
Benchmarking Large Language AI Models for

Machine Translation

Wassim Jabrane
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2023

Abstract

Machine translation, a fundamental task in natural language processing (NLP), holds

exceptional significance as it bridges communication gaps across diverse languages and

cultures. As large language models increase in size, this brings additional computational

costs. Libraries like Archer, a high-performance inference engine, aim to optimise

the deployment of these models to reduce the resource requirements needed to utilise

their predictive capabilities. This research aims to support these tools by developing

a benchmarking suite for machine translation to aid in addressing the bottleneck in

performance, both in terms of the quality of output and the efficiency of model execution.

Through constant refinement, the suite’s architecture embodies a systematic approach

to evaluating machine translation models that can be later expanded to support other

metrics. In addition, the work done provides a building block for benchmarking not

only trained models’ inference runtime, and could be used to help the development of

inference libraries to further the development of assisting with serving machine learning

models. Finally, using the framework, we analyse the results reported from the dense

models T5 and NLLB and then on sparse, larger models such as SwitchTransformer

and NLLB-MoE deployed using Archer.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

It did not involve any aspects that required approval from the Informatics Research

Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Wassim Jabrane)

ii

Acknowledgements

I would like to thank my dear family and close ones as well as my friends for their

support. I would also like to mention my gratitude towards my supervisor Luo Mai

and Leyang Xue for their guidance, mentorship, and continuous support. I owe a lot of

my success to those around me, and I am forever grateful for the kindness, knowledge

acquired, and skills developed in my last five years at the University of Edinburgh.

iii

Table of Contents

1 Introduction 1

2 Background & Related Work 3
2.1 Introduction to NVIDIA Ampere Architecture 3

2.2 Transformers . 4

2.2.1 T5 . 6

2.2.2 NLLB . 7

2.2.3 NLLB-MoE & Switch Transformers 7

2.3 Performance Evaluation on MT models 8

2.3.1 Quality Metrics . 8

2.3.2 Model Inference Time . 11

2.4 Disk offloading . 12

2.4.1 Related work: Deepspeed 12

2.4.2 Archer . 13

3 Benchmark Design and Implementation 15
3.1 BenchmarkingSuite . 15

3.2 Configuration Setup . 17

3.2.1 ExperimentConfiguration . 17

3.3 Dataset Class . 17

3.3.1 Archer . 18

3.4 Analytics . 18

3.4.1 Quality Metrics . 19

3.4.2 Efficiency Metrics . 20

3.4.3 Profiling . 20

3.5 Implementation . 20

iv

4 Experiments 22
4.1 Datasets & Models . 22

4.2 Hyperparameters . 25

4.3 Methodology . 27

4.4 Results & Analysis . 29

4.4.1 Dense Models . 29

4.4.2 Sparse Models . 34

5 Conclusions 39

Bibliography 41

6 Appendix 47
6.1 Single sentence dataset from FLORES-200 for Examining Efficiency

of Models . 47

6.2 Single sentence dataset from WMT14 for Examining Efficiency of Models 47

6.3 Training hyperparameters of the SwitchTransformer Model Fine-Tuned 48

v

Chapter 1

Introduction

Benchmarking AI models is an essential component of model development to inform

engineers and researchers about their performances. Recently, Large Language Models

(LLMs) have demonstrated significant improvements over the years in research with

the success and accessibility of services like ChatGPT [1]. Large models in the current

stage of research, generally tend to scale up to trillions of parameters: 1.76 trillion

for GPT-4 [2]. Standardising these models and making them more feasible to run in

smaller-scaled hardware is the ultimate goal of this research aims to explore.

Deployment of large AI models which would require substantial memory capacity

means higher performance infrastructure requirements as the model gets larger. Our

focus will be exclusively on the task of machine translation, the field of utilising

machine learning to translate text from one language to another. Navigating the domain

of machine translation is difficult due to the need to capture and handle textual data

which is high-dimensional and sparse, though this is a problem for all natural language

processing tasks. In addition, it presents a challenging task when working to translate

to low-resource languages: languages with a limited amount of dataset available, and

when working with extremely high-dimensional data.

The sheer scale of these models has led to new avenues of research devising strate-

gies and optimisation techniques for a more resource-efficient operation. These involve

building optimised training and inference libraries to speed up model computation,

for example Deepspeed, [3] developed by Microsoft, and Archer, an internal project

run at the University of Edinburgh. For instance, with the development of Mixture of

Expert [4] models characterised by their sparsity, these tools leverage this characteristic

to their advantage. One such technique is disk offloading, which is the premise of

utilising additional hardware resources to store model weights. Despite the additional

1

Chapter 1. Introduction 2

I/O overhead of copying memory, the main goal is to develop strategies to move these

weights when needed to deploy the sparse models and push for minimal latency and

throughput.

For both reasons of deploying models with quality and speed of performance in mind,

the development of robust benchmarking tools to accurately assess the performance is

essential. Work like MLPerf Inference Benchmark Suite [5] aims to address the gap

of ensuring a standardised benchmark system to measure the efficiency of the model

inference time. The main contribution of this project is to research and aim to work

on providing a support benchmarking tool that can be used for the development of

more powerful AI models and the development of inference engine libraries to address

bottlenecks in designing the system.

Specifically, we will aim to use five models to assess the benchmarking of translating

from English to French from two datasets: WMT14 [6] and FLORES-200 [7]. The

models being assessed in these experiments are NLLB [7], T5 [8], and their sparse

variations NLLB-MoE [7] and SwitchTransformer [9] inspired by Mixture of Expert

architecture computed on NVIDIA GPU (see Table 2.1 for the hardware specification).

The following thesis will be broken down into these main chapters:

• Chapter 2 - Background: This chapter briefly describes the NVIDIA GPU archi-

tecture and its hardware components that are exclusively designed to support AI

model inference. We then extensively explain the dense models NLLB and T5

and their sparse versions NLLB-MoE and Switch Transformers, and the metrics

used for benchmarking, and the related work on inference engines.

• Chapter 3 - Benchmark Design and Implementation: This chapter describes

the software framework of the benchmarking suite and the components of its

architecture.

• Chapter 4 - Experiments: Using the developed suite, we perform extensive

experimentations via different hyperparameter configurations. We then assess the

produced results via the reported analytics from the models, with and without

using Archer.

Finally, we will conclude this paper in chapter 5 by recommending future en-

hancements which could expand metrics contributing to the evolving landscape of

machine translation technologies and running large-scale models in devices with limited

computing resources.

Chapter 2

Background & Related Work

2.1 Introduction to NVIDIA Ampere Architecture

The graphics processing unit, GPU, comprises numerous processing units that are

capable of executing arithmetic and logic operations concurrently. As such, it is the

main foundational electronic circuit that enables running AI models, which involves

running matrix calculations from the model weights along with the model input.

Ampere Architecture, GPU, is a computing architecture that is developed by

NVIDIA [10]. The server-side GPU that we utilise for our experiments, NVIDIA

Geforce RTX 3090, employs this architecture as part of the Ga10x lineup [10]. Addi-

tional specification on the server-side machine used on the experiment is found in Table

2.1. It promises improvements over its predecessors, with the introduction of third-

generation tensor cores. They are specialized hardware units designed to accelerate

matrix operations and are optimized to perform mixed-precision matrix multiplications.

This dynamic versatility of calculations helps accelerate throughput while preserving

accuracy. Another example is structured sparsity, which is a concept that refers to

imposing deliberate patterns of zero elements in data or models to achieve efficiency

and reduce redundancy, which could help cut down on model size. This can be useful

for natural language tasks, as data sparsity is common due to the large vocabulary sizes

that lead to high-dimensional data. By strategically removing unnecessary components,

a model’s size can be reduced, making it faster to train, requiring less memory, and

being more suitable for deployment on resource-constrained devices or in scenarios with

limited computational power. Other features include NVLink technology, promising

fast communication between other GPUs if available, and PCIe 4.0, enabling faster data

transfer rates between the GPU and other hardware components.

3

Chapter 2. Background & Related Work 4

Figure 2.1: Visual representation of the Structured Sparsity technique, from the Ampere

GA102 paper [10]. The original trained weights get pruned with a 2-out-of-4 non-zero

pattern before being compressed. The result minimises data footprint and bandwidth,

which fastens the operation of passing through a layer.

To serve large language models on GPUs, it is vital to utilise all components of

hardware architecture such as the CPU, GPU, and SSD. Frameworks like Deepspeed,

which will be discussed in section 2.4, help with this through different techniques, one

of which is offloading memory to storage devices like SSD.

GPU Count 1

GPU Name(s) NVIDIA GeForce RTX 3090

CPU Model AMD Ryzen 9 5950X 16-Core Processor

GPU Driver Version 525.105.17

Framework PyTorch 2.0.1

Table 2.1: The specifications of the architecture used to benchmark the models

2.2 Transformers

Machine learning is a field that uses algorithms that learn from input data to generate

predictions on unseen inputs. Deep learning, being a subset of that field, performs the

same task - with the only major distinction being that it adopts artificial neural networks.

