and cost involved in the annotation process. This methodology is

particularly beneficial in contexts where an image or data point may contain multiple

objects or categories, but annotators only need to identify one. Similar challenges are

present in non-vision fields like species distribution modeling [39], where the data
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records positive observations without noting absences. The advantage of the single-

positive setting is clear, it is often easier and more efficient for annotators to mark

the presence of a specific class rather than confirm the absence of many others. This

streamlined approach reduces the complexity and effort required for comprehensive

labeling.

Empirical studies have demonstrated that integrating SPMLL with deep neural

networks (DNNs) maintains comparable performance to fully labeled classifiers in

some cases even with reduced annotation input. While there is a performance drop

compared to fully labeled datasets, this is acceptable given the substantial reduction in

annotation workload. Therefore, SPMLL appears to be a practical and cost-effective

solution for training multi-label classifiers, offering robust model performance with

significantly reduced annotation requirements in certain scenarios.



Chapter 3

Methodology

3.1 Area of Study

The area of study is the Forest of Dean, an ancient royal forest. The Forest is located

between the Rivers Severn and Wye, near the border of England and Wales. It is a

significant region for wildlife, featuring extensive woodlands and open spaces that

create a diverse range of habitats, supporting a wide variety of species. The Forest

has been utilized for both its timber and its abundant mineral resources, including iron

ore, sandstone, and coal [9]. The geographical coordinates of the Forest of Dean are

approximately 51.7891° N latitude and 2.5432° W longitude, and it was selected for

this project as a result of the collaboration with Forest Research.

Figure 3.1: Location of the study area. (Figure generated for this project using Python.)

14
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3.2 Dataset

3.2.1 Planet Labs SuperDove Satellite Imagery

Launched as part of the PlanetScope constellation, Planet Labs’ SuperDove 8 CubeSats

provide high-resolution satellite imagery essential for this study. These satellites, part

of the continuous deployment by Planet Labs since 2020 are equipped with advanced

imaging capabilities, capturing daily images of the Earth’s surface [25],.

The SuperDove satellites, developed by Planet Labs, are small satellites known as

CubeSats. Each SuperDove follows the CubeSat 3U form factor, which is a composite

of three cube-like units. In this form factor, each ”U” corresponds to a cube with

dimensions of 10 cm x 10 cm x 10 cm. Therefore, a CubeSat 3U consists of three

of these units stacked together, resulting in overall dimensions of 10 cm x 10 cm x

30 cm. These satellites can capture high-frequency images with a spatial resolution

of about 3 meters per pixel, providing a detailed view necessary for ecological and

environmental analysis [25]. The SuperDove satellites also feature a multi-spectral

sensor that captures data across 8 distinct spectral bands. Table 3.1 summarizes these

bands and their corresponding wavelength ranges [26]:

Band Wavelength Range (nm)

Coastal Blue 431-452

Blue 465-515

Green I 513-549

Green 547-583

Yellow 600-620

Red 650-680

Red Edge 697-713

Near Infrared (NIR) 845-885

Table 3.1: Spectral Bands and Wavelength Ranges for SuperDove Satellites.

By leveraging the diverse spectral information captured across the 8 bands, deep

learning methods can discern subtle differences in spectral signatures that are indicative

of various tree species.



Chapter 3. Methodology 16

Figure 3.2: SuperDove satellite image of the Forest of Dean, captured on June 14, 2023.

The image shows the area during the summer and is composed of the red, green, and

blue bands. (Data provided by Forest Research, originally sourced from Planet Labs.)

3.2.2 Tree Species labels from the Sub-Compartment Database

(SCDB)

Labels for trees within the Forest of Dean are sourced from the Sub-Compartment

Database (SCDB). The SCDB is a vital geospatial data source managed by the Forestry

Commission, which provides detailed information on the boundaries, species com-

position, and various attributes of forest stands. This database supports recording,

monitoring, analysis, and reporting of forest information, which is crucial for effective

forest management.

The SCDB operates as a vector data system, representing spatial features using

geometric shapes such as points, lines, and polygons. In this context, sub-compartments

within the SCDB are depicted as polygons that define the boundaries and areas of

different sections within the forest. Each polygon (sub-compartment) is labeled with

attributes such as species type, planting year, habitat types, and management history,

allowing for a comprehensive understanding of each forest stand.
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Integration with Forester GIS ensures synchronization between spatial data and

inventory data within the SCDB, facilitating accurate mapping and analysis of forest

resources. The SCDB’s polygons clearly outline the boundaries of each forest stand

and label them with the species of trees they contain.

