
Learning Quantum Computing

Ka Chun Ng
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2024

Abstract

Quantum computing represents a significant and promising technology with the potential

to significantly enhance computational performance in a range of fields, including

finance, biology and artificial intelligence. The growing interest in this emerging field

has led to an increase in the complexity and number of concepts and terminologies,

which can be challenging for both novice and experienced researchers to navigate.

Consequently, a series of RAG systems have been constructed which utilise a multitude

of cutting-edge techniques, including auto-merging, knowledge graph and multi-query,

with the objective of synthesising knowledge pertaining to quantum computing for

the purpose of context retrieval in response to user queries, facilitated by the use of a

Large Language Model (LLM). The systems are evaluated using the RAGAs framework

and the expertise of a quantum computing specialist. In the course of the experiments,

it became evident that the traditional reranking strategy of reciprocal rank fusion is

unsuitable in the context of dense retriever. Conversely, the knowledge graph was

demonstrated to facilitate the existing system in context retrieval. In general, the

straightforward vector search system (SV) demonstrates satisfactory performance in

the LLM-generated test set, whereas the system that employs both vector search and

knowledge graph (KV) excels in the user study. Overall, 40% of the responses to the

user query are rated 8 or above out of 10 across the systems.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Ka Chun Ng)

ii

Acknowledgements

I would like to thank the University of Edinburgh and my supervisor Dr Chris Heunen

for their guidance and support in completing this dissertation.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement and objective . 2

1.3 Contributions . 2

1.4 Structure . 3

2 Background 4
2.1 Information retrieval . 4

2.2 Retrieval-Augmented Generation . 4

2.3 Knowledge graph . 5

2.4 Retrieval Augmented Generation Assessment 5

2.5 Related work . 6

2.6 Hardware and software setup . 6

3 Methodology 8
3.1 Dataset Preparation . 8

3.2 Prepossessing . 10

3.3 Retrieval System . 11

3.3.1 Texts segmentation . 11

3.3.2 Indexing . 12

3.3.3 Retrieval . 13

3.3.4 Systems Overview . 15

4 Results and Discussion 18
4.1 Testset Collection . 18

4.1.1 RAGAs testset generation 18

4.2 Metrics . 19

4.2.1 Faithfulness [59] . 19

iv

4.2.2 Answer Relevancy [56] . 20

4.2.3 Context Precision [57] . 20

4.2.4 Context Recall [58] . 20

4.2.5 Answer Correctness [55] . 20

4.3 Results and Discussion . 21

4.3.1 RAGAs generated dataset 21

4.3.2 Human generated dataset . 25

5 Conclusions 28
5.1 Summary . 28

5.2 Limitations . 29

5.3 Future work . 29

Bibliography 30

v

Chapter 1

Introduction

1.1 Motivation

In the context of classical computers, data is represented by a binary system comprising

two states: 0 and 1. As the search space increases, the data and time complexities grow

exponentially. In the 1980s, Benioff and Feynman provided a theoretical definition of

quantum computers. [5][16] In 1985, Deutsch put forth a rigorous foundation for quan-

tum computing and algorithms. [10] The capacity for information encoding as qubits (0

and 1) represents a significant advantage of quantum computers, which leverage quan-

tum physics concepts to reduce time complexity significantly in comparison to classical

computers. [28] In the 1990s, Shor’s prime factorisation algorithm and Grover’s search

algorithm demonstrated the superiority of quantum computers over classical computers

in the field of cryptography and database. [30] The research community was prompted

to investigate further potential applications of quantum computing in a wide range of

fields, including material science, engineering, logistics [4] and machine learning[65].

In recent times, artificial intelligence has come to dominate the market and research

interests in the technology sector, as a consequence of its proven success in a number

of different areas, including natural language processing (NLP) and image process-

ing. In particular, there has been a notable increase in research interest surrounding

large language models (LLMs) and their applications. [42] The Retrieval-Augmented

Generation (RAG) approach was introduced with the objective of leveraging informa-

tion retrieval techniques on a massive scale to address a range of domain-independent

Natural Language Processing (NLP) tasks. [29] At the same time, the intricate and

vast quantity of data inherent to quantum computing renders it challenging for both

novice users and researchers to attain a comprehensive grasp of the subtleties inherent

1

Chapter 1. Introduction 2

to its concepts and protocols. In response to this challenge, this research is dedicated

to developing a structured system to facilitate the resolution of questions pertaining to

quantum computing.

1.2 Problem Statement and objective

As the rate of publications for quantum computing grows rapidly over the past two

decades from less than 1000 per year to more than 4000 per year in 2021 [13], the

depth and scope of research interests keep expanding. This explosion of information

has led to challenges such as semantic overlap, synonymous terminology, and content

duplication, making it increasingly difficult for researchers to stay updated or gain a

deep understanding of the field quickly.

For those new to the field, the highly technical research papers on quantum com-

puting are frequently challenging to grasp without a firm grasp of the terminology and

concepts that form the foundation of the subject. The vast quantity of literature on

the subject can make it difficult to identify pertinent and fundamental information that

would enable one to comprehend the latest research. This creates a significant learning

curve, particularly for those seeking to stay up-to-date on current developments, and it

greatly diminishes their interest and accessibility to the subject.

To address these challenges, this research aims to develop a structured RAG system

to build a structured system to synthesise high-level details and abstractions for current

or future literature of quantum computing in order to bridge the knowledge gap between

system and target users. This will entail the synthesis of data and the construction

of a retrieval system, which will then undergo evaluation. Furthermore, research and

analysis on RAG techniques will be conducted to provide insights on the creation of an

improved knowledge retrieval system for quantum computing papers.

1.3 Contributions

This project has developed several RAG pipelines for retrieving contexts from query

in order to answer user’s query of quantum computing knowledge. At last, 3 superior

systems are selected and give good results in real user study. Combinations of techniques

were used in the systems for evaluating its effectiveness as shown in table 1.1.

Chapter 1. Introduction 3

Category Techniques

Preprocessing Structured text parsing, Non-structured text parsing

Indexing Knowledge Graph, Auto-merging, Vector Index

Post-processing Re-ranking, Fusion

Table 1.1: Techniques used in the RAG pipelines for retrieving contexts from queries.

This study employs a diverse range of RAG system configurations to evaluate the

effectiveness of knowledge retrieval and the quality of responses based on metrics

judged by LLM, namely faithfulness, answer relevancy, context precision, context recall

and answer correctness. The generated datasets have been subjected to a comprehensive

analysis in conjunction with the human datasets, with the objective of elucidating the

characteristics and limitations of each system, filling the research gap of the latest

advancement of RAG techniques. The findings of this analysis will inform the selection

of the pipeline structure and future research directions, particularly with regard to

datasets utilised in academic research.

1.4 Structure

The remaining content of the paper is described as 4 parts:

1. Background and related study for better understanding in reading this paper

2. Methodology adopted in this research, which includes implementation details in

the stage of dataset preparation, prepossessing and RAG system.

3. Results and discussion for the current research in the RAG systems implemented

with the outcomes delivered as well as the limitations

4. Conclusion on the dissertation, which gives summary, limitations and further

research directions to work on

Chapter 2

Background

2.1 Information retrieval

In the initial stages of information retrieval, Boolean systems utilising an exact match

of words were employed to generate non-ranked results of a relatively low quality.

