
Formal verification of the

PSP Security Protocol

Kwan Loong Chan
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Cyber Security, Privacy and Trust

School of Informatics

University of Edinburgh

2024

Abstract

Formal verification offers a robust framework for proving the security of protocols or

identifying potential attacks. These methods have been effectively used in the design

and analysis of industrial protocols. In this project, we perform a formal verification of

the PSP Security Protocol (PSP), developed by Google for encrypting data in transit

between their data centres. This protocol was open sourced in 2022 for adoption, but

as its intended security goals of confidentiality and authenticity have yet to be verified

by the research community, this leaves open the possibility of implementations that

contain hidden vulnerabilities.

We model and evaluate PSP in the symbolic model with the help of ProVerif, a tool

that can automatically prove security properties when given as input a description of the

protocol. Using ProVerif, we verify that the protocol is able to transmit a data packet

from a transmitter to a receiver correctly, even when multiple connections are running

concurrently. PSP makes use of the CMAC and GCM algorithms for which we have

also developed models. These algorithms carry out critical cryptographic operations in

PSP, such as encryption and authentication. Our models for these algorithms have been

designed to accept input messages with arbitrary number of blocks so that data packets

with arbitrary sizes can be supported in PSP. We formally verify these algorithms by

treating them as separate models before integrating them into the main PSP model. We

then show that all the security guarantees of PSP are satisfied, while noting that some

of our proofs are only valid under certain conditions.

Besides proving the main security properties of PSP, we conduct a thorough study of

known weaknesses in PSP and show how they can be handled by upper layer software.

We also review alternative threat models such as compromised devices to see how they

may impact PSP security.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Kwan Loong Chan)

ii

Acknowledgements

I would like to thank my supervisor, Dr Myrto Arapinis, for her time and guidance

throughout the course of this project. Our weekly discussions were extremely helpful

in broadening my understanding of the subject matter. Her insightful feedback on my

findings also often provided me with fresh ideas to deepen my research into specific

areas of work.

iii

Table of Contents

1 Introduction 1
1.1 Contributions . 2

1.2 Dissertation structure . 3

2 Background 4
2.1 Symbolic and computational models 4

2.2 ProVerif . 5

2.3 PSP security protocol . 6

2.3.1 CMAC algorithm . 7

2.3.2 GCM algorithm . 8

2.4 Related work . 9

3 Formal verification of CMAC 10
3.1 Model design and implementation 10

3.1.1 Data authenticity . 13

3.1.2 EUF-CMA . 14

3.2 Results and analysis . 14

4 Formal verification of GCM 16
4.1 Model design and implementation 16

4.1.1 Data confidentiality and authenticity 18

4.1.2 IND-CCA2 . 18

4.2 Results and analysis . 19

5 Modelling PSP 22
5.1 Master key generation . 22

5.2 SA generation and distribution . 23

5.3 NIC Transmit . 24

iv

5.3.1 Egress classifier . 24

5.3.2 Splitter . 25

5.3.3 IV generator and AES GCM (encrypt) 25

5.3.4 Merge . 26

5.4 NIC Receive . 27

5.4.1 Ingress classifier . 27

5.4.2 Splitter . 27

5.4.3 Decryption key derivation, AES GCM (decrypt) and ICV check 28

5.4.4 Merge . 29

6 Evaluation of PSP model 30
6.1 Confidentiality of payload . 30

6.2 Authenticity of payload . 31

6.3 Uniqueness of connection parameters 32

6.4 Isolation between connections . 33

6.5 Impact of compromised devices . 34

6.6 Replay attack and defence . 35

6.7 Bad-data-injection attack and defence 36

6.8 Concurrency . 38

7 Conclusion 39
7.1 Future work . 40

Bibliography 41

A ProVerif syntax 45
A.1 Example program . 45

A.2 List of syntax used in project . 47

B Supplementary code in NIC Transmit and Receive processes 49
B.1 NIC Transmit . 49

B.1.1 Egress classifier . 49

B.1.2 Splitter . 50

B.1.3 Merge . 51

B.2 NIC Receive . 51

B.2.1 Ingress classifier . 51

B.2.2 Splitter . 52

v

B.2.3 Merge . 53

C Supplementary queries in PSP model 54
C.1 Secrecy queries and results . 54

C.2 Queries to test isolation between connections 55

C.3 Queries and trace graphs for concurrency tests 57

C.3.1 Consecutive transmissions within same connection 57

C.3.2 Concurrent connections using same master keys but different

SA keys . 57

C.3.3 Concurrent connections using master keys 0 and 1 on same

receiver . 58

C.3.4 Concurrent connections using different master keys on different

receivers . 59

D Complete list of programs and results 61

vi

Chapter 1

Introduction

Security protocols are distributed programs which ensure the security of communica-

tions over a public network. Examples of security protocols that are widely used today

include Transport Layer Security (TLS) for establishing a secure connection to a web

site over the internet, and the Signal Protocol for enabling end-to-end encryption in

instant messaging applications such as WhatsApp [1]. As these protocols are usually

deployed over untrusted networks, it is important for their security properties to be

guaranteed when data is being transmitted between the endpoints.

PSP Security Protocol (PSP) was developed by Google to protect data in transit

between their data centres located throughout the world [2]. It is a custom-built protocol

that is functionally similar to Internet Protocol Security Encapsulating Security Payload

(IPsec ESP) but has been simplified to retain only the relevant features. This allows

PSP to efficiently support per-connection encryption and authentication of large-scale

traffic without incurring high latency [3]. The protocol also supports the offloading of

these operations to the network interface card (NIC) so that they would not consume

significant resources on the host servers.

After deploying and using PSP on their servers for around a decade, Google decided

to release the architecture specification to the public in 2022 to encourage wider adoption

[3, 4]. However, to the best of our knowledge, there has not been any published research

to verify PSP’s intended security properties of data confidentiality and authenticity. If

the design of PSP contains any security flaw, then implementations of the protocol

would also be vulnerable. This could then be exploited by a malicious adversary,

resulting in users’ data being compromised.

This project aims to fill in this gap by analysing the security of PSP using formal

verification techniques. Formal methods provide a rigorous mathematical framework

1

Chapter 1. Introduction 2

that allows one to precisely describe the capability of the adversary and the security

guarantees of the protocol [5]. We will make use of the symbolic model, also known as

the Dolev-Yao model [6], where cryptographic primitives are represented by perfect

black boxes with their operations described by functions and equations [7]. Under

this model, the adversary is assumed to have control over the public network and can

inspect or tamper with publicly transmitted messages, but he is only allowed to perform

computations using those primitives.

The formulation of the symbolic model has led to the development of tools that can

analyse security protocols with varying degree of automation [8]. For this project, the

modelling of PSP and evaluation of its security will be done using ProVerif [9]. ProVerif

can automatically prove security properties such as secrecy and authentication when

given as input a description of the protocol in the applied pi calculus [7]. Researchers

have successfully used ProVerif to analyse and discover attacks in real-world protocols

such as TLS 1.3 [10, 11]. If any vulnerabilities in PSP are uncovered from our analysis,

we will propose solutions to mitigate them and prove that the fixes are valid.

1.1 Contributions

Our main contributions in this work are as follows:

1. We develop a symbolic model of the specification of PSP written in ProVerif

that consists of all its components and operations. This includes finer-grain

operations that are not found within the PSP specification but are present in

Google’s reference implementation in C [12]. We also model the roles of the

transmitter and receiver, showing how a data packet is encrypted and decrypted.

2. We develop and test symbolic models for two components that carry out the key

cryptographic operations in PSP.

(a) Cipher-based message authentication code (CMAC) algorithm [13] used

during derivation of the encryption/decryption keys

(b) Galois/Counter Mode (GCM) of operation [14] for the Advanced En-

cryption Standard (AES) algorithm used during packet encryption and

authentication

We have modelled the detailed operations within each algorithm instead of mod-

elling them as black boxes. Our models are modular and easy to interface with.

Chapter 1. Introduction 3

We have packaged them as ProVerif library files and integrated them into the

main PSP model, which greatly extends its coverage and precision.

3. We provide a novel way of modelling messages which consist of more than one

block during CMAC and GCM operations, using iterative-like methods to process

messages with unbounded lengths. This is a variation of the technique used by

[15] and it enables us to create interesting security tests that involve messages

with multiple block sizes.

4. We prove the specified security requirements of confidentiality and authenticity

of the transmitted data in our PSP model in the presence of a Dolev-Yao adver-

sary. We further show that the transmitter and receiver agree on a unique set of

connection parameters and that the connections are isolated from one another.

5. We review known weaknesses that have been documented in PSP specification

and show how they can lead to security problems. This includes replay attacks

and bad data injection. We then model the recommended fixes at the upper layer

of the network stack to mitigate these issues. Besides these known weaknesses,

our analysis did not uncover other vulnerabilities in the symbolic model of PSP.

6. We analyse alternative threat models such as incorrect implementations or ma-

licious principals, and also demonstrate how a more powerful adversary can

undermine the secrecy and authenticity of the transmitted data.

We have submitted our ProVerif programs, their results, and a README file that

explains each file and their functions. The results can be reproduced by running the

programs on ProVerif 2.05, which is the latest version at the time of writing. We also

provide the full listing and description of the files in Appendix D for reference.

1.2 Dissertation structure

The remainder of this dissertation is organised as follows. In Chapter 2, we review

existing literature and provide justifications for our research methodology. We also

describe PSP and its security goals. Chapters 3 and 4 respectively describe and analyse

our CMAC and GCM models. Where relevant, we also point out the limitations of our

design. In Chapter 5, we discuss our model for PSP in detail, followed by Chapter 6

where we evaluate PSP security and demonstrate some potential attacks. We conclude

in Chapter 7 and suggest some work for further exploration.

Chapter 2

Background

2.1 Symbolic and computational models

In order to derive rigorous security proofs, protocols often need to be modelled math-

ematically using one of two approaches: the symbolic or computational model [16].

This section briefly explains each approach and our reasons for choosing the former.

The symbolic model is an abstract model that enables automated verification of

protocol specifications using specially built tools, leading to increased accuracy and

allowing for more attack vectors to be tested within the same time period. This model

was pioneered by Needham and Schroeder in 1978 [17] and formalised by Dolev and

Yao in 1983 [6]. Cryptographic primitives are modelled as perfect black boxes and

their operations can be represented by functions and equations. For instance, symmetric

key encryption can be modelled using function symbols enc and dec, where enc(k,m)

represents the encryption of m with key k, and dec(k,c) represents the decryption of

c with key k. The decryption operation can then be further described using the equa-

tion: dec(k,enc(k,m)) = m, which provides the capability for one to recover m from

enc(k,m) if he possesses key k. As these operations are also available to an adversary

who is assumed to have control over the public network, any inadvertent leakage of key

k would compromise the secrecy of m. An advantage of the symbolic model is that any

discovered attack also holds in the computational model and therefore translates to a

practical attack. Under additional assumptions on computational soundness, proofs of

security in the symbolic model also implies the same for the computational model [7].

On the other hand, the computational model reflects actual execution of protocols

more closely and allows a larger class of attacks to be studied. This model is generally

used by cryptographers to formulate proofs of security with respect to a computationally

4

Chapter 2. Background 5

bounded adversary. Under this model, cryptographic primitives are treated as proba-

bilistic algorithms over bitstrings, and proofs of security often involve reasoning about

the advantage of the adversary being negligible [16]. Due to the higher complexity of

analysis, security proofs in the computational model are difficult to automate, require

extensive manual effort, and may be susceptible to human error.

While both the symbolic and computational models have their strengths and limita-

tions, the ability to automate the discovery of practical attacks within a tight dissertation

schedule makes symbolic analysis the method of choice for this project.

2.2 ProVerif

Besides ProVerif, there exists several other tools that can be used to analyse security pro-

tocols in the symbolic model, each with different strengths and trade-offs. For instance,

Maude-NPA [18, 19] and Tamarin [20] support equational theories such as associativity

and commutativity but may require longer verification time or user intervention. Scyther

[21] is a fully automated tool that can prove secrecy and authentication properties, but

it only supports a limited set of cryptographic primitives [7]. In contrast, ProVerif

is fully automatic, supports an unbounded number of sessions of the protocol, and

handles a wide variety of cryptographic primitives. It can be used to prove reachability,

correspondences, and equivalence [16], which allow us to express security properties

that are relevant to PSP. Although ProVerif may not always terminate and it makes

abstractions that may result in false attacks, it has a proven track record of successfully

being used to analyse many real-world protocols, such as TLS [10, 22]. These benefits

outweigh the limitations and justify ProVerif as a suitable tool for this project.

The ProVerif user manual [23] contains an extensive suite of syntax and semantics,

but we will only be using a subset of them. We have written an example program and

provided a line-by-line explanation in Section A.1 of Appendix A. We also list the

syntax used in our project in Section A.2 of Appendix A for reference.

In the background, ProVerif actually abstracts the program and the security proper-

ties into Horn clauses and derivability queries on those clauses [7]. A security property

is true if it is not derivable by the adversary. If a security property is false, ProVerif

will try to reconstruct an execution trace that shows how an attack on the property is

achieved. There is also a chance of obtaining false attacks or non-termination due to

the abstraction into Horn clauses. When this issue is encountered, we would manually

inspect the output to diagnose the problem and refine our model to resolve it.

Chapter 2. Background 6

Figure 2.1: Transmitter block diagram [4].

Version IV

Figure 2.2: Receiver block diagram [4] with some details added.

2.3 PSP security protocol

PSP was developed by Google to provide confidentiality and authenticity of Internet

Protocol (IP) packets at the network layer. Similar to IPsec ESP, PSP supports transport

and tunnel modes of operation. Our research focuses on transport mode, but the models

can be easily modified to work for tunnel mode, which only requires an additional

header. Figures 2.1 and 2.2 are taken from the PSP specification and they provide

an overview of the operations that occur at the transmitter and receiver side to secure

the data. To improve the accuracy of our model, we studied the official C reference

implementation of PSP and added any missing but important details. For instance,

the Version field should be extracted from the PSP header and used for derivation

of the decryption key (added in magenta). The C implementation also extracts the

initialisation vector (IV) field from the PSP header and uses it to construct the IV for

AES GCM decryption (added in green). Both of these fields had been abstracted into

the Pkt[PspHdrStart:IcvStart-1] term in the original diagram.