Different colors are used to indicate various tree species in the vector data, as

shown in Figure 3.3. This color-coding provides a quick visual assessment of species

distribution across the forest. The primary tree species in the Forest of Dean are Beech,

Birch, Corsican pine, Douglas fir, Norway spruce, Oak, Scots pine and Sweet chestnut,

which outlines the main species targeted for the classification.

Figure 3.3: Sub-Compartment Database (SCDB) vector data indicating different tree

species within the Forest of Dean. Each polygon represents a forest stand and is labeled

with the tree species it contains, represented by different colors. (Data provided by

Forest Research and Figure created for this project using QGIS software.)
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3.3 Pre-processing the Data

3.3.1 Overlaying Vector Data on Satellite Image

The integration of SCDB vector data with satellite imagery is a crucial step in visualizing

and analyzing spatial relationships within the Forest of Dean. SCDB vector data

representing different tree species is overlaid onto high-resolution satellite images

captured by the SuperDove satellites. This overlay process enables the visualization of

how different tree species, represented by various colors, align with the raw satellite

imagery, providing a comprehensive view of the forest’s composition.

By overlaying the SCDB vector data on the satellite images, we can effectively assess

the spatial distribution and density of different tree species within the forest. Figures A.1

and A.2 in the appendix further illustrate the spatial distribution of individual species,

highlighting the varying density and presence of each species across the landscape.

Figure 3.4: Overlaying SCDB Vector Data on the Satellite Image. (Figure created for this

project using QGIS software.)
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3.3.2 Extracting Patches and Corresponding Labels

The satellite image is divided into smaller patches to facilitate detailed analysis. Each

patch is then examined to identify intersecting SCDB vector data features, specifically

the tree species labels. These labels are assigned to the patches based on the intersection

of the SCDB vector data with the satellite image. Each patch may have multiple labels

corresponding to the sub-compartment (polygon) it encapsulates. For instance, if a

patch covers three polygons, each representing a different tree species, the patch will be

labeled with these three species from the intersecting polygons. This process creates a

multi-label learning problem, where each patch can be classified into several categories

simultaneously.

Figure 3.5 illustrates the patch extraction process, showing patches with their

intersecting forest stands as defined by the SCDB vector data. This visualization helps

in understanding how the patches correspond to different tree species within the forest

(Patch extraction is done from the raw satellite data; it is visualized as shown in Figure

3.5 for better representation of the patches with their intersecting forest stands).

Figure 3.5: Visualization of patch extraction from satellite imagery with intersecting

SCDB vector data, illustrating how each patch is assigned multiple labels based on the

intersecting polygons. (Figure generated for this project using Python.)
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The process of extracting patches with corresponding tree species labels is replicated

across the entire area of interest (AOI). Each patch, once labeled, represents a sample

that captures specific characteristics of the polygon it intersects. By aggregating these

labeled patches from all parts of the AOI, a fully labeled multi-label dataset, denoted as

DFullyLabeled, is created which is used for subsequent analysis and modeling.

The entire process of extracting and labeling the patches is summarized in Figure

3.6.

Figure 3.6: Overview of the entire process for extracting and labeling patches: (a) Input

Satellite Image; (b) SCDB Vector Data; (c) Overlaying SCDB Vector Data on Satellite

Image; (d) and (e) Extracting Patches and corresponding Labels; (f) Visualizing Patches;

(g) Creating a collection of training and test samples. (Figure created for this project

using Adobe Illustrator.)

3.4 Problem Setup

Let X = Rd be a d-dimensional input space and Y be a label space with labels

[y1,y2, . . . ,yK], where K denotes the number of classes. In a standard multi-class

classification problem, each input data image x ∈ X is assigned a single label from
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Y . In contrast, in a multi-label classification setting, each x ∈ X is associated with a

vector of labels t in the label space T = {0,1}K . In this context, an entry ti = 1 signifies

that the ith class is associated with x, whereas ti = 0 indicates that the ith class is not

associated with x.

The objective is to determine a function f : X → [0,1]K that predicts the relevant

labels for each x ∈ X .

Let the set F represent our models and Z represent a domain. Let l be a function

from F ×Z to the set of nonnegative real numbers, l : F ×Z →R+. Here, Z = X ×T ,

and l is the multi-label loss function. The risk function, which is the expected loss

of a classifier f ∈ F with respect to a probability distribution P over Z, is defined as

follows [46]:

LP( f ) = Ez∼P[l( f ,z)]. (3.1)

The formal goal in a multi-label classification problem is to find an f that minimizes

the risk function LP( f ).

