
Measuring transport layer evolvability in the

Internet

Yukai Xiao

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2024

Abstract

Evolvability is often an beneficial design principle when technology is created, and

transport layer protocols such as TCP and QUIC follow this principle. However, with

the diversification and complexity of network infrastructure, the deployment of new

extensions or new protocols may be affected by middleboxes. Does the current Internet

allow transport layer protocol optimization? To investigate this question, we constructed

packets that simulate future protocols and observed potential behaviors of middleboxes

using active measurement. Our goal is to provide valuable reference information for

protocol designers and internet service providers (ISPs).

i

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Yukai Xiao)

ii

iii

Acknowledgements

I would like to thank my supervisor Michio Honda for giving me the chance to do this

project. His insightful guidance is really helpful for my dissertation.

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 2

1.3 Structure of Dissertation . 2

2 Background 3
2.1 Importance of transport layer protocols 3

2.2 Evolution of TCP and QUIC . 3

2.3 Middleboxes . 4

2.4 Related Work . 4

2.4.1 TCP . 4

2.4.2 QUIC . 6

3 Methodology 8
3.1 Dependency . 8

3.2 Active Measurement . 9

3.3 Testing Environment . 10

3.3.1 Client - Sever Model . 10

3.3.2 Block RST . 11

3.4 Default Parameters of TCP . 12

4 Tests and Results 13
4.1 TCP Option Field . 13

4.2 Initial Sequence Number . 17

4.3 Sequence Number Hole . 17

4.4 Retransmission . 19

4.5 QUIC Tests . 20

iv

TABLE OF CONTENTS v

5 Conclusion and Future Work 22

Bibliography 24

Chapter 1

Introduction

1.1 Motivation

Transport layer protocols are very important in the Internet, it is mainly responsible

for establishing a communication channel between the ports of two hosts. In the devel-

opment of the modern communication architecture, in order to meet the requirements

for performance, privacy protection, and stable transmission, the protocols within it

have experienced rapid iteration. From UDP, which does not require formal connection

establishment, to TCP, which is a highly reliable connection-oriented protocol, to QUIC,

which aims to overcome the limitations of TCP, the transport layer has been significantly

enhanced [22].

These protocols have been designed with the possibility of future expansion in

mind [1]. However, with the introduction of a large number of middleboxes (such

as firewalls, NATs, load balancers, and proxy servers) in the network path, the brand

new protocols and the new capabilities of known protocols face the challenge of not

being widely deployed [18]. These devices play an important role in enhancing network

security and performance. But at the same time, they make the earlier principle of

end-to-end transparency discrediting, as they can prevent new protocols or packets with

new extensions from going through, or force those packets to fall back to their original

versions. All of these behaviors limit the further development of the transport layer and

affect the enthusiasm of technicians to develop new protocols. Therefore, the innovation

and evolvability of transport layer protocols in the unfamiliar network path becomes the

issue that the project wants to discuss.

However, there are few studies on the tolerance of the existing Internet infrastructure

to new extensions or new protocols. Past research has shown that while theoretically

1

Chapter 1. Introduction 2

feasible, practical deployments face various effects caused by middleboxes behavior

[18]. These effects indicates the necessity of in-depth measurement and summary

of transport layer evolvability, so as to provide data support and design direction for

designers of network architecture to adjust transport layer protocols.

1.2 Objectives

This project will explore the evolvability of transport layer protocols in the 2024 Internet.

The main goal is to create a simulated future TCP and QUIC packets, and to analyze

the results of these traffic in a network environment containing middleboxes through

active measurement methods. Specific objectives are as follows:

1. Implement tools for generating TCP traffic that simulates future protocol exten-

sions.

2. Implement a tool for generating UDP traffic that emulates the QUIC protocol.

3. Tools are respectively deployed on the client side and the server side for packet

generation and response packets.

4. Use active measurement to measure the impact of middleboxes on protocols

containing unknown extensions, including whether the unknown extension is

removed, whether the packets are allowed to pass through, whether the initial

sequence number is modified, and how the retransmitted packets behave when

the inconsistency occurs.

5. According to the testing results, the suggestions to keep transport layer evolvabil-

ity can be proposed.

1.3 Structure of Dissertation

The first chapter is about motivation and objectives of our study. In the second chapter,

the backgorund knowledge of transport layer protocols and middleboxes are introduce,

and it also contains related work of this project. After that, the implementation of

tools used and testing environment are explained in the third chapter. Then, the results

obtained from five types of tests can be found at the fourth chapter. In the final

chapter, we summarized the research results. At the same time, we acknowledge current

limitations and point out the direction of future efforts.

Chapter 2

Background

2.1 Importance of transport layer protocols

In modern networks, transport layer protocols such as TCP and QUIC play a central

role, responsible for achieving reliable data transmission between both ends of the

network. TCP ensures the correct transmission of data through its complex error

detection, acknowledgement retransmission and flow control mechanism. As a new

UDP-based protocol, QUIC aims to reduce the delay of connection and transmission,

and provide the same reliability as TCP [19]. Because QUIC integrates many security

and performance improvements in design, it is gradually accepted by the industry,

especially in real-time applications and mobile networks [16].