At their core, transformers are neural networks that process and generate sequences

of data, making them particularly suited for tasks involving string(s) of text, such as

Chapter 2. Background & Related Work 5

language translation, text generation, sentiment analysis, and more [11]. The baseline

transformer model contains 65 million parameters. Their structure is characterised by

having an encoder block and a decoder block as the two main components. The encoder

layer processes the input, which is then routed to the decoder layer which generates

the output. In this section, we will briefly describe the inner workings of the dense

transformer model before diving into the different variations of the transformer models

that are used for our experiments.

The encoder and decoder components both comprise multi-head attention and feed-

forward neural networks. The feedforward layer converts the output produced by the

self-attention sublayer through a non-linear transformation, which aids in increasing the

complexity of the model to improve its predictions. The multi-head self-attention mech-

anism calculates attention scores for different words within the sequence simultaneously,

allowing the model to capture various types of relationships. To further illustrate, the

concept of attention is a process of assigning weights to elements of input data, enabling

models to emphasize relevant information and disregard irrelevant aspects. This allows

the model to capture complex relationships and be able to formulate a representation of

the input. In the case of self-attention, the attention mechanism is applied within a single

sequence, allowing the model to weigh the importance of different positions relative to

each other. By assigning different attention weights, the model can capture short and

long-range dependencies between words, enhancing its understanding of the sequence.

This is useful for language modelling, predicting the likelihood of a sequence of words

in a given context, which makes it a fundamental basis behind many domains in natural

language processing including machine translation. Self-attention can have variations,

such as multi-head attention, which allows the model to capture different types of

relationships in parallel, enhancing its capability to understand complex patterns within

the input sequence. One of the significant advantages of transformers is their ability

to process sequences in parallel rather than sequentially, which significantly speeds up

training and inference unlike other sequence-to-sequence models like Recurrent Neural

Networks (RNN) [12]. Additionally, the attention computations make transformers

highly interpretable, as they provide insights into which parts of the input sequence

contribute more to specific parts of the output sequence.

The self-attention sublayer consists of query, key, and value vectors to the attention

weights, which determine the relevance of each input embedding. Afterwards, the

final output of the self-attention sublayer is obtained after calculating the weighted

sum of the value vectors. Other relevant components of the model include Residual

Chapter 2. Background & Related Work 6

Figure 2.2: The Transformer Architec-

ture [11]

Figure 2.3: Mixture of Experts (MoE) De-

sign Architecture. Note the similarities and

differences between the layers in a Dense

Transformer and MoE Transformer. Mainly,

the FFN layer is replaced by the MoE Gating

Extension of Transformer [7].

connections [13] to mitigate vanishing gradients, layer normalisation [14] to stabilise

training, and positional encoding [11] to capture information on the order of the tokens

in the sequence. They each serve their purpose in improving the performance of the

model training and output.

As a result, transformers have inspired various architectures and models, such as

BERT (Bidirectional Encoder Representations from Transformers) [15], GPT (Gener-

ative Pre-trained Transformer) [16], and T5 (Text-to-Text Transfer Transformer) [8].

They are often trained on large amounts of text data and fine-tuned for specific tasks,

resulting in state-of-the-art performance.

2.2.1 T5

T5, or Text-to-Text Transfer Transformer, is a neural network model that is inspired by

the Transformer design [8]. T5 extends the Transformer’s capabilities by approaching

most NLP tasks. It reformulates all tasks (during both pre-training and fine-tuning)

with a text-to-text format, meaning that the model receives textual input and produces

Chapter 2. Background & Related Work 7

Figure 2.4: Example of T5 Prefix Guiding in different NLP tasks [8].

textual output. Its main characteristic is its versatility, as it was designed such that it

encompasses a unified framework to handle many tasks. In addition, it uses the same

basic architecture across all tasks, with task-specific information provided as prefixes

in the input data. For example, to perform machine translation, the prefix would be

”translate English to French:”. These prefixes are conditioning mechanisms used to

guide the model’s behaviour during fine-tuning (Figure 2.4). This reduces the need for

task-specific architectural changes from the Transformer design, and so the pre-trained

model could be easily fine-tuned with training for the specific problem that needs to be

tackled. Hence, it is an adequate model to use for our benchmarking suite.

2.2.2 NLLB

No Language Left Behind (NLLB-200) is a neural network model developed with

the intention of enhancing translation quality and coverage for languages with limited

resources [7]. The model can translate a total of 200 languages. Its underlying architec-

ture is based on the transformer design but incorporates some modifications to achieve

its objective. For example, the model introduces layer normalization at the start of each

sub-layer instead of after the residual connection, leading to more stable training [17].

2.2.3 NLLB-MoE & Switch Transformers

The MoE (Mixture of Experts) variant of the NLLB model extends the Dense NLLB

model by introducing a gating mechanism that selects from a range of ”experts” or

sub-models specialized in various input segments [4]. Each expert has its own Dense

MLP model, and the gating mechanism determines the appropriate experts based on

the input. In Figure 2.3, each MoE layer consists of E experts and a gating network

responsible for directing tokens. Within the MoE sublayer, E feedforward networks

Chapter 2. Background & Related Work 8

(FFNs) are employed. The MoE layer is an additional component present in both the

encoder and decoder, replacing the feed-forward network sublayer with N feed-forward

networks. When compared to dense models, increasing performance by scaling model

complexity meant adding more layers, which increases the forward propagation time.

Hence, due to this gating design, MoE’s generative performance can be increased

substantially without adding additional computational cost and latency for inference,

but at the expense of being extremely memory-intensive.

A Switch Transformer [9] is a variant of T5 with the properties of a modified version

of Mixture of Experts. Its sparsity is achieved by also introducing a ”switch” gating

mechanism that selects a subset of tokens based on their relevance to the current input.

The difference is that the routing function for Switch Transformer determines only one

expert to send each token to, whereas for MoE, it can be sent to more than one.

2.3 Performance Evaluation on MT models

In deep learning, there is a necessity to validate model performance for the quality

of outputs. Aside from that, it is also highly important to take into consideration the

inference time and the size of the model. While this may be fixed by having larger

memory and several GPUs (to enable parallelism across different devices), there is still

the need to optimise these models to make them available for many more users. This

means generating high-quality output in real-time, without sacrificing such quality with

constraining it to smaller resources.

2.3.1 Quality Metrics

There are many existing automatic machine translation metrics, some of which are

neural-based. We aim to reproduce the machine translation metrics in order to ensure

the reproducibility of pre-trained models to track which could be helpful in future use

cases where we could analyse any changes in performance. For the purpose of this

research and given time constraints, we limit the scope to using BLEU [18], chrF [19],

and METEOR [20]. BLEU score is used extensively in machine translation in the

literature, used in T5. Whereas for chrF, the motivation for using this metric along

with BLEU is to compare against the translation metric scores found in NLLB, and

we attempt to reproduce the results in order to ensure the repeatability and consistency

of our experiments. Finally, METEOR score was added to incorporate an additional

Chapter 2. Background & Related Work 9

metric, which through literature suggested that it was more suited to be used for single

sentences, unlike BLEU which was designed for corpus measurement.

2.3.1.1 BLEU

BLEU, or Bilingual Evaluation Understudy Score, is a metric used for automatic

evaluation of machine translation task [18] to quantify the quality of machine-generated

translations against human reference translations, and they are measured from 0 to 1. In

literature, they are expressed as percentages implicitly, between 0 to 100. Higher BLEU

scores generated from the model signify better quality and are more similar to a dataset

of high-quality reference translations, as with all the other metrics.

N-grams are contiguous sequences of ”n” elements, where ”n” can represent individ-

ual words or characters depending on the input design. Hence, bigrams for a sentence

like ”This is amazing” would be ”This is” and ”is amazing”. BLEU scores involve

counting matching n-grams in the candidate translation to n-grams in the reference text,

where a unigram would be each token and a bigram comparison would be each word

pair. This comparison is made regardless of word order. The calculation for BLEU

would be as follows:

BLEU = BP · exp
(N

∑
n=1

wn log pn

)
(2.1)

where pn are the modified n-gram precisions, wn are the corresponding weights to

the precisions, which are usually uniform in practice (wn =
1
N), and BP is the brevity

penalty term. N-gram precision in machine translation measures how well the n-grams

in the generated output translation align with the n-grams in the reference translation,

evaluating alignment at the n-gram level.

While BLEU is shown to be correlated with human ratings of Machine Translation,

it is less correlated in NLG task [21]. It is not interpretable across different datasets

and is a poor proxy of fluency and adequacy [21]. Fluency refers to the quality of

the generated output in the source language, assessing whether the text maintains

grammatical correctness and coherence. Meanwhile, adequacy evaluates whether the

output text accurately conveys a comparable meaning to the input. It examines whether

any information from the original input has been modified, omitted, distorted, or

inaccurately added to the translated output. Hence, it is vital to use other metrics, as

usage of BLEU alone has recently been found to lead to worse-performing deployment

decisions [22] due to these shortcomings.

