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Abstract

This paper focuses on a blockchain oracle protocol, Decentralized Oracles (DECO).

It provides a detailed analysis of DECO’s operational mechanisms, highlighting its

deficiencies and potential privacy risks. Addressing these concerns, the paper proposes

four enhancement strategies and meticulously explains the operational principles and

processes of these methods. The advantages and disadvantages of each method are

extensively compared and analyzed, and their effectiveness is demonstrated through

code validation. Additionally, the paper defines the security attributes of the enhanced

protocol and includes proof base on transitions of its blindness properties in the appen-

dices.
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Chapter 1

Introduction

In 2008, Satoshi Nakamoto introduced Bitcoin through the publication of ”Bitcoin:

A Peer-to-Peer Electronic Cash System,” which marked the advent of blockchain

technology [13]. By 2014, Ethereum [4] was developed, enhancing blockchain capabili-

ties from merely processing transactions (Blockchain 1.0) to functioning as a ”world

computer” with the addition of Turing complete smart contracts (Blockchain 2.0) [4].

This evolution expanded blockchain’s potential, enabling the execution of code on the

blockchain.

The inherent security and privacy features of blockchain wallets have catalyzed the rapid

growth of decentralized finance (De-Fi). Platforms built on blockchains like Ethereum

leverage smart contracts to provide financial services such as loans and exchanges, with

approximately $27 billion currently invested in cryptocurrency. Securing these funds is

a critical focus for blockchain researchers. However, because of the trustless nature of

blockchain limits smart contracts from accessing external internet data, smart contracts

builder cannot simply upload the off chain data into the contract by their own, since

the user of the contract would questioning the authenticity of data. This key feature of

blockchain necessitating the use of oracles for data provisioning. Ensuring the accuracy

of oracle-provided data is vital for financial safety in De-Fi and for functions like

decentralized identity authentication in systems such as CanDiD [12]. Consequently,

enhancing the speed, cost-efficiency, privacy, and accuracy of oracle services represents

a critical research priority in the blockchain domain. This project specifically focuses

on improving the privacy aspects of a recently developed oracle protocol known as

DECO (DECentralized Oracle) [16].
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Chapter 1. Introduction 2

DECO is a blockchain oracle protocol developed by Cornell University researchers

in collaboration with Chainlink. DECO is designed for decentralized applications

(DApps) and offers a secure, privacy-preserving method to utilize internet data. Its

core functionality employs zero-knowledge proofs (ZKP) to ensure data privacy and

integrity within smart contracts. DECO allows smart contracts to authenticate specific

information without exposing sensitive data such as usernames and passwords, which is

crucial for protecting user privacy. By verifying a proof generated through a three-party

TLS handshake protocol, involving a proof Verifier using smart contract, DECO enables

smart contracts to authenticate data without the willing involvement of data providers.

Specifically, the DECO protocol divides the participants of an oracle call into four

parties, namely the Server, the Prover, the DECO Verifier, and the third party Verifier.

The Server represents the off-chain web 2.0 server and stores some information that

the on-chain contract wants. The the Prover represents the user. The the Prover is

responsible for communicating with the Server, obtaining data, and then proving the

authenticity of the statement about the data to the third party Verifier. The DECO

Verifier represents the operator of the DECO oracle and is responsible for verifying the

proof provided by the user and signing the statement. The the third party Verifier usually

represents the on-chain contract that needs to use off-chain data. The the third party

Verifier will receive the signature and statement of the DECO Verifier provided by the

Prover, and use the Prover’s statement after verifying the signature. But in practice, the

idea of DECO could be expanded for intranet or other kind of system, where the third

party Verifier would represent the place where data been verified used and processed.

The specific details will be described in detail in chapter 3. This capability to bring

off-chain data authenticity to the blockchain without compromising user privacy repre-

sents a significant advancement towards more sophisticated and privacy-focused DApps.

The DECO protocol has been specifically designed to protect users’ private data (such as

API keys and personal information) during interactions with off-chain Servers, without

requiring modifications to Server-side configurations. However, the current protocol’s

proof mechanism discloses some information to the DECO Verifier. DECO support

two TLS setting, CBC-HMAC and GCM. For CBC-HMAC, the DECO Verifier would

learn all the plaintext information except the chunk that would be used for the statement.

Also, for both setting, the DECO Verifier would learn the detail of the statement itself,

as described in more detail in section 3.3. This will not be a problem if the user trusts

DECO, but this disclosure can pose risks, when the DECO Verifier having conflicting
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interest, e.g, in applications requiring high timeliness, such as decentralized trading

contracts. Consider a blockchain-based contract for trading a gold token, where the

token price is strictly pegged to the real-world price of gold, and the contract utilizes

DECO to retrieve gold price data. If the DECO Verifier identifies the data’s source and

statement, the DECO Verifier or other party could launch a front-run attack. Specifically,

upon detecting that the decentralized exchange is requesting gold prices and observing

significant price increases in the incoming data, the DECO Verifier could deliberately

delay signing the statement to gives himself time to buy the gold token with lower price.

This gives the DECO Verifier an unfair competitive advantage. This attack also exists in

other oracle systems [9], and DECO has not been able to completely solve this problem.

However, even ordinary scenarios for obtaining data can bring privacy risks. As another

example, if a company wants to use a blockchain for large-scale lending, it needs to

prove its assets to multiple on-chain lending protocols, and it will use the oracle to pass

statements about its bank balance to the chain multiple times. In this case, the DECO

Verifier will know that the company is proving its assets multiple times, and then infer

the company’s financial situation, posing a potential risk of leaking business critical

confidential information.

To enhance the privacy and security of DECO in such scenarios, the goal of this

project is to modify the protocol to increase the blindness of the DECO Verifier. This

enhancement involves strengthening the privacy features of the Zero-Knowledge Proof

(ZKP) component of the protocol to ensure that even in highly time-sensitive appli-

cations, the risk of security threats due to information disclosure is mitigated. Such

improvements would not only extend the applicability of the DECO protocol but also

contribute to advancing blockchain privacy technologies. Optimizing DECO in this

manner significantly enhances its suitability and security in specific contexts, laying a

more robust foundation for the future application of blockchain and De-Fi technologies.



Chapter 2

Background

The DECO protocol is designed for blockchain oracles, primarily to provide proof of

data origin to smart contracts (third party Verifiers). Through DECO, users (the Prover)

can prove that data originates from specific website addresses via TLS. Moreover,

DECO enables users to prove statements about the data to others without disclosing the

data itself. Most importantly, the DECO protocol does not require any modifications to

the TLS protocol by data providers (servers), meaning it is applicable to any website

that supports TLS. This chapter will introduce the background knowledge necessary to

understand the DECO protocol.

2.1 Blockchain & Smart Contract

Bitcoin [13], created in 2009 by Satoshi Nakamoto, is a decentralized digital currency

designed to function as a peer-to-peer electronic cash system. Blockchain technology,

serving as the foundation of Bitcoin, is a distributed ledger technology that ensures the

transparency and security of all transactions.The Bitcoin blockchain relies on crypto-

graphic principles and the Proof of Work (PoW) algorithm. Miners solve computational

challenges to discover a ”nonce” that meets specific criteria, allowing them to generate

new blocks containing transaction data. The first miner to successfully resolve the chal-

lenge receives newly minted cryptocurrency and transaction fees as rewards. In 2014,

Vitalik Buterin introduced the Ethereum white paper [4], which introduced the concept

of smart contracts—code that executes automatically on the blockchain. Smart contracts

enable the decentralized applications (DApps) and decentralized finance (DeFi). DeFi

operates as a permissionless decentralized system where all smart contract code is

transparent, ensuring transparency and integrity in financial transactions. However, the

4



Chapter 2. Background 5

blockchain itself does not have the ability to access the Internet. In order to obtain off-

chain data, it is necessary to manually upload the data. However, due to their trustless

nature, when smart contracts require external data, data cannot be uploaded directly

by smart contract developers because this requires users to trust the developer’s data

integrity. In this case, oracles serve as a trusted third party act as the bridge between

the external networks and the blockchain, conveying information to the chain. Also,

each operation on the blockchain incurs a gas fee, with more complex codes demanding

greater computational power and higher gas costs. Thus, in developing and optimizing

the oracle protocol, it is imperative to ensure the accuracy of data and streamline the

protocol process as much as possible to reduce computational complexity and costs,

thereby enhancing the system’s usability.

2.2 Oracle

Most De-Fi systems rely on oracles to obtain external data, such as price feeds, highlight-

ing the significance of oracle security and reliability. The security of many decentralized

finance smart contracts depends on the accuracy of the data provided by oracles, such

as on-chain identity verification systems and decentralized exchanges. According to

research [17], up to 15% of De-Fi attacks from 2018 to 2020 were oracle manipulation.

Consequently, research into oracle mechanisms and security has become a focal point in

both academic and industrial areas. These studies concern not only the oracles’ security

aspects but also how they impact the robustness and vulnerabilities of the entire De-Fi

ecosystem.

Oracles primarily function as bridges between the external world and the blockchain,

providing external data to on-chain De-Fi smart contracts, such as market prices or

real-world event information. De-Fi developers can develop their own oracles or use

existing public oracle services, such as ChainLink [8]. Oracle operation usually in-

volves off-chain machines collecting internet data and transmitting it to the on-chain

oracle. Typically, oracles introduce multiple data providers from different sources to

mitigate the impact of malicious actions or errors from individual nodes. Various oracle

models have unique operational mechanisms and security measures. The dissertation

is focusing on DECO, which will be elaborated on in Chapter 3. These models may

involve different trust assumptions, data validation methods, and incentive mechanisms

to ensure the reliability of provided data and the effective functioning of on-chain smart
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contracts.

2.3 Zero Knowledge Proof

Zero-Knowledge Proof is a cryptographic protocol that allows one party, the prover,

to prove to another party, the verifier, that a given statement is true without conveying

any information apart from the fact that the statement is indeed true. Zero-Knowledge

Proofs are characterized by three main properties:

• Completeness: If the statement is true, the honest verifier will be convinced by

the honest prover.

• Soundness: If the statement is false, no cheating prover can convince the honest

verifier that it is true, except with some small probability.

• Zero-knowledge: If the statement is true, no verifier learns anything other than

the fact that the statement is true. The proof reveals no additional information.