In contemporary information retrieval systems, two models are frequently employed:

probabilistic models and vector space models. [67] The probabilistic model was trained

to model the probability of relevance for documents according to the query [63],

resulting in a highly biased and inconsistent approach. In contrast to other search

models, the vector space model represents text as a vector of terms in a multidimensional

space, offering flexible structure and compromise results. [49] In the present era,

transformer-based models such as BERT[11] have demonstrated superior retrieval

performance to that of state-of-the-art traditional sparse retriever BM25[24] through

the formation of information-rich dense vectors. [27] The model effectively encoded

both the semantic and syntactic information of words into word embeddings [1] and

captured the contextual relevance between the query and the documents through the

angle difference of the respective vectors. [2].

2.2 Retrieval-Augmented Generation

Large language models represent a significant advancement in the field of natural

language processing and artificial intelligence, exhibiting remarkable proficiency in

language-oriented tasks. Nevertheless, it exhibits a tendency to generate implausible

and inaccurate content, particularly in the context of domain-specific knowledge, which

is often underrepresented in the training datasets. [25] This phenomenon is commonly

4

Chapter 2. Background 5

referred to as ”hallucination” [20, 45]. In 2020, retrieval-augmented generation (RAG)

was proposed as a means of mitigating the issue of ”hallucination” and providing

answers that are more factual and relevant, drawing on updated world knowledge from

external document indexes. [29] The findings of the research indicate that RAG was a

more resilient and effective method for knowledge injection in comparison to another

prominent approach, which involves fine-tuning the pre-trained model. [48] At present,

the most advanced RAG methods include naive RAG, advanced RAG and modular

RAG. In the case of advanced RAG, the pre-processing and post-processing steps are

incorporated into the pipeline in order to enhance the quality of the index and the

retrieved context. In modular RAG, a flexible and multifunctional pipeline architecture

is provided by the incorporation of combinations of functional modules, resulting

in refined outcomes. [18] To illustrate, the RAG Fusion approach[62] incorporates

query rewriting modules[40] that prompt LLM to generate a new query to facilitate

comprehension of the query inputs and re-ranking algorithms, including reciprocal rank

fusion(RFF)[9] to optimise the ordering by relevance between the query and retrieved

documents.

2.3 Knowledge graph

Knowledge Graph(KG) is a semantic representation of data, comprising nodes and

edges. The edges indicate the relationships between the nodes, which typically represent

concepts or entities. [77] This structured graph can enhance the retrieval of information

and reasoning by tracing paths with related nodes. The retrieval of accurately contex-

tualised data can mitigate ”hallucination”, thus improving the quality of responses for

LLMs in specific domains. [72, 74, 45]

2.4 Retrieval Augmented Generation Assessment

Retrieval-Augmented Generation Assessment (RAGAs) framework provides a system-

atic method for evaluating retrieval or answer generation modules without the need for

reference data sets and achieve close alignment with human annotated results. By gen-

erating synthetic datasets based on specific characteristics of designated questions, such

as multi-context or reasoning, the workload involved in manual test-set creation and

collections can be significantly reduced. To assess the coherence and relevance of the

generated answers, provided contexts and ground truths(the model answers generated

Chapter 2. Background 6

by the selected contexts), metrics such as Faithfulness, Answer Relevance and Context

Relevance are employed. [14, 15]

2.5 Related work

In the preceding study of RAG systems, researchers have compared relatively sim-

ple and traditional pipelines as baselines. These pipelines typically employ simple

chunking with a direct match for dense retrievers. The majority of papers focus on a

limited number of target subsets, such as the fusion process[17], or the pre-retrieval

process[40, 50]. The latest developments in indexing techniques and details are not ad-

dressed in the formal research. In the case of knowledge graph-assisted pipelines, there

have been notable advances in testing datasets[19] and downstream tasks[76, 75, 26].

However, the construction of knowledge graphs is typically only briefly described,

depending on the research domain, or even disregarded. [51] In the research on RAG

pipelines, combinations of chunking methods, indexing techniques and re-rankers are

evaluated, but the results vary depending on the datasets used. To illustrate, in the

dataset HotpotQA[78], SQUAD[61] and QuAC[8], simple sentence parsing performs

the best out of all chunking methods in recall. [68] In constrast, in the dataset of

arXiv[3] collections, sentence window (A technique to embed chunks of text as nodes

with the surrounding text as window. The content within the window is combined with

that of the retrieved node, thereby providing more complete context. [66]) chunker

achieves highest score in precision. [12] The selection of modules in each stage of the

RAG pipeline is contingent upon the nature and structure of the documents in question.

To evaluate the practical performance of RAG pipeline variations in the context of

quantum computing research papers, we are utilising LlamaIndex[35], a sophisticated

framework for building document indexes for LLM applications, throughout the project.

2.6 Hardware and software setup

The hardware setup for this project composed of 1 linux server and 2 windows computer.

Chapter 2. Background 7

Computer Specification and Usage

Win10 Desktop 1TB HDD, 1TB SSD, 24GB RAM, GTX1060,

i7-7700

Usage: MongoDB[41] database, Neo4j[44]

database, Milvus[71] database

Linux server 3 3TB SSD, 125GB RAM, RTX3090 X2, i9-7900X

Usage: Hosting server for LLM services

Win11 Laptop 2TB SSD, 36GB RAM, RTX3070ti, i7-12700H

Usage: Embedding model, project coding and exe-

cution

Table 2.1: Comparison of computer specifications and their usage for data parsing.

In consideration of the constraints imposed by the hardware and budgetary limita-

tions, the selection of the embedding model and LLM will be based on open-source

models that demonstrate memory efficiency, as well as their position on the MTEB

leaderboard [43], LMSYS Chatbot Arena [7] and the time of their release. n accordance

with the aforementioned criteria, the Qwen2-7B model [54] and the gte-large-en-v1.5

model [79, 31] were selected as the default LLM and text embedding model respec-

tively. Both models demonstrate the most cost-effective performance at the time of

implementation, outperforming other homogeneous models evaluated on various public

datasets in the majority of tasks. With regard to rerankers, we will assess the algorithmic

RFF and jina-reranker-v2-base-multilingual as Jina provides a limited free API service

of a 137B model with excellent performance in a range of benchmarks [23]

In order to facilitate the implementation of the project, the main tool employed is

Llamaindex[35], an open-source package that provides a range of tools and integrations

for the construction of RAG systems.

Chapter 3

Methodology

This chapter will present the details of the implementation and experiments conducted

for the RAG systems in order to respond to queries pertaining to quantum computing.