2.2 Evolution of TCP and QUIC

The purpose of introducing TCP protocol is to provide reliable data transmission

and ensure the order and integrity of data packets. It uses the three-way handshake

mechanism to establish the connection channel, and uses the acknowledgement and

retransmission mechanism to ensure reliable transmission. With the development of the

Internet, TCP introduces flow control and congestion control to deal with the dynamic

changes of network resources. To further improve performance and compatibility, TCP

gradually introduces more extensions, such as Selective Acknowledgement (SACK) [7],

and TCP Fast Open [23].

The QUIC protocol has experienced significant updates since it was produced by

Google in 2012 [24]. In order to achieve wider application, IETF has standardized

it, making QUIC more versatile [13]. In the standardization process, the version

3

Chapter 2. Background 4

negotiation mechanism has been added to enable the client and server to negotiate

which QUIC version to use when connecting for the first time, allowing the existing

communication not to be interrupted when updating the version. In addition, in order to

comply with a broader network security standard, QUIC uses TLS 1.3 as the encryption

layer, which is different from the encryption mechanism in the original version [16].

2.3 Middleboxes

In the operation of these protocols, middleboxes such as firewalls, NAT devices, load

balancers and proxy servers play an important role. These devices are designed to

monitor, control and optimize network traffic to improve network security and reliability

[27]. For example, the firewall is responsible for checking the data packets entering

and leaving the network, and preventing the communication that is unsafe or does not

conform to the rules; NAT devices solve the problem of IPv4 address exhaustion. By

mapping multiple private IP addresses to one or several public IP addresses, multiple

devices can share a public network connection; The load balancer improves the response

speed and the overall fault tolerance of the system by distributing requests from clients

to multiple servers; The proxy server acts as an intermediary between the client and

the server, providing data caching services to reduce latency, while performing user

authentication and content filtering.

However, they may also have some negative effects. First, the middle boxes may

destroy the end-to-end transparency of the network, because they may modify or

intercept the data packets passing through them [8]. This behavior may conflict with the

featrues of new protocols, especially those designed to improve network performance

and security. For example, some extended features of TCP, such as Explicit Congestion

Notification(ECN) and Multipath TCP, may not work properly due to the intervention

of the intermediate box [18].

2.4 Related Work

2.4.1 TCP

There have been many studies on the interaction between the protocol and the mid-

dleboxes. Medina et al. [18] discussed how these devices affect end-to-end network

communication. They proposed a measurement tool called TBIT, which is used to

Chapter 2. Background 5

detect the behavior of various transmission protocols in the network, especially TCP

protocol. This article focuses on ECN, Path MTU Discovery (PMTUD), and TCP

options. The results show that middleboxes can affect TCP performance in various

ways. For example, some middleboxes block TCP SYN packets trying to negotiate

ECNs, and some devices fail to return necessary ICMP messages, leading to PMTUD

failure. These results prove that as early as 20 years ago, there was a difference between

the actual Internet and the Internet described in theory.

The work of Michio et al. [10] evaluated the impact of middleboxes on TCP expan-

sion, especially how these devices handle the newly introduced TCP options. Using

a measurement tool called TCPExposure, the author recorded the behavior of middle-

boxes from 142 networks around the world. They not only tested whether the network

path allowed the transmission of unknown TCP options, but also included sequence

number modification test, sequence space holes test and packet retransmission test.

Finally, the paper specifically discusses the impact of these results on Multipath TCP

(MPTCP), TcpCrypt, and extended TCP option space. And it gives some suggestions

on how to design these extensions to work effectively in the environment where middle-

boxes exist. The active measurement method used by the author has greatly inspired

the project. This method can effectively observe the behaviors of middleboxes in the

path by deploying the sender and receiver tools between two hosts.

Kühlewind et al. [15] focused on the actual deployment of ECN in the Internet,

which is a technology designed to notify the sender when the network is congested,

not by packet loss but by marking packets. They also used active measurement and

passive measurement. The results show that ECN support rate in IPv6 networks has

reached 47.52%, while IPv4 support rate is only 29.48%. At the same time, many

ECN capable connections do not actually use ECN for congestion control. It is worth

noting that although the deployment of ECN is increasing, its actual utilization rate

in the network is still lower than other TCP options such as SACK, Timestamp (TS)

and Window Scaling (WS) due to the interference of network intermediate devices.

In this project, we will not focus on the deployment of a known option, but on those

completely unknown extensions.

The MBtest proposed from [9] is a set of Click element based models used to

simulate the behavior of middleboxes. These elements can represent various inter-

ferences that may exist between TCP extensions and intermediate devices. Through

these elements, researchers can experimentally evaluate the response of TCP to various

types of intermediate devices in a controlled environment. The options tested in this

Chapter 2. Background 6

article include SACK, TS, large window support, and MPTCP. The results show that

Middleboxes may segment or merge data segments during transmission, which is partic-

ularly challenging for MPTCP that relies on precise data order and size. In addition to

conducting simulation experiments using MBTest, the author also deployed MPTCP in

50 different networks and observed that some devices did not handle MPTCP correctly.

MBTest can precisely control the behavior of middleboxes, making it very suitable for

testing in laboratory environments. However, our project needs to collect data from real

network.