In modern zero-knowledge proofs, the inputs provided to the proof function are typically

categorized into public and private inputs. Public inputs are visible in full to the verifier,

while private inputs remain undisclosed to the verifier. For example, if a prover wants

to demonstrate in zero-knowledge that f (x) = y without revealing the value of x, then x

would be the private input and y the public input. Formally, this is expressed as:

ZK−PoK{x : f (x) = y}

In this case, the function f is also known to the verifier to facilitate the completion

of the verification process. Zero-knowledge proofs are used not only for privacy

preservation but also to enable verifiers to quickly verify the correctness of complex

function computations. For instance, with STARKs [10], the complexity of generating

a proof is O(n ∗ polylog(n)) where n is the number of gates in the circuit, while the

verification complexity is O(polylog(n)). It is noteworthy that for verifier efficiency,

there are more efficient zero-knowledge proof techniques available, such as Groth’16

[11], which has a verification complexity of only O(m), where m is the length of the

public input. However, correspondingly, the proof generation time complexity for

Groth’16 is higher than that of STARKs. Thus, when applying zero-knowledge proof

algorithms, it is crucial to consider the time complexities for both the prover and verifier.



Chapter 2. Background 7

2.4 Secure Multi-Party Computation

Secure multi-party computation is a cryptographic technology that enables multiple

parties to collaboratively compute a function over their private inputs, ensuring that

each party’s input remains confidential. This cryptographic approach allows participants

to achieve the correct output without revealing their individual inputs to one another

or to external obServers. This paper mainly uses two-party secure computation, in

which each participant brings private inputs to the process, and the protocol incorporates

public inputs. Public inputs are accessible to both parties, while private inputs are

only accessible to the party that provides them. At the end of the computation, both

parties obtain respective private outputs and possibly a joint public output. Notably,

neither party can only view the private output received by the other, but the value of the

public output is visible to both. In the following chapter, the DECO protocol employs

two-party secure computation to facilitate a range of critical functions, including key

splitting, TLS packing, and MAC tag computation.

2.5 TLS

TLS (Transport Layer Security) [6] is a widely applied protocol for enhancing the

security of internet communications. Its applications span a variety of domains, includ-

ing web browsing, API calls, and the DECO protocol is relying on the TLS protocal.

TLS provides three fundamental functions to ensure communication security: data

encryption, data integrity, and authentication. These functions collectively achieve the

CIA triad, namely confidentiality, integrity, and availability. Excluding unnecessary

contextual details, the TLS communication process can be succinctly described as

follows, and diagram can be found at Appendix A.1. The version of TLS employed in

this study is 1.2, with the key exchange protocol being Elliptic Curve Diffie-Hellman

Ephemeral (ECDHE) [3].

1. Key Generation:
The client and Server each generate a temporary private key, denoted as sc and ss,

respectively.

2. Key Exchange:
The key exchange process involves the following steps:
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(a) ClientHello: The client sends a “ClientHello” message to the Server, con-

taining a client-generated random number rc.

(b) ServerHello: The Server responds with a ServerHello message, which

includes the Server’s certificate, a Server-generated random number rs and

the Server’s public key G and temporary public key Ys where Ys = ss ∗G.

Server will also sign on all information.

(c) Client’s Temporary Public Key: Upon receiving the Server’s response, the

client verify the certificate and signature, replies with its temporary public

key Yc where Yc = sc ∗G.

3. Pre-master Secret Calculation:
Both the client and Server use the received temporary public key to compute the

pre-master secret Z.

• For the Server: Z = ss ∗Yc

• For the client: Z = sc ∗Ys

Due to the properties of elliptic curve operations, both computations yield the

same value: Z = sc ∗ ss ∗G. Consequently, both parties now share a common

pre-master secret.

4. Key Derivation:
The client and Server use pre-master secret Z and the previously exchanged

random numbers rc and rs on pseudo-random function (PRF) to generate the

master secret m, and derive the encryption key kEnc and the MAC key kMAC from

the master secret m and random numbers rc and rs.

5. Completion and Verification:
After computing the encryption and MAC keys, the client and Server exchange

”ClientFinished” and ”ServerFinished” messages. These messages are pseudo-

random function output using kEnc and include MAC tags generated using kMAC.

Upon successful verification of these messages, a secure communication channel

is established. The client and Server then use the negotiated encryption keys for

symmetric encryption of their communication and the MAC keys to generate

MAC tags, thereby ensuring the confidentiality and integrity of the transmitted

data.



Chapter 3

DECentralized oracles (DECO)

The DECO protocol is a blockchain oracle that leverages TLS to ensure secure and

verifiable data transmission. Its core method involves using cryptographic techniques

to partition the TLS key between the Prover and the Verifier, ensuring that neither

party can falsify the data from TLS communications without colluding. The the Prover

is responsible for communicating with the Server and proving the correctness of the

obtained data to the Verifier. The Verifier, in turn, checks the Prover’s proof. Once the

communication and proof are complete, the Verifier signs on the statement provided by

the Prover about the content of the communication. The the Prover can then use this

verified data to convince others of the authenticity of the data obtained from the Server.

The DECO protocol consists of three parts: Three-Party Handshake, Query Ex-
ecution, and Proof Generation. Details of these three parts are discussed below.

3.1 Three-Party Handshake

The essential idea behind the three-party handshake is to preserve the integrity of the

TLS protocol. From the Server’s perspective, the interaction with the DECO protocol is

indistinguishable from a standard TLS process, thereby positioning DECO as a potential

oracle protocol for widespread use in blockchain applications. In brief, the process of

the DECO three-party handshake is highly similar with TLS handshake, which can be

described as follows and diagram can be found at Appendix A.2. Also, the version of

TLS is 1.2, with the ECDHE key exchange protocol.

1. Key Generation:

9
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The the Prover, Verifier and Server each generate a temporary private key, denoted

as sp, sv and ss, respectively.

2. Key Exchange:
The key exchange process involves the following steps:

(a) ClientHello: The the Prover sends a “ClientHello” message to the Server,

containing a the Prover-generated random number rc.

(b) ServerHello: The Server responds with a ServerHello message, which

includes the Server’s certificate, a Server-generated random number rs and

the Server’s public key G and temporary public key Ys where Ys = ss ∗G.

Server will also sign on all information.

(c) the Prover-Verifier Key Exchange: The the Prover verify the signature

and certificate, send random of the Prover and Server rs rc, and Server’s

public key G and temporary public key Ys to Verifier. Verifier also verify the

signature and certificate, send back its temporary public key: Yv = sv ∗G to

the Prover.

(d) Client’s Temporary Public Key: the Prover compute the Prover’s tempo-

rary public key Yp = sp ∗G, then compute the client’s temporary public key:

Yc = Yp +Yv, and send to Server.

3. Pre-master Secret Calculation:
Server use the received temporary public key to compute the pre-master secret Z.

And the Prover and Verifier compute the share of pre-master secret Zp and Zv

• For the Server: Z = ss ∗Yc = ss ∗ (Yp +Yv)

• For the Prover: Zp = sp ∗Ys

• For the Verifier: Zv = sv ∗Ys

Due to the properties of elliptic curve operations, the computations yield the

value.

Z = ss ∗ sp ∗G+ ss ∗ sv ∗G

= ss ∗Yp + ss ∗Yv

= sp ∗Ys + sv ∗Ys

= Zp +Zv
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4. Key Derivation:
For the Prover and Verifier, they follow the following steps:

(a) Transfer to Field Element: The goal of this step is to reduce computation

cost for subsequent MPC protocol. The addition of Zp and Zv in elliptic

curve space, they jointly run a protocol ECtF to transfer the addition of

Zp and Zv in elliptic curve space to cheaper field space. The private input

of ECtF is Zp and and Zv, where Z = Zp +Zv in EC(Fp). ECtF privately

output Zp and and Zv to the Prover and Verifier, and output elements addition

operation Z = Zp +Zv holds in Fp rather than EC(Fp) as input.

(b) Key Generation and Separation: the Prover and Verifier run a 2-party-

computation protocol F hs
2pc. The protocol takes private input Zp and Zv

from the Prover and Verifier, and public input of previously exchanged

random numbers rc and rs. Protocol use PRF to generate the master secret

m, encryption key kEnc and MAC key kMAC from the pre-master secret

Z = Zp +Zv and random numbers rc and rs. Protocol separate the master

secret m into mp and mv, where mp⊕mv = m. Similarly, separate MAC key

kMAC into kMAC
p and kMAC

v where kMAC
p ⊕ kMAC

v = kMAC. Send (kEnc, kMAC
p ,

mp) to the Prover and (kMAC
v , mv) to Verifier.

The Server simply use pre-master secret Z and previously exchanged random

numbers rc and rs on PRF to generate master secret m and derive the encryption

key kEnc and the MAC key kMAC from the master secret m and rc and rs.

5. Completion and Verification:
Similar with original TLS, the Server generates a ”ServerFinished” message, the

Prover and Verifier run 2-party-computation PRF protocol to generate ”ClientFin-

ished” message. Then exchange the finishing message, check the correctness, and

abort if message does not match the expection. Then the Prover and Verifier verify

the ”ServerFinished” message through 2-party-computation. By this, three-party

handshake complete.

At the end of three-party handshake, the Prover holds the complete encryption key and

half of MAC key, Verifier holds the other half of MAC key. And at Server side, the

handshake is no difference with normal TLS handshake, which Server gets the complete

encryption key and MAC key. By splitting MAC key makes both the Prover and Verifier
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could not manipulate the content with MAC tag on it, specifically, the response from

the Server of the query.

3.2 Query Execution

Under CBC-HMAC setting, every query message need to be sent along with the HMAC

tag computed as following.

HMACH(k,M) = H((k⊕opad)||H((k⊕ ipad)||M))

Where H represents a hash function, and opad, ipad represent hard-coded padding

parameter. Since MAC key kMAC is shared between the Prover and Verifier, a direct

approach is simply run 2-party-computation to obtain the HMAC tag. But this would

be expensive for large queries. Through the fact of SHA-256 that:

H(M1||M2) = H(H(IV,M1),M2)

A cheaper approach is as following, where diagram can be found at Appendix A.3.

1. Key Hash Computation: the Prover run 2-party-computation with Verifier to

obtain the key hash s0 for the Prover where s0 = H(IV,kMAC⊕ ipad). Since H is

one-way hash function, it will not leak kMAC to the Prover.