As the key exchange protocol is outside the scope of PSP, we assume the transmitting

party can request and obtain an encryption key from the receiving party prior to the

start of PSP. Each receiver NIC stores a pair of 256-bit master keys, of which only one

Chapter 2. Background 7

Ek

m1

Ek

m3

Ek

mn

Ek

00...0

Derive

Tag

Ek

m2

k1

mac_block

00...0

Figure 2.3: CMAC operation.

is active at any time. Upon receiving a request for a new encryption key, the receiver

would generate one by running CMAC algorithm on some input data and its own active

master key. The encryption key is then used to encrypt and authenticate data packets

with AES GCM algorithm. Being a symmetric key algorithm, the decryption key in

AES GCM is the same as the encryption key. The receiver does not need to store a copy

of the decryption key as it can be derived from the PSP header sent by the transmitter,

together with the receiver’s own active master key. When all possible encryption keys

for the active master key have been used up or after an expiry time, the other master key

will become active while the old one will be replaced with a fresh random value.

The CMAC and GCM operations will be modelled and verified in detail in Chapters

3 and 4 as these are critical cryptographic operations in PSP. Here, we provide a brief

overview of these algorithms in the following sub-sections.

2.3.1 CMAC algorithm

In general, CMAC is used to provide assurance of data authenticity. An overview of its

operation is shown in Figure 2.3. The input message is first broken up into n blocks of

128 bits each. Each message block is an input into a routine which we have labelled

as “mac block” and will be referencing it in Chapter 3. The output from the previous

block cipher with key k, denoted by Ek, will undergo exclusive-or (XOR) with the next

input message block before the result is encrypted. The final message block is also

XOR’ed with a subkey k1 that is derived from the encryption of the all-zeros block.

The original CMAC specification contains a few subkeys, but only k1 is applicable

to PSP. The output from the final block cipher is the authentication tag and any slight

modification of the original message is expected to result in a drastically different tag.

Chapter 2. Background 8

iv

Counter 0 incr Counter 1 incr Counter 2 incr Counter n

Ek Ek Ek Ek

Plaintext 1

Ciphertext 1

Plaintext 2

Ciphertext 2

Plaintext n

Ciphertext n

multH

Auth Data m

multH multH

multH

Auth Data 2

multH

Auth Data 1

00...0

multH

len(A) || len(C)

multH

Auth Tag

encryption_block

authentication_block

incr Counter 2

Ek

Plaintext 2

Ciphertext 2

multH

decryption_block

Figure 2.4: GCM operation.

2.3.2 GCM algorithm

GCM provides authenticated encryption of input data, which consists of the plaintext

that needs to be encrypted and authenticated, and the additional authenticated data that

only needs to be authenticated. Figure 2.4 provides an overview of its operation. We

shall assume for simplicity that the input message has already been padded to contain

exactly m Auth Data blocks and n Plaintext blocks of 128 bits each.

Encryption flow: A randomly generated IV is used to derive a counter, which is

then incremented by one for each Plaintext block. This counter is encrypted using

a block cipher with key k, denoted by Ek, and the result undergoes XOR with each

Plaintext block to obtain the corresponding Ciphertext block.

Authentication flow: Each Auth Data block undergoes XOR with the result from

the previous multiplication operation for the binary Galois field of 2128 elements [14],

indicated by the multH component. This operation uses a hash key H that is derived

from key k. After all Auth Data blocks have been processed, a similar operation occurs

for all the Ciphertext blocks that were generated from the encryption flow. At the end of

the algorithm, the lengths of the additional authenticated data, ciphertext, and the output

of the first block cipher are involved in deriving the authentication tag (Auth Tag).

Chapter 2. Background 9

We have grouped together some components into “encryption block”, “decryp-

tion block” and “authentication block” in Figure 2.4, which will be referenced in

Chapter 4. Decryption is similar to encryption, with all the encryption blocks replaced

by the decryption blocks (note the reverse direction of arrows to recover Plaintext from

Ciphertext). The sender needs to send the IV, additional authenticated data, ciphertext

and Auth Tag to the receiver so that he is able to authenticate and decrypt the data.

2.4 Related work

Although formal verification of PSP has not been done before, there exists similar

studies on security protocols that are widely used today, such as TLS 1.3 and the Signal

Protocol. TLS 1.3 is used to secure communications to a web sites over the internet.

Arai et al. used ProVerif to model the full handshake protocol and showed that it fulfilled

its secrecy and authentication goals [24, 25]. Bhargavan et al. also used ProVerif to

study different modes of operation in TLS 1.3 and covered various threat models [10].

The Signal Protocol has been deployed in many popular instant messaging applications,

such as WhatsApp and Facebook Messenger. Kobeissi et al. used ProVerif to find new

and known weaknesses in the protocol and suggested practical countermeasures [26].

The CMAC and GCM algorithms are recommended by NIST for data authentication

and encryption [13, 14]. They have been extensively analysed for their performance

and security properties. For instance, Black and Rogaway proved that an adversary is

unable to forge a new tag using the CMAC algorithm [27], while Iwata and Kurosawa

proved its security for arbitrary length messages [28]. The performance and security

properties of GCM have also been analysed in [29] and [30]. We highlight that these

studies had been carried out in the computational setting, whereas our work focuses on

the formal verification of these algorithms using the symbolic model.

Mieno et al. introduced a technique to formalise loop iterations in protocols using

ProVerif, treating function calls as communications between internal processes [15].

We adapted their technique and made some modifications to model messages containing

multiple blocks. Instead of comparing block numbers to match the parent and child

processes, we utilised fresh private reply channels to ensure that message replies from

the child process would only be accepted by its parent without needing comparison

operations. We also combine the Ciphertext blocks into a single term before returning it

to the requestor. This way, the requestor would only need to transmit a single ciphertext

to the receiving party instead of having to send multiple Ciphertext blocks.

Chapter 3

Formal verification of CMAC

In this chapter, we describe our model for the CMAC algorithm and analyse its security

properties using ProVerif. Recall that CMAC is a critical component used in PSP to

derive the encryption/decryption key. Therefore, verification of the CMAC model would

directly strengthen our proofs of security for the PSP model.

3.1 Model design and implementation

We observe from Figure 2.3 of Section 2.3.1 that the CMAC operation is composed

of iterations of the mac block component. Each mac block takes in an input message

block, the previous encryption result, key k, and outputs the current encryption result

to the next mac block. Figure 3.1 and the accompanying code block illustrate our top-

level model design, which consists of an unbounded number of CMAC and mac block

processes that are automatically generated based on the number of requests and input

message blocks, respectively. All communications are carried out using private channels,

so any transmitted message between these processes are not available to the adversary.

let CMAC_processes = (!CMAC) | (!mac_block).

CMAC mac_block*

1

2 3

4

5

Figure 3.1: CMAC model with unbounded number of mac blocks.

10

Chapter 3. Formal verification of CMAC 11

The steps in our implementation of the CMAC model are described below, and

they correspond to the labels in Figure 3.1. The full program has been packaged into a

library file named cmac.pvl so that it can be easily integrated into other larger models.

1. The CMAC process accepts the inputs from the requestor via a private channel

c cmac. The input comprises a fresh private reply channel c return, key K,

message M, and the number of message blocks M blocks.

in(c_cmac , (c_return: channel , K: mkey_t , M: bitstring ,

M_blocks: nat));

2. The CMAC process creates a fresh private reply channel c return mac, be-

fore sending the received inputs, c return mac and the all-zeros block to the

mac block process via another private channel c mac block.

new c_return_mac: channel;

out(c_mac_block , (c_return_mac , K, M, M_blocks , ZEROS));

3. The mac block process is divided into two parts separated by an if-then-else

statement. If the current number of message blocks is 1, the computation is

performed for the final message block as shown in Figure 2.3. The menc function

first encrypts the all-zeros block and passes the result to the derive subkey

function. The derive subkey function then outputs subkey K1. This operation is

abstracted as it involves bit manipulation which cannot be modelled by ProVerif.

This is followed by a series of xor and menc operations to return the final mac.

fun menc(mkey_t , bitstring): bitstring.

reduc forall k: mkey_t , m: bitstring; mdec(k, menc(k, m)) = m.

fun derive_subkey(bitstring): bitstring.

fun xor(bitstring , bitstring): bitstring

equation forall x: bitstring , y: bitstring; xor(xor(x,y),y) = x

let L = menc(K, ZEROS) in

let K1 = derive_subkey(L) in

let message ’ = xor(message , K1) in

let mac = menc(K, xor(message ’, prev_mac)) in

out(prev_c_return_mac , mac)

XOR properties are defined using a function and equation, which together pro-

vides the ability to recover operand x from x⊕y. We are unable to model commu-

tativity and associativity properties of xor as they are not supported by ProVerif.

Chapter 3. Formal verification of CMAC 12

ProVerif is also unable to recover both operands at the same time. We acknowl-

edge that the absence of these properties may weaken the adversary’s capability,

and therefore any proofs of security would only apply under these conditions.

When the current number of message blocks is more than 1, we extract the first

message block curr message and compute the output of the current mac block

curr mac. We then create another fresh private reply channel c return mac and

send these inputs together with the remaining message and remaining number of

message blocks into the c mac block channel. This triggers the generation of a

child mac block process to accept these inputs and repeat the computation under

a new context. The current mac block process then waits for the return value mac

from the child process, before sending this value back to its parent.

let curr_message = head_block(message) in

let remaining_message = tail_blocks(message) in

let curr_mac = menc(K, xor(curr_message , prev_mac)) in

new c_return_mac: channel;

out(c_mac_block , (c_return_mac , K, remaining_message ,

message_blocks - 1, curr_mac));

in(c_return_mac , mac: bitstring);

out(prev_c_return_mac , mac)

The following set of equations define the behaviour for block splitting and com-

bining, which are important operations for organising the message blocks.

equation forall m: bitstring; combine_blocks(head_block(m),

tail_blocks(m)) = m.

equation forall head: bitstring , tail: bitstring; head_block(

combine_blocks(head , tail)) = head.

equation forall head: bitstring , tail: bitstring; tail_blocks(

combine_blocks(head , tail)) = tail.

4. The parent CMAC process receives the final mac from the mac block process via

the private reply channel c return mac that was created in step 2. This ensures

that it receives the mac from its immediate child mac block.

in(c_return_mac , T: bitstring);

5. Finally, the CMAC process returns mac to the requestor via the private reply

channel c return that was created by the requestor in step 1.

out(c_return , T).

Chapter 3. Formal verification of CMAC 13

CMAC mac_block*

Sender Verifier

CMAC mac_block*

Adversary
M, T M', T'

1 2 3 4

Figure 3.2: Sender-Verifier model.

3.1.1 Data authenticity

Data authenticity is the main security property that must be achieved by CMAC. This

means that any unauthorised modification of the data must be detected. Figure 3.2

shows a typical Sender-Verifier model, where honest parties are highlighted in green and

the adversary controls the transmission medium highlighted in red. The numbers denote

private channels. In this model, only the sender and verifier possess knowledge of the

CMAC key. Referring to Listing 3.1, the sender computes the authentication tag T for an

arbitrary message M using the CMAC implementation from Section 3.1 and sends both

M and T to the verifier. The verifier then recomputes the tag from the received message

using the same CMAC implementation and checks whether the computed tag matches

the received tag. If they do not match, then either M or T must have been modified. The

full implementation for this model can be found in cmac sender verifier.pv.

1 let sender(K: mkey_t , M_blocks: nat) =

2 new M: bitstring;

3 new c_return: channel;

4 out(c_cmac , (c_return , K, M, M_blocks)); (* channel 1 *)

5 in(c_return , T: bitstring); (* channel 2 *)

6 event message_sender(M, T);

7 out(c_public , (M, T)).

8

9 let verifier(K: mkey_t , M_blocks ’: nat) =

10 in(c_public , (M: bitstring , T’: bitstring));

11 new c_return: channel;

12 out(c_cmac , (c_return , K, M, M_blocks ’)); (* channel 3 *)

13 in(c_return , T: bitstring); (* channel 4 *)

14 if T = T’ then

15 event message_verifier(M, T).

Listing 3.1: Sender-Verifier processes.

Chapter 3. Formal verification of CMAC 14

CMAC mac_block*

MAC
oracle

Test
oracle

CMAC mac_block*

Adversary
Mi

Ti
M', T'

Figure 3.3: EUF-CMA model.

3.1.2 EUF-CMA

Existential unforgeability under adaptive chosen message attack (EUF-CMA) is another

property that should be satisfied by a MAC system. This means that an adversary cannot

construct a valid tag on any new message, even if the adversary can obtain tags on other

arbitrary messages [31]. Our model to test this property is shown in Figure 3.3. The

MAC oracle acts as a proxy for the adversary to access the CMAC implementation

without knowing the key. He can submit requests for tags Ti of arbitrary messages Mi.

The adversary then submits a message-tag pair (M′,T ′) to a test oracle, where M′ has

not been queried to the MAC oracle before. The adversary is successful if T ′ is a valid

tag for M′, and M′ /∈ {Mi}. The full implementation can be found in cmac euf-cma.pv.