Craven et al. [5] developed a system called TCP HICCUPS, which is a new TCP

extension used to detect packet header modifications that may occur on the transmission

path between the two ends of a TCP connection. This system enables end users

and network applications to better understand the behavioral changes of their data

during transmission over the network, especially how it is processed and modified by

middleboxes. After possessing this ability, data packets can adaptively adjust their

behavior in response to modifications made to middleboxes. They deployed and tested

on thousands of different paths to highlight the path transparency and network diagnostic

capabilities brought by HICCUPS.

Edeline and Donnet [6] argue that despite the general assumption of intermediate

boxes, there is very limited data on their actual deployment, particularly on how au-

tonomous systems (AS) deploy them for universality and persistence. Their experiment

used Tracebox to identify modifications made by Middlebox to network traffic. The

results show that middlebxoes are not as common as standard network devices, and

most are deployed at the boundary of AS. Meanwhile, once deployed, middleboxes will

continue to run without requiring too many changes.

2.4.2 QUIC

With QUIC first cited by Google in 2012, there have been some studies in recent

years focusing on the interaction between QUIC and middleboxes. From its own

characteristics, this protocol encrypts both the header and payload, which prevents

intermediate devices from checking and processing the content of data packets, posing

a challenge for devices that rely on packet inspection to perform their functions [3].

Chaudhary et al. [2] investigated the impact of midboxes interference causing QUIC

to fall back to TCP on the quality of experience of YouTube video streaming. They set

two different configurations in the Chrome browser, one to enable the QUIC protocol

Chapter 2. Background 7

and the other to disable QUIC (i.e. using TCP). And tools were used to control the

network bandwidth and other network parameters in the testing environment, allowing

researchers to compare the performance of the two protocols under the same network

and video conditions. After collecting over 2600 hours of YouTube video streaming

data, they found that in over 60% of cases, traditional TCP settings either performed

better than browsers with QUIC enabled or performed the same. This means that QUIC

may not always provide better performance or experience. This may be because QUIC

needs to fallback to TCP when encountering network intermediate devices blocking its

UDP packets, which affects performance and video stream quality. Therefore, these

findings suggest that QUIC designers need to reconsider their fallback strategies to

better handle intermediate device blocking and network instability.

Kosek et al. [14] developed an enhanced version of QUIC called Secure Middlebox-

Assisted QUIC (SMAQ). QUIC uses a traditional end-to-end encryption model to

prevent intermediate boxes from accessing or modifying transmitted data. This may

limit the functionality of the middle box, which may be required for network manage-

ment or performance enhancement. Therefore, the SMAQ model allows for selective

exposure of connection and protocol information to the intermediate box. This method

enables endpoints to consciously insert intermediate boxes into QUIC connections while

maintaining end-to-end encryption, and control which information is shared with the in-

termediate boxes. The SMAQ protocol includes additional security layers, which ensure

the confidentiality and integrity of data even when middleboxes actively modify traffic.

They conducted a detailed evaluation of SMAQ in a distributed performance enhanced

agent (PEP) environment, and the evaluation showed that SMAQ can significantly

improve performance, especially in high latency and packet loss scenarios.

Chapter 3

Methodology

3.1 Dependency

The construction, sending and sniffing of data packets in the project mainly depend on

Scapy [26]. This is a python-based network packet operation tool. It supports a wide

range of network protocols and can flexibly create and customize packets according

to the needs of the project. In this project, the goal is to explore the evolvability of

TCP and QUIC by generating data packets that may appear in the future. The function

of Scapy is critical to the realization of this goal. The reasons can be summarized as

follows:

1. Scapy allows you to customize each field of a packet to generate a packet with

specific modifications, such as adding unknown options to the TCP header and

fields in the QUIC protocol to the UDP payload. This precise packet construction

capability allows us to test how the middle box processes these data in specific

scenarios.

2. Scapy can capture and analyze the response in the network, so that we can

determine whether the data is discarded or modified in the network path.

3. By sending and receiving these customized data packets, we can actively measure

and analyze the behavior of the network and its middleware.

4. Scapy has an active development community and complete documentation, which

helps with code quality and development speed.

There are many tools similar to Scapy, such as hping [25], Libcrafter [21], Ostinato

[20], WireShark/TShark [28]. However, compared to Scapy, hping is a TCP/IP packet

8

Chapter 3. Methodology 9

assembly and analysis tool that can only be run on the command line, and it lacks

protocol support and flexibility in packet construction compared to Scapy; Libcrafter is

a network packet construction library developed using C++. Although it has powerful

performance, its scripting ability is worse compared to Python based Scapy; Obstinao

provides a graphical interface, so it cannot run on remote servers and requires payment

for use; TShark is the command-line version of WireShark, which is powerful in packet

capture and inspection, but far inferior to Scapy in packet construction and manipulation.

In summary, Scapy integrates the construction, sending, receiving, and analysis of

data packets, with comprehensive functionality and the ability to precisely customize

data packets at various levels of the network stack that other tools cannot achieve.

Meanwhile, as a Python library, Scapy can easily integrate with other python tools,

providing more automation and adapting to more complex testing environments.

3.2 Active Measurement

In this project, active measurement refers to actively detecting network behavior by

sending customized data packets (such as TCP SYN packets) to evaluate the func-

tionality and characteristics of a certain protocol, as well as the impact of network

intermediate devices on transmission protocols.

Based on the requirements and objectives of this project, proactive measurement

has the following advantages:

1. By actively sending data packets, experimenters can directly and clearly under-

stand how the intermediate and how it affects the functionality of TCP extensions

and QUIC protocols.