The overall data ingestion and indexing flow is described below:

Figure 3.1: Data ingestion and indexing pipeline

3.1 Dataset Preparation

In order to retrieve academic researches of quantum computing, we utilise the arXiv api

to collect pre-print scholars based on the relevant search phrases. Initially, 10 search

phrases(quantum computing, quantum algorithm, quantum error correction, quantum

cryptography, quantum communication, quantum network, quantum internet, quantum

8

Chapter 3. Methodology 9

machine learning, quantum programming and quantum optimization) for top 1000

relevant papers were collected. Due to time constraint in processing documents, 996

papers (4 of the archive are deleted from the site) searched by ”quantum computing”

were adopted as ingestion data with metadata. Metadata includes url, updated/published

date, title, authors, summary, comment, journal reference, doi, primary category and

categories. The downloaded pdf of documents have high discrepancy in terms of text

length as the paper content (incomplete content) and layout varies (incorrect parsing by

pymupdf4llm[53] library). The statistics for character length parsed is described below.

Statistics PDF character count metadata character count

mean 74835.8 1421.68

median 45682.0 1359.5

min 456.0 516.0

max 5257322.0 2610.0

std 192432.09 465.71

Table 3.1: Statistics for character count of collected data

The noise data are kept in the dataset to ensure robustness retrieval, such as the

document that only produces 456 characters with majority symbols.

Properly parsed markdown Badly parsed markdown

—–

2.48 Grover’s Algo-

rithm: Initialization

State preparation: At the be-

ginning of the protocol, there

is no information about where

the marked item is. Thus, it is

convenient to start with an equal

superposition state

—Finite String of Rules—Current

State—current symbol scanned—

—e—Col2—Col3—Col4—Col5—e

e— ————————

————— ————

——— ———————

——————p—

—e—————e—

Table 3.2: Sample of parsed markdown from quantum computing research

Chapter 3. Methodology 10

3.2 Prepossessing

There are two principal categories of software for parsing PDF files into text: vision

model parsing (VMP) and heuristic parsing (HP). In the context of machine learning

vision models, the AI vision model is employed to perform a range of tasks, including

the detection of layouts, the parsing of equations and tables. The software is capable of

generating satisfactory results with images, tables and equations as markdown, but the

inferencing process for a single PDF document can take several minutes, and not all

items are recognised or formatted correctly due to the inconsistent formatting of PDFs.

In heuristic parsing, the layout is identified through the application of algorithms that

utilise rules to determine the margins and recognise the texts and tables. Images and

equations necessitate the implementation of customised handling procedures to facilitate

the incorporation of the parsed content. The parsing process is highly expeditious, with

the capacity to complete the parsing of an entire PDF within a single second. [53]

While it can still achieve satisfactory results for text extraction, it is unable to parse

images, tables, and equations on its own. There are some closed-source services that

provide high-quality, limited free parsing services, which are not within the scope of

this study. Given the limitations of time and cost, pymupdf4llm (Based on pymupdf

package, which has been demonstrated to have the fastest extraction speed and the

second-best text extraction quality among the most commonly used Python PDF parsing

libraries.[53]) was selected as a compromise between speed and effectiveness, offering

markdown conversion for PDFs with table support. The following table presents an

overview of the parsing methods that were investigated.

Chapter 3. Methodology 11

Name Type Speed Quality Comment

nougat[6] VMB 2.6 seconds per

page of arXiv pa-

pers in A6000

ada machine[70]

Excellent Support parsing

of images, tables

and equations

into markdown

marker-pdf[70] VMB 0.63 seconds per

page of arXiv pa-

pers in A6000

ada machine[70]

Excellent Same support as

nougat

pymupdf/

pymupdf4llm[53]

HP 0.1 seconds per

page[52]

Good Support text pars-

ing with moder-

ate level table

parsing quality

LlmSherpa[46] HP slightly slower

than pymupdf

Good More unstable

than pymupdf in

parsing content

LlamaParse[36] VMB similar to maker-

pdf

Excellent Same support as

nougat

Table 3.3: Overview of PDF parsing methods

3.3 Retrieval System

This section will examine the techniques employed in the modules of a retrieval system,

categorised into four distinct parts. Text segmentation, Indexing, Retrieval, Systems
Overview The following figure shows an overview for the whole pipeline of the system:

3.3.1 Texts segmentation

3.3.1.1 SentenceSplitter

In order to circumvent the division of words into arbitrary characters and to maintain

the structural integrity of paragraphs, SentenceSplitter[39] is employed to partition the

texts into discrete nodes, according to the regular expression (regex) of punctuation,

with a specified maximum number of tokens.

Chapter 3. Methodology 12

Figure 3.2: System pipeline for QA system

3.3.1.2 MarkdownNodeParser

The parsed markdown file was employed to divide the nodes while retaining the struc-

tural information of the markdown file through the annotations of headings, tables, and

lists. [37]

3.3.1.3 HierarchicalNodeParser

The hierarchical node parser parsed the texts into levels of nodes with a defined number

of overlapping nodes to avoid information loss. The nodes at the top of the hierarchy

will have the highest token coverage, while each of them consists of a number of

low-level nodes which have smaller text segments within the scope of the parent node.

[34]

3.3.2 Indexing

3.3.2.1 Vector Index

The process of embedding nodes into vectors will be conducted through the utilisation

of the embedding model. Following this, the embedded vectors will be stored in the

vector database for subsequent retrieval. In order to ascertain the degree of similarity

between the vectors, cosine similarity will be employed. This methodology facilitates

the identification of documents exhibiting a similar content to the given vectors.

Chapter 3. Methodology 13

3.3.2.2 Property Graph Index

Property Graph [38] has been developed with the objective of providing support for

graph stores with embedding capabilities, such as Neo4j. The entities created can

be retrieved through a similarity search of vectors with tracing paths. In this project,

the entities and relations are created and connected with the assistance of LLM and a

predefined schema, one by one for each node using the utilities of Llamaindex. Further-

more, the original path hierarchy is preserved through the construction of relationships

between nodes, including those of the parent, child, and sibling types. The construction

process is dependent on a considerable number of time-consuming LLM calls, with the

entire process taking in excess of 200 hours to complete the synthesis of 996 academic

papers.

Figure 3.3: Part of the knowledge graph built from quantum computing papers

3.3.3 Retrieval

3.3.3.1 Base vector retrieval

In the context of base vector retrieval, vector index of all nodes within the vector

database are loaded into memory in order to enable a comparison to be made between

the question under scrutiny and the database as a whole. Those nodes which are deemed

Chapter 3. Methodology 14

to exhibit the greatest degree of resemblance to the question are subsequently chosen

for inclusion in the retrieved contexts.

3.3.3.2 Auto-merging retrieval

In regard to the auto-merging retrieval [33] process, the HierarchicalNodeParser is

utilised to generate a tree-like structure with a top-to-bottom organisation of nodes. The

root level represents the uppermost level of the hierarchy, encompassing the collection

of nodes with the greatest size of chunk. In contrast, the nodes at the leaf level exhibit

the smallest size of chunk. The leaf nodes are embedded in the vector database for

searching. When the nodes are retrieved, nodes will try to group with sibling nodes.

A group of nodes will be merged into a single parent node recursively if the defined

threshold is reached. An example figure is shown below:

Figure 3.4: Data ingestion and indexing pipeline

This approach enables the merging nodes to construct more comprehensive and

consistent contexts, rather than unstructured and fragmented text segments. Its funda-

mental premise is analogous to that of the Sentence Window retriever, however it does

not necessitate the provision of the contextual surroundings of retrieved chunks, thereby

minimising the influence of extraneous information with a concentrated context.