3.4.1 Multi-label Classification Using The Fully Labelled Dataset

Let t(n) = [t(n)1 , t(n)2 , . . . , t(n)K ]⊤ ∈ {0,1}K denote the true presence (1) or absence (0) of K

different tree species for image x(n), where t(n)m = 1 if the m-th label is associated with

x(n) and t(n)m = 0 if the m-th label is not associated with x(n). The vector of predictions

for an input x(n) is denoted as t̂(n) ∈ {0,1}K , where t̂(n)m denotes the m-th entry of t̂(n).
The model generates an estimate of t for any image x within the input space X ,

based on observed data from the training subset of DFullyLabeled, which is denoted

as DFullyLabeledTraining = {(x(n), t(n))}N
i=1. The predictions will be given by t̂ = fθ(x),

where fθ is a CNN (Convolutional Neural Network) with parameters θ. The prediction

t̂ ∈ [0,1]K represents our estimate of how likely each tree species is present in image x.

The loss function used to train the CNN models is the binary cross-entropy loss

(BCE). For a data point (x(n), t(n)), the BCE loss is described as the following:

LBCE(t̂(n), t(n)) =− 1
K

K

∑
m=1

[
t(n)m · log(t̂(n)m )+(1− t(n)m ) · log(1− t̂(n)m )

]
, (3.2)

where t(n) represents the fully observed label vector.
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3.4.2 Single Positive Multi-label Learning Classification

The fully labeled multi-label dataset, DFullyLabeled, is corrupted by discarding annota-

tions from its training subset, DFullyLabeledTraining. Specifically, single positive multi-

label learning (SPMLL) is simulated by randomly selecting one positive label to retain

for each training example, while the remaining labels are treated as unobserved. The

test subset DSpmllTest, however, remains unaltered and is the same as DFullyLabeledTest,

retaining its full labels for evaluation purposes.

The SPMLL training subset is defined as DSpmllTraining = {(x(n),o(n))}N
i=1, where

o(n) ∈Y represents the observed single-positive label for x(n). It is important to note that

o(n) belongs to the relevant label set T (n), even though T (n) is not directly observable.

For each SPMLL training instance (x(n),o(n)), a observed single-positive vector

s(n) = [s(n)1 ,s(n)2 , . . . ,s(n)K ] ∈ {1,∅}K indicates whether the m-th label is the observed

positive label, such that s(n)m = 1 if m = o(n), and s(n)m =∅ otherwise. s(n)m =∅ implies

that the corresponding s(n)m is unobserved and could be either 0 or 1. The SPMLL

training subset now can also be denoted as DSpmllTraining = {(x(n),s(n))}N
i=1, where s(n)

is the observed single-positive vector. The aim of SPMLL is to develop a multi-label

classifier g : X → [0,1]K using DSpmllTraining, enabling it to determine a set of relevant

labels for a new, unseen instance.

(i) Assume Negatives
Now, for the unobserved labels in [s(n)1 ,s(n)2 , . . . ,s(n)K ] , we treat them as negative,

meaning s(n)m = 0 if s(n)m =∅. This approach leads to the ”assume negative” loss, which

is defined as follows [5]:

LAN(t̂(n),s(n)) =− 1
K

K

∑
m=1

[
s(n)m · log(t̂(n)m )+(1− s(n)m ) · log(1− t̂(n)m )

]
. (3.3)

The limitation of the assume negative approach is that it may lead to an increased

number of false negatives.

(ii) Weak Assume Negatives
A method to reduce the impact of false negatives is to assign less weight to the

terms in the loss function that correspond to negative labels. This can be achieved by

introducing a parameter γ ∈ [0,1]. The resulting ”weak assume negative” (WAN) loss is

defined as follows [5]:

LWAN(t̂(n),s(n)) =− 1
K

K

∑
m=1

[
s(n)m · log(t̂(n)m )+ γ · (1− s(n)m ) · log(1− t̂(n)m )

]
. (3.4)
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Notations Mathematical Meanings

X d-dimensional input space (Rd).

Y Label space with K possible class labels,

[y1,y2, . . . ,yK].

T Label space of possible multi-label vectors.

{0,1}K

x d-dimensional input image feature vector,

[x1,x2, . . . ,xd], x ∈ X .

t Fully observed label vector,

[t1, t2, . . . , tK] ∈ {0,1}K .

Indicates the presence (1) or absence (0)

of each label.

t̂ Predicted multi-label vector,

[t̂1, t̂2, . . . , t̂K] ∈ {0,1}K .

The model’s prediction for the presence or absence

of each label.

s Observed single-positive vector,

[s1,s2, . . . ,sK] ∈ {1,∅}K .

Represents observed positive label and unobserved labels.