Chapter 2. Background & Related Work 10

Also, since BLEU is tokenization-dependent, which might not lead to standardised

results, we will report spBLEU as well [7]. spBLEU is the BLEU score applied to

text that has been tokenized using the SentencePiece - a tokenizer system that learns

subword units from training data of text from any language [23].

2.3.1.2 METEOR

METEOR (Metric for Evaluation of Translation with Explicit ORdering) also applies

exact word matching through the calculation of unigram precision and recall to retrieve

the harmonic mean [20]. The score’s simplified calculation would be

score = (1−Pen)∗Fmean (2.2)

, where Pen is the penalty and Fmean would be the score The difference with METEOR is

that it incorporates a synonym matching step to account for variations of the lexicon. It

also stems the input - reduces words to their base or root linguistic form (eg. ”consoled”

→ ”console”).

2.3.1.3 chrF

Used in NLLB-200 paper [7], and being the most recently developed metric out of the

three, chrF (character n-gram F-score), works by using precision and recall of character

n-grams, which are sequences of characters of length ”n.” [19]

Researchers explored neural metrics that utilize neural networks to capture semantic

similarity and fluency, addressing some of BLEU’s limitations [7]. Metrics, like ChrF

and SacreBLEU [24], incorporate character-level matching and handle capitalization

and punctuation issues [19]. Hence, its focus on character-level analysis allows the

score to be more robust to minor variations in word order and word choice. The formula

for the chrF score involves computing precision, recall, and applying the length penalty:

chrF =
(1+β2)∗ngrP∗ngrR

β2 ∗ngrP+ngrR
(2.3)

where β is a parameter that balances the weight of precision and recall which can be

configured, ngrP is the n-gram precision and ngrR is the n-gram recall.

However, chrF has some limitations. It may not fully capture higher-level linguistic

aspects, such as syntax and semantics, that other metrics like BLEU or METEOR

attempt to address. Additionally, chrF’s sensitivity to character-level n-grams might

indicate that it is sensitive to misspellings errors. We also complement chrF with

Chapter 2. Background & Related Work 11

reporting chrF++, which adds n-gram words to the score [25]. chrF++ is thus referred

to as having word order of 2. The altered score was shown to correlate more strongly

using Pearson correlation with direct human assessments.

2.3.2 Model Inference Time

To evaluate the speed inference of the model, we can use two metrics: latency and

throughput.

Latency refers to the time it takes for a single inference i.e) translation to be

generated by a deep learning model after submitting the source input text. In other words,

it is the delay between sending an input to the model and receiving the corresponding

output. Latency is usually measured in units of time, such as microseconds or seconds.

Minimizing latency is crucial since low latency means that the model can respond

quickly to input, providing timely and interactive results, such as in the scenario

where the chatbot provides multilingual support which is necessary to maintain a

smooth conversational experience with the client. It can be affected by various factors,

including the model architecture’s complexity, the size of the input data, hardware

resources, software optimizations, and the deployment environment. Techniques like

model quantization, model pruning, and efficient hardware accelerators (such as GPUs

and TPUs) are often employed to reduce latency in deep learning inference [26]. We

can express latency L simply as L = Tend −Tstart , where Tend is the time when the model

has successfully produced the full output Tstart is when the input is sent to the model.

Throughput, on the other hand, refers to the number of inferences (translations) a

deep learning model can perform within a given time frame. It is also critical to consider

it as we might find the need to deploy large language models to process a large number

of inferences simultaneously within a short period of time. Optimizing throughput

involves a combination of hardware resources, parallelism, and software optimizations.

Techniques like batch processing, multi-threading, and distributed computing can help

increase throughput by enabling the model to process multiple inferences simultaneously.

We can simplify the expression of throughput T p as T p = N
∆t , where N is the number

of inferences processed in the time interval ∆t.

There is often a trade-off between latency and throughput, as they are inversely

proportional. One common way to manage this trade-off is by adjusting the batch

size (B) used for inference. A larger batch size can increase throughput by processing

multiple inferences in parallel, but it might also increase latency for individual inferences

Chapter 2. Background & Related Work 12

due to the time required to accumulate enough samples in the batch.

2.4 Disk offloading

Memory demands can arise in various contexts and domains for tasks and applications

that are memory intensive. As a result, there is ongoing research to address these

without purchasing more computing power and memory. In data-centre applications,

one such system proposed is Transparent Memory Offloading (TMO) which improves

server memory utilisation by transparently offloading it to remote memory pools [27]

Similarly, the field of deep learning also suffers such constraints. As such, there are

several publications investigating how to enable efficient and effective deployment of

large models. Running inference and training on large language models that cannot

fit entirely into the GPU requires the usage of optimisation to reduce the memory

footprint. Examples include knowledge distillation[28], training a smaller model to

replicate the outputs of a larger one, mixed-precision training[29], combining lower

and higher precision numerical representations which can be used to enable tensor

cores, or disk offloading, the process of redistributing some of the memory requirements

in heterogeneous devices from GPU to other resources such as SSDs and CPU. This

section discusses the related work done to serve large language models. Since some

of the key related work has been mentioned in the Informatics Project Proposal (IPP)

report, the section on Deepspeed has been partly taken from it.

2.4.1 Related work: Deepspeed

Deepspeed is an open-source deep learning optimization library developed by Microsoft

[3]. It provides a set of tools for training large deep learning models efficiently as

well as inference. Features such as gradient checkpointing, memory optimization, and

pipeline parallelism (interleaved pipeline) enable the training and inference of models

with billions of parameters on a single or multiple machines.

In terms of offloading memory, Deepspeed developed ZeRO infinity to offload

memory from GPU computations only, these utilise GPU, CPU, and NonVolatile

Memory Express (NVMe) memory to allow for huge upscale on model training with

limited resources [30]. For inference, ZeRO-Inference, which is adapted from ZeRO-

infinity, leverages memory components like GPU memory, DRAM, and NVMe to

meet the substantial memory demands of accommodating large-scale models. This

Chapter 2. Background & Related Work 13

technique stems from observing that limited GPU resources could have different types of

memory that could add up to terabytes in scale, which shows that there is a possibility to

accommodate large language models that scale up to billions of parameters. According

to the paper, the framework is suitable for inference tasks that are ”throughput-oriented

and allow large batch sizes” instead of low latency [31].

Due to the huge scale of memory requirements used by MoE models, there is also

research done to advance the acceleration of MoE models. The inference is bound

by memory bandwidth, the rate at which data is moved between pools of memory,

and reading model weights of large MoE models could result in memory bottleneck.

Deepspeed-MoE hence was developed as a system optimization strategy on existing

multi-GPU inference systems by combining the memory bandwidth of multiple dis-

tributed GPUs to enhance memory bandwidth utilization [32].

SSD

FFN 3

Gating
Network

FFN 1 FFN 2 FFN 3

In Use
In Use Not In Use

GPU

MoE Layer

Output

Offload

+

Input

Legend:
Expert FFN Offloaded to SSD to save memory space in GPU
Expert FFN is being in use as the gating network routes to it

Figure 2.5: The Methodology of Disk Offloading on Mixture of Experts. Experts, denoted

as FFN here, that reside in the GPU are offloaded to other resources like the SSD to

save memory. The gating network for instance, scores high probabilities in choosing the

experts of FFN1 and FFN2 to calculate the inputs of this task.

2.4.2 Archer

Archer, an inference engine, is an internal University project currently under develop-

ment that serves to optimise the efficiency and throughput of machine learning models,

Chapter 2. Background & Related Work 14

in order to allow large language models to be deployed in various settings, including

resource-constrained devices. It aims to be an extendable engine, that can be used as a

plugin to other open-source inference servers like Triton from Nvidia. The library also

includes disk offloading which tests and works on by utilising SSD to save weights.

The premise of Archer’s improvements comes from the observation that a small

portion of the experts in a large MoE model is used. Unlike dense models where

layers are all given equal importance, the sparsity of MoE models can be leveraged to

improve the disk-offloading technique compared to that of Deepspeed. By pre-emptively

prefetching the experts required in GPU in time for forward propagation to the correct

experts, this caching mechanism would increase latency and decrease throughput.

To guess which expert it needs in time, as otherwise, this would result in slower

performance, it tackles to address this through exploiting the sparse activation patterns

from the expert. The methodology used, called Expert Activation Predictor, utilises the

skewed probability distribution observed where the activation of an expert will indicate

with higher probability which next expert will be triggered. These likelihoods serve to

guide the inference engine in determining which experts to prefetch ahead of time.

We utilise the Archer engine to test our benchmark against the current iterations of

the library to investigate briefly the efficiency of the models run on it.

Chapter 3

Benchmark Design and Implementation

The developed benchmarking suite represents a comprehensive framework designed to

evaluate the performance of large language models on the metrics reported in the Back-

ground chapter 2. It is designed to provide a qualitative and quantitative understanding

of model behaviour.

There are three main components of the framework to support the main class

BenchmarkingSuite: Archer, ConfigurationSetup, and Analytics. We will first start

describing the major class that calls upon the external modules Pytorch, Hugging Face,

and Archer, to help with the inference of the model to generate the results described in

Analytics. The ConfigurationSetup is a helper module written to support the execution

of BenchmarkingSuite. It provides the utility to prepare, preprocess, and instantiate

the experiments to be run. The diagram in 3.1 provides the encapsulated software

architecture of the framework.

