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Abstract

This thesis presents the implementation and evaluation of Prism in the NS3 simulator,

because, although Prism is a novel approach that eliminates the problems with tradi-

tional proxy systems, it is hard to experiment in a real testbed at a scale due to the need

for a large number of machines and high bandwidth networks. We describe our imple-

mentation of Prism in the NS3 network simulator in detail, and report experimental

results with up to 32 nodes in simulation.
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Chapter 1

Introduction

Prism [1] is a new approach to enabling scale-out systems, which dynamically adjust the

service capacity by adding or removing backend machines in the cluster. Unlike Layer

4 (L4) load balancers, such as Google Maglev [2], it allows active TCP connections

to migrate to a different backend without the client to notice, enabling better cluster

resource utilization and service paritioning or sharding. Unlike Layer 7 (L7) load

balancers or proxies, such as HAProxy [3], Prism allows the backends to communicate

with the client without their data transfer being mediated by the frontend. Therefore,

Prism reduces the CPU and network load of proxies, which is caused by data copy,

encryption and host link bandwidth usage.

Unfortunately, further research with Prism is difficult. Production systems are

complicated and diverse in hardware specification and configuration, and application

behavior. It is an open question how Prism could perform in a range of deployments,

because Prism was only evaluated in a small cluster that consists of three physical

servers that partition their resources into six dual-core logical servers, also using just

two applications. Prism has fundamental performance trade-off based on the connection

handoff overheads, and, by design, it would even decrease the end-to-end performance

of a traditional proxy-based system depending on workloads. Connection handoff

overheads are hard to characterize, because it involves many operations that incur

processing or network latency, or both, making validation of generality and practicality

of Prism hard. Even if hardware resources, such as small testbed, public cloud and

CloudLab, are available, it is hard to start a new research project with Prism, because

available configuration and hardware are still limited or expensive. Further, although

the source code of Prism is publicly available, it is a research prototype that is difficult

to run in a different platform.
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Chapter 1. Introduction 2

To enable further research with Prism without using a large amount of hardware

resources or building a specific system from scratch, we implement Prism in NS3 [4],

a widely used network simulator. In addition to enabling large scale experiment with

implementing an applications in the simulator, which is easier than doing so in the real

operating system, simulation allows us to analyze the impact of connection handoff

overheads, which is unique to Prism, on end-to-end performance, because we can easily

increase or decrease the delay of any operation. Since none of existing simulators,

including NS3, support the TCP features required by Prism and available in Linux,

such as TCP REPAIR and TCP INFO, we extend the NS3 network simulator to implement

those features, which is one of the main contributions of this thesis. We use our custom

NS3 simulator to analyze the impact of connection handoff overheads on end-to-end

performance at different cluster scales.

We find that the proxy implementation in NS3 was limited in throughput, while

the Prism implementation scaled better with the addition of more backends. The

presence of connection handoff overheads was confirmed to be a crucial factor affecting

performance in the Prism simulation.



Chapter 2

Background

2.1 TCP

Transmission Control Protocol (TCP) is an integral pillar of modern networking. Delv-

ing into its core features and understanding its challenges offer insights into its ubiqui-

tous application in today’s digital world.

One of the most foundational attributes of TCP is its connection-oriented mecha-

nism [5]. Unlike its counterpart, the User Datagram Protocol (UDP), TCP establishes a

connection before any data transmission commences. Functions like connect() are es-

sential in this handshake process, ensuring both sender and receiver are synchronized for

impending communication. This setup ensures a stable and dedicated communication

channel, vital for applications requiring reliability.

In the vast and unpredictable realm of networks, data packets can be lost, duplicated,

or delivered out of order. TCP’s retransmission strategy ensures that lost packets are

resent, bolstering the protocol’s reliability [6]. This feature is underpinned by using

acknowledgement for received data. The absence of an acknowledgement within a

specified timeframe triggers retransmission, ensuring data integrity.

TCP does not perceive data as discrete packets but as a continuous bytestream

[6]. This abstraction simplifies the process for higher-level applications. Irrespective

of how data is segmented during transmission, the receiving end reconstructs the

original bytestream, rendering the underlying complexities invisible to the end-users

and applications.

Networks can become congested, much like road traffic during peak hours. TCP’s

congestion control mechanisms adjust the rate of data transmission based on network

conditions [7, 8]. Through algorithms such as Reno and CUBIC, TCP dynamically

3



Chapter 2. Background 4

tweaks the data flow, ensuring the network isn’t overwhlemed, leading to a more

efficient and fair utilization of resources [9, 10].

TCP’s robust suite of features has cemented its position as a pivotal protocol in the

networking world [6]. Whether it’s browsing a website, sending an email, ot transferring

a file, TCP is invariably involved. Methods like getsockopt() and setsockopt()

exemplify its versatility, providing applications a range of options to customize their

networking behaviour [11]. Its reliability make TCP the protocol of choice for a vast

majority of Internet applications.

However, a limitation lies in TCP’s inability to adapt to changing addresses or

ports in the connection. The rigidity can become a hindrance in environments like

mobile networks where IP addresses can frequently change. Once a TCP connection is

established using the initial IP address and port, altering them disrupts the connection.

This behavior is intrinsic to its design; the tuple of source IP, source port, destination IP,

and destination port defines the connection [6]. While this ensures security and stability,

it lacks the adaptability demanded by certain modern use-cases.

TCP stands as a testament to the intricate balance between reliability and adaptability

in the digital world. It’s been our steadfast companion in ensuring our digital exchanges

are dependable. Like any tried-and-true method, it has areas to improve, but its enduring

presence highlights its significance in our connected age.