2. Inner Hash Computation: the Prover compute inner hash by self: hi = H(s0,M).

3. Tag Computation: the Prover and Verifier run 2-party-computation to obtain the

outer hash for both party τ = H(kMAC⊕opad||hi), which is the MAC tag.

After obtain the tag τ, the Prover uses kEnc to compute and send (sid, Q̂=Enc(kEnc,M||τ))
to Server. Server reply with (sid, R̂). To commit the response to Verifier, they follow

the following steps:

1. Tag Commitment: the Prover send the query and response, along with its share

of the MAC key (sid, Q̂, R̂,kMAC
p ) to Verifier.

2. Key Recovery: Verifier send back the other half of MAC key (sid,kMAC
v ). The

Prover obtain the full MAC key kMAC = kMAC
v ⊕ kMAC

p .

3. Tag Verification: the Prover decrypt the respond R||τ = Dec(kEnc, R̂), and verify

τ using kMAC.
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3.3 Proof Generation

After Query Execution, the Prover need to prove the statement of the TLS commuication

he concerned to Verifier without revealing the sensitive information. Verifier will verify

the proof, then sign on the statement and send back to the Prover. The Prover could

then use the signed statement to the third party Verifier where the statement will need to

be used, usually an on chain smart contract. The third party Verifier could verify the

signiture on the statement, if the signature is from the valid the DECO Verifier, the third

party Verifier could be convinced the statement is true.

In a scenario where privacy protection is not a concern, after receiving content and a

MAC tag from the Server, the Prover can directly forward all information along with

their share of the MAC key to the Verifier, who can then easily verify the integrity of the

information by recompute the MAC tag, since HMAC is collision resistance, the Prover

could not find another message matches the tag. However, when privacy is considered,

the situation becomes significantly more complex. In DECO, the implemetation is as

follows:

Under the setting of CBC-HMAC with SHA-256 on TLS, suppose the plaintext after

decrypt is B = {B1,B2....Bn,τ}, where each Bi represent a 256 bit long block, TLS en-

cryption key is kEnc, MAC key is kMAC and MAC tag is τ, and the Prover doesn’t want to

reveal the content of Bi. Set B−= {B1,B2....Bi−1} and B+ = {Bi+1,Bi+2....Bn,τ}. Note

that at this point, both the Prover and Verifier hold the complete MAC key kMAC, and

only the Prover holding encryption key kEnc. The goal is to generate the zero-knowledge

proof of the following:

ZK−PoK{Bi : τ = HMAC(kMAC,B−||Bi||B+)}

Through this proof, Verifier could be convinced block Bi is from the correct TLS

communication, then the Prover could prove the statement of Bi, without revealing the

plaintext information of Bi. To achieve that, DECO does the following.

1. the Prover need to prove the following to Verifier to convince Verifier the tag

itself is come from the correct ciphertext.

πτ = ZK−PoK{kEnc : τ̂ = Enc(kEnc,τ)}

Where τ̂ is the last 3 chunks in ciphertext M̂ sent to Verifier before, which is

encrypted MAC tag.
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2. the Prover will also need to prove the statement correctness and chunk where

statement is used matches the tag:

π = ZK−PoK{Bi : fsha256(hi−1,Bi) = hi∧ stmt(Bi)}

Where hi−1 = fsha256(B−), then send (π,hi−1,hi,B−,B+) with statement to Veri-

fier.

3. Verifier checks the following content:

• Verifier verify the π and πτ.

• Verifier recompute the previous content to check if the result ?
= hi−1.

• Verifier recompute the tag using suffix content and MAC key to check if the

final result ?
= τ.

If the verification passes at each step, the Verifier will generate a signature on the

statement and send to the Prover or any other party, proof generation process finished.

Figure 3.1: Proof Generation Under CBC-HMAC with SHA-256



Chapter 4

Practical Improvement

4.1 Motivation

The DECO protocol is specifically designed to safeguard user data during interactions

with off-chain Servers, such as API keys and personal details, without requiring changes

to Server configurations. Although the current implementation effectively achieves this

objective, the protocol’s proof mechanism inherently discloses certain information to

the DECO Verifier.

Specifically, as outlined in the DECO paper, various methods for generating proofs for

third parties are described. In the CBC-HMAC setup, if the Prover wishes to conceal

sensitive data within a specific SHA-256 chunk, as mentioned in 3, they must reveal

all other plaintext data chunks with the statement to the DECO Verifier. Although

Appendix A.2 of the DECO paper introduces techniques known as ”Redacting a suffix”

and ”Redacting a prefix”, which allow the Prover to hide all data in the prefix or suffix

of the sensitive data chunk, this still results in the exposure of multiple data chunks

and statement itself in plaintext to the DECO Verifier and the DECO Verifier is able to

infer a considerable amount of information from the remaining plaintext message.GCM

setup of DECO provided a higher lever of privacy, unlike CBC-HMAC, GCM does not

have to reveal any data chunk to the DECO Verifier. However, the DECO Verifier still

learns the content of the proof’s statement, posing a notable privacy concern for the

Prover.

For instance, as mentioned in the introduction, in smart contracts (the third party

Verifier) used for gold token trading, the contract employs DECO to fetch the match

15
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results. However, if the DECO Verifier can determine the data’s source and intended

use, it might exploit this information. A potential risk arises if the DECO Verifier,

knowing the increase of gold price, could delay signing the data verification, allowing

them time to buy in the gold token, thereby gaining an unfair competitive advantage.

Similarly, in more conventional applications such as large-scale lending, companies

might use DECO to demonstrate compliance with certain financial conditions without

revealing specific details. Here, the DECO Verifier, becoming aware that the company

is frequently proving its assets, might deduce the company’s financial situation. Such

information, if leaked, could suggest that the company is seeking loans or experiencing

financial stress, potentially affecting its stock price and business relationships.

To enhance the privacy and security of DECO in such scenarios, it is recommended to

modify the protocol to increase the blindness of the DECO Verifier. This enhancement

involves strengthening the privacy features of the Zero-Knowledge Proof (ZKP) compo-

nent of the protocol, ensuring that even in highly time-sensitive applications, the risk of

security threats due to information disclosure is mitigated. Such improvements would

not only extend the applicability of the DECO protocol but also contribute to advancing

blockchain privacy technologies. Optimizing DECO in this manner significantly en-

hances its suitability and security in specific contexts, laying a more robust foundation

for the application of blockchain and De-Fi technologies in the future.

Research on completely hiding URL addresses has been explored and achieved, with

researchers referring to the enhanced version of DECO as PECO [14]. However, the

proof could still leak part of the information to the DECO Verifier and third party where

the data will be used, as mentioned before, either the statement to the DECO Verifier,

or all other block data. The goal of the project is to complete blind the DECO Verifier,

and limit the information the third party Verifier get as much as possible, since the data

transfer on chain is considered as public. To achieve complete blindness and not leak

anything from the DECO Verifier, there is a another approach, which is not mentioned

in the paper or other relevant literature. Stated below.

4.2 Direct Approach

Still under the setting of CBC-HMAC with SHA-256 on TLS 1.2, suppose the reply

ciphertext before decrypt is M̂, plaintext message after decrypt is M, and MAC tag is
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τ. M||τ = Dec(kEnc,M̂). Intuitively, to achieve blindness, the Prover and the DECO

Verifier and the third party Verifier could following the following after query execution

step, where diagram can be found at Appendix A.4:

1. Before the end of query execution, instead of sending encrypted query and

respond its share of MAC key (sid, Q̂,M̂,kMAC
p ) to the DECO Verifier, the Prover

do the AES decryption first, to obtain the plaintext message M with its tag τ from

ciphertext M||τ = Dec(kEnc,M̂).

2. the Prover send its share of MAC key kMAC
p and MAC tag τ to the DECO Verifier

3. the DECO Verifier combine the Prover’s MAC key with the DECO Verifier’s

MAC key together to obtain the complete MAC key kMAC = kMAC
p + kMAC

v , and

send kMAC to the Prover.

4. the Prover prove to the DECO Verifier in zero-knowledge of the statement:

ZK−PoK{M;HMAC(kMAC,M) = τ}

and send the proof to the DECO Verifier with corresponding tag τ.

5. the DECO Verifier verifies the proof. If the proof is correct, the DECO Verifier put

its signature on the tag τ with its own secret key, send the signature σ = sign(τ)

back to the Prover.

6. After the Prover receive the signature σ, to prove the statement to the third party

who is concerned, which is usually on-chain, Prove generate the zero-knowledge

proof of the following:

π = ZK−PoK{M; [stmt(M)]∧ [HMAC(kMAC,M) = τ]}

(Notice that stmt function is a boolean function that proving the content of the

message, e.g. if the balance inside the giving message of the account is higher

than a certain amount returns True, otherwise False)

7. the Prover send the proof π to the third party Verifier, with τ, kMAC and σ. The

third party Verifier the proof, and check if the signature is valid.

It can be found that there are two zero-knowledge proof involved in this process, also

since proof verification time complexity is highly related with the size of the instance

or circuit, there exist a way to make optimization, described in 4.3.
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4.3 Proof of Integrity on MAC Tag

Apparently, from the perspective of ensuring data integrity, MAC tag is sufficient, and

because MAC tag generation is based on SHA-256, with high entropy plaintext, the tag

will not convey any information about the plaintext, which is same as 4.2. Therefore,

instead of proving the functional relationship between plaintext and tag to the DECO

Verifier with zero-knowledge, we can directly commit the tag to the DECO Verifier,

and then let the DECO Verifier sign the MAC key and tag, which will be sufficient to

ensure blindness and security. The specific protocol is as follows, , where diagram can

be found at Appendix A.5:

1. Before the end of query execution, instead of sending encrypted query and

respond and its share of MAC key (sid, Q̂,M̂,kMAC
p ) to the DECO Verifier, the

Prover do the AES decryption first, to obtain the plaintext message M with its tag

τ from ciphertext M||τ = Dec(kEnc,M̂).

2. the Prover send its share of MAC key kMAC
p and MAC tag τ to the DECO Verifier.

3. the DECO Verifier combine the Prover’s MAC key with the DECO Verifier’s

MAC key together to obtain the complete MAC key kMAC = kMAC
p + kMAC

v , and

sign on the MAC key and tag σ = sign({kMAC,τ}), send signature to the Prover.

4. After the Prover receive the signature σ, to prove the statement to the third

party who is concerned, which is usually on-chain, the Prover generate the zero-

knowledge proof of the following:

π = ZK−PoK{M; [stmt(M)]∧ [HMAC(kMAC,M) = τ]}

5. the Prover send the proof π to the third party Verifier, with τ and σ. The third

party Verifier verify the proof, and check if the signature is valid.