3.1 BenchmarkingSuite

This is the main class of the suite. The class first starts by checking whether we

run a single or multiple experiments, and checks the other settings. Following that,

depending on the model, we import its appropriate Tokenizer and Model class from

HuggingFace and also download the model using it. The inputs and datasets will be

downloaded and transformed by the appropriate classes Datasets and Preprocessing

while also corresponding to the hyperparameters provided, such as dataset size to

be used for machine translation or by filtering input sequence length. Afterwards,

BenchmarkingSuite is responsible for running the model. The input is brought into

the tokenizer, which prepares and encodes the text strings into vectors of numerical

15

Chapter 3. Benchmark Design and Implementation 16

BenchmarkingSuite

GPU/CPU

SSD

Disk
offloading

Archer Library

LogFileManager

ConfigurationSetup

ExperimentConfiguration

Datasets

Preprocessing

Analytics

Profiler
(TensorBoard)

Quality

BLEU/spBLEU

chrF/chrF++

METEOR

Efficiency

Throughput

Latency

Figure 3.1: Benchmark Software Architecture. A high-level overview of the components

of the benchmarking module, which makes it capable of running experiments in the main

BenchmarkingSuite class to report a variety of metrics.

representations signifying their word ID in the vocabulary on which the tokenizer and

the model were trained on. This transformed representation allows the model to process

that data. Once that is done, and once we filter the input by the maximum sequence

length, we run the generation process. We use DataLoader from HuggingFace to split

the dataset samples in batches of a specified batch size in order to run the inference The

library also helps in managing the efficient copying of data from CPU to GPU, for the

model weights to run on. The output predictions are then decoded by the tokenizer from

numerical vectors to strings of text that can be read by the user. We save the results

and continue generating them across the other batches. Once that is done, we compute

the metric scores through the evaluate library from HuggingFace, which is an interface

that brings together different libraries to compute the scores (See Quality Metrics in

Analytics section). We save the results in a CSV file to be later analysed. For multiple

experiments, we rerun the whole procedure of

tokenizer.encode() → model.generate() → tokenizer.decode() → compute metrics()

until all permutations of hyperparameters are gone through.

If the process fails, we log the failed experiment and continue on to the next one.

This saves development time instead of rerunning the whole experiment from the

beginning when the problem is specific to one set of configurations. Also, through the

logging system, we can identify the cause of the error by examining it, instead of it

Chapter 3. Benchmark Design and Implementation 17

being lost. This allowed for more experiments to be run as a result.

3.2 Configuration Setup

The Configuration setup is a written module that represents four classes to help execute

and run the main class to perform its generation.

3.2.1 ExperimentConfiguration

This class is responsible for setting up the choices of hyperparameters needed to run

the experiments. It also gives the ability for the main class to add the hyperparameters

onto the command line. The arguments passed onto the file make it easy to run a model

on a dataset and the hyperparameters of choice. The different hyperparameters will be

discussed in the Experiments section.

Currently, there is no support for other language codes other than ”en-fr” which

is what we will aim to benchmark in the scope of our projects. However, it should be

easy to support new language codes and integrate them so long as the dataset and model

support such translation. The most problematic part comes from using new datasets

from HuggingFace as each dataset has its own formatting. As a solution, the Dataset

Class was designed in order to tackle this issue of formatting from new datasets into

one standardised way which BenchmarkingSuite can use to run machine translation.

3.3 Dataset Class

Each dataset sometimes has varying formatting to how it organises its training and test

data. The current prototype is built with that in mind. Currently, it supports only the

two datasets WMT14 [6] and FLORES-200 [7], but this interface is built so adding

datasets means ease of extending the implementation to include the new dataset and

custom format it in the right way. The formatting will be tested to ensure it adheres

to the formatting needed for the inputs to benchmarkingSuite. The data ingestion step

ensures uniformity in input data The benchmarking framework is designed in a way to

enable ease of integration of new metrics and datasets into reporting and the ability to

perform multiple experiments against the models that need to be evaluated. In-depth

detail of the dataset, hyperparameters and the datasets used to report the metrics on will

be explained in Section 4.1.

Chapter 3. Benchmark Design and Implementation 18

Metric Overview Measurement

Latency

The time it takes to run a single in-

ference in seconds or milliseconds.

For each encoder and decoder, it is

normalised per token to compute the

latency per token for more standard-

ised comparisons.

L = Tend −Tstart

Throughput
Number of translations that can be

done within a timeframe
T p = N

∆t

Table 3.1: Summary of the Efficiency Analytics

3.3.1 Archer

We call the Archer inference engine’s API to deploy sparse expert models that cannot

fit into the GPU’s memory. The methodology of it is abstracted for the user, as it

can be used immediately by calling ArcherEngine and then initialising the inference

engine with the right HuggingFace Tokenizer and Model Class to help it load its model

architecture and saved weights. These will be used to generate the guided caching

mechanism to help it optimise the deployment of the model.

It is worth noting that most of the benchmarks and experiments are done without

the usage of Archer, This is for a variety of reasons, mainly because Archer is still

under constant changes at the time of researching and writing this paper. Although large

models like NLLB-MoE can still be run quite effectively, there is significant uncertainty

in the quality metrics reported. However, we can still run experiments using a large

language model to report on efficiency metrics, such as SwitchTransformers [9]. The

objective of the support of running Archer is to serve as a proof of concept that can

lead to the development of a system to benchmark uses of inference and optimisation

libraries.

3.4 Analytics

The metrics in the benchmarking suite that are used to measure the performance of the

models are described in this chapter. Before introducing them, this table provides an

overview of what these metrics are and their measurement formulas:

Chapter 3. Benchmark Design and Implementation 19

Metric Description Measurement

BLEU

The most widely used MT metric

for the ease of its simplicity. Count

matching n-grams in the candidate

translation to n-grams in the refer-

ence text.

BLEU = BP · exp
(

∑
N
n=1 wn log pn

)

spBLEU

BLEU score applied to text that has

been tokenized using the Sentence-

Piece, aimed to mitigate BLEU’s

tokenization-dependence

BLEU = BP · exp
(

∑
N
n=1 wn log pn

)

chrF

Using precision and recall of charac-

ter n-grams, which are sequences of

characters of length ”n”.

chrF = (1+β2)∗ngrP∗ngrR
β2∗ngrP+ngrR

chrF++
chrF score with the inclusion of n-

gram words
chrF++ = (1+β2)∗ngrP∗ngrR

β2∗ngrP+ngrR

METEOR

Exact word matching through the

calculation of unigram precision and

recall to retrieve the harmonic mean

MET EOR = (1−Pen)∗Fmean

Table 3.2: Summary of the Quality Analytics

3.4.1 Quality Metrics

We report on quality metrics using SacreBLEU [24], which is a standardised library to

automatically compute evaluation metrics for machine translation provided reference

data and the data to evaluate against. Its development was necessary to lead to consistent,

and error-prone metrics. It supports a variety of metrics, like BLEU and chrF. For

METEOR, we use NLTK [33] which computes the measurement, a popular natural

language processing library used for a variety of tasks including text analysis. Both

libraries are supported in HuggingFace [34], as it provides an interface easily to access

these different libraries. This is integrated with HuggingFace [34].

Chapter 3. Benchmark Design and Implementation 20

3.4.2 Efficiency Metrics

The metrics reported are latency and throughput. During the first iteration of the suite,

the latency was recorded as the runtime execution of the entire model pipeline. However,

further iterations of the framework realised that this may not lead to normalised and

comparative benchmarks. Instead, we thought it would interesting to decompose

this into recording latency and throughput for the encoder block and decoder block

separately. This was achieved by writing a forward decorator used to wrap the original

forward function in HuggingFace transformer function to modify and introduce extra

functionality to it: decompose the latencies into encoder and decoder. The time taken to

run the forward propagation of one block is then normalised to get latency per token

instead, since every sentence is of variable length and so we want to make sure the

latency metric is reflected and can be compared against in a more standardised way.

The throughput is then computed from the latency and total number of tokens processed

to generate this.

3.4.3 Profiling

The framework supports the utility of viewing and profiling memory and GPU resource

utilisation of the model, through the usage of Pytorch Profiler [35] and Tensorboard [36].

These are tools that aid developers in tracking experiment metrics during training and

inference, including trace viewers. This can help investigate the CPU and GPU usages,

allowing developers to diagnose any bottlenecks such as I/O wait time to optimise the

runtime of model execution. For the scope of the project, we do not extensively analyse

the results returned from the trace viewer. However, for a demonstrative example and to

support our analysis in the Experiment Section 4, we will show the GPU utilisation for

the different parameters configured for the runtime Archer on SwitchTransformers.