2. Active measurement can reveal some behaviors that are difficult to detect by

passive measurement. For example, by sending SYN packets with options,

hidden behavior in the network path can be revealed. If the intermediate box in

the network blocks or modifies these packets, it will cause the client to be unable

to connect or successfully create a connection but its extension will fail.

3. Active measurement can provide real-time analysis of received responses, thereby

providing more detailed network behavior data.

The opposite of active measurement is passive measurement, which is defined as

analyzing existing network traffic data to evaluate the actual usage of a protocol. There

are three differences between these two measurement methods:

Chapter 3. Methodology 10

1. Measurement range: Active measurement is mainly used to evaluate the func-

tionality of networks or servers and determine the support for certain protocol

features; Passive measurement is used to analyze the actual deployment of proto-

cols and the characteristics of network traffic.

2. Data collection method: Active measurement obtains responses by sending

special data packets to the network, while passive measurement analyzes existing

network traffic for statistical purposes.

3. Usage scenario: Active measurement is suitable for verifying the behavior of

intermediate boxes and the adaptability of protocol extension functions, while

passive measurement is used in evaluating the deployment of protocols and

analyzing traffic patterns.

Considering the principle of end-to-end transparency in the early design of the

Internet, the project should use active measurement to detect and analyze the behaviors

that can occur in the network path.

3.3 Testing Environment

3.3.1 Client - Sever Model

The experiments conducted in this project adopted a client server model (also known as

a sender receiver model). The client actively sends TCP or QUIC packets to the server,

and the server will selectively listen for packets from the client’s IP address and issue

different responses based on the different packets. In all the experiments conducted, the

client used the author’s personal computer with an operating system of MacOS and a

system version of MacOS Monterey 12.7.2.

The server uses Cloudlab, which is a cloud experiment platform that provides infras-

tructure and services for scientific research and education. Conducting experiments on

this platform can eliminate the impact of the server on the data packet. If the measure-

ment results show that the data packet has been modified, it can be determined that it is

caused by the intermediate box. In addition, Python and Scapy are installed on both

the client and server, with the former version being 3.9.7 and the latter using version

2.5.0.

Chapter 3. Methodology 11

3.3.2 Block RST

The TCP stack is one of the core components in network communication and a part of

the operating system kernel, responsible for managing the establishment, maintenance,

and termination of TCP connections. Through its provided API, developers can easily

establish TCP and send and receive data without dealing with the underlying network

transmission details. For example, when an application calls connect(), the TCP stack

is responsible for performing a three-way handshake and establishing a connection.

When a SYN packet is directly sent from the client to the server, the server-side

Scapy script may encounter a situation where it cannot listen to the SYN packet and the

client will receive an RST packet sent from the server. After research, it can be found

that this RST packet comes from the TCP stack on the server side. Due to the fact that

the Scapy script that listens for packets is only running on the server, and the destination

port of the SYN packet is closed on the server, the TCP stack will send an RST to reject

the establishment of the connection. According to TCP protocol requirements, when a

SYN packet arrives at the server, its TCP stack will check if the target port is listening.

If the port is unavailable, the connection request will become invalid. Therefore, based

on this protocol specification, the project will use nftables to filter network packets

before conducting experiments. This is a Linux kernel framework designed to provide

flexible packet filtering functionality.

During the TCP three-way handshake, when the client sends a SYN packet, the

server responds with a SYN-ACK packet upon receipt. When using Scapy to complete

this step, it can be observed that the client automatically sends an RST packet upon

receiving a SYN-ACK packet. This is because when using Scapy to send SYN packets,

Scapy directly operates on the network interface, bypassing the TCP stack in the

operating system kernel, so the TCP stack does not know that the sender is attempting to

establish a TCP connection. After receiving a SYN-ACK packet from the receiver, the

TCP stack does not manage such packets and instead responds directly to an RST packet.

The reason why Scapy can bypass the TCP stack is because it uses raw sockets, which

can access lower level packets and allow programs to write directly from user space to

the network layer. In order to prevent the RST packet from affecting the experiment,

the Packet Filter in MacOS, a firewall and traffic management tool, is used to filter

RST sent to the server. Its implementation process is similar to the previous paragraph.

Chapter 3. Methodology 12

3.4 Default Parameters of TCP

In all tests, the client’s Initial Sequence Number(ISN) was 724001 and the receiver’s

ISN was 17581102. The port used for communication by client applications is dy-

namically allocated and is commonly referred to as an ephemeral port. Its existence

is temporary and only remains valid during the communication session. For the range

of equatorial ports, 32768-60999 is used by many Linux kernels [12]. In this project,

the range of temporary ports was randomly generated within the range of 49152-65535,

as recommended by IANA [4]. In addition, when testing TCP packets, we set the

Maximum Segment Size (MSS) of all packets to 512, which brings the following two

benefits:

1. MSS specifies the maximum size of data segments that can be transmitted in

TCP packets, excluding TCP and IP headers. In network paths with smaller

MTU, when MSS is set to be small, fragmentation during transmission can be

avoided, which increases processing overhead. Data packets that have undergone

fragmentation need to be reassembled at the receiving end.