3.2 Results and analysis

We placed event checkpoints at the end of the honest processes in the Sender-Verifier

and EUF-CMA models and ran the following queries, with both producing true results.

query m: bitstring , t: bitstring; event(message_verifier(m, t)) ==>

event(message_sender(m, t)). (* Sender -Verifier model *)

query m: bitstring , t: bitstring; event(message_test_oracle(m, t))

==> event(message_mac_oracle(m, t)). (* EUF-CMA model *)

A true result in the Sender-Verifier model means that whenever the verifier receives

a valid message-tag pair (m, t), the same message and tag must have been generated by

the sender, which implies that the message is authentic and has not been modified by

the adversary. Similarly, a true result for the EUF-CMA model means that whenever the

test oracle receives a valid message-tag pair (m, t), the same message must have been

previously queried to the MAC oracle, which implies that a tag cannot be forged for

any new message. Therefore, these results validate the accuracy and intended security

Chapter 3. Formal verification of CMAC 15

k1

Ek

m1

Ek

m3

Ek

mn

Ek

00...0

Derive

Tag

Ek

m2

00...0

Figure 3.4: CMAC operation without subkey derivation.

properties of our CMAC model. The complete set of results in HTML form are archived

in cmac sender verifier results and cmac euf-cma results folders.

One challenge encountered during the analysis is that the resolution algorithm in

ProVerif would not terminate if we allow an unbounded number of message blocks in

the CMAC model. This issue also applies to the GCM model covered in Chapter 4.

Our solution is to limit the maximum number of message blocks such that the analysis

can complete within a reasonable time, and then show that the security properties are

true under these constraints. We have proven data authenticity in the Sender-Verifier

model for up to 6 input message blocks, which required 11 minutes to complete the

analysis on a DICE compute server (selby.inf.ed.ac.uk). Proving this for higher number

of blocks may require reduction or manual analysis due to limited computational power.

Nevertheless, the recurring structure of the CMAC model provides good confidence

that our current proof for 6 blocks would continue to hold for higher number of blocks.

To further validate the accuracy of our CMAC model, we compared it to one that

has been incorrectly implemented. Figure 3.4 shows a flawed implementation of CMAC

algorithm that has omitted the subkey derivation component. Using this implementa-

tion of CMAC in the Sender-Verifier model, ProVerif showed that the query for data

authenticity was false and demonstrated a length-extension attack. In this attack, the

adversary would intercept two single-block message-tag pairs (M1,T 1) and (M2,T 2)

from the sender, and then forward a 2-block message-tag pair ((M1,M2⊕T 1),T 2)

to the verifier. Since T 2 is a valid tag for (M1,M2⊕T 1), the adversary has success-

fully forged a tag for a new message and the verifier unknowingly accepted the new

message. The flawed CMAC implementation can be found in cmac no k1.pvl, while

the results and trace graph are archived at cmac no k1 length extension attack folder.

This demonstration clearly emphasises the importance of following the specifications

properly when implementing algorithms.

Chapter 4

Formal verification of GCM

The GCM operation is used with the AES algorithm in PSP to carry out its main function:

packet encryption and authentication. In this chapter, we review our implementation

of the GCM model and show how its intended security properties are satisfied. The

GCM architecture is more complex than CMAC, but there are some similarities. We

will focus more on the new components which have not been covered in Chapter 3.

4.1 Model design and implementation

The iterative structure of the GCM operation allows us to break it up into recurring

instances of encryption block, decryption block, and authentication block, indicated

by the red dashed boxes in Figure 2.4 of Section 2.3.2. Our top-level model designs

are shown in Figure 4.1, along with the implementation code shown below. As before,

the number of processes generated depends on the number of requests and input blocks

specified. We can apply the same iterative technique used in Chapter 3 to model the

GCM operation with arbitrary number of Auth Data, Plaintext, and Ciphertext blocks.

let GCM_processes = (!GCM_AE) | (!GCM_AD) | (!authentication_block)

| (!encryption_block) | (!decryption_block).

We now describe the steps for encryption in Figure 4.1. The complete program has

been packaged into a library file named gcm.pvl so that other models can use it.

1. The GCM Authenticated Encryption (GCM AE) process waits for the requestor

to send the required inputs. After completion of the entire process, the GCM AE

process returns ciphertext C and authentication tag T back to the requestor. The

implementation is similar to that of the CMAC model.

16

Chapter 4. Formal verification of GCM 17

GCM_AE

authentication_block*

encryption_block*

GCM_AD

authentication_block*

decryption_block*

1

2
3

4
5

Figure 4.1: GCM encryption (left) and decryption (right) models with unbounded number

of blocks.

2. The GCM AE process uses the input IV to initialise counter 0. It also prepares

the hash key H which is defined as the encryption of the all-zeros block using

block cipher Ek. It then sends the required information to the authentication block

process using a similar implementation as the CMAC model, and waits for the

result from processing all the Auth Data blocks.

let counter_0 = counter(IV, 0) in

let H = senc(K, ZEROS) in ...

3. The authentication block process performs the computation for each Auth Data

block, which is the term curr auth data in the code below. The code follows

our description of the authentication flow in Section 2.3.2. This process also

contains code (not shown) that would trigger the same process for the next Auth

Data block, allowing for an unbounded number of such blocks to be processed.

let curr_mult_out = mult(H, xor(prev_mult_out , curr_auth_data))

in ...

4. The GCM AE process proceeds with the encryption flow in Section 2.3.2 by

triggering the encryption block process using the necessary inputs. At the end

of encryption, it will receive the combined ciphertext C and intermediate au-

thentication tag final mult out back from the encryption block process. It

then computes the final authentication tag using the lengths of the additional

authenticated data and ciphertext, as well as the output from the first block cipher.

in(c_combine , (C: bitstring , final_mult_out: bitstring));

let T = xor(mult(H, xor(final_mult_out , (len(A), len(C)))),

senc(K, counter_0)) in ...

Chapter 4. Formal verification of GCM 18

Sender ReceiverAdversary
IV, C, A, T

GCM_AE

authentication_block*

encryption_block*

GCM_AD

authentication_block*

decryption_block*

IV', C', A', T'

Figure 4.2: Sender-Receiver model.

5. The encryption block process performs the computation for each Plaintext block

to obtain the Ciphertext block, and authenticates the Ciphertext block using

similar code as step 3. It also contains code (not shown) that would trigger the

same process for the next Plaintext block, allowing for an unbounded number of

Plaintext blocks to be processed. We combine all Ciphertext blocks back into a

single ciphertext term before returning it to the requestor.

let combined_ciphertext = combine_blocks(curr_ciphertext ,

remaining_ciphertext) in ...

We now model the security properties of the GCM model in the presence of a

Dolev-Yao adversary who is able to interact with the processes via the public channel.

4.1.1 Data confidentiality and authenticity

Figure 4.2 shows our model to test for data confidentiality and authenticity in GCM,

where only the sender and receiver possess knowledge of the encryption/decryption

key. The sender has some plaintext P and additional authenticated data A that he wishes

to encrypt using the GCM algorithm. He generates a random IV, sends the inputs into

the GCM encryption model, and receives back ciphertext C and authentication tag T.

The sender transmits (IV, C, A, T) to the receiver, who then uses the GCM decryption

model to successfully recover the plaintext P only if the authentication tag T is valid.

The implementation for this model can be found in gcm sender receiver.pv.

4.1.2 IND-CCA2

Indistinguishability under adaptive chosen ciphertext attack (IND-CCA2) is a strong

property of an encryption scheme and can be defined in the form of a randomised

Chapter 4. Formal verification of GCM 19

Challenger Decryption oracle
(pre-challenge)Adversary

IVi, Ci, Ai, Ti

GCM_AE

authentication_block*

encryption_block*

GCM_AD

authentication_block*

decryption_block*

IV'j, C'j, A'j, T'j

Encryption
oracle

Decryption oracle
(post-challenge)

Pi, Ai

P0, P1, A

IV, C, A, T
Pj

IV'k, C'k, A'k, T'k

Pk

1 2

3 4

Figure 4.3: IND-CCA2 model.

experiment with a powerful adversary [31]. Figure 4.3 shows our model to test GCM

for IND-CCA2, with numbered labels to identify the transactions. The adversary has

oracle access to GCM encryption and decryption and is allowed to make any queries

(labels 1 and 2). He then creates and sends two distinct but equal-length plaintexts to

a challenger, who randomly chooses one of them to encrypt and returns the challenge

ciphertext back to the adversary (label 3). The adversary continues to have oracle

access to GCM encryption and decryption, but is not allowed to query the latter on the

challenge ciphertext itself (labels 1 and 4). Eventually, the adversary needs to determine

which of the two plaintexts has been encrypted by the challenger. We say that the

encryption scheme is IND-CCA2 secure if the adversary has negligible advantage in

distinguishing between the two plaintexts. The implementation for this model can be

found in gcm ind-cca2.pv and uses the “phase” instruction to arrange the order of steps.

4.2 Results and analysis

The properties of data confidentiality and authenticity were tested using queries on

the secrecy of the payload and the reachability of events placed within the Sender-

Receiver model. The result shows that these properties are satisfied by our GCM

models. The HTML output for single Plaintext and Auth Data block has been archived

at gcm sender receiver results folder. We were able to test up to 2 Plaintext and 2 Auth

Data blocks, which took 1h 40mins to complete on the DICE compute server (selby).

For IND-CCA2, we made use of a new syntax “choice[P0, P1]”, which checks for

observational equivalence between a process that uses plaintext P0 and a process that

uses another plaintext P1. Below shows the code snippet in the challenger process, who

Chapter 4. Formal verification of GCM 20

is sending either P0 or P1 to the GCM AE process and receiving back ciphertext C

and authentication tag T. If there is observational equivalence, then the adversary is not

going to be able to tell whether C came from P0 or P1. Our test shows that there is

indeed observational equivalence, which proves that our GCM model is IND-CCA2

secure. The HTML output is archived at gcm ind-cca2 results folder. Unfortunately,

due to the higher complexity of adversary interactions, we were only able to obtain

the proof for a single Plaintext and Auth Data block. When setting a larger number of

blocks, the analysis would not complete even after running for 24 hours.

out(c_gcm_enc , (c_return , K, IV, choice[P0, P1], P_blocks , A,

A_blocks));

in(c_return , (C: bitstring , T: bitstring));

To further validate the accuracy of our GCM model, we compared it to two other

models that were incorrectly implemented. Figure 4.4 shows a flawed implementation

of GCM algorithm that has omitted the final XOR operation with encrypted Counter 0,

which can be found in gcm no final xor.pvl. Using this implementation of GCM in the

Sender-Receiver model, ProVerif discovered a message forgery attack. The adversary

intercepts (IV, C, A, T) from the sender and sends (IV’, C, A, T) to the receiver. Tag T

is still valid because it now only depends on the additional authenticated data A and

ciphertext C, which are both unchanged. Receiver proceeds to decrypt the ciphertext

using IV’, resulting in a different plaintext. The trace graph can be found in the

gcm no final xor message forgery folder.

Figure 4.5 shows another flawed implementation which has omitted the length

computation near the end of the algorithm. This is implemented in gcm no length.pvl.

Using this implementation of GCM in the Sender-Receiver model, ProVerif discovered a

length extension attack. The adversary intercepts a single block ciphertext and additional

authenticated data (IV, C, A, T) from sender, and sends a 2-block ciphertext and a single

block all-zeros authenticated data (IV, (A, C), zeros, T) to the receiver. Tag T is still

valid because the first ciphertext block A behaves exactly like the authenticated data,

and the lengths of the ciphertext and additional authenticated data are not being checked

even though they have been modified. Therefore, the receiver proceeds to decrypt

the ciphertext and obtains a different plaintext. The trace graph can be found in the

gcm no length length extension attack folder.

These two flawed models provide a clear picture of why certain features are required

in the GCM algorithm. They also highlight the ability of ProVerif to automatically

discover attacks that may not be obvious when designing new cryptographic algorithms.

Chapter 4. Formal verification of GCM 21

iv

Counter 0 incr Counter 1 incr Counter 2 incr Counter n

Ek Ek Ek Ek

Plaintext 1

Ciphertext 1

Plaintext 2

Ciphertext 2

Plaintext n

Ciphertext n

multH

Auth Data m

multH multH

multH

Auth Data 2

multH

Auth Data 1

00...0

multH

len(A) || len(C)

multH

Auth Tag

encryption_block

authentication_block

incr Counter 2

Ek

Plaintext 2

Ciphertext 2

multH

decryption_block

Figure 4.4: GCM model without final XOR operation.

iv

Counter 0 incr Counter 1 incr Counter 2 incr Counter n

Ek Ek Ek Ek

Plaintext 1

Ciphertext 1

Plaintext 2

Ciphertext 2

Plaintext n

Ciphertext n

multH

Auth Data m

multH multH

multH

Auth Data 2

multH

Auth Data 1

00...0

multH

len(A) || len(C)

multH

Auth Tag

encryption_block

authentication_block

incr Counter 2

Ek

Plaintext 2

Ciphertext 2

multH

decryption_block

Figure 4.5: GCM model without length computation.

Chapter 5

Modelling PSP

We have so far developed detailed models for the CMAC and GCM algorithms and

verified that their security properties are being achieved by our models. In this chapter,

we describe our implementation for the PSP protocol and show how the CMAC and

GCM models are integrated into this model. Our symbolic model for PSP is shown

in Figure 5.1. It shows the key processes and how information propagates between

them. The full program can be found in the file psp.pv. The code below shows the main

process in the program launching an unbounded number of sessions of all processes

and running them in parallel. P blocks, C blocks and A blocks define the number

of blocks in the input data, which are subsequently used by the CMAC and GCM

models. These numbers can be modified, and we have tested the PSP model for up to

2 P blocks, 2 C blocks and 2 A blocks. CMAC processes and GCM processes refer

to the processes that have been presented in Chapters 3 and 4.

process

let P_blocks = 1 in

let C_blocks = 1 in

let A_blocks = 1 in

((!master_key_generation) | (!sa_generation_and_distribution) |

(!NIC_Transmit(P_blocks , A_blocks)) | (!NIC_Receive(C_blocks ,

A_blocks)) | CMAC_processes | GCM_processes)

5.1 Master key generation

Each NIC receiver holds a pair of 256-bit master keys, of which only one of them

is active at any one time and used to derive the secret key for encryption/decryption.