3.5 Implementation

The implementation was written in Pytorch using HuggingFace API to execute our

models. We undergo rigorous testing by examining the outputs of the model and the

metrics returned. Originally, we aimed to examine these analytics returned by the

models against the results in the T5 paper. However, despite not replicating the results

of the paper itself, we cross-referenced against HuggingFace Github repository’s results

[37] and reported identical BLEU scores for the pre-trained T5 model. We suspect

Chapter 3. Benchmark Design and Implementation 21

Start Setup Logging
Functionality

Configure
Hyperparameters

Text
Standardise Dataset

Provided to Appropriate
Formatting

Initialise BenchmarkingSuite
with model and dataset or

Update New Hyperparameters
Use Archer?

Load Model

No

Initialise Archer with
Model to be

benchmarked
Yes

Preprocess
Data

Tokenize
Inputs

Yes Multiple
Experiments?

Hyperparameter types

Hyperparameters:

Beam_Size
Max_input_sequence_length
Dataset_size
Max_gen_len
Dataset_names
Tokenizer_padding_setting
Model
Batch size
Lang_code_src
Lang_code_tgt
device_memory_ratio
use_archer

Profile the
Experiment?

Start
Profiling Yes

Execute Model
Generation

No

Decode Outputs
Postprocess and
Collect Results

Empty CUDA
Cache and Delete

Outputs

Calculate Metrics

Log Benchmarks

End

No

Metrics:
Quality (BLEU, chrF, ...)
Efficiency (Latency,
Throughput)

Hyperparameters
Choice of Model & Dataset

BenchmarkingSuite Flow Diagram Legend:
Preprocess
Datasets
ExperimentConfiguration
Logging
BenchmarkingSuite

Exception
Error

/Log Reporting

Models

Models benchmarked against:

T5-large
T5-base
NLLB-200-distilled-600M
NLLB-MoE-54B
Switch-base-16-finetuned

Experiments
 failed

 n times?

Runtime successful

Yes, skip failed experiment, log
report, & reconfigure
hyperparameters for next one

Exception
Error

/Log Reporting

Figure 3.2: The Workflow of the Benchmarking System

that the BLEU scores reported on their baseline might have had slightly different

hyperparameter configurations for its decoder output. As mentioned, the benchmarking

suite consisted of several iterations and refinements to optimise its performance, in

order to run as memory efficient as possible. This included optimisation of code such as

deleting variables when not in use or emptying the cache after the runtime of the model.

The figure 3.2 contains the workflow diagram of the benchmarking steps to complete

the successful execution of computing analytics.

Chapter 4

Experiments

In this section, we will showcase some of the experiments done to benchmark and

analyse the results of the models. First, we will briefly describe the datasets and

the hyperparameters which were used for our experiments. Then, we explain the

methodology for running these experiments using the benchmarking suite software

and also state what combinations of parameters are applied. Lastly, we will report and

analyse our findings for dense and sparse models.

4.1 Datasets & Models

We will examine the benchmarks reported for one language-pair for the scope of our

project: French-English translation pairs sourced from the two datasets, WMT14 and

FLORES-200.

The annual event for Conference on Machine Translation, which was previously

called Workshop on Machine Translation before 2016, aims to advance the evaluation

of machine translation [6]. The dataset WMT14 created in the year 2014 was emerged

since the inception of the conference as part of a shared effort from researchers and

participants to tackle specific NLP tasks. Examples for that year included five objectives

including a news translation task, a quality estimation task, a metrics task, and a medical

text translation task. For our purposes, we will use the news translation dataset with the

”French-English” language pair. To ensure consistency of results, it is worth noting that

the dataset has been updated by the same members twice [38] after finding some errors.

For these experiments, we are using the latest updated version provided by SacreBLEU

library.

FLORES-200 is a collection of datasets that contains 200 languages in total, in-

22

Chapter 4. Experiments 23

Figure 4.1: Empirical Cumulative Distribution Function (ECDF) plot of all inputs, for

French and English text to visualise the differences in the text length between WMT14

and FLORES-200. The two languages are combined together in this plot, but, while not

presented here, there are similar trend lines for the ECDF of English only and the ECDF

of French only.

Figure 4.2: WMT14 English Sample Text Length Distribution Count for English and

French. Red vertical lines denote the three configurations of the hyperparameter

max input sequence length: 15 word sentences, 30 sentences, -1, or in other words no

maximum limit is applied.

Chapter 4. Experiments 24

Figure 4.3: FLORES-200 Sample Text Length Distribution for English and

French. Red vertical lines denote the three configurations of the hyperparameter

max input sequence length: 15 word sentences, 30 sentences, -1, or in other words no

maximum limit is applied.

cluding low-resource languages [7], or in other words, languages with limited available

translations. FLORES-200 is an extension of the previous FLORES-101 dataset, with

double the range of languages [23]. The aim is to expand and standardise even further

the availability of more data to use for benchmarking for the task of machine translation.

The choice of these specific datasets was motivated by the interest in developing

a benchmarking tool that could be later used for the extremely large language models

that utilise sparsity: SwitchTransformers and NLLB-MoE (which contains 54 billion

parameters). However, as a start, we will use their original dense versions to build and

benchmark our suite against, which would be T5 and the (knowledge) distilled version

of NLLB respectively, with different parameter sizes [7]. We will use the respective

datasets trained and validated. Only the validation dataset is required, as it is necessary

to benchmark the pre-trained models on the specific data used to evaluate against and to

ensure consistency by cross-referencing the results.

We investigated the datasets briefly to learn more about the data to help with the

design of the experiments. From the plots, we concluded that it may be interesting

to see how the benchmark outputs of smaller sentences compares to larger ones in

terms of quality and runtime during inference. This led us to create the hyperparameter

max input sequence len, which is the maximum input sequence length of the sam-

ples to be used for running inference. The results are illustrated using an Empirical

Cumulative Distribution Function to demonstrate how data values are spread out in

Chapter 4. Experiments 25

a dataset. The results of the ECDF provided insights into the hyperparameters of

max input sequence len to be considered.

The proportions ratio of WMT14 and FLORES-200 provided insights into the

values of the hyperparameter max input sequence len to consider for the experiments,

respectively 15, 30, -1 (which is a notation used to signify that no maximum limit is

used to filter the dataset) - See figure 4.1. Further explanations of this parameter along

with others will be provided in the following section.

4.2 Hyperparameters

The experiments conducted are a combination of the parameter values that were selected

for benchmarking. The section will provide an overview of these parameters:

• Beam Size: Beam size refers to a parameter used to inform the decoding strategy,

particularly in sequence-to-sequence models like neural machine translation

(NMT), for generating the most likely output sequence from a trained model [39].

When a sequence-to-sequence model generates an output sequence, it does so

step by step, predicting one token at a time. At each step, the model considers a

set of possible next tokens based on the previously generated tokens. The beam

size determines the number of candidates the model keeps track of during this

generation process. When set to 1, the decoder performs a greedy search. When

the beam size is greater than 1, it performs the beam search. The beam size

parameter is one of the following in the list [1,2,4].

• Max input sequence len: The input sequence length of the samples in the dataset.

It is used to filter out the sentences to include only those that are of the word

count of max size parameter or below. The motivation was to examine the latency

and throughput of sentences of varying sizes. Tables 4.1 and 4.2 demonstrate the

percentages of dataset size after applying the filter. The parameters are set to one

of [15, 30, -1], where -1 simply represents there no limit/filter is applied i.e use

all of the dataset.

• Dataset size: To customise manually how many samples we want to run for

inference. The experiments were conducted on dataset sizes of [1, ”all”] to

investigate the latency in correlation to throughput. The value 1 signifies a single

sentence inference, and ”all” means to utilise all of the dataset for evaluation. The

Chapter 4. Experiments 26

max input sequence length Transformed Dataset size Percentage of data

15, 199 20%

30 898 90%

-1 (all) 997 100%

Table 4.1: Dataset Size After Filter - FLORES200

max input sequence length Transformed Dataset size Percentage of data

15, 1370 46%

30 2627 88%

-1 (all) 3000 100%

Table 4.2: Dataset Size After Filter - WMT14

two-sentence English-French pairs from both datasets WMT14 and FLORES-200

were used uniformly for all experiments to ensure consistency. These sentences

are presented in the Appendix 6.1 and 6.2.

• Max gen length: Limits the maximum generation sequence length returned as

the model output. It was incorporated initially after the identification of an outlier

in the metrics returned during the first iteration of the benchmarking suite for

some early experiments. The results indicated that lower generation lengths

returned had slightly higher values in the quality metrics. The experiment used a

combination of [32,64,128,256,512] together against the other combinations of

hyperparameters. However, the results did not signify any correlation and were

not an indication of a better-performing model. We later note that for the task of

machine translation and from our experiments is that it is best for the model to

not have restrictions on the maximum output of translation, given that the same

restriction is not applied to the input.

• Dataset Names: To evaluate the experiments on the two datasets described earlier:

[WMT14, FLORES-200]

• Tokenizer padding setting: Whether the tokens encoded by the tokenizer are

padded to the maximum length denoted in the model configurations. The addition

of this parameter was done after inspiration to the maximum generation length

parameter, as we decided it might be worth investigating whether this setting

Chapter 4. Experiments 27

has any effect on the output of the model. Possible values are [”no pad limit”,

”pad to max length”].