DFullyLabeledTraining Fully labeled multi-label training subset,

DFullyLabeledTraining = {(xi, ti)}N
i=1.

Training subset where each input image has

a complete label vector.

DSpmllTraining Single Positive Multi-Label Learning training subset,

DSpmllTraining = {(xi,si)}N
i=1.

Training subset where only one positive label

and no confirmed negatives is observed per input image.

LBCE Binary Cross-Entropy loss function

LWAN Weak Assume Negative loss function

Table 3.2: Notations and Their Mathematical Meanings.
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3.5 Experiment Environment and Settings

In this project, four models were trained: ResNet-34 and DenseNet-40 architectures

on DFullyLabeledTraining, and ResNet-34 and DenseNet-40 architectures on DSpmllTraining

(employing SPMLL). ResNet-34, with its 34 layers, and DenseNet-40, with its 40 layers,

were chosen for their balance between performance and computational efficiency. These

architectures are well-regarded for their ability to capture complex patterns in data while

maintaining reasonable training times and resource requirements. Experiments were

conducted on Google Colab using NVIDIA A100 Tensor Core GPUs with CUDA

version 12.1.

For these four models, the Adam optimizer [23] was used to update the model

parameters, with optimal base learning rates determined for each model through careful

tuning during the training process. While the maximum training duration was 67 epochs,

most models converged earlier and required fewer epochs to complete training. A batch

size of 64 was used across the experiments.

Batch Normalization (BN) was applied in all models to stabilize and accelerate

training by normalizing the inputs to the layers, which helps to reduce internal covariate

shift and allows for more consistent activation distributions throughout the network [19].

The activation function employed across all models was the Rectified Linear Unit

(ReLU) [36], defined as:

ReLU(x) =

x, if x > 0,

0, if x ≤ 0.
(3.5)

ReLU was chosen for its simplicity, which enables faster computation, as well as

its ability to avoid the vanishing gradient problem, thereby facilitating more effective

learning in deep networks. Additionally, ReLU contributes to efficient training by

selectively activating only a subset of neurons, which introduces sparsity. This sparsity

not only makes the models more computationally efficient but also often leads to better

overall performance.
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Evaluation Metrics

The evaluation metrics used to assess the performance of the different multilabel

classification models are Precision, Recall, F1 Score, and Mean Average Precision

(mAP). Each of these metrics provides unique insights into the model’s performance

from different perspectives.

4.1 Precision

Precision is the ratio of correctly predicted positive instances to the total predicted

positive instances. It quantifies the proportion of positive predictions made by the model

that are actually correct.

For a single label, precision is calculated as:

Precision =
True Positives (TP)

True Positives (TP)+False Positives (FP)
. (4.1)

For a multilabel classification problem, precision is averaged across all labels using

the following methods:

• Micro-averaged Precision aggregates the contributions of all labels to compute

the average metric:

Micro-averaged Precision =
∑

L
i=1 TPi

∑
L
i=1(TPi +FPi)

. (4.2)

• Macro-averaged Precision computes the metric independently for each label

and then takes the average:

Macro-averaged Precision =
1
L

L

∑
i=1

TPi

TPi +FPi
. (4.3)

25
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4.2 Recall

Recall is the ratio of correctly predicted positive instances to the total actual positive

instances. It quantifies the proportion of actual positive instances that the model

accurately identifies.

For a single label, recall is calculated as:

Recall =
True Positives (TP)

True Positives (TP)+False Negatives (FN)
. (4.4)

For a multilabel classification problem, recall is also averaged using micro and

macro averaging methods:

• Micro-averaged Recall aggregates the contributions of all labels to compute the

average metric:

Micro-averaged Recall =
∑

L
i=1 TPi

∑
L
i=1(TPi +FNi)

. (4.5)

• Macro-averaged Recall computes the metric independently for each label and

then takes the average:

Macro-averaged Recall =
1
L

L

∑
i=1

TPi

TPi +FNi
. (4.6)

4.3 F1 Score

The F1 Score is the harmonic mean of precision and recall, providing a balance between

the two metrics. It is particularly useful when balancing precision and recall.

For a single label, the F1 Score is calculated as:

F1 Score = 2 · Precision ·Recall
Precision+Recall

. (4.7)

For a multilabel classification problem, the F1 Score is also averaged using micro

and macro averaging methods:

• Micro-averaged F1 Score aggregates the contributions of all labels to compute

the average metric:

Micro-F1 = 2 · Micro-P ·Micro-R
Micro-P+Micro-R

, (4.8)

where Micro-F1 is the Micro-averaged F1 Score, Micro-P is the Micro-averaged

Precision, and Micro-R is the Micro-averaged Recall.
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• Macro-averaged F1 Score computes the metric independently for each label and

then takes the average:

Macro-averaged F1 Score =
1
L

L

∑
i=1

2 · Precisioni ·Recalli
Precisioni +Recalli

. (4.9)

4.4 Mean Average Precision (mAP)

Mean Average Precision (mAP) is a common metric used to evaluate the performance

of classification and detection systems, particularly in multi-label settings. It provides a

comprehensive measure of the model’s ability to correctly predict multiple labels for

each instance.