22

Chapter 5. Modelling PSP 23

 sa_generation_and_distribution

master_key_generation

(master_key_0, master_key_1)sa

new master_key_0
new master_key_1

(master_key_0, master_key_1)

Generate 128-bit sa_key
using master_key_0

Generate 128-bit sa_key
using master_key_1

Generate 256-bit sa_key
using master_key_0

Generate 256-bit sa_key
using master_key_1

BIT_0 BIT_1

AES_GCM_128

AES_GCM_256

version

active_bit

NIC_Transmit
NIC_Receive

(master_key_0, master_key_1)

(master_key_0, master_key_1)

sa

pkt_out

CMAC
library

GCM
library

Adversary

GCM
library

new crypt_offset
new spi_31lsb
spi = active_bit || spi_31lsb
sa = security_association(spi, sa_key, crypt_offset, version)

Regenerate 128-bit sa_key
using master_key_0

Regenerate 128-bit sa_key
using master_key_1

Regenerate 256-bit sa_key
using master_key_0

Regenerate 256-bit sa_key
using master_key_1Adversary

pkt_in

CMAC
library

Figure 5.1: PSP model.

Each master key has an expiry period, after which the other master key becomes the

active key while the current one will be regenerated using some strong and approved

cryptographic technique. Our ProVerif code for the master key generation process

simply generates a pair of master keys and sends them to the next process.

let master_key_generation =

new master_key_0: mkey_t;

new master_key_1: mkey_t;

event end_master_key(master_key_0 , master_key_1);

out(c_sa , (master_key_0 , master_key_1)).

5.2 SA generation and distribution

Although the initial handshake for key distribution is outside the scope of PSP, we

still model the handshake in the form of a security association (SA) generation and

distribution process, so that the secret parameters are guaranteed to be securely generated

and distributed to the transmitter and receiver. This process resides on the receiver and

uses the master keys from the previous section. The secret key for encryption/decryption

Chapter 5. Modelling PSP 24

is generated using the CMAC library, with AES as the block cipher and the active master

key as the CMAC key. The CMAC library takes in a single message block that is the

concatenation of a random 32-bit security parameters index spi and three other 32-bit

fields that depend on whether a 128-bit or 256-bit version of AES is required. The

output of CMAC is the encryption key sa key. Referring to Figure 5.1, we allow the

adversary to determine which master key is active (active bit) and what version of

AES is selected (version). Giving the adversary more power not only strengthens our

security proofs, but also allows us to test for all four scenarios indicated in the figure.

The sa generation and distribution block contains code snippets describing how

the spi is constructed, where the active bit becomes its most significant bit while

the remaining 31 bits are random. The spi, sa key, crypt offset and version are

packaged together as the sa before sending it to the transmitter via a private channel.

There is also a feedback loop that sends the current master keys back to this process so

that it can reuse the master keys to create SAs for different transmitters.

5.3 NIC Transmit

The transmitter receives the SA from the previous process and is ready to initiate the

PSP protocol with the receiver. This process uses the GCM library for authenticated

encryption. Note in Figure 5.1 that this process also contains a feedback loop that allows

it to reuse the same SA for messages within the same connection. We will refer to the

components shown in the block diagram of Figure 2.1 in Chapter 2 and describe our

implementation of each component in this section. Some of the implementation code

has been moved to Section B.1 of Appendix B, where they will be further explained.

5.3.1 Egress classifier

The egress classifier is responsible for building the PSP and UDP headers into the

original IP packet. The PSP header contains information that is needed by the receiver

to decrypt the packet, while the UDP header contains routing information that depends

on inner header fields. The egress classifier also communicates the PSP header offset

(from the start of the packet) to the splitter block. We have implemented the egress

classifier as a destructor, and our code is further explained in Appendix B. Figure 5.2

illustrates how our implementation transforms the IP packet.

Chapter 5. Modelling PSP 25

ip_hdr ip_payload

ip_hdr udp_hdr psp_hdr ip_payload

psp_hdr_offset

pkt_in

pkt

Figure 5.2: Transformation of IP packet by egress classifier.

ip_hdr udp_hdr psp_hdr ip_payload

psp_hdr_offset

pkt

ip_hdr udp_hdr

psp_hdr ip_payload

pkt_0_PspHdrStart

pkt_PspHdrStart_PktLen

Figure 5.3: Division of data packet by splitter.

5.3.2 Splitter

The main function of the splitter is to divide the IP packet into two segments based on

the PSP header offset received from the egress classifier. The segment from the start of

the packet to just before the PSP header will be sent in clear, while the segment from

the PSP header to the end of the packet will be sent to the AES GCM block. The splitter

also determines the crypt offset from the PSP header and sends it to the AES GCM

block. This crypt offset starts from the end of the PSP header and is used to determine

the portion of IP payload that does not need to be encrypted but remains authenticated.

We have implemented the splitter as a destructor and our code is further explained in

Appendix B. Figure 5.3 illustrates how our implementation splits up the data packet.

5.3.3 IV generator and AES GCM (encrypt)

Figure 5.4 shows how the data packet will be transformed by the AES GCM block. The

terms in this figure are taken from our implementation in Listing 5.1. A fresh random

ip_payload_0_CryptOffset Ppsp_hdrpkt_PspHdrStart_PktLen

crypt_offset

ip_payload_0_CryptOffset Cpsp_hdrpkt_PspHdrStart_PktLen_enc

authenticated

encrypted

icvicv

Figure 5.4: Authenticated encryption of data packet.

Chapter 5. Modelling PSP 26

iv (64-bit) is first obtained from the IV generator block at line 1. Lines 3 and 4 extracts

the spi (32-bit) from the PSP header, and concatenates it with iv at line 5 to form

gcm iv (96-bit) for AES GCM. The IP payload is split into segments before and after

the crypt offset, which are named ip payload 0 CryptOffset at line 8 and plaintext

P at line 6, respectively. Line 7 inserts the iv into the PSP header so that the receiver

has full information to decrypt the packet. Line 9 creates the additional authenticated

data for AES GCM by concatenating the PSP header and ip payload 0 CryptOffset.

With all the input data prepared, lines 11-12 then initiates the call to the GCM library

to perform authenticated encryption, using the same interface that we have previously

described in Chapter 4. Line 13 then receives back the ciphertext C and authentication

tag icv. Finally, line 15 combines the additional authenticated data with the ciphertext.

1 new iv: iv_t;

2

3 let (psp_hdr_no_iv:psp_hdr_t , =ip_payload)=pkt_PspHdrStart_PktLen in

4 let psp_header_partial(=crypt_offset , version , spi)=psp_hdr_no_iv in

5 let gcm_iv = (spi, iv) in

6 let P = ip_payload_after_CryptOffset(ip_payload , crypt_offset) in

7 let psp_hdr = psp_header(crypt_offset , version , spi, iv) in

8 let ip_payload_0_CryptOffset = ip_payload_before_CryptOffset(

ip_payload , crypt_offset) in

9 let A = (psp_hdr , ip_payload_0_CryptOffset) in

10

11 new c_return: channel;

12 out(c_gcm_enc , (c_return , encryption_key , gcm_iv , P, P_blocks , A,

A_blocks));

13 in(c_return , (C: bitstring , icv: bitstring));

14

15 let pkt_PspHdrStart_PktLen_enc = (psp_hdr , ip_payload_0_CryptOffset ,

C) in ...

Listing 5.1: IV generator and AES GCM encryption code.

5.3.4 Merge

The merge block simply pieces together the cleartext portion from the splitter block

and the output from the AES GCM block to form the final PSP packet for transmission.

Figure 5.5 shows how the individual packets are merged together by the merge block.

We have implemented the merge block as a data constructor and our code is further

explained in Appendix B.

Chapter 5. Modelling PSP 27

ip_hdr udp_hdrpkt_0_PspHdrStart

ip_payload_0_CryptOffset Cpsp_hdrpkt_PspHdrStart_PktLen_enc

icvicv

ip_hdr udp_hdr ip_payload_0_CryptOffset Cpsp_hdr icvpkt_out

Figure 5.5: Merging of data packets into a PSP packet.

ip_hdr udp_hdr ip_payload_0_CryptOffset Cpsp_hdr icvpkt_in_rx

ip_hdr udp_hdr ip_payload_0_CryptOffset Cpsp_hdr icvpkt_rx

psp_hdr_offset

Figure 5.6: Parsing of PSP packet by ingress classifier.

5.4 NIC Receive

The receiver only possesses the master keys and does not need to store any decryption

keys. This process uses the CMAC library for decryption key derivation, and the GCM

library for authenticated decryption. Note in Figure 5.1 that this process contains a

feedback loop that allows it to reuse the same master keys for messages within the same

connection. We will refer to the block diagram of Figure 2.2 in Chapter 2 and describe

our implementation of each component in this section. Some of the implementation code

has been moved to Section B.2 of Appendix B, where they will be further explained.

5.4.1 Ingress classifier

The ingress classifier identifies the incoming packet as a PSP packet and communicates

the PSP header offset to the splitter block. In our implementation, the identification of a

PSP packet is implicitly achieved by blocking the process if it fails to parse a packet that

has an incorrect format. Figure 5.6 shows how the incoming packet is handled, which

in this case simply outputs the packet if the format is correct. We have implemented the

ingress classifier as a destructor and our code is further explained in Appendix B.

5.4.2 Splitter

The splitter in the receiver process breaks up the incoming packet into six portions:

1. Cleartext portion of packet up to crypt offset, to be sent to the merge block.

2. Crypt offset from PSP header, to be sent to the AES GCM block.

Chapter 5. Modelling PSP 28

ip_hdr udp_hdr ip_payload_0_CryptOffset Cpsp_hdr icvpkt_rx

psp_hdr_offset

ip_hdr udp_hdr ip_payload_0_CryptOffsetpsp_hdrpkt_0_CryptOffset

ip_payload_0_CryptOffset Cpsp_hdrpkt_PspHdrStart_IcvStart

icvicv

Figure 5.7: Division of PSP packet by splitter.

ip_payload_0_CryptOffset Cpsp_hdrpkt_PspHdrStart_IcvStart

icvicv

Ppkt_CryptOffset_IcvStart

Figure 5.8: Authenticated decryption of PSP packet.

3. Portion from PSP header to before the ICV, to be sent to the AES GCM block.

4. SPI from PSP header, to be sent to the decryption key derivation block.

5. Most significant bit of the SPI, to be used for active master key selection.

6. ICV, for checking authenticity of received data.

We have implemented the splitter as a destructor and our code is further explained

in Appendix B. Figure 5.7 illustrates how our implementation splits up the PSP packet.

5.4.3 Decryption key derivation, AES GCM (decrypt) and ICV check

Figure 5.8 shows how our implementation for the decryption key derivation, AES GCM

and ICV check in the receiver process transform the data packet. Our code is shown in

Listing 5.2. Lines 1-2 extract the PSP version and iv from the PSP header. These are

the two terms which we had added into the receiver block diagram of Figure 2.2 after

checking the C reference implementation. Lines 3-4 prepare the GCM IV (gcm iv)

and the additional authenticated data A. Lines 6-7 select the active master key using

the most significant bit of the spi. Here, we show the case where master key 0 is the

active key. Line 8 selects the AES algorithm using the version. Here, we show the

case where 128-bit AES-GCM is selected. Lines 9-11 derives the decryption key. It

interfaces with our CMAC library using the active master key as the CMAC key, with

inputs being the spi and three other constants that depend on the version. Line 12

is a type converter that simply converts the type of the returned mac from bitstring

to key. Finally, lines 14-16 interface with our GCM library and recovers plaintext

Chapter 5. Modelling PSP 29

Ppkt_CryptOffset_IcvStart

ip_hdr udp_hdr ip_payload_0_CryptOffsetpsp_hdrpkt_0_CryptOffset

Pip_hdr udp_hdr ip_payload_0_CryptOffsetpsp_hdrpkt_out_rx

Figure 5.9: Merging of cleartext portions back into IP packet.

pkt CryptOffset IcvStart only if authentication is successful. The checking of icv

is performed within the GCM library instead of using a separate component.

1 let (psp_hdr: psp_hdr_t , ip_payload_0_CryptOffset: bitstring , C:

bitstring) = pkt_PspHdrStart_IcvStart in

2 let psp_header(=crypt_offset , version , =spi, iv) = psp_hdr in

3 let gcm_iv = (spi, iv) in

4 let A = (psp_hdr , ip_payload_0_CryptOffset) in

5

6 if spi_msb = BIT_0 then (

7 let active_master_key = master_key_0 in

8 if version = AES_GCM_128 then (

9 new c_return_cmac: channel;

10 out(c_cmac , (c_return_cmac , active_master_key , (HEX_00000001 ,

HEX_50763000 , spi, HEX_00000080), 1));

11 in(c_return_cmac , mac: bitstring);

12 let decryption_key = bitstring_to_key(mac) in

13

14 new c_return_gcm: channel;

15 out(c_gcm_dec , (c_return_gcm , decryption_key , gcm_iv , C,

C_blocks , A, A_blocks , icv));

16 in(c_return_gcm , pkt_CryptOffset_IcvStart: bitstring); ...

Listing 5.2: Decryption key derivation, AES GCM decryption and ICV check code.

5.4.4 Merge

The merge block in the receive process simply puts together the cleartext portions to

form the recovered IP packet, completing the PSP protocol. Figure 5.9 shows how the

portions are merged together by the merge block. We have implemented the merge

block as a data constructor and our code is further explained in Appendix B.

Chapter 6

Evaluation of PSP model

In this chapter, we will use ProVerif to formally verify the security goals of PSP by

defining queries that test them against an active adversary. All events for queries on

reachability and correspondence are placed at different checkpoints within a single

PSP program, so that all the queries can be executed together. Other than basic tests

for confidentiality and authenticity of the payload, we also carry out tests on other

properties which the PSP protocol should exhibit, such as uniqueness of connection

parameters and ability to run concurrent connections. Finally, we demonstrate some

known weaknesses in the PSP protocol and show possible solutions to resolve them.