However, this method brings an obvious problem. This method requires zero-

knowledge proof and verification of the SHA-256 of the entire message, and each

chunk and its hash in SHA-256 needs to be used as input to form the final hash, which

means that if DECO the Prover interacts with a website that does not provide an API,

the message will be an HTML interface, which may be very large. For the proof

task of the Prover, this will not be a problem because the Prover runs off-chain and

can handle computationally intensive tasks. But for the verification task of the third
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party Verifier, the time complexity of zero-knowledge proof verification is highly re-

lated to the instance size. Because the verification will be run on-chain in most cases,

the verification of the zero-knowledge proof of the third party Verifier may be expensive.

Therefore, to deal with this situation, there is another data integrity proof method

based on Merkle Root, described in the following section. Using the Merkle root, the

Prover can easily prove the contents of a specific chunk to a the third party Verifier

while maintaining low proof and verification costs.

4.4 Proof of Integrity on Merkle Trees

Merkle trees [5] represent a method of data digest, utilizing a binary tree structure

where the hashes of data blocks are concatenated pairwise, rehashed, and recursively

processed until reaching the tree’s root, culminating in a fixed-length root hash. This

structure offers advantages in terms of efficiency and provability: unlike SHA-256,

which requires rehashing all preceding or succeeding blocks to verify the integrity of

a particular chunk, Merkle trees enable isolated verification of data block integrity

without necessitating a recomputation of the entire sequence of hashes. Using Merkle

trees, Verifiers can efficiently validate data block integrity by performing a limited

number of hash operations, provided with relevant hashes along the tree path. Diagram

can be found at Appendix A.6

In this section, we explore the utilization of Merkle trees to enhance the efficiency

and security of the DECO protocol. The the DECO Verifier signs on the Merkle root of

the plaintext data, thereafter the Prover can utilize this Merkle root to prove specific

content about the data without disclosing the full data itself.

1. Before the end of query execution, instead of sending encrypted query and

respond and its share of MAC key (sid, Q̂,M̂,kMAC
p ) to the DECO Verifier, Prove

do the AES decryption first, to obtain the plaintext message M with its tag τ from

ciphertext M||τ = Dec(kEnc,M̂).

2. the Prover compute the Merkle root of message hMR = MH(M) send its share of

MAC key kMAC
p and MAC tag τ and Merkle root hMR to the DECO Verifier.

3. the DECO Verifier combine the Prover’s MAC key with the DECO Verifier’s
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MAC key together to obtain the complete MAC key kMAC = kMAC
p + kMAC

v , and

send back to the Prover.

4. the Prover prove to the DECO Verifier in zero-knowledge of the statement:

ZK−PoK{M : [HMAC(kMAC,M) = τ]∧ [hMR = MH(M)]}

and send the proof to the DECO Verifier.

5. the DECO Verifier verifies the proof. If the proof is correct, the DECO Verifier put

its signature on the Merkle root hMR with its own secret key, send the signature

σ = sign(hMR) back to the Prover.

6. the Prover can then zero-knowledge proof the content in the message with hMR,

there are two methods could be use after the third party Verifier verifying the

signature of the DECO Verifier on the Merkle root.

(a) Prove of Complete Path: Straightforward way is to locate the chunk where

statement needed to be prove, writing as Mi, extract its path to the top root

and generate the following proof:

π=ZK−PoK{Mi, path; [stmt(Mi)]∧[Veri f yMerkle(Mi, path,hMR)=True]}

Then send π and path with hMR to the third party Verifier. Detail described

in figure 4.1

(b) Prove of Leaf Node: This method is by the Prover proving the bottom leaf

hash operation of the Merkle tree, and send the hash along the path to the

third party Verifier, the third party Verifier could run Merkle verification

function by their own. The third party Verifier would need to verify the

ZK proof, and recompute all the hash function along the path by their own.

When reaching the root node, the hash is equal to the root DECO verifier

signing on, the third party Verifier could be convinced the message is correct.

Detail described in figure 4.2

Each method has its respective advantages and disadvantages. For method 4.4

6a, the benefit lies in that the third party Verifier only needs to perform a zero-

knowledge proof verification concerning the Merkle path, without requiring

additional computations to be assured of the proof’s correctness. Utilizing the

SNARK method (such as Groth16 [11]), the time complexity is approximately
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Figure 4.1: Prove of Complete Path on Merkle Tree

O(n), where n represents the length of the public input. In scenarios involving

large Merkle trees, the Prover can opt to treat the entire Merkle path as a private

input for the zero-knowledge proof, with the Merkle root as a public input, thus

ensuring that the proof verification has a fixed and minimal time complexity.

However, the drawback of this method is that it creates a large zero-knowledge

proof circuit, imposing significant computational burdens on the Prover. There-

fore, this method is more suitable when dealing with longer data lengths and

larger Merkle trees. Although the Prover incurs a higher cost in generating the

proof, the third party verifier has minimal costs to bear for verification.

Conversely, method 4.4 6b benefits from the simplicity in proof generation,

involving only the proof of a hash function for a single bottom leaf node, with

the third party Verifier independently verifying the correctness of the Merkle

path. This approach relieves the Prover from the computational burden seen in

method 4.4 6a. However, this method also has obvious disadvantages; it is not

suitable for longer data since the verification process for the third party Verifier

includes calculating the hash for each node along the Merkle path, which needs

to be performed log l times, where l is the length of the data M. Additionally,



Chapter 4. Practical Improvement 22

Figure 4.2: Prove of Bottom Leaf Node on Merkle Tree

(blue represent the data needed to be sent to the third party Verifier)

this method requires the transmission of the values of adjacent nodes along the

path, also totaling log l. Although the time and space complexity of log l is not

significantly burdensome, for longer lengths, this cost is non-negligible compared

to method 4.4 6a.

In practical applications, considering the total costs for both the Prover and

the third party Verifier, each method has its appropriate application scenarios.

When dealing with long data lengths, method 4.4 6a should be considered to

reduce the costs for the third party Verifier. When the data length is shorter,

generating a proof for the entire path does not offer a time cost advantage, thus

method 4.4 6b can be used to enhance the speed of proof generation.

However, for the DECO Verifiers, the scenario is similar to proving on MAC tags,

when utilizing HMAC for proof generation, it is imperative that the plaintext data is

of high entropy. If not, the Verifier might have the opportunity to deduce the plaintext

content through brute-force computation. This requirement adds an additional layer

of complexity and potential vulnerability in scenarios where data entropy cannot be



Chapter 4. Practical Improvement 23

guaranteed. This consideration is crucial in practical implementations, as the entropy

of data directly influences the security of the system. Insufficient entropy in plaintext,

despite the employment of sophisticated encryption or verification techniques, may

compromise the security of the system. Therefore when using this method, it is impera-

tive to ensure that all processed data exhibits sufficient randomness and unpredictability

to uphold the overall security and reliability of the system.

Another method employs AES-CBC for integrity proofs. Unlike HMAC, the blindness

of AES does not require the high entropy of data but on the secrecy of the encryption

and decryption keys. Proofs using AES ciphertext effectively mitigate the issues asso-

ciated with insufficient data entropy. However, this approach continues to encounter

performance difficulties when large data volumes are involved. Moreover, the non-

committing property of AES-CBC represents a potential vulnerability. It is essential

to prevent the Prover from finding an alternative plaintext-key pair that matches the

existing ciphertext. The subsequent section will discuss a proof technique based on

AES chunks that is independent of data entropy, with high efficiency for the third party

Verifiers, and addresses the non-committing issue associated with AES-CBC effectively.

4.5 Proof of Integrity on AES Encryption

It is not feasible to directly obtain a zero-knowledge proof of decryption of AES

ciphertext with the relative plaintext, because this requires the encryption process to

have committing property. Specifically, committing means that once a ciphertext is

generated, it is impossible to find another valid plaintext-key pair to encrypt the same

ciphertext without changing the ciphertext, otherwise, the Prover could always finding

another piece of plaintext that is not belong to the communication with Server, but with

same ciphertext which the DECO Verifier signing on, makes the Prover potentially able

to prove a statement on forged content. Unfortunately, in the context of this article

(CBC-HMAC), symmetric encryption does not have this property. But there is still

a way to achieve plaintext commitment and reduce the cost of zero-knowledge proof

verification at the same time. Diagram can be found at Appendix A.7.

1. At Three-Party Handshake stage, once the Prover receive the AES encryption key,

the Prover need to send a hash of the key hEnc = Hash(kEnc) and a random initial

vector IV to the DECO Verifier to commit the encryption key and IV , so that the
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Prover will not possible finding another valid encryption key and initial vector

with same ciphertext.

2. Before the end of query execution, instead of sending encrypted query and

respond and its share of MAC key (sid, Q̂,M̂,kMAC
p ) to the DECO Verifier, Prove

do the AES decryption first, to obtain the plaintext message M with its tag τ from

ciphertext M||τ = Dec(kEnc,M̂).

3. the Prover send its share of MAC key kMAC
p , with ciphertext M̂ to the DECO

Verifier. The DECO Verifier send back its share of MAC key kMAC
v .

4. In zero-knowledge, the Prover generate the proof of the following:

ZK−PoK{kEnc; [HMAC(kMAC,Dec(kEnc,M̂)) = Dec(kEnc,M̂)[−1,−2,−3]︸ ︷︷ ︸
HMAC tag τ∧

[hEnc =Hash(kEnc)]}
(4.1)

This proof is proving to the DECO Verifier that M̂ decrypt with some unknown
encrypting session key, the MAC tag of the plaintext under kMAC is the last
three chunk of plaintext, and encrypting session key is the one committed
before.

Figure 4.3: First Half of Proof 4.1, Blind Proof of Integrity

5. the Prover send the proof to the DECO Verifier, also send the chunk index number

i where the statement is proved to the third party Verifier.
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6. the DECO Verifier verify the proof, then sign on the cipher chunk at index i−1

and i with hash of key hEnc, send signature σ = sign({M̂i−1,M̂i,hEnc}) to the

Prover.

7. the Prover generate the proof of the following:

ZK−PoK{kEnc; [Stmt(Dec(kEnc,M̂i, IV = M̂i−1))]∧ [hEnc = Hash(kEnc)]}
(4.2)

And send the proof, along with signature σ and hash of key hEnc, ciphertext M̂i,

M̂i−1 to the third party Verifier. The third party Verifier verify the proof, and

check the signature.