• Model: The model to benchmark on for the run. The pre-trained models chosen

are [”t5-base”, ”t5-large”, ”nllb-200-distilled-600M”] for dense model exper-

iments, then for the sparse ones, the model ”nllb-moe-54b” and a fine-tuned

model of ”switch-base-16” are used. The parameter sizes of the models are as

follows:

– ”t5-base”: 220 million,

– ”t5-large”: 770 million,

– ”nllb-200-distilled-600M”: 600 million ,

– ”nllb-moe-54b”: 54 Billion.

The ”switch-base-16”’s parameter size is inconclusive despite calculating the

parameter size of each of the other models.

• Batch size: It is the size of batched samples to feed into the forward propagation

of the model inference for one cycle. It is usually fixed to 32 but has been

configured to other batch sizes depending on the model size. Large batch sizes

would provide high throughput but low latency.

• lang code src: Source language to translate from. Currently set constant to ”en”

for the benchmark results.

• lang code tgt: Target Language to translate to. Currently set constant to ”fr” for

the benchmark results.

• device memory ratio: Used by Archer to limit the max GPU usage for fetching

and storing the model weights. It was added to benchmark the memory resource

utilisation and efficiency for the different set of ratios: [0.1, 0.3, 0.6, 0.9].

• use archer: An additional parameter was added to toggle whether Archer is used

for inference.

4.3 Methodology

As mentioned earlier, the experiments run are a combination of hyperparameters men-

tioned in the previous section 4.2 by the benchmarking toolkit, on both the validation

Chapter 4. Experiments 28

datasets of ”WMT14” and ”FLORES-200”. The following results section presents

the most notable findings of the analysis on the speed and generative performance

summarised of different hyperparameters, first by leading the discussion and focusing

on dense models, and finally reporting on the results by the sparse models that are

deployed with the help of Archer.

For some models, like NLLB-MoE, there were restrictions on fully benchmarking

the output sequences returned from it. While the framework completes the runtime

of the model successfully in one of the latest iterations with the aid of Archer, the

translations were of extremely poor quality. Also, due to the large scale of NLLB-MoE,

it was limited to testing one sentence, with the configuration that was found to be the

best for the smaller dense models including the knowledge-distilled NLLB model.

Therefore, to address these limitations as a contingency, additional experiments

were conducted on the SwitchTransformer to be able to continue the objective of the

research to investigate the performances of the models running on Archer as well for

the purpose of evaluating the efficiency of Archer.

Since the pre-trained SwitchTransformer models were designed for Masked Lan-

guage Modeling, the task to fill in missing words in a sentence, there was an additional

component of fine-tuning the model to the task of Machine Translation. It is worth

noting that the model is able to run without the necessity of utilising Archer to execute

it. However, investigating the smaller, fine-tuned model still holds value as it served as

a sufficient step to our initial objective of developing this benchmarking suite. Since

Archer can use the sparsity characteristic found in SwitchTransforme, the framework

can be used to evaluate against different configurations of Archer, including an ad-

ditional Archer-specific related configuration: device memory ratio. The motivation

behind training the model was to investigate Archer’s influence on the efficiency of

runtime, and the effects of the parameter device memory ratio on the performance.

We also briefly investigate the profiling feature to investigate more about memory

utilisation.

The ”switch-base-16” model was fine-tuned on the English-Language pair on the

OPUS dataset[40], a collection of translated text from the web, after being split into

a ratio of 0.80 for training and 0.20 for validation. The details and explanation of

the training hyperparameters and the training process will be kept brief as it was not

finetuned extensively since that is not the main scope of the dissertation. Appendix 6.3

contains the hyperparameters extracted from the code using HuggingFace API.

Chapter 4. Experiments 29

Figure 4.4: Quality Metrics on the best hyperparameter configurations on WMT14 for

the entire dataset.

4.4 Results & Analysis

4.4.1 Dense Models

4.4.1.1 Optimal Hyperparameters

From the different combinations of experiments performed, the Tables in Figure 4.4,

4.5, 4.6, and 4.7 show the quality and efficiency metrics returned by the configuration

that returned the best scores for each of the model for each set of values. The set

of configurations for the experiments was consistent across all models: beam size of

4, max generation length of 128, and batch size = 32 regardless of what the other

parameters contained.

The configuration was shown to be the most optimal one for all metrics, in terms of

quality, the higher scores returned in each efficiency, latency is desired to be as minimal

as possible while throughput is desired to be as maximal as possible. In addition, we

found that out of the four models benchmarked against, the distilled model of NLLB

tended to provide the highest performance in terms of quality for both datasets WMT14

(Table in Figure 4.5) and FLORES-200 (Table in Figure 4.4)

Despite the higher parameter size found in the T5-large model of 770 million, the

distilled model showed better performance, offering a glimpse that optimised distilled

knowledge models may offer promising results and are an effective tool to reduce the

memory requirement of a model while delivering faster and accurate results.

In terms of runtime, t5-base being a smaller model than the three of them, executes

slightly faster with the least encoder latency and higher encoder throughput on average

The tables also show the fine-tuned SwitchTransformer model’s performances.

Since it was trained quickly, it provides low translation results. Further analysis of the

model will be done in the later sections.

Chapter 4. Experiments 30

Figure 4.5: Quality Metrics on the best hyperparameter configurations on FLORES-200

for the entire dataset.

Figure 4.6: Efficiency Metrics on the best hyperparameter configurations on WMT14 for

the entire dataset.

Figure 4.7: Efficiency Metrics on the best hyperparameter configurations on FLORES-

200 for the entire dataset.

Chapter 4. Experiments 31

4.4.1.2 Beam Size

The experimentations done for beam sizes were done to investigate if there was any

significant improvement or reduction of the values. Figures 4.8 and 4.9 aim to sum-

marise the decoding latency and throughput. On average, there is a slight improvement

in terms of quality of outputs, where each of the metrics BLEU, chrF, meteor, and their

modified versions provide a boost of about 0.01 - 0.1 in increase. In theory, performing

beam search as opposed to greedy search would be an increase in computational cost

which would affect efficiency. However, in terms of latency and throughput of the layer

responsible for the decoding strategy, the results are not affected for different beam sizes

of t5-base and nllb-200-distilled-600M, but there is a significant increase in the latency

reported by the bar chart, which is averaged across all other settings. Additional test

runs would be necessary to further investigate the specific increase found in one model

over the other. Future experiments could also include looking at the length penalty to

benchmark against it, which is an additional hyperparameter to penalise words that

generate short sentences compared to their references.

Figure 4.8: The effects of beam size on

decoder latency Figure 4.9: The effects of beam size on de-

coder throughput.

4.4.1.3 Maximum Input Sequence Length

The maximum Input Sequence Length size parameter was incorporated to assess the

inference quality of different sequence lengths on the output of the model. The speed

analytics are averaged and summarised in bar plots in figure 4.10. For all models,

T5-large consumes the most process results per token for encoding and decoding 4.10a,

producing the lowest throughputs among the other benchmarked models. Also, the

Chapter 4. Experiments 32

(a) Encoder Latency (b) Encoder throughput

(c) Decoder Latency (d) Decoder throughput

Figure 4.10: Efficiency metrics of all experiments done averaged and summarised in the

bar chart. The error bars at the top of each bar signify the variability of data to indicate

the uncertainty measurement (standard deviation). This is measured against the two

datasets in full

encoder throughput is the highest for T5-base (Figure 4.10b) for all sequence lengths.

In addition, for seq len set to no limit, -1, the encoder (Figure 4.10a) for T5-base has

the lowest latency. However, for decoding, the NLLB model overtakes both latency

and throughput. This result builds up on our previous analysis of the efficiency of

models, where t5-base on average is as efficient if not slightly more efficient than

NLLB-200-distilled-600M, but the decoder for NLLB is more efficient in translating.

Also, on the max input sequence length, we see that T5-large is not affected.

However, we do find that for the other two models, it is slightly average on latency,

but its throughput is drastically decreased for both the encoder and decoder. It may

Chapter 4. Experiments 33

signify that the short sequence length still leads to activations of multiple weights, as

the weights need to be activated regardless in order to compute and decode the model.

However, as input sequence length increases, we see higher performances of throughput,

which supports our claim.

Finally, the higher cost of T5 models may be due to the additional computational

overhead and model weights required to model a variety of tasks, as T5 models are

versatile and trained on many tasks. In terms of NLLB, its fast performance may be due

to the knowledge distillation technique. It would be interesting to compare two runs of

distilled and non-distilled models in future research.

The maximum Input Sequence Length size parameter was incorporated to assess

the inference quality of different sequence lengths on the output of the model. The

results of speed analytics have been averaged and visualized in the bar plots presented

in Figure 4.10.