4.4.1 Average Precision (AP)

AP is a measure used to summarize the precision-recall curve into a single number. The

precision-recall curve plots precision (P) against recall (R) at different threshold levels.

The formula for AP can be represented as:

AP = ∑
n
(Rn −Rn−1)Pn, (4.10)

where:

• Pn and Rn are the precision and recall at the n-th threshold.

• Rn−1 is the recall at the previous threshold.

For each label, AP is calculated by plotting the precision-recall curve and taking the

weighted sum of precisions at each threshold, where the weight is the increase in recall

since the previous threshold.

4.4.2 Mean Average Precision (mAP)

Mean AP (mAP) is simply the mean of the AP values calculated for each label in a

multi-label classification task. If there are L labels, then:

mAP =
1
L

L

∑
i=1

APi, (4.11)

where APi is the average precision for the i-th label.
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Results and Discussions

5.1 Classification Results

This section presents the results of the multi-label classification experiments. The

results are divided into two parts: results for fully labeled datasets and results for single

positive multi-label learning. The Tables summarize various performance metrics, such

as Precision, Recall, F1 Score, and Mean Average Precision (mAP), for different models

and loss functions.

5.1.1 Classification Results for Fully Labeled Dataset

Model Loss Precision Recall F1 Score

ResNet-34 LBCE 74.16 74.76 74.46

DenseNet-40 LBCE 75.08 72.69 73.87

Table 5.1: Micro Average Evaluation Metrics (%).

Model Loss Precision Recall F1 Score

ResNet-34 LBCE 72.70 73.45 72.75

DenseNet-40 LBCE 72.25 69.46 69.63

Table 5.2: Macro Average Evaluation Metrics (%).

28
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Model Loss mAP (%)

ResNet-34 LBCE 74.77

DenseNet-40 LBCE 74.81

Table 5.3: Mean Average Precision (mAP) (%).

5.1.2 Classification Results for Single Positive Multi-Label Learning

Model Loss Precision Recall F1 Score

ResNet-34 with SPMLL LWAN 74.04 72.62 73.32

DenseNet-40 with SPMLL LWAN 73.07 72.47 72.77

Table 5.4: Micro Average Evaluation Metrics (%).

Model Loss Precision Recall F1 Score

ResNet-34 with SPMLL LWAN 70.44 69.09 67.18

DenseNet-40 with SPMLL LWAN 69.44 68.73 66.85

Table 5.5: Macro Average Evaluation Metrics (%).

Model Loss mAP (%)

ResNet-34 with SPMLL LWAN 68.96

DenseNet-40 with SPMLL LWAN 69.75

Table 5.6: Mean Average Precision (mAP) (%).

5.2 Comparison between CNN Models trained on the

Fully Labeled Dataset

The evaluation of ResNet-34 and DenseNet-40 models using mean average precision

(mAP), micro, and macro metrics on the fully labeled dataset highlights subtle dif-
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ferences and important observations about their performance on the given multi-label

classification problem.

The mean average precision (mAP) scores were very close, with ResNet-34 at

74.77% and DenseNet-40 at 74.81%, as depicted in Table 5.3. Although DenseNet-40

shows a minutely higher mAP, the difference is negligible and may not be practically

significant. mAP is a metric that evaluates the performance of a model across multiple

thresholds. A model might be optimized to perform well at a certain threshold, achieving

high precision and recall, but might not maintain this performance across a range of

thresholds. Both ResNet-34 and DenseNet-40 demonstrate a strong ability to maintain

high precision and recall across different thresholds, as evidenced by their mAP scores.

ResNet-34 achieved a micro-averaged precision of 74.16%, recall of 74.76%, and

F1 score of 74.46%. DenseNet-40, on the other hand, performed with a micro-averaged

precision of 75.08%, recall of 72.69%, and F1 score of 73.87%, as shown in Table 5.1.

For macro average metrics, ResNet-34 showed a macro-averaged precision of 72.70%,

recall of 73.45%, and F1 score of 72.75%. DenseNet-40’s macro average metrics were

slightly lower, with a macro-averaged precision of 72.25%, recall of 69.46%, and F1

score of 69.63%, as shown in Table 5.2.