2. In some network environments with low bandwidth or high latency, using smaller

MSS can reduce the burden on the network, improve the success rate of packet

arrival, and reduce transmission latency.

3. Some old or limited performance network devices may not be able to efficiently

process larger data packets. Setting MSS to 512 bytes can prevent these devices

from experiencing issues due to receiving large data packets.

Chapter 4

Tests and Results

In all tests, we selected three different target port numbers for testing, namely 80, 443

and 49312. Port 80 is a standard port for HTTP, mainly used for unencrypted web

page access; Port number 443 is a standard port for HTTPS, typically used to establish

encrypted connections with servers, ensuring data privacy; Port number 49312 is a

random port. Because the behavior of middleboxes may change depending on the

destination port, testing two common ports and one uncommon port may reveal more

behavior. For the tested network, we selected Wi-Fi from 20 public areas in the UK.

4.1 TCP Option Field

The options field in the TCP header is a variable length field located after a fixed 20

byte header, with a maximum length of 40 bytes. This field is used to support various

extension functions and protocol optimizations, enabling TCP to improve performance

and adapt to constantly changing network requirements.

Most of the widely deployed options currently start with the three-way handshake

process, such as MSS, Window Scale, SACK, TCP Fast Open, and MPTCP. The client

adds options in the SYN packet header to negotiate the use of options with the server.

If the corresponding option can also be found in SYN-ACK, it indicates successful

negotiation and the functionality will take effect in the session.

The behavior of middleboxes in the negotiation may have a negative impact, leading

to the invalidation of options or inconsistent understanding of the negotiation results

between the two ends. In order to reflect the impact of these behaviors in different

scenarios as much as possible, the test is divided into three types:

1. Send a packet containing test options after a three-way handshake (3WHS): In

13

Chapter 4. Tests and Results 14

this scenario, SYN and SYN-ACK do not contain any test options, and after a

successful handshake, the client sends the first packet containing test options. The

purpose of this test is to understand whether the intermediate box will allow new

option fields to pass through during the data transmission phase when no new

options are introduced during the handshake phase. Although this approach is

very rare among widely deployed options, we would like to know to what extent

middleboxes supports this approach.

2. The three-way handshake and data packet both contain testing options (3WHS
Plus): this test aims to evaluate whether the middle box will recognize and

intervene in unknown option fields during the handshake phase, which helps to

assess the level of support for middle boxes when new extensions are introduced.

If the options in SYN are removed, this is acceptable, and SYN-ACK will not add

new options, causing the TCP connection to revert back to the normal version. If

the options in SYN are not removed and the options in SYN-ACK are removed,

it will have an impact on both parties. At this point, the client considers the

negotiation to have failed, and the service level will assume that the negotiation

has been successful. In the last scenario, the new option can pass both SYN and

SYN-ACK, but is removed in subsequent data packets. This situation will have

an impact on both the client and server.

3. Directly sending packets containing test options (Directly sending): In this

scenario, we skipped the three-way handshake and sent packets containing new

options directly. The purpose of this test is to observe how the intermediate box

handles packets with new options without establishing a connection, especially

whether they can pass through the network in a stateless state. This is crucial for

evaluating scalability and compatibility in certain application scenarios, such as

connectionless transmission.

In order to cover as many new extensions as possible in the future, we have divided

the options used in the testing process into four categories:

1. Unknown option: We test it using option kind 35, which is marked as Reserved

by IANA and belongs to the unallocated option.

2. Experiment option: We use option kind 253 for testing, which is marked as

Experiment by IANA and is typically used to experiment with new features.

Chapter 4. Tests and Results 15

Table 4.1: 4 kinds of options in 3WHS

Destination Port

Behavior 80 443 49312

SYN blocked 4 3 4

Passed 15 16 15

Removed 0 0 0

Changed 1 1 1

3. Known option with wrong length: The Timestamp option is used for testing,

with an option kind of 8. Normally, the option length of TS is 10, but we change

it to 16 during testing.

4. Random value option: We add a random value of 12 bytes to the option field

and conduct testing.

In the options testing, we expect behaviors of middleboxes would include:

1. Blocked: In tests involving handshake, SYN packets may be intercepted, resulting

that clients are unable to establish a connection. In the Directly sending test, data

segments may be intercepted directly and the server cannot accept them.

2. Passed: All packets can pass through and the option field is not affected.

3. Removed: All packets pass, but the added options are removed.

4. Changed: Packets can pass, but options have been modified by middleboxes.

Tables 4.1 - 4.3 summarize the results including the handshake, where the situation

where SYN is blocked remains the same. Among them, three paths will automatically

respond with an RST with a seq of 0 upon detecting a SYN, and two networks will

respectively block all SYN packets from ports 80 and 49312. It is worth noting that the

middlebox that blocks all on port 80 is more special, because it will send a SYN-ACK

for the client, but will not respond to the subsequent payload segments. Secondly, in

tests that require establishing a handshake, a middlebox in a path will indiscriminately

change the options in all segments. Detailedly, for SYN packets, they will be reset to

MSS, SACK, TS, WScale options; And for the data segments, they will be reset to only

include the TS option.