Figure 4.4: First Half of Proof 4.2, Blind Proof of Statement

The AES chunk-based proof method has indeed enhanced the security of oracles in

environments with low-entropy plaintext, since the blindness is relying on the securicy
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of AES key, and has significantly improved the performance of the third party Verifiers

comparing with Merkle root method and MAC method, since the input size of the ZK

proof is only 128 bits constant size long. However, this method has several apparent

drawbacks. From a privacy perspective, although the DECO Verifier only knows the

specific chunk index within AES-CBC where the required data is located and cannot

directly deduce any specific information from the ciphertext, if the DECO Verifier

accumulates sufficient historical data and has access to the Server, they might use big

data analytics to infer the content type stored in the current chunk. For instance, if a

bank’s website consistently returns data in a fixed format and length, with the balance

information always stored in the third AES chunk, the DECO Verifier could deduce that

the type of data the Prover is using pertains to specific bank balance information based

on the length of the ciphertext and the number of the requested proof block. However,

existing a simple way to prevent this. At 4.5 step 5, instead of specifying the block

index the Prover want to use, the Prover could ask the DECO Verifier to sign on every

single block of AES ciphertext and send to the Prover, the Prover could use whatever

block the Prover interested in. Also, by combining the idea of Merkle Root proof with

AES proof, same level of privacy can be achieved. This method is mentioned in section

4.8.1.

Moreover, although the verification process might be relatively cheap for third party the

third party Verifiers, the proof generation process involved in this method is complex

and cumbersome. For both the DECO the Prover and the third party Verifier, this

process involves the transmission of multiple different key and hash, generation of

proofs, and their verification, which not only adds to the operational complexity but

also increases the risk of errors, thereby affecting the efficiency and reliability of the

entire system. Additionally, since this method entails handling a significant amount

computations, involving both MAC computation and AES encryption and decryption, it

may require twice resources and time on off-chain machine belongs to the Prover and

the DECO Verifier, thus limiting its widespread application in practical scenarios.

4.6 Code implementation

To verify the feasibility and compare the performance of the proposed methods, this

paper employed two different proof systems to code-validate the four methods: Cairo

[10], based on STARKs [2], and Zokrate [7], using Groth16 [11]. STARKs primarily
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benefit from eliminating the need for a trusted setup but at the cost of higher proof

and verification time complexities. In contrast, Zokrate based on Groth16 offers lower

time complexities for both proof generation and verification, albeit requiring a trusted

setup. In practical applications, Cairo is utilized on StarkNet, whereas Zokrate is

employed on Ethereum. On a test machine equipped with a 12900k CPU and 64GB

of memory, protocols written in Cairo typically require 10-20 seconds to generate

proofs and 0.1 seconds for verification; Zokrate, however, needs only 0.5 seconds

for proof generation, with verification times also under 0.1 seconds. Through code

implementation, this project has validated the feasibility of the concept, demonstrating

that the four methods can enhance the privacy of the DECO protocol while ensuring

reliability. It is important to note that although the protocol code was primarily written to

prove concept feasibility and has not reached the optimization levels of actual business

and production environments, the brief execution times further demonstrate the practical

viability of these methods in real-world applications.

4.7 Comparison

The three methods discussed exhibit variations in performance and privacy, necessitat-

ing careful selection based on multiple factors, including the required level of privacy

protection, hardware capabilities, data type, and length. Inappropriate choices may com-

promise the privacy performance of the protocol or result in unnecessary computational

resource expenditure.

Regarding privacy, in high-entropy scenarios, all three protocols achieve blindness,

meaning that the DECO Verifier is unable to discern the specific content of the data.

However, as previously mentioned, the proof method based on AES reveals the sequence

number of the data block of interest. Nonetheless, in low-entropy data scenarios, the

methods of proving with a MAC tag and Merkle root face challenges in maintaining

data blindness. While protecting privacy in situations of low entropy where sequence

numbers cannot be disclosed is challenging, it is not insurmountable; privacy can be

maintained by accepting some performance trade-offs through a composite approach,

with details to be discussed in the following section.

In terms of hardware performance, the discussion is divided into three parts: the

performance of the Prover, the DECO Verifier, and the third party Verifier. The the
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Prover achieves the highest performance using the MAC tag method, as it only requires

generating an HMAC proof for the third party Verifier. Both the Merkle tree and AES

proof generation are costly since they require providing an HMAC to the DECO Verifier

and another prove for the third party Verifier (Merkle proof and AES proof) during their

respective proof generations. For the DECO Verifier, the MAC tag method benefits from

the lowest complexity as the DECO Verifier does not require any proof verification,

while the DECO Verifier needs to engage in more complex verification processes when

dealing with Merkle root and AES methods, both with a complexity of O(l), where l

represents the data length. Performance at the third party Verifier level is paramount, as

the other two phases are executed off-chain and can handle computationally intensive

tasks. On-chain, each computational step incurs gas costs. Here, the MAC tag method

has the highest complexity at O(l), as the third party Verifier needs to validate the

SHA-256 hash of the entire data set. Both two Merkle root method, due to its top-down

tree structure, has the verification complexity at O(log l). The AES method, verifying

only the process of a single data block, maintains a fixed complexity at O(1). However,

it is important to note that we cannot simply choose a method based on overall lower

complexity; in scenarios with short data lengths, a simple yet higher complexity method

could result in longer overall times due to the extra overhead of generating complex

zero-knowledge proofs.

Thus, in summary, the MAC tag method is advisable for proving when data is short

and has high entropy due to its better performance. For longer data lengths that also

exhibit high entropy, the Merkle tree method is worth considering. When the data is not

high in entropy, opting for the more expensive AES method is necessary to ensure data

blindness.

the Prover
Perfor-
mance

the DECO
Verifier Per-

formance

the third
party

Verifier Per-
formance

High
Entropy De-

pendency

Non Index
Leakage

Data Trans-
mitting Size

MAC Tag

Merkle Root

AES Block

Table 4.1: Performance and Characteristics Comparison
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4.8 Further Privacy Improvement

4.8.1 Components Composability

The main advantages of these four methods are their flexibility to be combined to meet

the requirements of different data types and needs. If we conceptualize the DECO

Verifier as a functional module, it can produce various outputs, including signatures for

tags, Merkle roots, ciphertexts, and cipher blocks. Depending on different requirements,

we can modify the details of each protocol or integrate them with other zero-knowledge

proof components. Below is a specific examples.

In extreme scenarios, suppose we want the highest level of privicy, need to process a

very long piece of data, the length of which makes direct verification on-chain with a

complexity of O(l) impractical. Additionally, this data has low entropy, and the Prover

does not want the DECO Verifier to know specifically which data block the Prover

concerned with. In this case, we can combine the Merkle root proof method with the

AES block proof method. By initially sending the Merkle root to the DECO Verifier

and obtaining the complete MAC key, we can generate the following proof:

ZK−PoK{kEnc; [HMAC(kMAC,Dec(kEnc,M̂)) = Dec(kEnc,M̂)[−1,−2,−3]︸ ︷︷ ︸
HMAC tag τ∧

[hEnc =Hash(kEnc)

∧

[hMR = MH(Dec(kEnc,M̂))]}

(4.3)

Then the DECO Verifier sign on the Merkle root, then the process is same as the Merkle

root proof. This combination takes the advantage of blindness of AES cipher with

low entropy data, and the advantage of Merkle root proof of none leakage of block

index with low verification complexity O(log l). The trade off is the third party Verifier

couldn’t enjoy the cheapest verification with AES block proof with O(1) complexity.

4.8.2 Unlinkability

Although the above-mentioned method effectively improves the privacy and blindness

of DECO, there is still a problem. If the Prover wants to use a the DECO Verifier’s

signature multiple times to prove different statements to the third party Verifier, the

current method will require the Prover to send the same signature to the Verifier multiple
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times. If the Prover uses different on-chain addresses to complete the operation, the

third party Verifier will be able to link these accounts together and mark them as held by

the same party. Similarly, for the DECO Verifier, he can obtain additional information

about the user by monitoring on-chain communications and retrieving records of when

and where the content he signed was used. This is a disadvantage for users who expect

to obtain anonymity in the blockchain. There is a very simple solution to this problem,

by using the signature as a private input and integrating the verification process into the

zero-knowledge proof process provided to the third party. For example, for the proof

provided to the third party Verifier in 4.3 with signature σ = sign({kMAC,τ}).

π = ZK−PoK{M; [stmt(M)]∧ [HMAC(kMAC,M) = τ]}

Proof can be change to the following:

π = ZK−PoK{M,σ; [stmt(M)]∧ [HMAC(kMAC,M) = τ]∧ [veri f y(pkDECO,σ)]}

Where pkDECO is the public key of the DECO Verifier, which is the public input to the

proof. Through this improvement, the third party Verifier and the DECO Verifier could

only know the content is signed by one of the DECO Verifier, but could not link any

two proof with the same signature together, prividing DECO with a higher level of

blindness and privacy.



Chapter 5

Security

A secure blind DECO protocol should satisfy three properties: Completeness, Sound-
ness, and Blindness. Completeness means that if the statement to be proved by the

Prover is true, an honest Prover can always convince the honest DECO Verifier and

third party Verifier. Soundness means that if the statement to be proved by the Prover is

false, no fraudulent Prover can convince both of the honest DECO Verifier and third

party Verifier, except with a very small probability. Finally, Blindness means that for

an adversary, given two communication transcript of both Verifier, one of them is a

real communication, other is generated from a random message and different keys,

the probability adversary successfully distinguish them is negligible. This ensures

that the adversary cannot exploit any knowledge from analyzing these transcripts, thus

safeguarding the privacy and integrity of the transmitted information.

5.1 Completeness

if the Prover, the DECO Verifier and the third party Verifier following the protocol,

for the DECO Verifier, Completeness requires that, for the protocol, the probability of

the DECO Verifier accepting the proof provided by the Prover and agree to signing on

the corresponding content is close to 1. And for the third party Verifier, completeness

represent that the probability of the third party Verifier accepting the proof and signature

signed by the DECO Verifier provided by the Prover is close to 1.