While the micro scores for both models are very close, with ResNet-34 having

a slight edge in classification performance, the macro scores show more noticeable

differences. To understand these differences, it is important to consider the distribution

of tree species within the dataset. Figure 5.4 shows the distribution of tree species

by their area of coverage, while Figures A.1 and A.2 in the appendix illustrate the

spatial distribution and density of the individual tree species. These figures highlight

the abundance of species such as Beech, Birch, Douglas fir, and Oak, as well as the

presence of less common species like Scots pine, Corsican pine, and Norway spruce.

This context is crucial for interpreting the differences in both models’ performance as

macro scores are sensitive to the performance on less frequent classes.

Macro metrics are calculated at a single, fixed threshold and average the precision

and recall values across all labels, treating each label equally, regardless of its frequency

in the dataset. This makes macro metrics sensitive to the model’s performance on less

frequent classes. In this evaluation, ResNet-34 shows higher macro scores, indicating

that it performs better for less frequent species.

However, the average precision (AP) scores, which evaluate model performance

across various thresholds, present a different perspective. As shown in Figure 5.5,

DenseNet-40 achieves higher AP scores for less frequent species compared to ResNet-
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34. This suggests that DenseNet-40 is more effective at identifying true positives across

varying thresholds for these less frequent species. This discrepancy arises because AP

measures the area under the precision-recall curve and evaluates the model’s ability

to maintain high precision and recall across different thresholds. Thus, AP provides a

comprehensive assessment of the model’s performance by considering how well it ranks

true positives higher than false positives across all possible thresholds. Therefore, when

considered across multiple thresholds, DenseNet-40 performs better than ResNet-34

for less frequent species. However, when a fixed threshold is applied, as in macro

calculations, ResNet-34 may perform better for these species.

Another important observation is that while DenseNet-40 is better at identifying

less frequent species across various thresholds, ResNet-34 performs better for abundant

species across the same range of thresholds, as shown in Figure 5.5. This balance results

in nearly identical mAP scores for both models, highlighting that they each have their

strengths in different aspects of classification performance. The mAP, which averages

the AP scores across all labels, effectively captures this balance.

The differences in AP and macro metrics highlight the importance of considering

multiple evaluation criteria when assessing model performance, as they can reveal

different aspects of a model’s strengths and weaknesses, especially in multi-label

classification tasks involving species with varying frequencies.

5.3 Comparison of CNN Models Trained on Fully La-

beled Dataset versus Single Positive Multi-Label

Learning

Under SPMLL, ResNet-34 achieves a micro-averaged precision of 74.04%, recall of

72.62%, and F1 score of 73.32%. DenseNet-40 achieves a micro-averaged precision

of 73.07%, recall of 72.47%, and F1 score of 72.77%, as illustrated in Table 5.4.

Despite being trained with only one positive label and no confirmed negatives per

instance, the micro performance of the ResNet-34 and DenseNet-40 models trained

under SPMLL is remarkably close to that of their respective fully labeled counterparts.

This highlights the efficiency of the SPMLL approach in maintaining high micro

classification performance with significantly reduced labeling effort. It indicates that

SPMLL can effectively leverage limited supervision to achieve results comparable to

those obtained with extensive labeling for the SCDB, thereby reducing the annotation
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burden without significant loss in performance.

Macro average metrics further demonstrate the robustness of SPMLL. Under

SPMLL, ResNet-34 achieves a macro-averaged precision of 70.44%, recall of 69.09%,

and F1 score of 67.18%, while DenseNet-40 achieves a macro-averaged precision of

69.44%, recall of 68.73%, and F1 score of 66.85%, as shown in Table 5.5. Although

these results are expectedly lower than their fully labeled counterparts, they remain

competitive with the performance of fully supervised models. In multi-label classifica-

tion tasks, the ability to generalize well across all classes, particularly the less frequent

ones, is crucial. Rare classes can significantly influence overall performance if they are

not accurately identified. The fact that the macro metrics for SPMLL trained models are

only slightly reduced compared to fully labeled training indicates that these models re-

tain a strong ability to classify these less common species. This effective generalization

across both common and rare classes demonstrates the potential of SPMLL to provide

reliable classification results even with reduced supervision.

The mean average precision (mAP) scores under SPMLL are 68.96% for ResNet-34

and 69.75% for DenseNet-40, as shown in Table 5.6. The AP scores across various

classes are illustrated in Figure 5.5. Though these scores are understandably lower

than those achieved with fully labeled data, they still approach the performance levels

of their full label supervision counterparts. The comptetive mAP scores indicate that

SPMLL can maintain a high level of accuracy and reliability in predictions across a

range of thresholds for the SCDB, even with the reduced supervision of using only a

single positive label per instance.