Across all models, T5-Large exhibits the highest resource consumption per token for

both encoding and decoding, resulting in lower throughputs when compared to the other

benchmarked models (Figure 4.10a). Conversely, T5-Base consistently demonstrates

the highest encoder throughput, as depicted in Figure 4.10b, across all tested sequence

lengths. Notably, when sequence length is set to ”no limit” (-1), T5-Base achieves

the lowest encoder latency (Figure 4.10a). However, for decoding, the NLLB model

surpasses T5-Base in both latency and throughput. This observation aligns with our

earlier analysis of model efficiency in finding the optimal hyperparameter configuration,

where T5-Base proved to be as efficient as, if not slightly more efficient than, NLLB-200-

distilled-600M on average. Nevertheless, the NLLB decoder outperforms in translation

efficiency.

Concerning the ”maximum input sequence length,” T5-Large appears to be unaf-

fected, but the other two models exhibit slightly increased latency for shorter sequence

lengths, while their throughput experiences a significant decline for both encoder and

decoder tasks. This phenomenon suggests that even with shorter sequence lengths,

multiple weights are activated due to the inherent computation and decoding require-

ments of the models. However, as the input sequence length increases, the throughput

performance is improved, supporting our claim.

The higher computational cost associated with T5 models can be attributed to the

additional computational overhead and model weights required to help exhibit their

versatility in handling a wide range of tasks. T5 models are versatile and trained on

multiple tasks. In contrast, NLLB’s rapid performance may be attributed to knowledge

Chapter 4. Experiments 34

distillation techniques. Future research may benefit from comparing distilled and

non-distilled models in different experimental runs.

4.4.2 Sparse Models

4.4.2.1 MoE - Efficiency Analysis

While the translation results for NLLB-MoE-54B, the largest language model of our

experiments, are suboptimal to perform any deeper analysis on the quality analytics at

the moment, the results for efficiency are detailed in the following tables: Figure 4.11

and Figure 4.12 which sorts by having the best running encoder latencies recorded at the

top; and the 4.14 and 4.13 figure tables denote the slow efficiency performance results

to be the top result. These results were benchmarked against single sentences from

the datasets of WMT14 and FLORES200, and set to device memory ratio of 0.3 and

0.6 for some of them. For a single sentence, the MoE performs quite efficiently using

Archer given its large parameter size. While the prefetching and loading weights at the

initialisation of the engine take approximately 15-20 minutes to load, the inference time

is remarkable for a single sentence in contrast to WMT14.

However, in FLORES200, we encountered two instances where the model exhibited

a very high encoder latency of 122.380 and 121.689, and scored low on the other

efficiency metrics as well (Table 4.13). We suspect that it would be a result of putting a

low memory device ratio of 0.3. Further testing needs to be done on this aspect to test

the hypothesis and the cause of this as other experiments can run with less than 3 latency

per token. the utilization of a low memory device ratio of 0.3 as the potential cause.

Due to the time and development constraints, future experiments could validate and

further test the hypothesis, as other experiments have successfully achieved latencies of

less than 3 per token. Otherwise, no visible trend appeared through the analysis and

plotting of these figures, and hence further and various experiments may be required.

In fact, the results from the table 4.14 seem to suggest that beam size and increasing

generation length sequence lead to a more efficient high decoder throughput, which

is contradictory based on our understanding. The other last cue to the randomness

with data would be related to the Archer engine’s prefetching strategy of experts from

an external device, which is probabilistic in nature. Directly analysing Archer’s true

positive rate on prefetching could shed further light on this.

Chapter 4. Experiments 35

Figure 4.11: Efficiency Analytics Sorted by Ascending Least Encoder Latency in WMT

Figure 4.12: Efficiency Analytics Sorted by Ascending Encoder Latency in FLORES

Figure 4.13: Efficiency Analytics Sorted by Decreasing Decoder Latency in FLORES

Figure 4.14: Efficiency Analytics Sorted by Decreasing Decoder Latency in WMT

Chapter 4. Experiments 36

4.4.2.2 SwitchTransformer - Device Memory Ratio

This section benchmarks the results of the fine-tuned SwitchTransformer model, for

the purpose of assessing the configuration of device memory ratio and its effects on

memory utilisation and speed. While the trained neural network can be run without

the usage of Archer, having a smaller model than NLLB-MoE to measure performance

helps in testing and analysing before potentially scaling up to larger models. This

alternative model possesses comparable capabilities to MoE, and so Archer can utilise

its prefetching mechanisms.

The device memory ratio should not have any effects on the generative performance

of its translation, as it is merely responsible for Archer to resourcefully manage the

utility of GPU memory and the data movement of the model weights. The testing has

been limited to a batch size of 1 for the purpose of consistency with the NLLB-MoE-

54B experiments. The results of experimenting with different memory ratio parameters

are displayed in the table in Figure 4.15.

Surprisingly, the model was much more efficient when running on a very low

memory ratio of 0.1. There is not a clear indication as to why that could be from the

results itself, as the expectation was the model would have deteriorated in runtime

performance. The other experiments have stable and somewhat identical efficiency, as

most of the model weights may be already loaded in GPU to run its inference. In order

to have a more in-depth look at the result, As a result, this presents a great opportunity

to test the profiling methodology built into the framework.

Figure 4.15: Finetuned Switch Transformer Performances on Different Device Memory

Ratios. The Hyperparameter configurations run for these are batch size of 32, dataset

size of 1, maximum generation length of 32, and beam size of 1.

4.4.2.3 Profiling

In this section, the SwitchTransformer models that ran earlier are profiled and saved

into JSON files with information regarding in-depth performance metrics about the

Chapter 4. Experiments 37

operations running in the background and memory utilisation. The profiler starts when

the inputs are passed to model generation and ends after the outputs generated are

decoded, post-processed, and stored later for computing the analytics for quality perfor-

mance. The profiling results for the experiments done are visualised in Tensorboard

and demonstrated in Figures 4.16, 4.17, 4.18 to analyse the phenomena found earlier in

section 4.4.2.2.

Observing the runtime can be found in Tensorboard’s Overview dashboard, which

contains information about the memory utilisation and the description of the runtimes

during the execution of the model. The analysis will be shortened to investigate the

two device ratio parameters [0,1,0.9] in addition to not utilising Archer. There are two

reasons for this: in order to examine the performances with and without Archer and to

analyse the question on how a low memory device ratio of 0.1 can achieve low latency

to denote efficient runtime.

Firstly, the results demonstrate that the model without an archer runs the fastest in

terms of its step time breakdown (Figure 4.18). It also encompasses a large majority of

its runtime on CPU execution. This may be because the model under-utilises the GPU,

as the batch size is small. In comparison, the other experiments showcase the majority

of its execution done on ”Other”, labelled as pink, which is time spent that does not

include any of the categories labelled as dark blue for ”Kernel” (Kernel execution time

on GPU), red for ”Memcpy” (GPU involved memory copy), light blue for ”CPU Exec”

(Execution time of CPU), and so on. Also, when comparing the step times of the ratio

of 0.1 (Section 4.16) against the ratio of 0.9 (Section 4.17), the total step time in the

experiment with 0.1 is higher than 5,000,000 microseconds, which is larger than the

step time found the 0.9 ratio. This, however, contradicts the calculations returned for

latency in the previous section, since this means that the ratio of 0.9 should be the more

efficient one (which is originally expected).

When further inspecting the differences between runtime breakdown percentages,

the category called ”Memcpy” takes a larger proportion of the breakdown in the memory

device ratio of 0.1. Using the two observations we made, we can infer that the I/O

operation may be what skewed our results if perhaps the I/O scheduling call is made

pre-emptively to call the model which obscures the attempted logging results. Hence,

the next iterations of this benchmarking suite need to accommodate and improve the

logging system. This may be done by potentially modifying the program to either

start logging when a model is flagged to be fetched into the GPU and/or to make the

benchmarking suite more I/O aware.

Chapter 4. Experiments 38

Figure 4.16: Tensorboard Overview: Profiling the runtime of fine-tuned switch model on

Archer with the memory device ratio parameter set to 0.1

Figure 4.17: Tensorboard Overview: Profiling the runtime of fine-tuned switch model on

Archer with the memory device ratio parameter set to 0.9

Figure 4.18: Tensorboard Overview: Profiling the runtime of fine-tuned switch model

without Archer

Chapter 5

Conclusions

This dissertation has focused on developing a support tool that could facilitate the

automatic evaluation against large language models, starting with machine translation

metrics, to assess the quality and efficiency of the model. It also serves as a main

foundational block to support the analysis and development of inference engines as

well. After continuous refinements, we were able to test the benchmarking suite against

dense and sparse models, with and without Archer, to find out more about how different

settings of the model - whether it be testing against a corpus of data, a single sentence,

or the decoding strategy - led to different results and understanding of it.

The benchmarking framework developed would hopefully serve as an invaluable

resource that can be extended after this dissertation to encompass more analytics

for tasks beyond machine translation in the natural language processing sub-field,

granting us deeper insights into performance and aiding in meticulous evaluation and

comprehensive performance analysis. For quality metrics, this would include more

recent neural-based ones like COMET [41]. For runtime inference, this includes factors

like weight loading times, speed of disk offloading, and more in-depth analysis of

engines like Archer and Deepspeed. We could explore the analysis of other avenues

to help run models optimally, including benchmarking against the usage of vector

databases, such as RETRO [42], potentially providing valuable insights into the model

inference behaviour of the system. Another value that this project could have is to

assess the models that run on more resource-constrained devices, such as edge GPUs.