31
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5.2 Soundness

Discussing the soundness for a corrupted Server and the third party Verifier does not

have much practical significance, since Server could always generate the forged TLS

record with correct encryption key and MAC tag, and the third party Verifier is the party

requesting for the data through the Prover. Therefore, the Server and the third party

Verifier would pre-set to be honest here. The discussion of soundness is divided into

two aspects, soundness for the Prover and soundness for the DECO Verifier.

5.2.1 Soundness for the Prover

In the improved scheme, the soundness for the Prover means that during communication,

if the zero-knowledge proof provided by the Prover to the DECO Verifier and the content

for which the Prover seeks the DECO Verifier’s signature do not belong to the current

TLS communication with the Server, then the probability that the DECO Verifier accepts

this proof and signs the content is negligible. Consequently, the probability that a the

third party Verifier can validate the zero-knowledge proof and the signature is also

negligible. The following will respectively elaborate on the four schemes mentioned in

chapter 4, the Prover is playing the role of adversary, trying to proof on the message

that is not belong to the current TLS session with Server, possibly with different MAC

key, MAC tag and encryption key. The following will show why it is not feasible.

1. Regarding the direct approach mentioned in 4.2, soundness can be described as

follows: For the message M, the MAC key kMAC, and the MAC tag τ, if any one

of these three components does not match the correct one, the probability of both

verifiers accepting the proof is negligible. The MAC key is one of the public

inputs to the proof, and the Prover holds only half of the MAC key before sending

it to the DECO Verifier and receiving the other half in response. Therefore, the

MAC key held by the DECO Verifier cannot be tampered with by the Prover.

Even if the Prover sends a fake share of the MAC key, it still does not know the

complete key computed by the DECO Verifier, which combines the fake share

with the unknown share of the Verifier, leading to the failure of proof verification.

Regarding the message and tag, since the tag is sent to the DECO Verifier along

with the Prover’s share of the MAC key simultaneously, by the property of MAC,

the Prover cannot pre-generate a valid fake tag with a tampered message without

knowing the complete MAC key. Once the key is known, the tag has already been
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committed to the DECO Verifier, and finding another message resulting in the

same tag has a negligible probability.

2. For the MAC tag proof approach mentioned in 4.3, soundness can be described

as follows: For the message M, the MAC key kMAC, and the MAC tag τ, if any

one of these three components does not match the real one, the probability of

both verifiers accepting the proof remains negligible. A key difference in this

approach is that the DECO Verifier does not participate in proof verification.

Instead, the DECO Verifier merely signs the MAC tag and key computed using

the share sent by the Prover. For the reasons previously mentioned, the Prover

cannot tamper with the MAC key or generate a valid MAC tag without knowing

the complete MAC key, nor can the Prover find a collision in the MAC function,

which guarantees the integrity of the message, key, and tag.

3. For the Merkle root proof approach mentioned in 4.4, soundness can be described

as follows: For the message M, the MAC key kMAC, the Merkle root hMR, and

the MAC tag τ, if any one of these components does not match the real one, the

probability of both verifiers accepting the proof is negligible. As before, the

Prover must send its share of the MAC key, tag, and Merkle root to the DECO

Verifier before receiving the complete MAC key, which renders the key, tag, and

message unforgeable since finding a collision in the MAC tag is not feasible.

Also, in the proof πp sent to the DECO Verifier, the Prover must also demonstrate

that the message matching the tag also aligns with the Merkle root. If the Prover

manages to use another Merkle root and prove its matching relation with the tag

and message, it implies that the Prover either broke the zero-knowledge proof

protocol or found a collision in the Merkle root, both of which are of negligible

probability.

4. For the AES proof approach mentioned in 4.5, soundness can be described as

follows: For the message M, the MAC key kMAC, and the encryption key kEnc,

if any one of these components does not match the real one, the probability of

both verifiers accepting the proof is negligible. Before sending its share of the

MAC key, the Prover must commit the hash of the encryption key to the DECO

Verifier. Instead of sending the MAC tag to the Verifier, the Prover sends the

ciphertext along with its share of the MAC key. Since the Prover does not hold

the complete MAC key, it cannot forge a valid tag to include in the ciphertext,

nor can it find another message that matches the tag to include in the ciphertext.
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Additionally, since the encryption key has been previously committed through a

hash, the Prover cannot find another valid encryption key to decrypt the ciphertext

to obtain a different message that matches the previously sent hash. Also, the

content inside the ciphertext must align with the MAC tag contained within, as

symmetric encryption is a bijection function with a fixed encryption key, thus only

one valid ciphertext exists, which fixes the ciphertext. Therefore, the ciphertext

and encryption (decryption) key are fixed, and the Prover will not be able to

generate a statement on another fake message.

5.2.2 Soundness for the DECO Verifier

The soundness of the DECO Verifier stipulates that if the DECO Verifier acts mali-

ciously and signs content not associated with the current TLS session, the probability

of the signature being accepted by the Prover and third-party Verifier is negligible. The

signature is applied to content that is computed (Merkle root in 4.4), decrypted (MAC

tag in 4.2 and 4.3), or forwarded (AES block in 4.5) by the Prover, as will be detailed

below.

For the Merkle root, the root is derived from the decryption of the ciphertext received

from the Server, which cannot be tampered with by the DECO Verifier. The decryption

key is generated through a secure two-party computation protocol F hs
2pc. To compromise

the decryption key, the DECO Verifier would need to breach F hs
2pc, which, according to

the assumptions of DECO, has a negligible probability. Consequently, the ciphertext and

decryption key are fixed, and the Merkle root of the plaintext message decrypted from

the ciphertext using the decryption key is also fixed, leaving no room for manipulation

by the DECO Verifier.

Regarding the MAC tag, since the tag is decrypted from the ciphertext and, as men-

tioned in the previous paragraph, both the ciphertext and the decryption key cannot be

altered by the DECO Verifier, it is also impossible to tamper with the MAC tag, which

is contained within the ciphertext.

For the AES block, the ciphertext is directly received from the Server by the Prover. If

the DECO Verifier attempts to sign an alternative AES ciphertext, it would be imme-

diately detected by the Prover, preventing the DECO Verifier from tampering with or
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signing the AES block.

5.3 Blindness

In this thesis, the blindness for two party need to be considered, the blindness for the

DECO Verifier and blindness for the third party Verifier. In this scenario, we assume the

execution honesty of both Verifiers, meaning they will follow the protocol, and trying to

extract more information base on the records they received. Details of the blindness for

two Verifiers is described in the following section, and proof can be found at Appendix
B.

(it is important to note that even if the verifier does not adhere to the protocol and

attempts to obtain additional information by manipulating the outgoing information

(such as its share of the MAC key, signature, etc.), the blindness property is still main-

tained. This is because an honest Prover can easily detect any manipulations on the

received data. However, this project will not attempt to prove this assertion.)

5.3.1 Blindness for the DECO Verifier

Blindness for the DECO Verifier is defined as the following. Given two communication

records on improved DECO scheme, the message of one of the record is sampled from

random. The probability of the adversary distinguish the one with actual message is

close to 50%.

1. For the direct approach mentioned in 4.2, blindness could be described as follow-

ing:

π
0
p = ZK−PoK{r;HMAC(kMAC0

,r) = τ
0},r←{0,1}

π
1
p = ZK−PoK{M;HMAC(kMAC1

,M) = τ
1}

R0 = {π0,kMAC0
,τ0},R1 = {π1,kMAC1

,τ1}

Pr[V (R0) = 1]≈ Pr[V (R1) = 1]

Function V is a distinguishing function output the records index, R0 and R1 are

two communication records that is visible to the DECO Verifier (adversary) on

direct approach method. Records with index 0 is the one contained random

message. As mentioned in 4.2, this method requires high entropy of message

to ensure the blindness. By the property of HMAC function [1], if message is
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high entropy, the HMAC tag of the message is indistinguishable with the tag of

random. Also by the Zero-Knowledge property of zero-knowledge proof protocol,

proof will not leak the information of the private input, which is the message.

Therefore two zero-knowledge proof π0
p and π1

p are indistinguishable, thus gives

two records indistinguishability. Consequently, if the random message record π0
p

is indistinguishable with record π1
p that contain message, the adversary wouldn’t

able to learn any information about the message using the data he received (DECO

records).

2. For the MAC tag proof approach mentioned in 4.3, blindness could be described

as following:

HMAC(kMAC0
,r) = τ

0,HMAC(kMAC1
,M) = τ

1,r←{0,1}

R0 = {kMAC0
,τ0},R1 = {kMAC1

,τ1}

Pr[V (R0) = 1]≈ Pr[V (R1) = 1]

The data that is visible to Verifier contains only the MAC key and MAC tag, same

as mentioned in the last paragraph, if the message is high entropy, two MAC tag

are indistinguishable, which leads to the blindness for the adversary.

3. For the Merkle root proof approach mentioned in 4.4, blindness could be described

as following:

π
0
p = ZK−PoK{r : [HMAC(kMAC0

,r) = τ
0]∧ [h0

MR = MH(r)]},r←{0,1}

π
1
p = ZK−PoK{M : [HMAC(kMAC1

,M) = τ
1]∧ [h1

MR = MH(M)]}

R0 = {π0,kMAC0
,τ0,h0

MR},R1 = {π1,kMAC1
,τ1,h1

MR}

Pr[V (R0) = 1]≈ Pr[V (R1) = 1]

Same as before, proofs and tags are indistinguishable. For Merkle root h0
MR and

h1
MR, the Merkle root of the message with high entropy would be also indistin-

guishable with the Merkle root of random. Therefore, the record of message is

indistinguishable with the record with the random, which indicates the blindness

for the adversary.

4. For the AES proof approach mentioned in 4.5, blindness could be described as

following:

π
0
p =ZK−PoK{kEnc0

; [HMAC(kMAC0
,Dec(kEnc0

,M̂0))=Dec(kEnc0
,M̂0)[−1,−2,−3]︸ ︷︷ ︸

HMAC tag τ0
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∧[hEnc0
= Hash(kEnc0

)]}

π
1
p =ZK−PoK{kEnc1

; [HMAC(kMAC1
,Dec(kEnc1

,M̂1))=Dec(kEnc1
,M̂1)[−1,−2,−3]︸ ︷︷ ︸

HMAC tag τ1
∧[hEnc1

= Hash(kEnc1
)]}

M̂0 = Enc(kEnc0
,r||HMAC(kMAC0

,r)),r←{0,1}

M̂1 = Enc(kEnc1
,M||HMAC(kMAC1

,M))

R0 = {π0,kMAC0
,hEnc0

,M̂0},R1 = {π1,kMAC1
,hEnc1

,M̂1}

Pr[V (R0) = 1]≈ Pr[V (R1) = 1]

Same as before, two zero-knowledge proofs are indistinguishable. For the cipher-

text M̂0 and M̂1, since CBC-AES is CPA secure, when encryption is kept secret,

two pieces of ciphertext are indistinguishable. Also, since the encryption key is

generated using PRF (mentioned in chapter 3), extracting the key from their hash

would also be unfeasible, which gives this method blindness guarantee.