Chapter 4. Tests and Results 16

Table 4.2: Unknown, Experiment, TS in wrong length in 3WHS Plus

Destination Port

Behavior 80 443 49312

SYN blocked 4 3 4

Passed 15 16 15

Removed 0 0 0

Changed 1 1 1

Table 4.3: Random value option in 3WHS Plus

Destination Port

Behavior 80 443 49312

SYN blocked 4 3 4

Passed 13 14 13

Removed 0 0 0

Changed 3 3 3

The difference between Table 4.2 and Table 4.3 is that two networks recognized

packets with random values option added. These two middleboxes will add a MSS

option with a value of 536 at the beginning of the option field. And the originally added

random values are not affected.

Table 4.4 summarizes the results in Directly sending. More than half of the networks

directly block payload packets. The network that modifies data segments is the same as

previously mentioned: all option fields will be reset to only contain TS options.

Table 4.4: 4 kinds of options in Directly sending

Destination Port

Behavior 80 443 49312

Blocked 11 11 11

Passed 8 8 8

Removed 0 0 0

Changed 1 1 1

Chapter 4. Tests and Results 17

Table 4.5: ISN modification test

Destination Port

Behavior 80 443 49312

SYN blocked 4 3 4

Passed 15 16 15

Changed 1 1 1

4.2 Initial Sequence Number

Sequence number is the mechanism used by TCP for reliable transmission, packet

ordering, and handling of duplicate data packets. The use of some TCP options may

depend on the sequence number of the packet, such as SACK [17]. In the TCP three-way

handshake phase, the SYN sent by the client and the SYN-ACK responded by the server

each contain an ISN. If middleboxes modify ISN, it is likely to have an impact on this

type of TCP option.

Table 4.5 shows the test results, where only one path has an impact on ISN in

networks that allow SYN to pass through. In this path, middleboxes make bidirectional

modifications to the ISN of both the client and server.

4.3 Sequence Number Hole

TCP’s SEQ and ACK can be used to prevent packet loss in the network. Specifically, the

receiver discovers lost packets by detecting gaps in the sequence number. For example,

if the receiver expects the next sequence number to be 1001, but the sequence number

of the received packet is 1201, then the receiver can request the sender to retransmit

the lost packet through ACK. If the sender does not receive an ACK from the receiver

within a certain period of time, or if the ACK received indicates that the receiver did

not receive the data packet as expected, the sender will resend these data packets.

The purpose of the Sequence Number Hole test is to observe the behavior of

middleboxes in this context. We divide the types of holes into two categories:

1. Hole-in-SEQ: First, establish a connection, and then the client sends two data

segments in sequence. The seq of the two data segments contains a hole of size

500. Then observe the behavior of middleboxes to the second data segment.

2. Hole-int-ACK: First, establish a connection. The client sends the first data

Chapter 4. Tests and Results 18

segment, and then adds a hole of size 500 to the ACK value sent by the server.

Observe whether the client can receive this ACK.

Figure 4.1: Sequence Number Hole Test

Figure 4.1 shows the differences between these two kinds of tests, and Table 4.6

- 4.7 shows the result. For Hole-in-SEQ, Fail represents that the client cannot receive

an ACK for the second data segment. From the perspective of the server, the behavior

of middleboxes causing failures can be divided into two types. The first case is that

the server detects the second data segment with a hole, but the payload is removed by

middleboxes and the corresponding ACK is blocked during the path; The second is that

data segment with a hole are directly blocked by middleboxes, and the server cannot

capture them.

In Hole-in-ACK, Fail represents that the client cannot receive the ACK with a hole.

The behavior of middleboxes can also be divided into two types. Firstly, ACK with hole

may be intercepted during transmission. And another behavior is more complex. When

an ACK with a hole is sent from the server, the middleware will capture it and resend

the previous data segment on behalf of the client. And the purpose of doing so can be

speculated as hoping to receive packets with correct ack values. From this behavior, it

can be seen that this is a stateful middlebox that stores recently packets.

Chapter 4. Tests and Results 19

Table 4.6: Hole-in-SEQ test

Destination Port

Behavior 80 443 49312

SYN blocked 4 3 4

Passed 13 14 14

Fail 3 3 2

Table 4.7: Hole-in-ACK test

Destination Port

Behavior 80 443 49312

SYN blocked 4 3 4

Passed 14 14 13

Fail 2 3 3

4.4 Retransmission

What choices can future protocol designers make if they find that the content of a

previously lost packet has become invalid when they need to perform retransmission?

Firstly, it can be seen from the previous test that sending packets with holes is not a

very reasonable choice and may be affected by the network environment. Secondly, can

the payload be modified before retransmission? To investigate the rationality of this

choice, we conducted a retransmission test.

Figure 4.2 explains the process of the test. Firstly, the client sends two consecutive

data segments with serial numbers, and then the server returns two ACKs confirming

the first data segment. At this point, the client modifies the content of the second data

segment and sends it. If the server can receive a complete and inconsistent data packet,

it means the test has passed.

Table 4.8 shows the results, indicating that two networks failed, but the reason

for the failure was not that inconsistent packets were blocked. In one of the tests,

after capturing two duplicate ACKs, middleboxes merged the contents of the two data

segments previously sent and sent them to the server. In addition, when middlebox

receives the modified data packet, it will modify its contents. For example, the original

payload length is x and the modified payload length is y (y>x), the middlebox will cut

off the first x and retain the content of the last (y-x).