The verification results show that the PSP model passes all security and concurrency

tests that we have designed. They will be explained in the following sections. We were

also able to demonstrate some known attacks and fixes by modelling operations at layer

4 and higher. Other than these attacks, we did not discover any other flaws. Table 6.1

provides a summary of the results. All tests were executed on the selby compute server

using psp.pv with P blocks = C blocks = A blocks = 1, except for the isolation

tests which use psp leak master key.pv and psp leak sa key.pv. All results have been

archived at psp results, psp leak master key results and psp leak sa key results folders.

6.1 Confidentiality of payload

We ran 41 secrecy queries to test the secrecy of all terms that appear in our PSP program.

This includes P, the portion of the IP packet payload after the crypt offset. Queries

on terms which are supposed to remain secret returned true, indicating that the main

objective of confidentiality is indeed achieved in our symbolic model of PSP. The full

list of secrecy queries and their results are documented in Section C.1 of Appendix C.

30

Chapter 6. Evaluation of PSP model 31

Security tests No. of queries Execution time

Confidentiality of payload 41 7 min 29 sec

Authenticity of payload 8 28 sec

Uniqueness of connection parameters 4 31 sec

Isolation between connections 24 16 min 53 sec

Impact of compromised devices Same as the first two tests

Replay attack and defence 12 2 min 59 sec

Bad-data-injection attack and defence 16 31 sec

Concurrency 8 4 min 17 sec

Table 6.1: Summary of verification results.

6.2 Authenticity of payload

To test the authenticity of the received payload, we first add events at the end of each

process in the PSP model. When these events are queried individually, they would

return true only if they can be reached by at least one execution of the protocol. Listing

6.1 contains two sets of queries that test the authenticity of the received payload. For

instance, line 2 shows a query on an event named psp data rx 0 128 located at the

end of the receive process when master key 0 is active and the version is 128-bit AES.

This event contains arguments (mk0, mk1, k, iv, p, c, a, icv) which are terms

used within the receive process representing (master key 0, master key 1, decryption

key, IV, recovered plaintext, ciphertext, additional authenticated data, authentication

tag). A true result for this query means that this event has been reached. Line 3 contains

a nested correspondence which not only allows us to test the authenticity of payload,

but also allows us to test for the order of events. This query is true if and only if, for

all executions of the protocol, if the event psp data rx 0 128 has been reached, then

the event end master key has been executed before end sa 0 128, which has been

executed before psp data tx, which has been executed before psp data rx 0 128.

1 query mk0: mkey_t , mk1: mkey_t , sa: sa_t , k: skey_t , iv: bitstring ,

p: bitstring , c: bitstring , a: bitstring , icv: bitstring;

2 event(psp_data_rx_0_128(mk0, mk1, k, iv, p, c, a, icv));

3 event(psp_data_rx_0_128(mk0, mk1, k, iv, p, c, a, icv)) ==> (event

(psp_data_tx(sa, k, iv, p, c, a, icv)) ==> (event(end_sa_0_128(

mk0, mk1, sa)) ==> event(end_master_key(mk0, mk1))));

4 event(psp_data_rx_0_256(mk0, mk1, k, iv, p, c, a, icv));

Chapter 6. Evaluation of PSP model 32

5 event(psp_data_rx_0_256(mk0, mk1, k, iv, p, c, a, icv)) ==> (event

(psp_data_tx(sa, k, iv, p, c, a, icv)) ==> (event(end_sa_0_256(

mk0, mk1, sa)) ==> event(end_master_key(mk0, mk1)))); ...

Listing 6.1: Authenticity queries.

We can represent these events using Figure 6.1, which is a simplified version

of our PSP model from Figure 5.1. Events A, B, C, D represent end master key,

end sa 0 128, psp data tx, psp data rx 0 128 with only main arguments included.

Notice the terms mk, sa and msg appear in more than one event and link them together.

MK

SA

TX RX

event C(sa, msg) event D(mk, msg)

msg

event A(mk)

event B(mk, sa)

Figure 6.1: Events used in authenticity query.

When the authenticity queries are executed, we obtain true results for all of them.

This means that the keys and messages are authentic and came from honest parties.

Lines 4-5 are similar queries for the 256-bit version. We have omitted the queries

corresponding to active master key 1, but they are similar to the ones listed here.

6.3 Uniqueness of connection parameters

Each run of the protocol should use a distinct set of master keys, encryption key and IV,

because PSP guarantees that connections on the same transmitter or receiver are unique.

We prove that for any two sets of connection parameters generated by PSP, if they

match, then they must be from the same connection. Listing 6.2 shows our queries for

the 128-bit version, where lines 2-3 are queries associated with active master key 0 and

lines 4-5 are queries associated with active master key 1. Line 2 tests the reachability of

two concurrent psp data rx 0 128 events with the same master keys, encryption keys

Chapter 6. Evaluation of PSP model 33

and IVs, but potentially different values for the rest of the parameters consisting of the

plaintext, ciphertext, additional authenticated data and authentication tag. Line 3 states

that if the events on line 2 are reachable, then the rest of the parameters have the same

values for these two events. We obtained a true result when we executed these queries.

Since we have modelled different connections to initialise with different plaintexts and

additional authenticated data, this result implies that these two events must belong to

the same connection, hence proving that the connection parameters are indeed unique.

1 query mk0: mkey_t , mk1: mkey_t , k: skey_t , iv: bitstring , p:

bitstring , c: bitstring , a: bitstring , icv: bitstring , p’:

bitstring , c’: bitstring , a’: bitstring , icv ’: bitstring;

2 event(psp_data_rx_0_128(mk0, mk1, k, iv, p, c, a, icv)) && event(

psp_data_rx_0_128(mk0, mk1, k, iv, p’, c’, a’, icv ’));

3 event(psp_data_rx_0_128(mk0, mk1, k, iv, p, c, a, icv)) && event(

psp_data_rx_0_128(mk0, mk1, k, iv, p’, c’, a’, icv ’)) ==> (p, c,

a, icv) = (p’, c’, a’, icv ’);

4 event(psp_data_rx_1_128(mk0, mk1, k, iv, p, c, a, icv)) && event(

psp_data_rx_1_128(mk0, mk1, k, iv, p’, c’, a’, icv ’));

5 event(psp_data_rx_1_128(mk0, mk1, k, iv, p, c, a, icv)) && event(

psp_data_rx_1_128(mk0, mk1, k, iv, p’, c’, a’, icv ’)) ==> (p, c,

a, icv) = (p’, c’, a’, icv ’).

Listing 6.2: Queries to test uniqueness of connection parameters.

6.4 Isolation between connections

Another approach to verify that the connection parameters are unique is to intention-

ally leak some key parameters from one connection and see whether this affects the

secrecy and authenticity of the payload from another connection (it should not). We

performed two kinds of checks for the isolation property using psp leak master key.pv

and psp leak sa key.pv programs. In the first program, we set up two connections using

different master keys and then expose the master keys in one of them. This is illustrated

by Figure 6.2, where terms in red have been leaked. In the second program, we set up

two connections using the same master keys and then expose the SA key in one of them.

This is illustrated by Figure 6.3. The queries used to test for isolation are shown in

Section C.2 of Appendix C. Our results show that the secrecy and authenticity of the

payload is preserved in the connection that has not been compromised, proving that the

isolation property is indeed satisfied by our model.

Chapter 6. Evaluation of PSP model 34

MK

SA

TX RX

event C(sa, msg) event D(mk, msg)

msg

event A(mk)

event B(mk, sa)

MK

SA

TX RX

event C(sa, msg') event D(mk', msg')

msg'

event A(mk')

event B(mk', sa)

Figure 6.2: Leaking master keys in left connection does not affect right connection.

MK

SA

TX RX

event C(sa, msg) event D(mk, msg)

msg

event A(mk)

event B(mk, sa)

MK

SA

TX RX

event C(sa', msg') event D(mk, msg')

msg'

event A(mk)

event B(mk, sa')

Figure 6.3: Leaking SA key in left connection does not affect right connection.

6.5 Impact of compromised devices

We show that under an alternative threat model where some component in the transmitter

or receiver has been compromised by the adversary, the transmitted data would no longer

be confidential or authentic. We do this by disclosing each secret term in our PSP model

to the adversary (i.e. sending it to a public channel) and observing that leaking any

single one of them would compromise the secrecy and authenticity of the plaintext. This

result is expected since any leaked term would allow the adversary to derive the SA key

and decrypt or forge new messages. The queries are the same as those in Sections 6.1

and 6.2, with the results now being false. This study also implies that the set of terms

that are currently kept secret is already an optimal set with the minimum number of

secret terms.

Chapter 6. Evaluation of PSP model 35

6.6 Replay attack and defence

The PSP specification states that PSP does not provide replay protection and assumes

that replay protection will be provided by the layer 4 protocol. We first show that replay

attack can happen by running a set of queries to test for injective correspondence in

Listing 6.3 (only showing one of four cases). This query is true if for each occurrence

of the event psp data rx 0 128, there is a distinct earlier occurrence of the event

psp data tx. Our execution produces a false result because the adversary was able to

replay the message that was transmitted to the receiver.

1 query mk0: mkey_t , mk1: mkey_t , sa: sa_t , k: skey_t , iv: bitstring ,

p: bitstring , c: bitstring , a: bitstring , icv: bitstring;

2 inj-event(psp_data_rx_0_128(mk0, mk1, k, iv, p, c, a, icv)) ==>

inj-event(psp_data_tx(sa, k, iv, p, c, a, icv)); ...

Listing 6.3: Queries to test replay attack.

We then enhanced the PSP model by modelling replay protection at layer 4. This

is used to demonstrate the possible fix and is not meant to be part of the PSP protocol.

Figure 6.4 illustrates the additional operations needed compared to Figure 6.1. We first

set up a TCP connection between transmitter and receiver so that the transmitter can

obtain an expected packet sequence number from the receiver. The transmitter then

includes this sequence number into the layer 4 header when sending the PSP packet over

to the receiver. The receiver would check the sequence number in the layer 4 header to

ensure that this is a fresh packet. An adversary who tries to replay the packet would be

unsuccessful since the sequence number would have already been used. Events A, B,

C and D have been described in Section 6.2. We added event E in the receive process

after the sequence number check, which refers to l4 data rx 0 128 shown in Listing

6.4 to test for replay protection at layer 4 (only showing one case). This new query has

a true result, indicating that replay protection has indeed been established at layer 4.

1 query spi: bitstring , mk0: mkey_t , mk1: mkey_t , sa: sa_t , k: skey_t ,

iv: bitstring , p: bitstring , c: bitstring , a: bitstring , icv:

bitstring;

2 event(l4_data_rx_0_128(mk0, mk1, k, iv, p, c, a, icv));

3 inj-event(l4_data_rx_0_128(mk0, mk1, k, iv, p, c, a, icv)) ==> inj

-event(psp_data_tx(sa, k, iv, p, c, a, icv)); ...

Listing 6.4: Queries to test replay protection.

Chapter 6. Evaluation of PSP model 36

MK

SA

TX RX

event C(sa, msg) event D(mk, msg)msg

event A(mk)

event B(mk, sa)

Store seq in L4 header Generate seq number

Check seq in L4 header

event E(mk, msg)

seq

Figure 6.4: Additional operations to show replay protection at layer 4.

6.7 Bad-data-injection attack and defence

Another attack described in PSP specification is known as the bad-data-injection attack.

This happens when a transmit process attempts to send packets to the receive process,

but by injecting it into another connection instead of using its own connection. This

transmitter is a malicious actor with a valid SA that is different from the SA associated

with the other connection. Both SAs are valid as they have been derived from the

same master key on the receive process. Upon receiving the forged packet on the other

connection, the receive process will decrypt and accept the forged packet since it uses a

valid SA and there is no indication that the packet does not belong to the connection.

We first show that this attack can occur in our PSP model by adding some new

events that reveal the expected SPI values for each connection. Since different connec-

tions will have different SPI values, enriching our events with this term allows us to

easily distinguish one connection from another. This is modelled in Figure 6.5, where

events F and G have been added. Referring to Listing 6.5, event F corresponds to

psp data with spi tx, while event G corresponds to l4 data with spi rx 0 128

(showing only one case). The result from executing this query is false, which indicates

that a forged packet with a different SPI from the designated transmitter could be

accepted by the receive process.

1 query spi: bitstring , mk0: mkey_t , mk1: mkey_t , sa: sa_t , k: skey_t ,

iv: bitstring , p: bitstring , c: bitstring , a: bitstring , icv:

bitstring;

2 event(l4_data_with_spi_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

Chapter 6. Evaluation of PSP model 37

));

3 event(l4_data_with_spi_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) ==> event(psp_data_with_spi_tx(spi, sa, k, iv, p, c, a, icv));

...

Listing 6.5: Queries to test bad-data-injection attack.

MK

SA

TX RX

event C(sa, msg) event D(mk, msg)
msg

event A(mk)

event B(mk, sa)

Store seq in L4 header Generate seq number

Check seq in L4 header

event E(mk, msg)

seq

event G(approved_spi, mk, msg)

approved_spispi

event F(spi, sa, msg)

Figure 6.5: Additional events to show bad-data-injection attack.

The solution to defend against this attack is for the receive process to provide the

SPI information to upper-layer software. The upper-layer software keeps track of the

valid SPI for this connection, which allows the packet to be dropped if the SPI is not

on the approved list. This is modelled by Figure 6.6, where we have added the SPI

check followed by an additional event H into our PSP program. Event H corresponds to

upper layer data rx 0 128 in Listing 6.6 (showing only one case) where we check

for correspondence between event H and event F. This query is true, indicating that only

packets with approved SPI would be accepted.

1 query spi: bitstring , mk0: mkey_t , mk1: mkey_t , sa: sa_t , k: skey_t ,

iv: bitstring , p: bitstring , c: bitstring , a: bitstring , icv:

bitstring;

2 event(upper_layer_data_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

));

3 event(upper_layer_data_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) ==> event(psp_data_with_spi_tx(spi, sa, k, iv, p, c, a, icv));

...

Listing 6.6: Queries to test bad-data-injection defence.