5.3.2 Blindness for Third Party Verifier

On the side of the third party Verifier, the information transmitted is highly analogous to

that received by the DECO Verifier, with the primary distinction being the specific zero-

knowledge proofs conveyed. For both the direct approach and the MAC Tag method,

the transmitted information to the third party Verifier includes a zero-knowledge proof

π, which encompasses private inputs: the message M, MAC tag τ, MAC key kMAC, and

the signature of the DECO Verifier on the MAC key and tag, paralleling the description

in 5.3.1. This ensures that no additional information about the message can be deduced

from the data received by the third party Verifier, other than the validated statement itself.

In the Merkle root method, besides the standard data received by the DECO Veri-

fier (MAC key, MAC tag, Merkle root), the third party Verifier also gains access to the

Merkle tree path, which is a sequence of hashes. Given the high entropy of the message,

disclosing the Merkle path does not compromise the protocol’s blindness.

For the AES method, the information that the third party Verifier receives is iden-

tical to that received by the DECO Verifier, except for the proof which discloses the

statement. The substantial similarity in the information received by both verifiers sug-

gests that the level of security in terms of blindness provided by the DECO Verifier
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is equivalently extended to the third party Verifier, with the exception of statement

disclosure.

Thus, from a security standpoint, there is no significant distinction in terms of blind-

ness between the two verifiers, only the third party Verifier would be able to learn the

statement.



Chapter 6

Conclusion & Limitation

In conclusion, this thesis focuses on the decentralized oracle DECO, primarily examin-

ing its privacy aspects. A detailed analysis of DECO’s operational principles has been

conducted, identifying several privacy concerns inherent in its framework. Specifically,

DECO’s protocol necessitates that the Prover inevitably reveals certain information to

the Verifier during the proof provision process. For the CBC-HMAC setup, the Verifier

becomes aware of the statement that the Prover needs to prove to a third party and a por-

tion of the plaintext message. In the GCM setup, while there is no plaintext leakage, the

Verifier still becomes aware of the Prover’s statement. In certain scenarios, such privacy

breaches could have severe consequences, ranging from the leakage of corporate confi-

dential information to creating substantial arbitrage opportunities for malicious Verifiers.

To address these issues, the thesis proposes four solutions that effectively enhance

DECO’s privacy capabilities, each with its advantages and disadvantages. The simplest

is the direct approach, which employs zero-knowledge proof to demonstrate the cor-

respondence between the MAC tag and plaintext, assuring the DECO Verifier of the

legitimacy of the provided tag, accompanied by the DECO Verifier’s signature. The

MAC tag method simplifies this process by omitting the proof to the DECO Verifier.

As the Prover does not hold the complete MAC key when the MAC tag is sent to the

DECO Verifier, it is impossible for the Prover to forge a valid MAC tag at that moment.

The the DECO Verifier only needs to ensure that it does not send its portion of the MAC

key to the Prover before signing the tag and MAC key. With a signed tag and MAC key,

the Prover can then generate a proof for the third party Verifier, including the statement

about the message and its correspondence with the MAC key and tag. Although this

method is straightforward, its time complexity is high, and the proof generation time

39
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can be burdensome for the Prover. To mitigate this, the thesis proposes a third solution

based on Merkle path proof. The the Prover proves the correspondence between the

plaintext and MAC tag to the DECO Verifier while also calculating the Merkle root of

the plaintext message and proving its correctness to the DECO Verifier. After the DECO

Verifier signs the Merkle root, the Prover can generate a proof for the third party Verifier

via the Merkle path. This method reduces the data length input into the zero-knowledge

proof protocol from O(n) to O(log n), significantly enhancing operational efficiency.

However, these three methods’ privacy relies on high entropy of the message, which

could pose risks of brute force attacks if the entropy is insufficient. The AES method

addresses this by having the Prover commit an encryption key to the Verifier beforehand

and then proving the correspondence between the ciphertext and plaintext. Since the tag

is also encrypted along with the message into the ciphertext, the Prover can demonstrate

the correspondence between the message and tag in the plaintext without revealing the

tag or message. Subsequently, the Verifier signs the specified block of ciphertext, and

the Prover uses this block to decrypt and prove the statement to the third party Verifier.

This method does not require high entropy in the data and also simplifies the proof

process. Although this method discloses the sequence number of the ciphertext block

of the specific statement, the paper also proposes a solution to this issue by requiring

the DECO Verifier to sign all ciphertexts.

Despite these four methods indeed enhancing DECO’s privacy and blindness, some

limitations still exist. Firstly, these methods lack public verifiability, still requiring

the third party Verifier to trust the DECO Verifier. Additionally, if the Prover and the

DECO Verifier collude, they could generate false proofs and signatures undetected. To

mitigate this possibility, it would be necessary to increase the number of participants

in a single session of the DECO Verifiers. However, this approach requires multiple

communications when multiple the DECO Verifiers are involved, rather than a unified

multi-party protocol that could perform all functions collectively, a direction that still

requires further exploration.
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Appendix A

Protocol Diagram

A.1 TLS

Figure A.1: TLS Under ECDHE
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A.2 DECO Three-Party Handshake

Figure A.2: Three-Party Handshake Under ECDHE
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A.3 DECO Query Execution

Figure A.3: Query Execution Under CBC-HMAC
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A.4 Direct Approach

Figure A.4: Direct Proof on MAC Tag
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A.5 Proof of Integrity on MAC Tag

Figure A.5: Blind Proof on MAC Tag
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A.6 Proof of Integrity on Merkle Trees

Figure A.6: Blind Proof of Integrity on Merkle Trees
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A.7 Proof of Integrity on AES Encryption

Figure A.7: Blind Proof of integrity on a Single AES Block



Appendix B

Blindness Security Proof

In this chapter, we will show that for any probabilistic polynomial-time (PPT) adversary

A , given two DECO transcript, one is from real DECO communication, other one is

generated from a random message bitstring and keys, A cannot distinguish between

them.

We only consider the case that A corrupts the DECO Verifier or third party Veri-

fier in case of the security of blindness. Therefore, by proving the blindness for A under

the setting mention above, we had prove the blindness for both DECO Verifier and third

party Verifier when they follow the protocol, do the honest execution, and trying to

extract more information base on the records they received.

B.1 Blindness for the DECO Verifier

In this section, we consider a scenario where the adversary A corrupts the DECO

Verifier and attempts to extract additional information from the communication. As

discussed in Section 5.3.1, the proof strategy utilizes the concept of “transitions based

on indistinguishability” [15], which involves applying a series of minor modifications

to the actual communication record R1. These modifications progressively transform

R1 into a record R0. For each modification, we argue that it is indistinguishable from

the original. This methodical approach allows us to ultimately conclude that R1 is

statistically indistinguishable from R0, thereby ensuring that even if A has control

over the DECO Verifier, as long as A follow the protocol, they cannot discern useful

information beyond the intended communication.

51
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B.1.1 Direct Approach

Given the real world DECO transcript R1 = {π1,kMAC1
,τ1} with real message M,

where

π
1 = ZK−PoK{M;HMAC(kMAC1

,M) = τ
1}

τ
1 = HMAC(kMAC1

,M)

And transcript R0 = {π0,kMAC0
,τ0} with random message r and random key kMAC0,

where

π
0 = ZK−PoK{r;HMAC(kMAC0

,r) = τ
0},r←{0,1}

τ
0 = HMAC(kMAC0

,r)

To argue R1 and R0 are statistically indistinguishable for A , we will use several hybrid

transcript.

• Transcript T1= {π1,kMAC1
,τ1} is same as the real world transcript R1 of Direct

Approach method protocol mentioned in section 4.2.

• Transcript T2= {π2,kMAC0
,τ2}. In this transcript, we replace the MAC key to a

new different random, and computing the corresponding proof and MAC tag.

π
2 = ZK−PoK{M;HMAC(kMAC0

,M) = τ
2}

τ
2 = HMAC(kMAC0

,M)

Since computation of the proof and the tag is valid, but with a different random

MAC key with the real message, and the MAC key in real records is the output of

a pseudo-random function (PRF), T2 is statistically indistinguishable with T1.

• Transcript T3= {πsim,kMAC0
,τ2} is same as T2, except the proof πsim is sim-

ulated. The simulated proof is generated without using the private input M,

ensuring that it does not divulge any additional information about M. Given

that the zero-knowledge proof is assumed to be secure in terms of complete-

ness, soundness, and zero-knowledge properties, transcript T3 is statistically

indistinguishable from T2.

• Transcript T4= {πsim,kMAC0
,τ0} is same as T3, except transcript using a differ-

ent random bitstring r with the same length with M to generate the tag τ0. Since M

is high entropy, by the property of HMAC function [1], τ2 = HMAC(kMAC0
,M) is

statistically indistinguishable with τ0 = HMAC(kMAC0
,r). Also, since the proof
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is perfectly simulated, nor M or r are used to simulate the proof, A cannot distin-

guish the difference on the proof. Therefore T4 is statistically indistinguishable

with T3.

• Transcript T5= {π0,kMAC0
,τ0} is same as T4, except replace the simulated

proof to honestly computed proof where

π
0 = ZK−PoK{r;HMAC(kMAC0

,r) = τ
0},r←{0,1}

Since the zero-knowledge proof is assumed to be secure in terms of complete-

ness, soundness, and zero-knowledge properties, transcript T5 is statistically

indistinguishable from T4.

It can be seen that the random message record R0 = {π0,kMAC0
,τ0} is exactly same as

T5, therefore, R0 is statistically indistinguishable with real records R1, which matches

the equation in the definition mentioned in section 5.3.1. This proves that this method

is safe in blindness.