Chapter 4. Tests and Results 20

Figure 4.2: Retransmission Test

Table 4.8: Retransmission Test Results

Destination Port

Behavior 80 443 49312

SYN blocked 4 3 4

Passed 14 15 14

Fail 2 2 2

The behavior of another middlebox that causes failure is different. It does not block

duplicate ACKs, but modifies inconsistent packets. Its operation is to concatenate the

original content into the header of the modified content, and then send it to the server.

4.5 QUIC Tests

QUIC is a transport protocol built on UDP, serving as the foundation for HTTP/3.

Unlike TCP’s three-way handshake, QUIC’s handshake is typically used to negotiate

encryption parameters. According to RFC 9000 [11], we constructed an initial packet

to simulate the handshake process of the protocol, and Table 4.9 shows the parameters

used.

In tests, we observed potential behaviors of middleboxes towards the QUIC protocol

in the current network environment by exchanging initial packets between the client

and server. In the protocol specification, these two initial packets need to contain

ClientHello and ServerHello respectively for negotiating TLS 1.3 encrypted ses-

Chapter 4. Tests and Results 21

Table 4.9: QUIC Initial Packet Parameters

Field Length Value

Header Form 1 bit 1

Long Packet Type 2 bits 0

Reserved bits 2 bits 0

Packet Number Length 2 bits 2

Version 1 byte 1

Destination Connection ID Length 1 byte 8

Source Connection ID Length 1 byte 5

Token 1 byte 0

Packet number 1 byte random

Payload 259 bytes random

Table 4.10: QUIC Initial Packet Test

Destination Port

Behavior 80 443 49312

Passed 13 13 13

Sending Packet Blocked 4 4 4

Response Packet Blocked 2 2 2

Changed 1 1 1

sions. However, during the package building process, we use random values instead of

encrypted information.

Table 4.10 displays all the results. Unlike the results in the TCP section, the

behaviors of all middleboxes remains consistent on different ports. There are four

networks blocked initial packets from client. In TCP Option Field section, we mentioned

that there is a network that blocks all TCP segments sent to port 49312, and it blocks

all UDP packets in this test; And the other three networks blocked all TCP and UDP

segments simultaneously. For the two ’Response Packet Blocked’ results, the server

can receive the initial packet, but the response cannot be seen by the client. There

is a middlebox modified the payload, and in this case, the initial packet sent by the

client remains unchanged. But after comparison, it was found that the content sent by

the server was inconsistent with the response received by the client, its content was

modified.

Chapter 5

Conclusion and Future Work

In this project, we evaluated the evolvability of transport protocols (TCP and QUIC) in

the current Internet environment by active measurement. The test results indicate that

although both TCP and QUIC were designed with expanding possibility, there are still

many middleboxes in the real world that can affect the functionality of these protocols.

These behaviors limit the updating and optimization of protocols. Specifically, our

research found that:

1. The intervention of middleboxes on TCP options is modification. This type of

device completely removes options from the data segment and adds its own set

options, which can cause the new extension out of work.

2. More than half of the directly sent TCP segments are directly blocked, which is a

huge challenge for those who want to try connectionless applications.

3. Some middleboxes may modify the ISN, which may affect TCP options that

depend on sequence numbers.

4. When out-of-order packets appear, the behaviors of middleboxes may cause

problems, which may result in packet loss or connection interruption.

5. Modifying the retransmission segments may not be a reasonable choice, as some

middleboxes may modify inconsistent content.

6. Although the QUIC protocol reduces the intervention of intermediate devices

through encryption, it still faces some challenges, such as middleboxes potentially

blocking UDP traffic and modifying encrypted content.

22

Chapter 5. Conclusion and Future Work 23

Future protocol designers should carefully consider these potential issues when

working, such as negotiating new features during the handshake phase, which is a good

habit. If no new options are found in SYN-ACK, they should promptly push back to

the regular version. At the same time, attention should also be paid to the risks of

sequence number modification, segments with holes, and inconsistent retransmissions.

In summary, extending the transport layer protocol is theoretically feasible, but it still

faces challenges from the diversity of network environments.

The testing scope of this project is limited to 20 public areas Wi-Fi in the UK. These

testing environments to some extent reflect the intervention behaviors of middleboxes

in TCP and QUIC, but due to limitations in sample size and geographical scope, they

cannot fully represent the situation in various network environments worldwide.

The future work should be to expand the measurement range and conduct testing

on network services provided by different ISPs. By obtaining results in more diverse

environments, it is possible to comprehensively measure the diversity of behaviors of

middleboxes. Meanwhile, the global results can explain the regional differences in the

behavior of different middleboxes, providing data support for future standardization

expansion.

Bibliography

[1] D. Borman, B. Braden, V. Jacobson, and Richard Scheffenegger. Tcp extensions

for high performance. RFC, 7323:1–49, 1992.

[2] Sapna Chaudhary, Prince Sachdeva, Abhijit Mondal, Sandip Chakraborty, and

Mukulika Maity. Youtube over google’s quic vs internet middleboxes: a tug

of war between protocol sustainability and application qoe. arXiv preprint

arXiv:2203.11977, 2022.

[3] Sarah Cook, Bertrand Mathieu, Patrick Truong, and Isabelle Hamchaoui. Quic:

Better for what and for whom? In 2017 IEEE International Conference on

Communications (ICC), pages 1–6, 2017.