3.3.3.3 Pre-retrieval and post-retrieval

In order to enhance search convergence and query quality, LLM is employed to generate

multiple queries. However, due to the phenomenon of ”lost in the middle”[32], which

Chapter 3. Methodology 15

causes the performance of LLM to degrade with the increase of context position of

relevant documents, a solution is required. Consequently, the retrieved results from

the system are then reranked by ranker or reciprocal rank fusion in order to obtain

the top k relevant documents from the query. An attempt is made to rerank using

LongLLMLingua[21], a tool that utilises well-trained LLM for prompt compression

and reranking to improve RAG performance. The LLM LLaMA-7B, which had been

specifically trained for the framework in the research, required 7.8 GB of VRAM for an

8-bit quantised model to process the retrieved contexts. The average processing time

for a single document was 5 minutes. The QA result was not as effective as that of the

reranker in a small testing case, due to limitations in hardware, time, and performance.

Therefore, it is no longer recommended as an option for this task.

3.3.4 Systems Overview

As the pre-pretrieval and post-retrieval steps are not contingent on the indexing and

retrieval structure, the following table illustrates the parsers, indexes, and retrieval

employed for a system designed for a single query. In total, three systems have been

constructed for this purpose.

System Parser Index Retrieve

SimpleVector (SV) Sentence VectorIndex Vector search

Automerge (AM) Hierarchical VectorIndex Vector search

Auto-merging

KnowledgeVector

(KV)

Markdown

Hierarchical

PropertyGraph

Index

VectorIndex

Vector search

Automerging

context search

Table 3.4: Overview of PDF parsing methods

For AM system, the hierarchical parser divides the documents into three levels, with

each level encompassing a chunk size of 128, 512, and 2048, respectively. For Sentence

and Markdown parser, the texts are divided of size 512. For SV and AM system, each

query will result in the retrieval of 10 relevant nodes. In the case of the KV system,

the auto-merge retriever is employed to retrieve document chunks. These chunks are

then subjected to a search of the vector context nodes, utilising metadata filtering and

embeddings similarity. The retrieved vector context nodes from the knowledge graph

Chapter 3. Methodology 16

contain paths to the neighbouring nodes of depth 1, with the relationships between them

serving as the content. In the proposed system, a maximum of 10 vector context nodes

will be retrieved if the similarity exceeds 0.5. Consequently, a maximum of 20 distinct

nodes will be retrieved from the KV system in total.

3.3.4.1 RAG fusion for systems

Previous researches adopt multi-query as an isolated retrieval techniques itself. In the

proposed system, fusion techniques would be conducted in each of the system as well as

the non-fusion version. In the pre-retrieval stage, 3 rewritten queries would be generated

by prompting the Qwen2-7B model. The gathered results would be re-ranked by 1)

reciprocal rank fusion and 2) jina-reranker-v2-base-multilingual(JRR), and the top five

sorted retrieval results would be used as context for answering.

3.3.4.2 Reciprocal Rank Fusion

RFF is a widely utilised rank fusion algorithm for the computation of the relevance score

of hybrid search results derived from multiple queries. It is a popular and effective choice

for information retrieval systems to combine search results from different retrievers or

queries for more robust and reliable ranked search results. The underlying rationale

is that the documents which are ranked higher in the retrieved results will be more

relevant to the query. Given a set of ranked documents (denoted D) and a set of rankings

(denoted R), the scores of documents could be computed by

RFFscore(d ∈ D) = ∑
r∈R

1
k+ r(d)

[9] (3.1)

The constant k serves to regulate the impact of documents of a lower rank, with the

value increasing in accordance with this regulation. The optimal performance of this

regulation is observed when k is equal to 60 through pilot investigation. [9]

3.3.4.3 Jina Reranker

Unlike algorithmic fusion strategies such as RFF, the reranker JRR is fine-tuned from

a transformer model and well-trained in query-documents datasets to optimise text

ranking results.[22] The reranker approach is an effective method for comparing the

relevance of a query and the results returned by a search engine. This approach

allows for the reduction of false rankings and the elimination of irrelevant results. It is

hypothesised that the reranker approach has a superior understanding of the search query

Chapter 3. Methodology 17

in comparison to RFF, due to its consideration of contextual meaning. Consequently, it

is employed in order to conduct experiments which serve to evaluate the efficacy of the

RFF approach within the aforementioned systems.

Chapter 4

Results and Discussion

4.1 Testset Collection

In order to assess the proficiency of RAG systems, a synthetic evaluation set is con-

structed using RAGAs. Subsequently, a distinct small test set, created by expert in

quantum computing(Supervisor of this Dissertation project), is obtained for the fi-

nal assessment and analysis of the selected set of systems that demonstrate superior

performance in the preceding stage of evaluation.

4.1.1 RAGAs testset generation

The construction of a dataset for the evaluation of an RAG system is typically challeng-

ing, as the reference answer should be based on the context contained in the knowledge

of the system. Furthermore, the generation of representative QA pairs for information-

rich systems with cross-referencing and reasoning introduces additional complexity.

In RAGAs framework, it takes the inspiration from Evol-Instruct[73] to evolve seed

questions to the desired question with different characteristics. A set of documents

can then be used to systematically construct questions from contexts that require the

application of reasoning and consideration of multiple contextual factors in order to be

answered correctly. The generated dataset comprises 4 columns: 1) question 2) contexts

3) answer 4) ground truth (the facts selected from the datasets). [60]

18

Chapter 4. Results and Discussion 19

Figure 4.1: Process of synthetic dataset generation[60]

4.2 Metrics

In the case of human evaluation, a rating on a scale of 0 to 10 is employed as a

metric. With regard to automated evaluation, the quality of the retrieved context and the

generated response will be evaluated through LLM, utilising the RAGAs framework.

The following metrics will be employed and assessed by LLM throughout the evaluation

process.

4.2.1 Faithfulness [59]

Faithfulness is defined as the logical consistency of the generated response in relation

to the provided context. A fully faithful answer is one that can be inferred from the

given context alone; this ensures that the LLM does not use any external knowledge for

the generation of the response. The score is calculated as a percentage of claims in the

generated answer that can be inferred from the given context.

Chapter 4. Results and Discussion 20

4.2.2 Answer Relevancy [56]

Answer Relevancy is a measure of the relevance between the generated answer and the

query, calculated using the cosine similarity of an embedding model. Initially, a number

of question variants are generated from the answer, and then the mean similarity between

those variants and the original question is calculated. This provides an approximate

calculation of relevance, although the quality of the result depends on the capability of

the LLM and the embedding model.

4.2.3 Context Precision [57]

Context Precision rates the retrieved contexts based on the ranking of the ground truth-

related chunks. The score is elevated when the more pertinent items are positioned

higher. If we define vk ∈ {0,1} as the relevance indicator, and K as the total number of

items retrieved in the context, then the context precision can be calculated as follows:

[57]:

Precision@k =
true positives@k

true positive@k + f alse positives@k
(4.1)

Context Precision@K =
∑

K
k=1(Precision@k× vk)

R
(4.2)

4.2.4 Context Recall [58]

Context Recall gauges the proportion of claims substantiated by ground truth that can be

inferred from retrieved contexts. Initially, the ground truth is segmented into sentences,

and each sentence is then evaluated for alignment with the contexts by LLM, using a

prompt that contains the question, the contexts and the segmented truth.