Chapter 6. Evaluation of PSP model 38

MK

SA

TX RX

event C(sa, msg) event D(mk, msg)

msg

event A(mk)

event B(mk, sa)

Store seq in L4 header Generate seq number

Check seq in L4 header

event E(mk, msg)

seq

event G(approved_spi, mk, msg)

approved_spispi

event F(spi, sa, msg)

Check if spi = approved_spi

event H(approved_spi, mk, msg)

Figure 6.6: Additional operations to show bad-data-injection defence.

6.8 Concurrency

To verify that our final PSP program is rich enough to model different scenarios

involving multiple transactions and connections, we designed a series of reachability

queries to simulate different scenarios involving concurrency. Executing these queries

would then output trace graphs which confirm that these scenarios can be modelled by

our program. The scenarios that we have tested are:

1. Consecutive transmissions within the same connection

2. Concurrent connections using same master keys but different SA keys

3. Concurrent connections using master keys 0 and 1 on same receiver

4. Concurrent connections using different master keys on different receivers

The queries to simulate these scenarios and their simplified output trace graphs can

be found in Section C.3 of Appendix C.

Chapter 7

Conclusion

In this project, we developed a symbolic model of the PSP protocol using ProVerif

and verified all the security guarantees that PSP claims to offer to its users. The

primary security tests verify confidentiality and authenticity of data-in-transit, while

secondary ones check for uniqueness of connection parameters and that the connections

are isolated from one another. These proofs are valid under certain conditions that were

imposed in this study due to resource or tool constraints. For instance, messages need to

be below some block number to limit the analysis time, and not all XOR properties have

been modelled due to ProVerif limitations. Taking these constraints into consideration

and excluding known weaknesses of PSP, our study did not discover any other flaws in

the symbolic model of PSP.

The PSP model made use of the CMAC and GCM models which we had also

developed. We separately verified the security goals of these algorithms and showed

that the models satisfy properties such as EUF-CMA and IND-CCA2. Since CMAC

and GCM are popular algorithms used by cryptographic protocols, we have packaged

them into ProVerif library files to facilitate deployment.

Another unique feature of our work is that we catered for input messages with

arbitrary number of blocks and explicitly modelled the iterations within the CMAC and

GCM algorithms. This made our PSP model more robust as it can support data packets

with arbitrary sizes. Furthermore, the modelling of multiple message blocks enabled the

discovery of subtle attacks, such as the length extension attack, when using an incorrect

implementation of the CMAC or GCM algorithm.

We then reviewed potential problems that could arise when using the PSP protocol.

One of them involved an alternative threat model where devices have been compromised.

We showed that under this threat model, the security of the PSP protocol would be

39

Chapter 7. Conclusion 40

completely eroded. We also used our model to demonstrate known weaknesses of PSP

such as replay attacks and bad data injection. Fixes were then added into the program to

show that these attacks can be mitigated as long as the developer handles them correctly.

Finally, we conducted a series of concurrency tests and reviewed their trace graphs

to confirm that our PSP program is indeed capable of launching multiple transactions

and connections at the same time. These results showed that our model is versatile and

able to produce realistic scenarios.

7.1 Future work

An area for future work is to extend the verification of PSP model to the computational

model. As previously introduced in Chapter 2, the computational model is closer to

the actual execution of protocols and allows for a larger class of attacks to be analysed.

This is partly because the messages are now modelled as actual bitstrings that can be

manipulated by the adversary. One limitation of the symbolic model arises from the

issue of computational soundness. While an attack in the symbolic model directly

results in an attack in the computational model, security in the symbolic model does not

necessarily imply the same in the computational model, unless computational soundness

is proven in the symbolic model of the protocol.

There are two possible approaches to reconcile the symbolic and computational

models of PSP. The first approach is to derive a computational soundness theorem

applicable to PSP model so that security results from the symbolic model would apply to

the computational model. For instance, Abadi and Rogaway had introduced a soundness

theorem showing that equivalence in formal setting implies indistinguishability in

computational setting for symmetric encryption [32]. Further work from Micciancio

and Warinschi showed that if an asymmetric encryption scheme is proven to be IND-

CCA2 secure in the symbolic model, then its authentication properties are also satisfied

in the computational model [33]. The second approach is to directly derive proofs

of security for PSP in computational model without relying on the symbolic model,

but with the help of tools designed for such purposes [16]. CryptoVerif is one such

tool that can be used to prove secrecy, correspondences, and indistinguishability in the

computational setting [34]. Another tool is EasyCrypt, which can also be used to verify

the security of cryptographic constructions in the computational model [8]. Proving the

security of PSP in the computational setting would complement the results from our

project and help achieve a more holistic security proof for PSP.

Bibliography

[1] WhatsApp, LLC, “Whatsapp encryption overview technical

white paper.” https://scontent-lhr8-2.xx.fbcdn.net/v/t39.

8562-6/383236184_722587863039320_5040651063228680393_

n.pdf?_nc_cat=101&ccb=1-7&_nc_sid=b8d81d&_nc_ohc=

F7fnY0N0DC0Q7kNvgHvEyaG&_nc_ht=scontent-lhr8-2.xx&oh=00_

AYB5g7Q5EQHyjT4Y3OurjwUTBI4JSwxTqcN7JirhGC3Xvg&oe=669EDB44,

2023. Accessed 18 Jul 2024.

[2] Google Cloud, “Encryption in transit.” https://cloud.google.com/docs/

security/encryption-in-transit#network_encryption_using_psp,

2022. Accessed 17 Jul 2024.

[3] A. Vahdat and S. H. Yeganeh, “Announcing psp’s crypto-

graphic hardware offload at scale is now open source.” https:

//cloud.google.com/blog/products/identity-security/

announcing-psp-security-protocol-is-now-open-source, 2022. Ac-

cessed 17 Jul 2024.

[4] Google LLC, “Psp architecture specification.” https://github.com/google/

psp/blob/main/doc/PSP_Arch_Spec.pdf, 2022. Accessed 18 Jul 2024.

[5] V. Cortier and S. Kremer, eds., Formal Models and Techniques for Analyzing

Security Protocols, vol. 5 of Cryptology and Information Security Series. IOS

Press, 2011.

[6] D. Dolev and A. C. Yao, “On the security of public key protocols,” IEEE Trans.

Inf. Theory, vol. 29, no. 2, pp. 198–207, 1983.

[7] B. Blanchet, “Modeling and verifying security protocols with the applied pi

calculus and proverif,” Found. Trends Priv. Secur., vol. 1, no. 1-2, pp. 1–135, 2016.

41

Bibliography 42

[8] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao, and

B. Parno, “Sok: Computer-aided cryptography,” in 42nd IEEE Symposium on

Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pp. 777–

795, IEEE, 2021.

[9] B. Blanchet and V. Cheval, “Proverif: Cryptographic protocol verifier in the formal

model.” https://bblanche.gitlabpages.inria.fr/proverif/. Accessed

18 Jul 2024.

[10] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and reference

implementations for the TLS 1.3 standard candidate,” in 2017 IEEE Symposium

on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pp. 483–

502, IEEE Computer Society, 2017.

[11] K. Bhargavan, V. Cheval, and C. A. Wood, “A symbolic analysis of privacy for

TLS 1.3 with encrypted client hello,” in Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2022, Los Angeles,

CA, USA, November 7-11, 2022 (H. Yin, A. Stavrou, C. Cremers, and E. Shi, eds.),

pp. 365–379, ACM, 2022.

[12] Google LLC, “Github - google/psp.” https://github.com/google/psp. Ac-

cessed 21 Jul 2024.

[13] M. J. Dworkin, “Recommendation for block cipher modes of operation: The cmac

mode for authentication,” Special Publication (NIST SP), National Institute of

Standards and Technology, 2016.

[14] M. J. Dworkin, “Recommendation for block cipher modes of operation: Galois/-

counter mode (gcm) and gmac,” Special Publication (NIST SP), National Institute

of Standards and Technology, 2007.

[15] T. Mieno, H. Okazaki, K. Arai, and Y. Futa, “How to formalize loop iterations in

cryptographic protocols using proverif,” IEEE Access, 2024.

[16] B. Blanchet, “Security protocol verification: Symbolic and computational mod-

els,” in Principles of Security and Trust - First International Conference, POST

2012, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Proceedings

Bibliography 43

(P. Degano and J. D. Guttman, eds.), vol. 7215 of Lecture Notes in Computer

Science, pp. 3–29, Springer, 2012.

[17] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in

large networks of computers,” Commun. ACM, vol. 21, no. 12, pp. 993–999, 1978.

[18] C. Meadows, “The NRL protocol analyzer: An overview,” J. Log. Program.,

vol. 26, no. 2, pp. 113–131, 1996.

[19] S. Escobar, C. Meadows, and J. Meseguer, “A rewriting-based inference system

for the NRL protocol analyzer and its meta-logical properties,” Theor. Comput.

Sci., vol. 367, no. 1-2, pp. 162–202, 2006.

[20] B. Schmidt, S. Meier, C. Cremers, and D. A. Basin, “Automated analysis of diffie-

hellman protocols and advanced security properties,” in 25th IEEE Computer

Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27,

2012 (S. Chong, ed.), pp. 78–94, IEEE Computer Society, 2012.

[21] C. J. F. Cremers, “Unbounded verification, falsification, and characterization

of security protocols by pattern refinement,” in Proceedings of the 2008 ACM

Conference on Computer and Communications Security, CCS 2008, Alexandria,

Virginia, USA, October 27-31, 2008 (P. Ning, P. F. Syverson, and S. Jha, eds.),

pp. 119–128, ACM, 2008.

[22] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, “Verified cryptographic

implementations for TLS,” ACM Trans. Inf. Syst. Secur., vol. 15, no. 1, pp. 3:1–

3:32, 2012.

[23] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Proverif 2.05: automatic

cryptographic protocol verifier, user manual and tutorial.” https://bblanche.

gitlabpages.inria.fr/proverif/manual.pdf, 2023. Accessed 20 Jul 2024.

[24] K. Arai, D. Watanabe, and H. Sakurada, “Formal verification of tls 1.3 full

handshake protocol using proverif,” tech. rep., Technical report, Cryptographic

protocol Evaluation toward Long-Lived Outstanding Security, 2016.

[25] K. Arai and S. Matsuo, “Formal verification of tls 1.3 full handshake protocol

using proverif (draft-11). ietf tls mailing list (2016).”

Bibliography 44

[26] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification for secure

messaging protocols and their implementations: A symbolic and computational

approach,” in 2017 IEEE European Symposium on Security and Privacy, EuroS&P

2017, Paris, France, April 26-28, 2017, pp. 435–450, IEEE, 2017.

[27] J. Black and P. Rogaway, “CBC macs for arbitrary-length messages: The three-key

constructions,” J. Cryptol., vol. 18, no. 2, pp. 111–131, 2005.

[28] T. Iwata and K. Kurosawa, “OMAC: one-key CBC MAC,” in Fast Software

Encryption, 10th International Workshop, FSE 2003, Lund, Sweden, February

24-26, 2003, Revised Papers (T. Johansson, ed.), vol. 2887 of Lecture Notes in

Computer Science, pp. 129–153, Springer, 2003.

[29] D. A. McGrew and J. Viega, “The security and performance of the galois/counter

mode (GCM) of operation,” in Progress in Cryptology - INDOCRYPT 2004, 5th

International Conference on Cryptology in India, Chennai, India, December 20-22,

2004, Proceedings (A. Canteaut and K. Viswanathan, eds.), vol. 3348 of Lecture

Notes in Computer Science, pp. 343–355, Springer, 2004.

[30] D. McGrew and J. Viega, “The galois/counter mode of operation (gcm),” submis-

sion to NIST Modes of Operation Process, vol. 20, pp. 0278–0070, 2004.

[31] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition.

CRC Press, 2014.

[32] M. Abadi and P. Rogaway, “Reconciling two views of cryptography (the computa-

tional soundness of formal encryption),” J. Cryptol., vol. 15, no. 2, pp. 103–127,

2002.

[33] D. Micciancio and B. Warinschi, “Soundness of formal encryption in the presence

of active adversaries,” in Theory of Cryptography, First Theory of Cryptography

Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings

(M. Naor, ed.), vol. 2951 of Lecture Notes in Computer Science, pp. 133–151,

Springer, 2004.

[34] B. Blanchet, A. Fromherz, C. Jacomme, and B. Lipp, “Cryptoverif: Cryp-

tographic protocol verifier in the computational model.” https://bblanche.

gitlabpages.inria.fr/CryptoVerif/. Accessed 31 Jul 2024.

Appendix A

ProVerif syntax

A.1 Example program

We provide an explanation of ProVerif syntax with the aid of a simple program

shown in Listing A.1. This program can be executed using the command: "proverif

example.pv" on a system with ProVerif 2.05 installed. This command assumes that the

current working directory contains the ProVerif binary and the program file example.pv

that holds the code in Listing A.1.

1 (* ProVerif example code *)

2

3 type key.

4

5 free c: channel.

6 free k: key [private].

7

8 fun enc(key, bitstring): bitstring.

9 reduc forall k: key, m: bitstring; dec(k, enc(k, m)) = m.

10

11 event end_sender(bitstring).

12 event end_receiver(bitstring).

13

14 query attacker(k).

15 query secret plaintext.

16 query m: bitstring; event(end_receiver(m)) ==> event(end_sender(m)).

17

18 let sender =

19 new plaintext: bitstring;

20 let ciphertext = enc(k, plaintext) in

45

Appendix A. ProVerif syntax 46

21 event end_sender(plaintext);

22 out(c, ciphertext).

23

24 let receiver =

25 in(c, received_ciphertext: bitstring);

26 let recovered_plaintext = dec(k, received_ciphertext) in

27 event end_receiver(recovered_plaintext).

28

29 process

30 ((!sender) | (!receiver))

31

32 (* EXPECTPV

33 RESULT not attacker(k[]) is true.

34 RESULT secret plaintext is true.

35 RESULT event(end_receiver(m)) ==> event(end_sender(m)) is true.

36 0.021s (elapsed: user + system + other processes)

37 END *)

Listing A.1: Example program.