B.1.2 MAC Tag Approach

In the last section, we have demonstrated the blindness for the DECO Verifier with

records as R0 = {π0,kMAC0
,τ0}. In the MAC tag method described in section 4.3, the

record observed by the DECO Verifier is R0 = {kMAC0
,τ0}, which is identical to that in

the direct approach, except it lacks the zero-knowledge proof. Consequently, it is trivial

to conclude that, the blindness of the DECO Verifier is maintained in this method.

B.1.3 Merkle Tree Approach

Given the real world DECO transcript R1 = {π1,kMAC1
,τ1,h1

MR} with real message M,

where

π
1
p = ZK−PoK{M : [HMAC(kMAC1

,M) = τ
1]∧ [h1

MR = MH(M)]}

τ
1 = HMAC(kMAC1

,M),h1
MR = MH(M)

And transcript R0 = {π0,kMAC0
,τ0,h0

MR} with random message r and random key

kMAC0, where

π
0
p = ZK−PoK{r : [HMAC(kMAC0

,r) = τ
0]∧ [h0

MR = MH(r)]},r←{0,1}
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τ
0 = HMAC(kMAC0

,r),h0
MR = MH(r)

To argue R1 and R0 are statistically indistinguishable for A , we will use several hybrid

transcript.

• Transcript T1= {π1,kMAC1
,τ1,h1

MR} is same as the real world transcript R1 of

Merkle Root method protocol mentioned in section 4.4.

• Transcript T2= {π2,kMAC0
,τ2,h1

MR}. In this transcript, we replace the MAC

key to a new different random, and computing the corresponding proof and MAC

tag.

π
2 = ZK−PoK{M;HMAC(kMAC0

,M) = τ
2}

τ
2 = HMAC(kMAC0

,M)

Since computation of the proof and the tag is valid, but with a different random

MAC key with the real message, and the MAC key in real records is the output of

a pseudo-random function (PRF), T2 is statistically indistinguishable with T1.

• Transcript T3= {πsim,kMAC0
,τ2,h1

MR} is same as T2, except the proof πsim is

simulated. The simulated proof is generated without using the private input M,

ensuring that it does not divulge any additional information about M. Given

that the zero-knowledge proof is assumed to be secure in terms of complete-

ness, soundness, and zero-knowledge properties, transcript T3 is statistically

indistinguishable from T2.

• Transcript T4= {πsim,kMAC0
,τ0,h0

MR} is same as T3, except transcript using

a different random bitstring r with the same length with M to generate the tag

τ0. Since M is high entropy, by the property of HMAC function [1] and Merkle

hash function [5], τ2 = HMAC(kMAC0
,M) and h1

MR = MH(M) is statistically

indistinguishable with τ0 = HMAC(kMAC0
,r) and h0

MR = MH(r). Also, since

the proof is perfectly simulated, nor M or r are used to simulate the proof, A
cannot distinguish the difference on the proof. Therefore T4 is statistically

indistinguishable with T3.

• Transcript T5= {π0,kMAC0
,τ0,h0

MR} is same as T4, except replace the simulated

proof to honestly computed proof where

π
0
p = ZK−PoK{r : [HMAC(kMAC0

,r) = τ
0]∧ [h0

MR = MH(r)]},r←{0,1}
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Since the zero-knowledge proof is assumed to be secure in terms of complete-

ness, soundness, and zero-knowledge properties, transcript T5 is statistically

indistinguishable from T4.

It can be seen that the random message record R0 = {π0,kMAC0
,τ0,h0

MR} is exactly

same as T5, therefore, R0 is statistically indistinguishable with real records R1, which

matches the equation in the definition mentioned in section 5.3.1. This proves that this

method is safe in blindness.

B.1.4 AES Approach

Given the real world DECO transcript R1 = {π1,kMAC1
,hEnc1

,M̂1} with real message
M, where

π
1 =ZK−PoK{kEnc1

; [HMAC(kMAC1
,Dec(kEnc1

,M̂1))=Dec(kEnc1
,M̂1)[−1,−2,−3]︸ ︷︷ ︸

HMAC tag τ1

∧[hEnc1
= Hash(kEnc1

)]}

M̂1 = Enc(kEnc1
,M||HMAC(kMAC1

,M)),hEnc1
= Hash(kEnc1

)

And transcript R0 = {π0,kMAC0
,hEnc0

,M̂0} with random message r and random key

kMAC0 and kEnc0, where

π
0 =ZK−PoK{kEnc0

; [HMAC(kMAC0
,Dec(kEnc0

,M̂0))=Dec(kEnc0
,M̂0)[−1,−2,−3]︸ ︷︷ ︸

HMAC tag τ0

∧[hEnc0
= Hash(kEnc0

)]}

M̂0 = Enc(kEnc0
,r||HMAC(kMAC0

,r)),r←{0,1},hEnc0
= Hash(kEnc0

)

To argue R1 and R0 are statistically indistinguishable for A , we will use several hybrid

transcript.

• Transcript T1= {π1,kMAC1
,hEnc1

,M̂1} is same as the real world transcript R1

of Merkle Root method protocol mentioned in section 4.4.

• Transcript T2= {π2,kMAC0
,τ2,hEnc0

,M̂2}. In this transcript, we replace the

MAC key and encryption key to a new different random, and computing the

corresponding proof, ciphertext and MAC tag.

π
2 =ZK−PoK{kEnc0

; [HMAC(kMAC0
,Dec(kEnc0

,M̂2))=Dec(kEnc0
,M̂2)[−1,−2,−3]︸ ︷︷ ︸

HMAC tag τ0

∧[hEnc0
= Hash(kEnc0

)]}
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M̂2 = Enc(kEnc0
,M||HMAC(kMAC0

,M)),hEnc0
= Hash(kEnc0

)

Since computation of the proof, ciphertext and the tag is valid, but with a different

random keys with the real message, and the MAC key and encryption key in real

records is the output of a pseudo-random function (PRF), kMAC0 and kMAC1, kEnc0

and kEnc0 are indistinguishable, thus the hash of two indistinguishable random is

also indistinguishable, therefore T2 is statistically indistinguishable with T1.

• Transcript T3= {πsim,kMAC0
,τ2,hEnc0

,M̂2} is same as T2, except the proof πsim

is simulated. The simulated proof is generated without using the private input

kEnc0, ensuring that it does not divulge any additional information about kEnc0,

thus keeps the perfect secrecy of the plaintext message. Given that the zero-

knowledge proof is assumed to be secure in terms of completeness, soundness,

and zero-knowledge properties, transcript T3 is statistically indistinguishable

from T2.

• Transcript T4= {πsim,kMAC0
,hEnc0

,M̂0} is same as T3, except transcript using a

different random bitstring r with the same length with M to compute the ciphertext

M̂0. Due to the property of AES function, as long as the encryption key is kept

secret, the actual message ciphertext is indistinguishable with the random message

ciphertext. Also at the same time, since hash function is believed to be an one

way function, it is difficult to extract the encryption key from the hash of the key,

which guarantee the secrecy of the encryption key, which makes M̂0} and M̂2}
indistinguishable. Also, since the proof is perfectly simulated, encryption key

kEnc0 are used to simulate the proof, A cannot distinguish the difference on the

proof. Therefore T4 is statistically indistinguishable with T3.

• Transcript T5= {π0,kMAC0
,hEnc0

,M̂0} is same as T4, except replace the simu-

lated proof to honestly computed proof where

π
0 =ZK−PoK{kEnc0

; [HMAC(kMAC0
,Dec(kEnc0

,M̂0))=Dec(kEnc0
,M̂0)[−1,−2,−3]︸ ︷︷ ︸

HMAC tag τ0

∧[hEnc0
= Hash(kEnc0

)]}

Since the zero-knowledge proof is assumed to be secure in terms of complete-

ness, soundness, and zero-knowledge properties, transcript T5 is statistically

indistinguishable from T4.

It can be seen that the random message record R0 = {π0,kMAC0
,hEnc0

,M̂0} is exactly

same as T5, therefore, R0 is statistically indistinguishable with real records R1, which
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matches the equation in the definition mentioned in section 5.3.1. This proves that this

method is safe in blindness.

B.2 Blindness for the third party Verifier

The proof of blindness for the third party Verifier is similar with the proof of the

DECO Verifier, except that the random bitstring r we are using also containing the same

statement as the real world message, but random elsewhere (containing no information

except the statement). The idea is to argue the record on random is indistinguishable

with the real world record.

B.2.1 Direct Approach

Given the real world DECO transcript R1 = {π1,τ1,kMAC1
,σ1} with real message M,

where

π
1 = ZK−PoK{M; [stmt(M)]∧ [HMAC(kMAC1

,M) = τ
1]}

And transcript R0 = {π0,τ0,kMAC0
,σ0} with random message r and random key

π
0 = ZK−PoK{r; [stmt(r)]∧ [HMAC(kMAC0

,r) = τ
0]}

Since the signature must be on the MAC tag and MAC key, no other extra information

can be extracted, and also because the MAC tag and MAC key are given in plaintext

to A , we can safely omit the signature in the signature. After omiting the signature,

the record becomes R1 = {π1,τ1,kMAC1}, R0 = {π0,τ0,kMAC0}, which is the same as

mentioned in section B.1.1. Therefore, it is trivial to conclude that in this method, the

blindness of the third party Verifier is maintained, only difference is the third party

Verifier can learn the statement.

B.2.2 MAC Tag Approach

The record in this method is same as direct approach in the previous section, therefore,

the process is also the same as the previous section.

B.2.3 Merkle Tree Approach

Taking the method mentioned in section 4.4 6b as example. The record in this method

is similar with the previous method. In this method, record of third party Verifier
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contain the Merkle root of the message, and the proof is about the Merkle root, and

signature is on Merkle root. We know that the Merkle hash has the blindness property

for high entropy input, therefore the Merkle root is indistinguishable with the ideal

world (with a random message r mentioned in previous section). Therefore, follow

similar construction as above, it is trivial to conclude the blindness for third party

Verifier.

B.2.4 AES Approach

In section B.1.4, we had prove the blindness for the Verifier with the record as R1 =

{π1,kMAC1
,hEnc1

,M̂1} is indistinguishable with R0 = {π0,kMAC0
,hEnc0

,M̂0}. In this

method from the view of third party Verifier, the record is R1 = {π1,hEnc1
,M̂1,σ1 =

sign(M̂1,hEnc1
)}. The private input for both zero knowledge proof is the encryption key

kEnc and signature will not leak any information except what it is signing on. Therefore,

using the conclusion we got in section B.1.4, we can confidently conclude that the

blindness for third party Verifier holds.