4.2.5 Answer Correctness [55]

Answer Correctness evaluates the semantic and factual similarity between the generated

answer and the ground truth. The semantic similarity is determined by cosine similarity

from the embedding model, while the factual similarity is computed using the F1 score.

In the context of factual similarity, the precision (P) represents the proportion of factual

elements present in the generated answer that align with the ground truth. The recall

(R), on the other hand, denotes the portion of factual elements in the ground truth that

are supported by the generated answer. The determination of both is contingent upon

Chapter 4. Results and Discussion 21

prompting LLM. By default, the weighting of factual and semantic similarity is set at

0.75 and 0.25, respectively, which yields the following equation:

Score = 0.75× 2PR
P+R

+0.25× semantic similarity (4.3)

4.3 Results and Discussion

In order to guarantee impartiality with regard to the generation process, a distinct 4-bit

quantised LLM Gemma27B[69], is employed for the purpose of answer generation

within the RAG system. With respect to the generation of datasets and the assessment of

associated metrics, GPT-4o mini[47] is utilised, as it is regarded as the most proficient

model in a multitude of language-related tasks.

4.3.1 RAGAs generated dataset

In total, 100 sets of testing data are generated from 10% of randomly selected documents.

The questions are of type simple, reasoning and multi-context in the ratio of 2:1:1. In

the generated dataset, 16 of the tuples get ”The answer to given question is not present

in context”, which means that the randomly selected chunk of context could not produce

a meaning question that is related to it. In the dataset, all of them are references in the

paper. The illegal questions are pruned out, resulting in 41 ”simple”, 20 ”reasoning”

and 23 ”multi-context” questions selected for analysis.

In the first experiment, it utilises the all retrieved contexts to answer the question

even though that is unrelated. So a little adjustment was made in the default prompt from

llamaindex [64] for asking response from LLM. The modified prompt is as follows:

Context information is below.

{context_str}

Given the context information and not prior knowledge,

identify the related context to

answer the query.\nYou do not need to use every piece of

information provided.

Query: {query_str}

Answer:

Chapter 4. Results and Discussion 22

4.3.1.1 Evaluation Result

System Task Reranker F AR CP CR

SV S None 0.908 0.837 0.909 0.717

SV* S RFF 0.888 0.776 0.87 0.707

SV* S JRR 0.914 0.846 0.938 0.791

AM S None 0.888 0.829 0.906 0.799

AM* S RFF 0.887 0.803 0.811 0.579

AM* S JRR 0.874 0.847 0.939 0.722

KV* S RFF 0.889 0.837 0.803 0.632

KV* S JRR 0.859 0.875 0.908 0.709

Table 4.1: Averaged metric scores of system in simple task, * denotes that the system ap-

plies multi-query and fusion approach, JRR represents jina-reranker-v2-base-multilingual

System Task Reranker F AR CP CR

SV R None 0.867 0.808 0.85 0.75

SV* R RFF 0.892 0.736 0.85 0.696

SV* R JRR 0.862 0.768 0.84 0.738

AM R None 0.85 0.715 0.841 0.675

AM* R RFF 0.901 0.717 0.841 0.695

AM* R JRR 0.859 0.788 0.841 0.718

KV* R RFF 0.9 0.682 0.82 0.72

KV* R JRR 0.862 0.768 0.84 0.738

Table 4.2: Averaged metric scores of system in reasoning task, * denotes that the

system applies multi-query and fusion approach, JRR represents jina-reranker-v2-base-

multilingual

For simple and reasoning task, it is challenging to identify a system that consistently

demonstrates superior performance. Nevertheless, it can be observed that the context

precision and answer relevance exceed 80% across all systems. This demonstrates

that, in the context of these information retrieval task, the performance of the task

is not significantly influenced by the choice of system, given that the searching is a

similarity search that is highly dependent on the embeddings model without complicated

Chapter 4. Results and Discussion 23

processing for the original query. The discrepancies are primarily attributable to

variations in chunking size and the inclusion of supplementary materials in the retrieved

data set.

System Task Reranker F AR CP CR

SV MC None 0.917 0.783 0.989 0.804

SV* MC RFF 0.677 0.759 0.875 0.656

SV* MC JRR 0.788 0.851 0.955 0.808

AM MC None 0.815 0.812 0.939 0.692

AM* MC RFF 0.705 0.754 0.888 0.653

AM* MC JRR 0.912 0.767 0.95 0.75

KV* MC RFF 0.677 0.759 0.875 0.656

KV* MC JRR 0.878 0.772 0.948 0.775

Table 4.3: Averaged metric scores of system in multi-context task, * denotes that the

system applies multi-query and fusion approach, JRR represents jina-reranker-v2-base-

multilingual

In the multi-context task, the SV system demonstrated optimal performance, at-

taining high scores in the following categories: faithfulness, answer relevancy, context

precision and context recall. It demonstrated the highest rank in the majority of these

categories across the variations. The indexed chunks of the AM system are too fine-

grained for the multi-context task, which results in its inability to achieve matching

performance to that of the SV system for the same type of variations. It is evident that

the Fusion KV system with JRR reranker attains the highest score in answer relevancy.

The fusion of the knowledge graph with the AM system has been demonstrated to

enhance the retrieval and quality of the answers produced, given that the lower-quality

index from the AM system is used. This illustrates the potential of incorporating a

knowledge graph into an RAG system, which could increase the capability of questions

that rely on multiple contexts for answering.

Chapter 4. Results and Discussion 24

System Task Reranker F AR CP CR

SV ALL None 0.897 0.809 0.916 0.757

SV* ALL RFF 0.819 0.757 0.865 0.686

SV* ALL JRR 0.855 0.822 0.911 0.779

AM ALL None 0.851 0.785 0.895 0.722

AM* ALL RFF 0.831 0.758 0.847 0.642

AM* ALL JRR 0.882 0.801 0.910 0.730

KV* ALL RFF 0.822 0.759 0.833 0.669

KV* ALL JRR 0.866 0.805 0.899 0.741

Table 4.4: Averaged metric scores of system in all tasks which is averaged by the total

type of task, * denotes that the system applies multi-query and fusion approach, JRR

represents jina-reranker-v2-base-multilingual

Overall, various versions of the SV system demonstrate the greatest efficacy in

comprehensive tasks, and the Fusion SV system with JRR reranker exhibiting the

highest level of answer relevancy. In general, the Fusion version of systems with JRR

reranker exhibits slight improvements in answer relevancy and context recall, with

averaged gains of 1.8% and 2%, respectively. These findings align with those of other

studies on reranker performance. Moreover, the RFF reranking algorithm is not an

appropriate means of reranking the retrieved context in the RAG retrieval pipeline. The

metric scores are notably inferior to those of the non-fusion system. The RFF algorithm

fails to consider the context and places undue reliance on the quality of the system,

which is capable of providing accurate score estimation for every document in response

to a given query. The pre-trained embedding model is constrained by its inability to

compare contexts with queries based on semantic relevancy. Consequently, repeating

parts or even the entirety of a query will result in an artificially high score. In contrast,

transformer-based rerankers are trained to rank question-answer pairs, making them

well-suited for post-processing retrieved documents from the RAG system.