Lines 29-30 show the main process that runs when the program is executed. This

example launches an unbounded number of sessions (due to !) of the sender and

receiver processes, which represent participants of the protocol running in parallel

(due to |). Lines 18-22 define the actions of the sender process, who creates a new

plaintext of type bitstring, encrypts it using the enc function, stores it as the

ciphertext and sends it out to a public channel which is accessible by an attacker.

Line 24-27 define the actions of the receiver process, who accepts the ciphertext

from the public channel, attempts to decrypt it using the same key, and stores the result

as recovered plaintext if decryption is successful. Lines 11-12 declares events that

are placed at lines 21 and 27. They mark important checkpoints reached by the protocol

but do not affect its behaviour.

We next review the declarations at the top of the program. Line 1 shows a comment

enclosed between (* and *). Line 3 declares a user-defined type: key. Types are solely

used for type-checking the program and ProVerif ignores types during verification. Line

5 declares a free name c of channel type, which is a built-in type. This channel will be

used for public communication of messages. Line 6 declares a free name k of key type,

and uses the keyword [private] to exclude k from the attacker’s knowledge. Line 8

declares a constructor enc that abstracts the encryption function, while line 9 declares a

destructor dec that recovers message m from an encrypted blob only if the decryption

Appendix A. ProVerif syntax 47

key matches the encryption key.

Queries can be used to test the security properties of a protocol. Lines 14-15

(reproduced below) are confidentiality tests, which are associated with reachability

properties in ProVerif. These queries check whether key k and the plaintext are

available to the attacker.

query attacker(k).

query secret plaintext.

Line 16 (reproduced below) is a query for message authenticity, which is associated

with correspondence properties in ProVerif. This query is true if and only if, for

all executions of the protocol, if the event end receiver with argument m has been

executed, then the event end sender with argument m has also been executed before.

query m: bitstring; event(end_receiver(m)) ==> event(end_sender(m)).

Executing the program outputs true for all three queries, which indicate that the

secrecy and authenticity properties of the protocol are satisfied.

Verification summary:

Query not attacker(k[]) is true.

Query secret plaintext is true.

Query event(end_receiver(m)) ==> event(end_sender(m)) is true.

A.2 List of syntax used in project

We list the syntax that are used in this project. These are extracted from the official

ProVerif user manual at [23].

M,N ::= terms

x,a,c variable, free name, or constant

0,1, . . . natural numbers

(M1, . . . ,Mn) tuple

h(M1, . . . ,Mn) constructor/destructor application

M+ i addition, i ∈ N
M− i subtraction, i ∈ N
M > N greater

M = N term equality

M <> N term disequality

M && M conjunction

Appendix A. ProVerif syntax 48

P,Q ::= processes

P | Q parallel composition

!P replication

new n : t;P name restriction

in(M,x : t);P message input

out(M,N);P message output

if M then P else Q conditional

let x = M in P term evaluation

R(M1, . . . ,Mk) macro usage

event e(M1, . . . ,Mn);P event

phase n;P phase

T ::= patterns

x : t typed variable

x variable without explicit type

(T1, . . . ,Tn) tuple

=M equality test

q ::= query

F1 && . . . && Fn reachability (F ::= fact)

F1 && . . . && Fn ==> H correspondence (H ::= hypothesis)

A,B ::= biterm

choice[A,B] choice

Appendix B

Supplementary code in NIC Transmit

and Receive processes

B.1 NIC Transmit

We show and explain the code used for some of the components in the NIC Transmit

process. These components perform non-cryptographic operations and were left out of

Section 5.3 due to space constraints.

B.1.1 Egress classifier

1 fun security_association(bitstring , skey_t , offset_t , version_t):

sa_t [data].

2 fun udp_header(bitstring): udp_hdr_t.

3 fun psp_header_partial(offset_t , version_t , bitstring): psp_hdr_t [

data].

4 fun psp_header_offset(ip_hdr_t , udp_hdr_t): offset_t.

5

6 reduc forall spi: bitstring , sa_key: skey_t , crypt_offset: offset_t ,

version: version_t , ip_hdr: ip_hdr_t , ip_payload: bitstring;

7 let sa = security_association(spi,sa_key ,crypt_offset ,version) in

8 let pkt_in = (ip_hdr , ip_payload) in

9 let udp_hdr = udp_header(ip_payload) in

10 let psp_hdr = psp_header_partial(crypt_offset , version , spi) in

11 let pkt = (ip_hdr , udp_hdr , psp_hdr , ip_payload) in

12 let psp_hdr_offset = psp_header_offset(ip_hdr , udp_hdr) in

13 egress_classifier(sa, pkt_in) = (sa_key , pkt, psp_hdr_offset).

14

49

Appendix B. Supplementary code in NIC Transmit and Receive processes 50

15 let (encryption_key: skey_t , pkt: bitstring , psp_hdr_offset:

offset_t) = egress_classifier(sa, pkt_in) in ...

Listing B.1: Egress classifier code.

Listing B.1 shows snippets from our implementation of the egress classifier and

follows the description in Section 5.3.1. We defined relevant constructors that creates

the SA, UDP header, PSP header and PSP header offset at lines 1-4. Some constructors

have keyword [data] appended, which means the input terms can be recovered from

the constructor output. We then create an egress classifier destructor at lines 6-13,

and used it in the NIC Transmit process. Line 15 shows what the instruction in the NIC

Transmit process looks like. The egress classifier takes in a new IP packet pkt in and

outputs a transformed packet pkt, among other input and output terms.

B.1.2 Splitter

1 reduc forall sa_key: skey_t , crypt_offset: offset_t , version:

version_t , spi: bitstring , ip_hdr: ip_hdr_t , udp_hdr: udp_hdr_t ,

ip_payload: bitstring;

2 let psp_hdr = psp_header_partial(crypt_offset , version , spi) in

3 let pkt = (ip_hdr , udp_hdr , psp_hdr , ip_payload) in

4 let psp_hdr_offset = psp_header_offset(ip_hdr , udp_hdr) in

5 let pkt_0_PspHdrStart = (ip_hdr , udp_hdr) in

6 let pkt_PspHdrStart_PktLen = (psp_hdr , ip_payload) in

7 splitter_tx(sa_key , pkt, psp_hdr_offset) = (pkt_0_PspHdrStart ,

sa_key , crypt_offset , pkt_PspHdrStart_PktLen).

8

9 let (pkt_0_PspHdrStart: bitstring , =encryption_key , crypt_offset:

offset_t , pkt_PspHdrStart_PktLen: bitstring) = splitter_tx(

encryption_key , pkt, psp_hdr_offset) in ...

Listing B.2: Splitter code in transmit process.

Listing B.2 shows snippets from our implementation of the splitter in the trans-

mit process and follows the description in Section 5.3.2. We defined a splitter tx

destructor at lines 1-7, and used it in the main program at line 9. The splitter manip-

ulates the input terms and reduces it into four other terms, with pkt 0 PspHdrStart

representing the data segment from the start of packet to just before the PSP header,

and pkt PspHdrStart PktLen representing the data segment from the PSP header to

end of packet. The use of ‘=’ in ‘=encryption key’ is a pattern matching syntax that

Appendix B. Supplementary code in NIC Transmit and Receive processes 51

requires the encryption key output from the splitter to match the encryption key that

had been previously sent to NIC Transmit from the SA generation and distribution

process.

B.1.3 Merge

1 fun merge_tx(bitstring , bitstring , bitstring): bitstring [data].

2

3 let pkt_out = merge_tx(pkt_0_PspHdrStart , pkt_PspHdrStart_PktLen_enc

, icv) in

4 out(c_public , pkt_out)

Listing B.3: Merge code in transmit process.

Listing B.3 shows snippets from our implementation of the merge block in the

transmit process and follows the description in Section 5.3.4. Line 1 declares the data

constructor for the merge block, where the inputs can be recovered from the output.

Line 3 merges the input data packets into the PSP packet pkt out, before sending it to

the receiver via the public channel at line 4.

B.2 NIC Receive

We show and explain the code used for some of the components in the NIC Receive

process. These components perform non-cryptographic operations and were left out of

Section 5.4 due to space constraints.

B.2.1 Ingress classifier

1 reduc forall ip_hdr: ip_hdr_t , udp_hdr: udp_hdr_t , psp_hdr:

psp_hdr_t , ip_payload_0_CryptOffset: bitstring , ciphertext:

bitstring , icv: bitstring;

2 let pkt_0_PspHdrStart = (ip_hdr , udp_hdr) in

3 let pkt_PspHdrStart_PktLen_enc = (psp_hdr ,

ip_payload_0_CryptOffset , ciphertext) in

4 let pkt_in = merge_tx(pkt_0_PspHdrStart ,

pkt_PspHdrStart_PktLen_enc , icv) in

5 let pkt = pkt_in in

6 let psp_hdr_offset = psp_header_offset(ip_hdr , udp_hdr) in

7 ingress_classifier(pkt_in) = (pkt, psp_hdr_offset).

Appendix B. Supplementary code in NIC Transmit and Receive processes 52

8

9 let (pkt_rx: bitstring , psp_hdr_offset: offset_t) =

ingress_classifier(pkt_in_rx) in ...

Listing B.4: Ingress classifier code.

Listing B.4 shows snippets from our implementation of the ingress classifier and

follows the description in Section 5.4.1. Lines 1-7 declares a destructor for the ingress

classifier, where it parses the incoming PSP packet and derives the PSP header offset.

Line 9 can be found inside the NIC Receive process, where it calls the destructor using

the incoming PSP packet pkt in rx and outputs pkt rx and psp hdr offset.

B.2.2 Splitter

1 reduc forall ip_hdr: ip_hdr_t , udp_hdr: udp_hdr_t , spi_msb:

bitstring , spi_31lsb: bitstring , crypt_offset: offset_t , version:

version_t , iv: iv_t , ip_payload_0_CryptOffset: bitstring ,

ciphertext: bitstring , icv: bitstring;

2 let pkt_0_PspHdrStart = (ip_hdr , udp_hdr) in

3 let spi = (spi_msb , spi_31lsb) in

4 let psp_hdr = psp_header(crypt_offset , version , spi, iv) in

5 let pkt_PspHdrStart_IcvStart = (psp_hdr , ip_payload_0_CryptOffset ,

ciphertext) in

6 let pkt = merge_tx(pkt_0_PspHdrStart , pkt_PspHdrStart_IcvStart ,

icv) in

7 let psp_hdr_offset = psp_header_offset(ip_hdr , udp_hdr) in

8 let pkt_0_CryptOffset = (ip_hdr , udp_hdr , psp_hdr ,

ip_payload_0_CryptOffset) in

9 splitter_rx(pkt, psp_hdr_offset) = (pkt_0_CryptOffset ,

crypt_offset , pkt_PspHdrStart_IcvStart , spi, icv, spi_msb).

10

11 let (pkt_0_CryptOffset: bitstring , crypt_offset: offset_t ,

pkt_PspHdrStart_IcvStart: bitstring , spi: bitstring , icv:

bitstring , spi_msb: bitstring) = splitter_rx(pkt_rx ,

psp_hdr_offset) in ...

Listing B.5: Splitter code in receive process.

Listing B.5 shows snippets from our implementation of the splitter in the receive

process and follows the description in Section 5.4.2. We defined a splitter rx de-

structor at lines 1-9, and used it in the main program at line 11. The splitter manipulates

the input terms and reduces it into six other terms, with three of them representing

Appendix B. Supplementary code in NIC Transmit and Receive processes 53

segments of the PSP packet. pkt 0 CryptOffset represents the data segment from the

start of packet to the crypt offset, while pkt PspHdrStart IcvStart represents the

data segment from the PSP header to just before the ICV. The spi and crypt offset

terms are extracted from the PSP header.

B.2.3 Merge

1 fun merge_rx(bitstring , bitstring): bitstring [data].

2

3 let pkt_out_rx = merge_rx(pkt_0_CryptOffset ,

pkt_CryptOffset_IcvStart) in ...

Listing B.6: Merge code in receive process.

Listing B.6 shows snippets from our implementation of the merge block in the

receive process and follows the description in Section 5.4.4. Line 1 declares the data

constructor for the merge block, where the inputs can be recovered from the output. Line

3 then merges the segments pkt 0 CryptOffset and pkt CryptOffset IcvStart

into a single packet pkt out rx.

Appendix C

Supplementary queries in PSP model

C.1 Secrecy queries and results

We elaborate on the secrecy tests introduced in Section 6.1. Listing C.1 shows the

complete list of 41 secrecy queries in our PSP program. They have been grouped

according to their results as true (secret) or false (non-secret). The results are consistent

because terms which are meant to be confidential have a true result, while terms which

are public knowledge have a false result.

1 (* Result: true *)

2 query secret master_key_0.

3 query secret master_key_1.

4 query secret active_master_key.

5 query secret sa_key.

6 query secret encryption_key.

7 query secret decryption_key.

8 query secret mac.

9 query secret mac1.

10 query secret mac2.

11 query secret sa.

12 query secret sequence_number.

13 query secret l4_hdr.

14 query secret l4_payload.

15 query secret ip_payload.

16 query secret P.

17 query secret pkt_in.

18 query secret pkt.

19 query secret pkt_out_rx.

20 query secret pkt_PspHdrStart_PktLen.

54

Appendix C. Supplementary queries in PSP model 55

21 query secret pkt_CryptOffset_IcvStart.

22

23 (* Result: false *)

24 query secret spi.

25 query secret spi_msb.

26 query secret spi_31lsb.

27 query secret crypt_offset.

28 query secret ip_hdr.

29 query secret ip_payload_0_CryptOffset.

30 query secret psp_hdr.

31 query secret psp_hdr_no_iv.

32 query secret psp_hdr_offset.

33 query secret iv.

34 query secret gcm_iv.

35 query secret icv.

36 query secret C.

37 query secret A.

38 query secret pkt_out.