One final highlight to conclude the research with, is the reported latency of the switch

transformer model being extremely efficient despite setting a low maximal GPU ratio.

The latency which inconclusively could be a result of the I/O scheduling call while

still having an overall slightly larger run-time compared to other experiments. This

39

Chapter 5. Conclusions 40

insightful finding provokes the necessity to conduct further experimentation to narrow

down the causality of this outcome.

In summary, our work in benchmarking large language models has paved the way

for future advancements, offering a platform for assessing sparse models and embracing

the continuously evolving landscape of machine translation technologies.

Bibliography

[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[2] OpenAI. Gpt-4 technical report, 2023.

[3] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed:

System optimizations enable training deep learning models with over 100 billion

parameters. In Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery Data Mining, KDD ’20, page 3505–3506, New York,

NY, USA, 2020. Association for Computing Machinery.

[4] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,

Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-

gated mixture-of-experts layer, 2017.

[5] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther

Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark

Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan

Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin

Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee,

Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevi-

cius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip

Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei,

41

Bibliography 42

Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong,

Peizhao Zhang, and Yuchen Zhou. Mlperf inference benchmark, 2019.

[6] Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp

Koehn, Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-

Amand, Radu Soricut, Lucia Specia, and Aleš Tamchyna. Findings of the 2014

Workshop on Statistical Machine Translation. In Proceedings of the Ninth Work-

shop on Statistical Machine Translation, pages 12–58, Baltimore, Maryland, USA,

June 2014. Association for Computational Linguistics.

[7] NLLB Team, Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad,

Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht,

Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood,

Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John

Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit,

Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov,

Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn,

Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and

Jeff Wang. No language left behind: Scaling human-centered machine translation,

2022.

[8] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Lim-

its of Transfer Learning with a Unified Text-to-Text Transformer, July 2020.

arXiv:1910.10683 [cs, stat].

[9] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to

trillion parameter models with simple and efficient sparsity, 2022.

[10] Artificial intelligence computing leadership from nvidia, 2021.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,

2017.

[12] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-

term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404:132306,

mar 2020.

Bibliography 43

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition, 2015.

[14] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization,

2016.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding, 2019.

[16] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

Language Understanding by Generative Pre-Training.

[17] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,

Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normaliza-

tion in the transformer architecture. In Hal Daumé III and Aarti Singh, editors,

Proceedings of the 37th International Conference on Machine Learning, volume

119 of Proceedings of Machine Learning Research, pages 10524–10533. PMLR,

07 2020.

[18] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a Method

for Automatic Evaluation of Machine Translation. In Proceedings of the 40th

Annual Meeting of the Association for Computational Linguistics, pages 311–

318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational

Linguistics.

[19] Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In

Proceedings of the Tenth Workshop on Statistical Machine Translation, pages

392–395, Lisbon, Portugal, September 2015. Association for Computational

Linguistics.

[20] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT

evaluation with improved correlation with human judgments. In Proceedings of

the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine

Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan, June 2005.

Association for Computational Linguistics.

[21] Ehud Reiter. A Structured Review of the Validity of BLEU. Computational

Linguistics, 44(3):393–401, September 2018. Place: Cambridge, MA Publisher:

MIT Press.

Bibliography 44

[22] Tom Kocmi, Christian Federmann, Roman Grundkiewicz, Marcin Junczys-

Dowmunt, Hitokazu Matsushita, and Arul Menezes. To Ship or Not to Ship:

An Extensive Evaluation of Automatic Metrics for Machine Translation. In Pro-

ceedings of the Sixth Conference on Machine Translation, pages 478–494, Online,

November 2021. Association for Computational Linguistics.

[23] Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume

Wenzek, Da Ju, Sanjana Krishnan, Marc’Aurelio Ranzato, Francisco Guzman,

and Angela Fan. The flores-101 evaluation benchmark for low-resource and

multilingual machine translation, 2021.

[24] Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third

Conference on Machine Translation: Research Papers, pages 186–191, Belgium,

Brussels, October 2018. Association for Computational Linguistics.

[25] Maja Popović. chrF++: words helping character n-grams. In Proceedings of

the Second Conference on Machine Translation, pages 612–618, Copenhagen,

Denmark, 2017. Association for Computational Linguistics.

[26] Gaurav Menghani. Efficient deep learning: A survey on making deep learning

models smaller, faster, and better. ACM Comput. Surv., 55(12), mar 2023.

[27] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise

Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, and Dim-

itrios Skarlatos. Tmo: Transparent memory offloading in datacenters. In Pro-

ceedings of the 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’22, page 609–621,

New York, NY, USA, 2022. Association for Computing Machinery.

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network, 2015.

[29] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen,

David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh

Venkatesh, and Hao Wu. Mixed precision training, 2018.

[30] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong

He. Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning,

2021.

Bibliography 45

[31] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad

Awan, Cheng Li, Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase,

and Yuxiong He. DeepSpeed Inference: Enabling Efficient Inference of Trans-

former Models at Unprecedented Scale, June 2022. arXiv:2207.00032 [cs].

[32] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani

Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE:

Advancing Mixture-of-Experts Inference and Training to Power Next-Generation

AI Scale, July 2022. arXiv:2201.05596 [cs].

[33] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,

2009.

[34] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe

Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,

Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,

and Alexander M. Rush. Huggingface’s transformers: State-of-the-art natural

language processing, 2020.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. Pytorch: An imperative style, high-performance deep learning

library, 2019.

[36] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-

enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-

war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. Software available from tensorflow.org.

Bibliography 46

[37] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,

Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexan-

der M. Rush. Transformers: State-of-the-Art Natural Language Processing. pages

38–45. Association for Computational Linguistics, October 2020.

[38] Matt Post. A Call for Clarity in Reporting BLEU Scores. In Proceedings of

the Third Conference on Machine Translation: Research Papers, pages 186–191,

Belgium, Brussels, 2018. Association for Computational Linguistics.

[39] Alex Graves. Sequence transduction with recurrent neural networks, 2012.

[40] Biao Zhang, Philip Williams, Ivan Titov, and Rico Sennrich. Improving massively

multilingual neural machine translation and zero-shot translation, 2020.

[41] Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. Comet: A neural

framework for mt evaluation, 2020.

[42] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-

ford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan

Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick, Roman

Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Albin Cas-

sirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon

Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Improv-

ing language models by retrieving from trillions of tokens, 2022.

Chapter 6

Appendix

6.1 Single sentence dataset from FLORES-200 for Ex-

amining Efficiency of Models

English: On Monday, scientists from the Stanford University School of Medicine

announced the invention of a new diagnostic tool that can sort cells by type: a tiny

printable chip that can be manufactured using standard inkjet printers for possibly about

one U.S. cent each.

French: Des scientifiques de l’école de médecine de l’université de Stanford ont an-

noncé ce lundi la création d’un nouvel outil de diagnostic, qui permettrait de différencier

les cellules en fonction de leur type. Il s’agit d’une petit puce imprimable, qui peut être

produite au moyen d’une imprimante à jet d’encre standard, pour un coût d’environ un

cent de dollar pièce.

6.2 Single sentence dataset from WMT14 for Examining

Efficiency of Models

English: A Republican strategy to counter the re-election of Obama French: Une

stratégie républicaine pour contrer la réélection d’Obama

47

Chapter 6. Appendix 48

6.3 Training hyperparameters of the SwitchTransformer

Model Fine-Tuned

training_args = Seq2SeqTrainingArguments(

output_dir="opus_switch_model_16",

evaluation_strategy="epoch",

learning_rate=2e-5,

per_device_train_batch_size=4,

per_device_eval_batch_size=4,

gradient_accumulation_steps=4,

gradient_checkpointing=True,

weight_decay=0.01,

save_total_limit=3,

num_train_epochs=2,

predict_with_generate=True,

generation_max_length=512

)

training_args = training_args.set_logging(strategy="steps",

steps=100, report_to=["tensorboard"])

	Introduction
	Background & Related Work
	Introduction to NVIDIA Ampere Architecture
	Transformers
	T5
	NLLB
	NLLB-MoE & Switch Transformers

	Performance Evaluation on MT models
	Quality Metrics
	Model Inference Time

	Disk offloading
	Related work: Deepspeed
	Archer

	Benchmark Design and Implementation
	BenchmarkingSuite
	Configuration Setup
	ExperimentConfiguration

	Dataset Class
	Archer

	Analytics
	Quality Metrics
	Efficiency Metrics
	Profiling

	Implementation

	Experiments
	Datasets & Models
	Hyperparameters
	Methodology
	Results & Analysis
	Dense Models
	Sparse Models

	Conclusions
	Bibliography
	Appendix
	Single sentence dataset from FLORES-200 for Examining Efficiency of Models
	Single sentence dataset from WMT14 for Examining Efficiency of Models
	Training hyperparameters of the SwitchTransformer Model Fine-Tuned