In the alternative, an examination of tables 4.1-4.4 suggests that the fidelity of

systems in separated tasks is randomly distributed, exhibiting no discernible trend

or tendency to track. If we assume that the critic LLM (GPT4o-mini) is sufficiently

capable of determining faithful claims in the generated answer according to context, one

possible explanation for this phenomenon is the ”hallucination” problem for generator

LLM (Gemma-27B). Given that it is not a particularly large model, it may be more

Chapter 4. Results and Discussion 25

prone to creating unfaithful content. However, there are numerous potential causes

for LLM hallucination, and further investigation is required to identify the underlying

factors.

Given that the fusion version of systems typically performs better, we have elected to

utilise this approach for the resulting systems. The answer correctness will be measured

during the final testing phase, as this approach incorporates the considerations of ground

truth.

System Task Reranker Score

SV* User question JRR 0.644

AM* User question JRR 0.618

KV* User question JRR 0.621

Table 4.5: Averaged Answer Correctness of system in all tasks which is averaged by the

total type of task, * denotes that the system applies multi-query and fusion approach,

JRR represents jina-reranker-v2-base-multilingual

The ordering and performance are consistent with the answer relevancy and preced-

ing points that have been made.

4.3.2 Human generated dataset

The rated score of 10 questions by expert for the final selected systems are as follows:

System Task Reranker Mean Median Std

SV* User Question JRR 4.8 5 2.75

AM* User Question JRR 4.9 5 1.87

KV* User Question JRR 5.3 5 1.85

Table 4.6: Statistics of user rating of system in the human-generated dataset, which

simulates the actual question of user.

Conversely, in this small user study, KV system is in favour of user with lowest

fluctuation in score. It adds evidence to the significance to the use of knowledge graph

for improving RAG system. Given the limited resources, it may not have enough

information to answer every questions that user gave. One example as the following:

Chapter 4. Results and Discussion 26

Question: Which quantum machine learning techniques deal best with noise?

System Answer Score

SV* + JRR Q-LEAR # 5

AM* + JRR Q-LEAR # 5

KV* + JRR Q-LEAR # 5

Table 4.7: # denotes the text before it represents the central idea

4.3.2.1 Case study 1

In what situations can distributed quantum computing be applied advantageously.

System Answer Score

SV* + JRR Only explaining contexts and questions # 2

AM* + JRR Only explaining contexts and questions # 2

KV* + JRR Smart grid management

IoT cooperation

UAV trajectory planning #

6

Table 4.8: # denotes the text before it represents the central idea, four out of ten questions

are rated 8 or higher among the systems

In the presented case, the knowledge graph of the KV system successfully retrieved

some applications that could potentially benefit from parallel quantum computing. The

knowledge graph could indeed assist in matching some terminologies for the retrieval

system. However, due to the limited size of the dataset and the capacity of the LLM,

which helps to synthesise knowledge to build the KG, the answer does not consist of

explanations of these applications.

Chapter 4. Results and Discussion 27

4.3.2.2 Case study 2

What quantum programs are enabled by coherent quantum control that you can’t
write without it?

System Answer Score

SV* + JRR The text states that coherent control allows

for the implementation of universal quan-

tum computation by supplementing classi-

cal operations with quantum gates acting on

a control system. It implies that without co-

herent control, achieving universal quantum

computation solely through classical opera-

tions would be impossible.

9

AM* + JRR Explaining Coherent Parallelization(CP). # 5

KV* + JRR Explaining Coherent Parallelization(CP). # 5

Table 4.9: # denotes the text before it represents the central idea

In Case 2, the SV* + JRR system provides a satisfactory response to the user, whereas

the other two systems retrieved irrelevant content and proceeded to answer with it. This

demonstrates that the chunking size of documents impacts the retrieval process for

different queries. To develop a more comprehensive and effective system, a collection of

diverse RAG systems with variations in chunking methodology and retrieval pipelines

should be constructed. In such a case, generated answers could be evaluated and the

most prominent one could be selected according to the context of the user query.

In addition, in this example, the retrieved contexts and answers are identical for

AM* + JRR and KV* + JRR. This suggests that the knowledge graph constructed does

not yield any more pertinent content than the auto-merge retriever. In certain instances,

the graph quality is insufficient. In production-ready applications, it requires a superior

and more promising LLM for synthesising the knowledge in academic papers.

Chapter 5

Conclusions

5.1 Summary

In conclusion, this project has successfully developed three functional RAG systems

for synthesising quantum computing knowledge from academic papers. Furthermore,

the systems have been shown to provide relevant answers to user queries posed by

LLM. The results of the experiments demonstrated that the knowledge graph has

the potential to enhance the retrieval performance of the existing retrieval system.

Additionally, the evaluated data indicates that reciprocal rank fusion is less effective

than transformer-based rerankers, even in the absence of a reranker. This is because

it relies on the quality of the retrieval system, without considering the contexts of the

retrieved documents. The evaluation results demonstrate that the KV* + JRR system

exhibits the highest performance in terms of answer relevancy and correctness, as

determined by the query, context, and ground truth. In the user study, the systems were

able to provide answers that were rated 8 or higher for 40% of the questions. The KV*

+ JRR system demonstrated overall superiority in this study, as well as an ability to

synthesise terminology. These findings illustrate the practical utility of the system and

techniques developed to assist both novice and experienced researchers in acquiring

quantum computing knowledge or in constructing an RAG system for academic papers.

In summary, this study addresses the research gap between the latest techniques of

RAG systems and implements a practical system to assist users in investigating the field

of quantum computing, thereby meeting the original objectives.

28

Chapter 5. Conclusions 29

5.2 Limitations

Given the constraints on cost and resources, the construction of an external knowledge

system of quantum computing, as well as the generation of evaluation datasets by

both LLM and expert, was limited in scope. Due to time and cost limitations, only

one knowledge graph was generated with a small LLM model (Qwen2-7B) and only

a heuristic PDF parsing package was used to parse the quantum computing papers.

Further investigations are required to optimise the generation process and procedures in

order to obtain the best quality knowledge graph for retrieval from the well-formulated

content parsed by vision models.

5.3 Future work

In order to enhance the project, it is necessary to address a number of areas for improve-

ment in the future:

1. accumulate a considerably more substantial corpus of quantum computing litera-

ture, meticulously annotated in Markdown format using the marker-pdf tool to

facilitate enhanced presentation of tables and equations.

2. Investigate methodologies for the encoding of images, tables and equations

from paper documents and the subsequent indexing of these for the purpose of

facilitating searches.

3. Conduct experiments in order to ascertain the optimal chunking size and con-

struction pipeline for a knowledge graph, utilising a commercial large language

model.

4. Undertake a comprehensive analysis of a substantial number of users and expecta-

tions, along with their opinions on the retrieval and answer quality of the systems

in question.

5. Integrate performing systems in order to create a comprehensive collection of

expectations, with the aim of enhancing the system’s robustness and retrieval

quality.