39 query secret pkt_in_rx.

40 query secret pkt_rx.

41 query secret pkt_0_PspHdrStart.

42 query secret pkt_0_CryptOffset.

43 query secret pkt_PspHdrStart_IcvStart.

44 query secret pkt_PspHdrStart_PktLen_enc.

Listing C.1: Secrecy queries.

C.2 Queries to test isolation between connections

The queries for the isolation tests are located within separate ProVerif programs,

psp leak master key.pv and psp leak sa key.pv, but are exactly the same. In these

programs, we intentionally leak some key parameters from one connection and see

whether this affects the secrecy and authenticity of the payload from another connec-

tion. In the first program, we set up two connections using different master keys and

then expose the master keys in one of them. In the second program, we set up two

connections using the same master keys and then expose the SA key in one of them.

The queries used to test for isolation are shown in Listing C.2. Lines 2 and 4 checks

the secrecy of the payload in the compromised connection, while lines 3 and 5 do the

same for the unaffected connection. Similarly, lines 8-12 checks the authenticity of

Appendix C. Supplementary queries in PSP model 56

the payload in the compromised connection, while lines 14-18 do the same for the

unaffected connection. The results show that the secrecy and authenticity of the payload

is preserved in the connection that has not been compromised, proving that the isolation

property is indeed satisfied by our model.

1 (* Secrecy tests *)

2 query secret P.

3 query secret P_alt.

4 query secret pkt_CryptOffset_IcvStart.

5 query secret pkt_CryptOffset_IcvStart_alt.

6

7 (* Authenticity tests *)

8 query spi: bitstring , mk0: mkey_t , mk1: mkey_t , sa: sa_t , k: skey_t ,

iv: bitstring , p: bitstring , c: bitstring , a: bitstring , icv:

bitstring;

9 event(upper_layer_data_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

));

10 event(upper_layer_data_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) ==> (event(psp_data_with_spi_tx(spi, sa, k, iv, p, c, a, icv))

==> (event(end_sa_0_128(mk0, mk1, sa)) ==> event(end_master_key(

mk0, mk1))));

11 event(upper_layer_data_rx_1_128(spi, mk0, mk1, k, iv, p, c, a, icv

));

12 event(upper_layer_data_rx_1_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) ==> (event(psp_data_with_spi_tx(spi, sa, k, iv, p, c, a, icv))

==> (event(end_sa_1_128(mk0, mk1, sa)) ==> event(end_master_key(

mk0, mk1)))).

13

14 query spi: bitstring , mk0: mkey_t , mk1: mkey_t , sa: sa_t , k: skey_t ,

iv: bitstring , p: bitstring , c: bitstring , a: bitstring , icv:

bitstring;

15 event(upper_layer_data_rx_0_128_alt(spi, mk0, mk1, k, iv, p, c, a,

icv));

16 event(upper_layer_data_rx_0_128_alt(spi, mk0, mk1, k, iv, p, c, a,

icv)) ==> (event(psp_data_with_spi_tx_alt(spi, sa, k, iv, p, c,

a, icv)) ==> (event(end_sa_0_128_alt(mk0, mk1, sa)) ==> event(

end_master_key_alt(mk0, mk1))));

17 event(upper_layer_data_rx_1_128_alt(spi, mk0, mk1, k, iv, p, c, a,

icv));

18 event(upper_layer_data_rx_1_128_alt(spi, mk0, mk1, k, iv, p, c, a,

icv)) ==> (event(psp_data_with_spi_tx_alt(spi, sa, k, iv, p, c,

a, icv)) ==> (event(end_sa_1_128_alt(mk0, mk1, sa)) ==> event(

Appendix C. Supplementary queries in PSP model 57

end_master_key_alt(mk0, mk1)))).

Listing C.2: Queries for test isolation between connections.

C.3 Queries and trace graphs for concurrency tests

We elaborate on the concurrency tests introduced in Section 6.8. To show that our PSP

program is rich enough to model different scenarios involving multiple transactions and

connections, we designed a series of reachability queries to simulate different scenarios

involving concurrency. Executing these queries would then output trace graphs which

confirm that these scenarios can be modelled by our program.

C.3.1 Consecutive transmissions within same connection

The query to model this scenario is shown in Listing C.3. This query induces ProVerif

to produce a trace graph containing two of the same events with the same master

keys, SA key, SPI, but different IVs. Upon execution, ProVerif produces a trace graph

which looks like the simplified version in Figure C.1. The complete trace graph can be

found in the psp results folder. This proves that our PSP model supports consecutive

transmissions within the same connection.

1 query spi: bitstring , mk0: mkey_t , mk1: mkey_t , k: skey_t , iv:

bitstring , p: bitstring , c: bitstring , a: bitstring , icv:

bitstring , iv’: bitstring , p’: bitstring , c’: bitstring , a’:

bitstring , icv ’: bitstring;

2 event(upper_layer_data_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) && event(upper_layer_data_rx_0_128(spi, mk0, mk1, k, iv’, p’,

c’, a’, icv ’)) && (iv <> iv’);

3 event(upper_layer_data_rx_1_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) && event(upper_layer_data_rx_1_128(spi, mk0, mk1, k, iv’, p’,

c’, a’, icv ’)) && (iv <> iv’).

Listing C.3: Queries to simulate consecutive transmissions within same connection.

C.3.2 Concurrent connections using same master keys but differ-

ent SA keys

The query to model this scenario is shown in Listing C.4. This query induces ProVerif

to produce a trace graph containing two of the same events with the same master keys

Appendix C. Supplementary queries in PSP model 58

MK

SA

TX RX

RXTX

msg1

msg2

Figure C.1: Consecutive transmissions within same connection.

but different SA keys. Upon execution, ProVerif produces a trace graph which looks

like the simplified version in Figure C.2. The complete trace graph can be found in the

psp results folder. This proves that our PSP model supports concurrent connections

using same master keys and different SA keys.

1 query spi: bitstring , mk0: mkey_t , mk1: mkey_t , k: skey_t , iv:

bitstring , p: bitstring , c: bitstring , a: bitstring , icv:

bitstring , spi ’: bitstring , k’: skey_t , iv’: bitstring , p’:

bitstring , c’: bitstring , a’: bitstring , icv ’: bitstring;

2 event(upper_layer_data_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) && event(upper_layer_data_rx_0_128(spi’, mk0, mk1, k’, iv’, p

’, c’, a’, icv ’)) && (k <> k’);

3 event(upper_layer_data_rx_1_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) && event(upper_layer_data_rx_1_128(spi’, mk0, mk1, k’, iv’, p

’, c’, a’, icv ’)) && (k <> k’).

Listing C.4: Queries to simulate concurrent connections using same master keys but

different SA keys.

C.3.3 Concurrent connections using master keys 0 and 1 on same

receiver

The query to model this scenario is shown in Listing C.5. This query induces ProVerif to

produce a trace graph containing two of the same events with the same master keys but

each with a different active master key. Upon execution, ProVerif produces a trace graph

Appendix C. Supplementary queries in PSP model 59

MK

SA

TX RX RXTX

SA

msg1 msg2

Figure C.2: Concurrent connections using same master keys but different SA keys.

which looks like the simplified version in Figure C.3. The complete trace graph can

be found in the psp results folder. This proves that our PSP model supports concurrent

connections using master keys 0 and 1 on same receiver.

1 query spi: bitstring , mk0: mkey_t , mk1: mkey_t , k: skey_t , iv:

bitstring , p: bitstring , c: bitstring , a: bitstring , icv:

bitstring , spi ’: bitstring , k’: skey_t , iv’: bitstring , p’:

bitstring , c’: bitstring , a’: bitstring , icv ’: bitstring;

2 event(upper_layer_data_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) && event(upper_layer_data_rx_1_128(spi’, mk0, mk1, k’, iv’, p

’, c’, a’, icv ’)) && (k <> k’);

3 event(upper_layer_data_rx_1_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) && event(upper_layer_data_rx_0_128(spi’, mk0, mk1, k’, iv’, p

’, c’, a’, icv ’)) && (k <> k’).

Listing C.5: Queries to simulate concurrent connections using master keys 0 and 1 on

same receiver.

C.3.4 Concurrent connections using different master keys on dif-

ferent receivers

The query to model this scenario is shown in Listing C.6. This query induces ProVerif

to produce a trace graph containing two of the same events with different master keys.

Upon execution, ProVerif produces a trace graph which looks like the simplified version

in Figure C.4. The complete trace graph can be found in the psp results folder. This

proves that our PSP model supports concurrent connections using different master keys

on different receivers.

Appendix C. Supplementary queries in PSP model 60

MK

SA

TX RX RXTX

SA

msg1 msg2

mk0 mk1

Figure C.3: Concurrent connections using master keys 0 and 1 on same receiver.

MK

SA

TX RX RXTX

SA

msg1 msg2

MK

Figure C.4: Concurrent connections using different master keys on different receivers.

1 query spi: bitstring , mk0: mkey_t , mk1: mkey_t , k: skey_t , iv:

bitstring , p: bitstring , c: bitstring , a: bitstring , icv:

bitstring , spi ’: bitstring , mk0 ’: mkey_t , mk1 ’: mkey_t , k’:

skey_t , iv’: bitstring , p’: bitstring , c’: bitstring , a’:

bitstring , icv ’: bitstring;

2 event(upper_layer_data_rx_0_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) && event(upper_layer_data_rx_0_128(spi’, mk0’, mk1’, k’, iv’,

p’, c’, a’, icv ’)) && (mk0 <> mk0 ’) && (mk1 <> mk1 ’);

3 event(upper_layer_data_rx_1_128(spi, mk0, mk1, k, iv, p, c, a, icv

)) && event(upper_layer_data_rx_1_128(spi’, mk0’, mk1’, k’, iv’,

p’, c’, a’, icv ’)) && (mk0 <> mk0 ’) && (mk1 <> mk1 ’).

Listing C.6: Queries to simulate concurrent connections using different master keys on

different receivers.

Appendix D

Complete list of programs and results

Table D.1 shows the list of files developed in this project, a description of their functions,

and the commands used to execute the programs using ProVerif. The listed commands

are assumed to be executed in the directory containing the ProVerif binary named

“proverif”. All library and program files are assumed to be residing within this directory.

All the program files are using messages with single blocks, unless stated otherwise.

File name Description Command to execute
program

utils.pvl Library file that defines

constants, functions, and

equations common to all

programs.

cmac.pvl Library file that defines the

CMAC model and its oper-

ations.

cmac no k1.pvl Library file that defines a

flawed CMAC model with-

out subkey derivation.

cmac sender verifier.pv Program file that mod-

els the transmission of

a message-tag pair from

sender to verifier using

CMAC.

proverif -lib utils -lib cmac

cmac sender verifier.pv

61

Appendix D. Complete list of programs and results 62

Table D.1 continued from previous page
cmac sender verifier2.pv Same as above but with dif-

ferent number of message

blocks to demonstrate the

length-extension attack.

proverif -lib utils -lib

cmac no k1

cmac sender verifier2.pv

cmac euf-cma.pv Program file that models

the EUF-CMA game.

proverif -lib utils -lib cmac

cmac euf-cma.pv

gcm.pvl Library file that defines the

GCM model and its opera-

tions.

gcm no final xor.pvl Library file that defines a

flawed GCM model with-

out the final XOR.

gcm no length.pvl Library file that defines a

flawed GCM model with-

out the length function.

gcm sender receiver.pv Program file that models

the transmission of a mes-

sage from sender to re-

ceiver using GCM. Also

used to demonstrate the

message forgery attack.

proverif -lib utils -lib gcm

gcm sender receiver.pv,

proverif -lib utils -lib

gcm no final xor

gcm sender receiver.pv

gcm sender receiver2.pv Same as above but with dif-

ferent number of message

blocks to demonstrate the

length-extension attack.

proverif -lib utils -lib

gcm no length

gcm sender receiver2.pv

gcm ind-cca2.pv Program file that models

the IND-CCA2 game.

proverif -lib utils -lib gcm

gcm ind-cca2.pv

psp.pv Program file that models

the transmission of a single-

block packet from transmit-

ter to receiver using PSP.

proverif -lib utils -lib cmac

-lib gcm psp.pv

Appendix D. Complete list of programs and results 63

Table D.1 continued from previous page
psp2.pv Program file that mod-

els the transmission of a

double-block packet from

transmitter to receiver us-

ing PSP.

proverif -lib utils -lib cmac

-lib gcm psp2.pv

psp leak master key.pv Program file that intention-

ally leaks the master keys

in one of the processes us-

ing PSP.

proverif -lib utils -lib cmac

-lib gcm

psp leak master key.pv

psp leak sa key.pv Program file that intention-

ally leaks the SA key in one

of the processes using PSP.

proverif -lib utils -lib cmac

-lib gcm

psp leak sa key.pv

Table D.1: ProVerif files created in this project.

Table D.2 lists the folders containing the query results from executing the ProVerif

program files. The results have been formatted in HTML and trace graphs have also

been created for the relevant queries. The recommended way to view the results is to

run the index.html file located within each folder. This will then display the results on a

browser using a layout that is easy to navigate.

Folder name Description

cmac sender verifier results Results from executing

cmac sender verifier.pv.

cmac euf-cma results Results from executing cmac euf-cma.pv.

cmac no k1 length extension attack Results from executing

cmac sender verifier2.pv.

gcm sender receiver results Results from executing

gcm sender receiver.pv.

gcm ind-cca2 results Results from executing gcm ind-cca2.pv.

gcm no final xor message forgery Results from executing

gcm sender receiver.pv with

gcm no final xor.pvl.

Appendix D. Complete list of programs and results 64

Table D.2 continued from previous page
gcm no length length extension attack Results from executing

gcm sender receiver2.pv.

psp results Results from executing psp.pv.

psp2 results Results from executing psp2.pv.

psp leak master key results Results from executing

psp leak master key.pv.

psp leak sa key results Results from executing

psp leak sa key.pv.

Table D.2: Folders containing results from executing the ProVerif programs.