Both ResNet-34 and DenseNet-40 models demonstrate that SPMLL can deliver

competitive results which approaches the level of their fully labeled counterparts for

the SCDB, despite the reduction in label information. This ability to perform well with

minimal supervision underscores the robustness and efficiency of the SPMLL approach.

It shows that the models can effectively learn and generalize from limited data, capturing

the essential patterns and correlations needed for accurate classification. By significantly

reducing the annotation workload without substantial loss in performance, SPMLL

offers a practical and efficient solution to multi-label classification tasks, making it

particularly valuable in scenarios where manual labeling is resource-intensive and

costly.

Figure 5.1 shows the true labels and predicted labels for three test instances. De-

spite the SPMLL models being trained with only one positive label and no confirmed

negatives per instance, they are able to predict and match multiple positive labels for
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the SCDB. This indicates that SPMLL effectively recovers a significant number of the

unlabeled positives, as evidenced by the predicted labels.

Figure 5.1: True vs Predicted labels for three test set instances from a model trained

with SPMLL. Each subfigure shows the true labels on the left and the predicted labels

on the right. The yellow color indicates the presence of a label, and the purple color

indicates its absence.

Figure 5.2: Comparison of Mean Average Precision (mAP) across different models.

”ResNet-34” and ”DenseNet-40” refer to models trained with fully labeled dataset, while

”ResNet-34 with SPMLL” and ”DenseNet-40 with SPMLL” refer to models trained with

Single Positive Multi-Label Learning.
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5.4 Classification Accuracy Analysis of the Individual

Tree Species

Figure 5.5 show the average precision (AP) for various tree species across the four

models: ResNet-34, DenseNet-40, and their SPMLL-trained counterparts. The AP

scores reveal significant insights into the models’ performance for each species.

The classification differences between the nine tree species are significantly influ-

enced by their spectral signatures, with the most notable distinctions occurring in the

red edge and NIR bands, particularly pronounced in the NIR band.

Oak, which covers the largest area (1049.52 ha), consistently achieved the highest

AP scores across all model configurations. Although Oak’s reflectance profile shares

similarities with other species in several spectral bands, it exhibits a distinctive pattern

in the NIR band, setting it apart from other species except for Sweet chestnut. This

distinct NIR reflectance enables the models to accurately classify Oak, despite some

overlap in other spectral bands.

Beech and Douglas fir, with area coverages of 838 ha and 880.36 ha respectively,

also achieved high AP scores. Their reflectance profiles are unique not only compared to

each other but also across the entire dataset, particularly in the NIR band. These distinct

spectral characteristics contribute to the models’ ability to effectively differentiate

between these species.

Birch and Sweet chestnut, covering 576.39 ha and 575.20 ha respectively, attained

relatively high AP scores. However, despite Sweet chestnut’s similar area coverage

to Birch, its lower AP scores can be attributed to its NIR reflectance being similar to

that of Oak. While Sweet chestnut’s NIR values closely resemble Oak’s, its unique

reflectance in other bands aids its classification.

Corsican pine and Scots pine displayed the lowest AP scores, corresponding to their

limited area coverage, 231.01 ha for Corsican pine and 217.43 ha for Scots pine. The

difficulty in distinguishing between these species is compounded by their highly similar

reflectance profiles across all spectral bands, providing fewer distinct features for the

models to learn from.

In contrast, Norway spruce, with an area coverage of 279.51 ha, showed better

AP scores than Corsican pine and Scots pine. This improvement is likely due to its

more distinct reflectance profile across all bands, which helps differentiate it from other

species.

Overall, these findings demonstrate how the distribution of training instances and
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the distinctiveness of spectral curves influence the models’ classification performance.

Species with abundant training instances and unique reflectance profiles, such as Oak,

Beech, and Douglas fir, achieve higher AP scores, while those with fewer training

instances and similar spectral patterns, like Corsican pine and Scots pine, present more

challenges. Norway spruce, despite having area coverage similar to that of Corsican

pine and Scots pine, achieved relatively better AP scores due to its distinctive spectral

signatures.

Figure 5.3: Spectral curves for different tree species across SuperDove’s spectral bands.