Bibliography

[1] Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey, 2023.

[2] Negar Arabzadeh, Xinyi Yan, and Charles L. A. Clarke. Predicting effi-

ciency/effectiveness trade-offs for dense vs. sparse retrieval strategy selection.

In Proceedings of the 30th ACM International Conference on Information &

Knowledge Management, CIKM ’21, page 2862–2866, New York, NY, USA,

2021. Association for Computing Machinery.

[3] arXiv. arxiv: An open access archive for scholarly articles, 2024. Accessed:

2024-08-17.

[4] Andreas Bayerstadler, Guillaume Becquin, Julia Binder, Thierry Botter, Hans Ehm,

Thomas Ehmer, Marvin Erdmann, Norbert Gaus, Philipp Harbach, Maximilian

Hess, Johannes Klepsch, Martin Leib, Sebastian Luber, Andre Luckow, Maximil-

ian Mansky, Wolfgang Mauerer, Florian Neukart, Christoph Niedermeier, Lilly

Palackal, Ruben Pfeiffer, Carsten Polenz, Johanna Sepulveda, Tammo Sievers,

Brian Standen, Michael Streif, Thomas Strohm, Clemens Utschig-Utschig, Daniel

Volz, Horst Weiss, Fabian Winter, Quantum Technology, and Application Con-

sortium QUTAC. Industry quantum computing applications. EPJ Quantum

Technology, 8(1):25, Nov 2021.

[5] Paul Benioff. The computer as a physical system: A microscopic quantum

mechanical hamiltonian model of computers as represented by turing machines.

Journal of Statistical Physics, 22:563–591, 05 1980.

[6] Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. Nougat:

Neural optical understanding for academic documents. In The Twelfth Interna-

tional Conference on Learning Representations, 2024.

[7] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos,

Tianle Li, Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E.

30

Bibliography 31

Gonzalez, and Ion Stoica. Chatbot arena: An open platform for evaluating

LLMs by human preference. In Forty-first International Conference on Machine

Learning, 2024.

[8] Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy

Liang, and Luke Zettlemoyer. QuAC: Question answering in context. In Ellen

Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing,

pages 2174–2184, Brussels, Belgium, October-November 2018. Association for

Computational Linguistics.

[9] Gordon V. Cormack, Charles L A Clarke, and Stefan Buettcher. Reciprocal

rank fusion outperforms condorcet and individual rank learning methods. In

Proceedings of the 32nd International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’09, page 758–759, New York, NY,

USA, 2009. Association for Computing Machinery.

[10] David Deutsch. Quantum theory, the church–turing principle and the univer-

sal quantum computer. Proceedings of the Royal Society of London. Series A,

Mathematical and Physical Sciences, 400:97–117, 1985.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers), pages 4171–4186, 2019.

[12] Matouš Eibich, Shivay Nagpal, and Alexander Fred-Ojala. Aragog: Advanced rag

output grading, 2024.

[13] Elsevier. Quantum computing research trends report, 2021. Accessed: 2024-08-

15.

[14] Shahul Es, Jithin James, Luis Espinosa Anke, and Steven Schockaert. RAGAs:

Automated evaluation of retrieval augmented generation. In Nikolaos Aletras and

Orphee De Clercq, editors, Proceedings of the 18th Conference of the European

Chapter of the Association for Computational Linguistics: System Demonstrations,

pages 150–158, St. Julians, Malta, March 2024. Association for Computational

Linguistics.

Bibliography 32

[15] ExplodingGradients. Synthetic test data generation, 2024. Accessed: 2024-08-16.

[16] Richard P. Feynman. Simulating physics with computers. International Journal

of Theoretical Physics, 21(6):467–488, Jun 1982.

[17] Paulo Finardi, Leonardo Avila, Rodrigo Castaldoni, Pedro Gengo, Celio Larcher,

Marcos Piau, Pablo Costa, and Vinicius Caridá. The chronicles of rag: The

retriever, the chunk and the generator, 2024.

[18] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,

Jiawei Sun, and Haofen Wang. Retrieval-augmented generation for large language

models: A survey. arXiv preprint arXiv:2312.10997, 2023.

[19] Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V. Chawla, Thomas Laurent, Yann

LeCun, Xavier Bresson, and Bryan Hooi. G-retriever: Retrieval-augmented

generation for textual graph understanding and question answering, 2024.

[20] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,

Ye Jin Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in

natural language generation. ACM Comput. Surv., 55(12), mar 2023.

[21] Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLin-

gua: Compressing prompts for accelerated inference of large language models. In

Proceedings of the 2023 Conference on Empirical Methods in Natural Language

Processing, pages 13358–13376. Association for Computational Linguistics, De-

cember 2023.

[22] Jina AI. Jina reranker v2 base multilingual, 2024. Accessed: 2024-08-17.

[23] Jina AI. Reranker api, 2024. Accessed: 2024-08-16.

[24] K Sparck Jones, Steve Walker, and Stephen E. Robertson. A probabilistic model

of information retrieval: development and comparative experiments: Part 2. Infor-

mation processing & management, 36(6):809–840, 2000.

[25] Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raf-

fel. Large language models struggle to learn long-tail knowledge. In Andreas

Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and

Jonathan Scarlett, editors, Proceedings of the 40th International Conference on

Machine Learning, volume 202 of Proceedings of Machine Learning Research,

pages 15696–15707. PMLR, 23–29 Jul 2023.

Bibliography 33

[26] Minki Kang, Jin Myung Kwak, Jinheon Baek, and Sung Ju Hwang. Knowledge

graph-augmented language models for knowledge-grounded dialogue generation,

2023.

[27] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen Tau Yih. Dense passage retrieval for open-domain

question answering. In EMNLP 2020 - 2020 Conference on Empirical Methods

in Natural Language Processing, Proceedings of the Conference, EMNLP 2020

- 2020 Conference on Empirical Methods in Natural Language Processing, Pro-

ceedings of the Conference, pages 6769–6781. Association for Computational

Linguistics (ACL), 2020. Publisher Copyright: © 2020 Association for Computa-

tional Linguistics; 2020 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2020 ; Conference date: 16-11-2020 Through 20-11-2020.

[28] J. Kietzmann, D. S. Demetis, T. Eriksson, and A. Dabirian. Hello quantum! how

quantum computing will change the world. IT Professional, 23(04):106–111, jul

2021.

[29] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,

Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Se-

bastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-

intensive nlp tasks. In Proceedings of the 34th International Conference on Neural

Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran

Associates Inc.

[30] Shu-Shen Li, Gui Long, Feng-Shan Bai, Song-Lin Feng, and Hou-Zhi Zheng.

Quantum computing. Proceedings of the National Academy of Sciences, 98:11847–

11848, 10 2001.

[31] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan

Zhang. Towards general text embeddings with multi-stage contrastive learning,

2023.

[32] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,

Fabio Petroni, and Percy Liang. Lost in the Middle: How Language Models Use

Long Contexts. Transactions of the Association for Computational Linguistics,

12:157–173, 02 2024.

[33] LlamaIndex. Auto merging retriever, 2024. Accessed: 2024-08-17.