[4] Michelle Cotton, Lars Eggert, Dr. Joseph D. Touch, Magnus Westerlund, and

Stuart Cheshire. Internet Assigned Numbers Authority (IANA) Procedures for the

Management of the Service Name and Transport Protocol Port Number Registry.

RFC 6335, August 2011.

[5] Ryan Craven, Robert Beverly, and Mark Allman. A middlebox-cooperative tcp for

a non end-to-end internet. ACM SIGCOMM Computer Communication Review,

44(4):151–162, 2014.

[6] Korian Edeline and Benoit Donnet. A first look at the prevalence and persistence

of middleboxes in the wild. In 2017 29th International Teletraffic Congress (ITC

29), volume 1, pages 161–168. IEEE, 2017.

[7] Kevin Fall and Sally Floyd. Simulation-based comparisons of tahoe, reno and

sack tcp. ACM SIGCOMM Computer Communication Review, 26(3):5–21, 1996.

[8] Benjamin Hesmans, Fabien Duchene, Christoph Paasch, Gregory Detal, and

Olivier Bonaventure. Are tcp extensions middlebox-proof? In Proceedings of the

24

Bibliography 25

2013 Workshop on Hot Topics in Middleboxes and Network Function Virtualiza-

tion, HotMiddlebox ’13, page 37–42, New York, NY, USA, 2013. Association for

Computing Machinery.

[9] Benjamin Hesmans, Fabien Duchene, Christoph Paasch, Gregory Detal, and

Olivier Bonaventure. Are tcp extensions middlebox-proof? In Proceedings of the

2013 workshop on Hot topics in middleboxes and network function virtualization,

pages 37–42, 2013.

[10] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark

Handley, and Hideyuki Tokuda. Is it still possible to extend tcp? In Proceedings

of the 2011 ACM SIGCOMM conference on Internet measurement conference,

pages 181–194, 2011.

[11] Jana Iyengar and Martin Thomson. Rfc 9000: Quic: A udp-based multiplexed and

secure transport. Omtermet Emgomeeromg Task Force, 2021.

[12] kernel.org. Ip sysctl. https://www.kernel.org/doc/html/latest//networking/ip-

sysctl.htmlip-variables. Accessed: 2024-08-11.

[13] Mike Kosek, Tanya Shreedhar, and Vaibhav Bajpai. Beyond quic v1: A first

look at recent transport layer ietf standardization efforts. IEEE Communications

Magazine, 59(4):24–29, 2021.

[14] Mike Kosek, Benedikt Spies, and Jörg Ott. Secure middlebox-assisted quic. In

2023 IFIP Networking Conference (IFIP Networking), pages 1–9, 2023.

[15] Mirja Kühlewind, Sebastian Neuner, and Brian Trammell. On the state of ecn

and tcp options on the internet. In International conference on passive and active

network measurement, pages 135–144. Springer, 2013.

[16] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,

Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. The

quic transport protocol: Design and internet-scale deployment. In Proceedings of

the conference of the ACM special interest group on data communication, pages

183–196, 2017.

[17] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. Tcp selective

acknowledgment options. RFC 2018, 1996.

Bibliography 26

[18] Alberto Medina, Mark Allman, and Sally Floyd. Measuring interactions between

transport protocols and middleboxes. In Proceedings of the 4th ACM SIGCOMM

conference on Internet measurement, pages 336–341, 2004.

[19] Késsia Nepomuceno, Igor Nogueira de Oliveira, Rafael Roque Aschoff, Daniel

Bezerra, Maria Silvia Ito, Wesley Melo, Djamel Sadok, and Géza Szabó. Quic

and tcp: A performance evaluation. In 2018 IEEE Symposium on Computers and

Communications (ISCC), pages 00045–00051, 2018.

[20] ostinato.org. Ostinato traffic generator for network engineers. https://ostinato.org/.

Accessed: 2024-08-11.

[21] Pellegre. libcrafter. https://github.com/pellegre/libcrafter. Accessed: 2024-08-11.

[22] Michele Polese, Federico Chiariotti, Elia Bonetto, Filippo Rigotto, Andrea Zanella,

and Michele Zorzi. A survey on recent advances in transport layer protocols. IEEE

Communications Surveys amp; Tutorials, 21(4):3584–3608, 2019.

[23] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain, and Barath

Raghavan. Tcp fast open. In Proceedings of the Seventh COnference on emerging

Networking EXperiments and Technologies, pages 1–12, 2011.

[24] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. A first look

at quic in the wild. In Passive and Active Measurement: 19th International

Conference, PAM 2018, Berlin, Germany, March 26–27, 2018, Proceedings 19,

pages 255–268. Springer, 2018.

[25] Salvatore Sanfilippo. hping. https://github.com/antirez/hping. Accessed: 2024-08-

11.

[26] Scapy.net. Scapy. https://scapy.net/. Accessed: 2024-08-11.

[27] Michael Walfish, Jeremy Stribling, Maxwell N Krohn, Hari Balakrishnan,

Robert Tappan Morris, and Scott Shenker. Middleboxes no longer considered

harmful. In OSDI, volume 4, pages 15–15, 2004.

[28] Wireshark Foundation. Wireshark – go deep. https://www.wireshark.org/, 2024.

Accessed: 2024-08-11.