Figure 5.4: Comparison of the total area (in hectares) occupied by different tree species

in the Forest of Dean.
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Figure 5.5: Average Precision (AP) scores for different tree species across various

models. ”ResNet-34” and ”DenseNet-40” refer to models trained with fully labeled

dataset, while ”ResNet-34 with SPMLL” and ”DenseNet-40 with SPMLL” refer to models

trained with Single Positive Multi-Label Learning. Each subfigure represents the AP for

a specific tree species, highlighting each model’s prediction performance.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this project, we classified different tree species in the Forest of Dean in a multi-label

setting using high-resolution satellite imagery, employing ResNet-34 and DenseNet-

40 CNN models. The study involved training models on both fully labeled Sub-

Compartment Database (SCDB) and then using the Single Positive Multi-Label Learn-

ing (SPMLL) approach.

For the fully labeled SCDB, a comparative analysis of ResNet-34 and DenseNet-40

revealed their respective strengths and weaknesses. While the micro scores showed

ResNet-34 performing slightly better than DenseNet-40, the mAP scores were almost

identical, with DenseNet-40 showing a minutely higher mAP. However, this difference

is negligible and may not be practically significant. The macro scores, on the other

hand, showed more noticeable differences. To understand these differences, it was

important to consider the distribution of tree species within the dataset. DenseNet-40

demonstrated higher AP scores for less frequent species, indicating its effectiveness at

identifying true positives across varying thresholds. However, its lower macro average

scores suggested that at a specific threshold, it might not identify as many true positives

as ResNet-34 for these less frequent species. This discrepancy arises because AP

evaluates the model’s performance across various thresholds and takes a weighted

average, providing a comprehensive measure, whereas macro metrics are calculated at

a fixed threshold and may reflect better performance at that specific point. Also, it is

important to note that while DenseNet-40 is more effective at identifying less frequent

species across various thresholds, ResNet-34 achieves better results for abundant species

within the same range of thresholds resulting in nearly identical mAP scores for both

37
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models.

In analyzing the classification accuracy for various tree species, it was found that

Oak had the highest classification metrics. Conversely, Corsican pine and Scots pine

had the lowest metrics, reflecting the challenges in distinguishing these species due to

their similar spectral features. Norway spruce, despite having a similar area coverage to

Corsican pine and Scots pine, achieved relatively better classification metrics, benefiting

from its distinctive spectral signatures compared to all other species.

When using the SPMLL approach, both models achieved performance metrics

that were competitive to those obtained with fully labeled data. The ResNet-34 and

DenseNet-40 models trained with SPMLL demonstrated the ability to leverage limited

supervision effectively, maintaining comparable results to their full label supervision

counterparts while significantly reducing the labeling effort for the SCDB. This ability

to deliver strong performance with substantially less annotated data underscores the

potential of SPMLL to alleviate the annotation burden. This reduction in labeling

effort can translate into significant time and cost savings, making SPMLL a viable and

cost-effective alternative in scenarios where extensive labeling is impractical or resource-

intensive. Additionally, the successful application of SPMLL for the SCDB in this

project demonstrates its scalability and applicability for further forestry applications.

Overall, the findings of this study demonstrate the robustness and practical utility of

both CNN models and the SPMLL approach in multi-label classification of tree species.

The ability to achieve high classification performance with minimal supervision makes

the SPMLL method a valuable tools for forest management.

6.2 Future Work

In this project, the Single Positive Multi-Label Learning (SPMLL) models were trained

using the weak assume negative (WAN) loss function. Future work could explore

training SPMLL models with more advanced loss functions such as Regularized Online

Label Estimation (ROLE) [5] and Expected Positive Regularization (EPR) [5]. These

advanced loss functions have the potential to further enhance the performance of SPMLL

models.

Also, incorporating satellite images from seasons such as spring, and autumn, could

significantly benefit future research. By leveraging data from these seasons, models

could be trained to recognize tree species under varying conditions, thereby improving

their overall robustness and accuracy. Additionally, combining multi-seasonal data with
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advanced loss functions could further enhance the capability of SPMLL models, making

them more adaptable to real-world applications in forest management and ecological

studies. This comprehensive approach would not only reduce annotation efforts but also

provide a more detailed and accurate mapping of tree species.
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Appendix A

Additional Figures

A.1 Tree Species Distribution in the Forest of Dean

Figure A.1: Spatial distribution of Beech, Birch, Oak, and Douglas fir across the area of

interest (AOI), highlighting the varying density of each species. (Figure created for this

project using QGIS software.)
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Figure A.2: Spatial distribution of Corsican pine, Sweet chestnut, Norway spruce, and

Scots pine trees across the area of interest (AOI), highlighting the varying density of

each species. (Figure created for this project using QGIS software.)

Figure A.1 illustrates the distribution patterns of the more abundant tree species, empha-

sizing their prevalence across the area of interest. In contrast, Figure A.2 highlights the

distribution of species that are less abundant, showcasing their more limited presence.