Bibliography 34

[34] LlamaIndex. Hierarchical, 2024. Accessed: 2024-08-17.

[35] LlamaIndex. Llamaindex: Data framework for llm applications, 2024. Accessed:

2024-08-16.

[36] LlamaIndex. Llamaparse: Genai-native document parsing platform, 2024. Ac-

cessed: 2024-08-17.

[37] LlamaIndex. Markdown, 2024. Accessed: 2024-08-17.

[38] LlamaIndex. Property graph, 2024. Accessed: 2024-08-17.

[39] LlamaIndex. Sentence splitter, 2024. Accessed: 2024-08-17.

[40] Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query

rewriting in retrieval-augmented large language models. In Houda Bouamor,

Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing, pages 5303–5315, Singapore,

December 2023. Association for Computational Linguistics.

[41] MongoDB, Inc. Mongodb atlas vector search, 2024. Accessed: 2024-08-16.

[42] Rajiv Movva, Sidhika Balachandar, Kenny Peng, Gabriel Agostini, Nikhil Garg,

and Emma Pierson. Topics, authors, and institutions in large language model

research: Trends from 17K arXiv papers. In Kevin Duh, Helena Gomez, and

Steven Bethard, editors, Proceedings of the 2024 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies (Volume 1: Long Papers), pages 1223–1243, Mexico City, Mexico,

June 2024. Association for Computational Linguistics.

[43] Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB:

Massive text embedding benchmark. In Andreas Vlachos and Isabelle Augenstein,

editors, Proceedings of the 17th Conference of the European Chapter of the

Association for Computational Linguistics, pages 2014–2037, Dubrovnik, Croatia,

May 2023. Association for Computational Linguistics.

[44] Neo4j Engineering. Neo4j vector index and search, 2024. Accessed: 2024-08-16.

[45] Ka Chun Ng. Informatics project proposal 2024 - learning quantum computing,

2024. Unpublished work.

Bibliography 35

[46] nlmatics. nlm-ingestor, 2024. Accessed: 2024-08-17.

[47] OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024. Accessed:

2024-08-17.

[48] Oded Ovadia, Menachem Brief, Moshik Mishaeli, and Oren Elisha. Fine-tuning

or retrieval? comparing knowledge injection in llms, 2024.

[49] Mandeep Pannu, Anne James, and Robert Bird. A comparison of information re-

trieval models. In Proceedings of the Western Canadian Conference on Computing

Education, WCCCE ’14, New York, NY, USA, 2014. Association for Computing

Machinery.

[50] Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan Ou, Xiaoyi Zeng,

Derong Xu, Tong Xu, and Enhong Chen. Large language model based long-

tail query rewriting in taobao search. In Companion Proceedings of the ACM

on Web Conference 2024, WWW ’24, page 20–28, New York, NY, USA, 2024.

Association for Computing Machinery.

[51] Tyler Procko. Graph retrieval-augmented generation for large language models: A

survey. Available at SSRN, 2024.

[52] py-pdf. Benchmarks for pdf libraries, 2024. Accessed: 2024-08-17.

[53] pymupdf. Rag, 2024. Accessed: 2024-08-17.

[54] Qwen. Qwen/qwen2-7b, 2024. Accessed: 2024-08-17.

[55] Ragas. Answer correctness, 2024. Accessed: 2024-08-17.

[56] Ragas. Answer relevance, 2024. Accessed: 2024-08-17.

[57] Ragas. Context precision, 2024. Accessed: 2024-08-17.

[58] Ragas. Context recall, 2024. Accessed: 2024-08-17.

[59] Ragas. Faithfulness, 2024. Accessed: 2024-08-17.

[60] Ragas. Ragas documentation, 2024. Accessed: 2024-08-17.

[61] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:

100,000+ questions for machine comprehension of text. In Jian Su, Kevin Duh,

Bibliography 36

and Xavier Carreras, editors, Proceedings of the 2016 Conference on Empiri-

cal Methods in Natural Language Processing, pages 2383–2392, Austin, Texas,

November 2016. Association for Computational Linguistics.

[62] Adrian H. Raudaschl. Forget rag, the future is rag-fusion, 2023. Accessed:

2024-08-15.

[63] S.E. ROBERTSON. The probability ranking principle in ir. Journal of Documen-

tation, 33(4):294–304, Jan 1977.

[64] run-llama. default prompts.py, 2024. Accessed: 2024-08-17.

[65] Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert

spaces. Phys. Rev. Lett., 122:040504, Feb 2019.

[66] Shivansh Kaushik. Advanced text retrieval with elasticsearch & llamaindex:

Sentence window retrieval, 2024. Accessed: 2024-08-16.

[67] Amit Singhal et al. Modern information retrieval: A brief overview. IEEE Data

Eng. Bull., 24(4):35–43, 2001.

[68] Superlinked. Evaluation of rag retrieval chunking methods, 2024. Accessed:

2024-08-16.

[69] Gemma Team. Gemma, 2024.

[70] Vik Paruchuri. Marker, 2024. Accessed: 2024-08-17.

[71] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,

Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing

Yuan, Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang,

Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. Milvus: A purpose-

built vector data management system. In Proceedings of the 2021 International

Conference on Management of Data, SIGMOD ’21, page 2614–2627, New York,

NY, USA, 2021. Association for Computing Machinery.

[72] Yuqi Wang, Boran Jiang, Yi Luo, Dawei He, Peng Cheng, and Liangcai Gao.

Reasoning on efficient knowledge paths:knowledge graph guides large language

model for domain question answering, 2024.

Bibliography 37

[73] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng,

Chongyang Tao, and Daxin Jiang. Wizardlm: Empowering large language models

to follow complex instructions, 2023.

[74] Liang Xu, Lu Lu, and Minglu Liu. Construction and application of a knowl-

edge graph-based question answering system for nanjing yunjin digital resources.

Heritage Science, 11(1):222, Oct 2023.

[75] Liang Xu, Lu Lu, Minglu Liu, Chengxuan Song, and Lizhen Wu. Nanjing yunjin

intelligent question-answering system based on knowledge graphs and retrieval

augmented generation technology. Heritage Science, 12(1):118, Apr 2024.

[76] Zhentao Xu, Mark Jerome Cruz, Matthew Guevara, Tie Wang, Manasi Deshpande,

Xiaofeng Wang, and Zheng Li. Retrieval-augmented generation with knowledge

graphs for customer service question answering. In Proceedings of the 47th Inter-

national ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’24, page 2905–2909, New York, NY, USA, 2024. Association

for Computing Machinery.

[77] Jihong Yan, Chengyu Wang, Wenliang Cheng, Ming Gao, and Aoying Zhou. A

retrospective of knowledge graphs. Frontiers of Computer Science, 12(1):55–74,

Feb 2018.

[78] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan

Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse,

explainable multi-hop question answering. In Ellen Riloff, David Chiang, Julia

Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, pages 2369–2380, Brussels,

Belgium, October-November 2018. Association for Computational Linguistics.

[79] Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang,

Huan Lin, Baosong Yang, Pengjun Xie, Fei Huang, Meishan Zhang, Wenjie Li,

and Min Zhang. mgte: Generalized long-context text representation and reranking

models for multilingual text retrieval, 2024.