2.2 Layer 7 Load Balancer

In the landscape of networking, the Layer 7 load balancer (L7LB), commonly known as

an application load balancer or simply a proxy, plays a vital role in managing internet

traffic. It stands at the application layer of the OSI model, ensuring that incoming

requests from clients are seamlessly distributed across various backend servers [12, 13].

As its essence, the L7LB functions by delving deep into the content of data packets

[12]. deciphering the user-friendly URLs, or even perusing the intricate details embed-

ded in HTTP headers. It does not simply redirect traffic; it reads, understands, and then

makes informed decisions about where that traffic should go. For instance, it can route

a client’s request based on the content type, be it video, images, or textual data.

In terms of its position within network topology, the L7LB typically situates itself

between client devices (like computers or mobile devices) and backend servers [12].

When a client sends a request, it first reaches the L7LB. The balancer, after process-

ing the request’s content, forwards it to the most appropriate backend server. This
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ensures not only efficient load distribution but also optimizes the client’s experience by

minimizing response times and avoiding server overloads.

Layer 7 load balancers and Layer 4 load balancers (L4LB) both aim to distribute

traffic efficiently, but they operate at different layers and have distinct mechanisms

[12, 14, 15]. While L7LBs function at the application layer, focusing on content like

HTTP headers, L4 load balancers operate at the transport layer. L4LBs are more

concerned with information like IP addresses and port numbers. Their decisions are

based on simpler, more foundational data about the traffic, rather than its content. In

essence, L4LBs see the source and destination of the data while L7LBs comprehend

the actual content of the data. As a result, L7LBs can provide more sophisticated and

content-based load balancing decisions, such as directing all video requests to a specific

set of servers optimized for video streaming.

Despite its advanced capabilities, the L7LB is not devoid of challenges. A notable

problem is the inherent latency in its operation. Given that the L7LB acts as an

intermediary, it doesn’t just passively forward traffic [12]. Instead, it actively relays

requests to the backends and then waits to relay the response back to the clients. Its

strength, which lies in deeply inspecting packets, can also be its Achilles’ heel. This deep

inspection often requires more computational resources, potentially introducing latency.

Furthermore, as it deals with application-level data, L7LBs can become targets for

application-level attacks, demanding robust security mechanisms. There’s also matter

of complexity: the sophisticated decisions L7LBs make require configurations. An

incorrect setting can lead to misrouted traffic or even render an application inaccessible.

2.3 Prism

Prism is an innovative approach tailored to amplify the performance of object storage

systems. At its essence, Prism strives to harmoniously integrate the adaptability and

safety of age-old frontend proxy designs with the robustness and agility of today’s

key-value stores [16, 1]. These key-value repositories are fine-tuned for minimal I/O op-

erations, leveraging specialized UDP-based protocols within data center environments.

A distinguishing facet of Prism is its pioneering connection migration mechanism.

The iterative TCP connection transition stands as a central principle, allowing a TCP

connection to seamlessly shift across various machines during its active phase [1]. This

capability enables the frontend to scrutinize requests without the necessity to forward

extensive data or associated payloads, effectively countering a significant limitation of
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conventional proxy designs.

By using this hand-off, Prism can distribute the ”I/O, compute, and network band-

width usage across the backends” [1]. This distribution helps in bypassing data path

restrictions and ensures smoother and more efficient data transfer.

The practicality of Prism’s hand-off technique is anchored in two cutting-edge tech

evolutions: TCP state serialization for restoring the TCP socket and programmable

switches for redirecting packet to the backend [1]. The hand-off method of Prism

resonates with the TCP state serialization capability present in the latest Linux iterations,

a feature also on the horizon for platforms like FreeBSD. The emergence of granular

state management methods for adaptable switches equips Prism with the prowess to

adeptly oversee a multitude of simultaneous flows.

TCP REPAIR, introduced into the Linux kernel around version 3.5 as a socket option,

is a feature for handling TCP connections [11]. Sometimes, due to various reasons,

a connection might need to be moved from one place to another. Instead of tearing

down the connection and starting a new connection from scratch, TCP REPAIR lets us

pause the current connection, shift it to where it needs to go, and then continue right

from where it left off. It enables applications to seize control over the TCP connection,

allowing for relocation of network connections. By saving and restoring all the TCP

connection state, TCP REPAIR enables TCP connection migration to another host.

In Linux, putting a TCP socket into the repair mode is done using setsockopt()

with the TCP REPAIR argument [11]. The kernel then freezes the socket by stopping

and allows the user to manipulate its internals. The user can retrieve and save the current

state of the TCP connection, including the negotiated TCP options (e.g., maximum

segment size, window scale, timestamp), sequence numbers to send or receive data,

and data in send or receive queues [11]. When the socket is in the repair mode, the

Linux kernel closes the socket without sending FIN or RST packets, simply calling

tcp disconnect(). After a new socket is created on the target backend and put into

the repair mode, the socket can be restored for the continuity of the TCP connection

by calling setsockopt() with the saved information and corresponding TCP REPAIR

options.

To migrate the TCP connection, a new TCP socket can be created on the target

backend. The user then can put the new socket into the repair mode and use the

saved information to restore the socket’s state to a similar condition as the socket on

the original backend [11]. Once the restoration process is complete and state is fully

recovered, the user can switch off the repair mode, and the kernel of the target backend
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will resume normal operation of the TCP connection as if it had never been interrupted.

TCP REPAIR stands as a cornerstone in fortifying the reliability and continuity of

TCP connections. By preserving the socket state, it facilitates the safeguarding and

subsequent recovery of the connection’s status. This capability not only negates the

need for initiating new TCP connections but also enhances the resilience of internet

communications.

For Prism, a programmable switch contributes to enhancing the efficiency and

flexibility of data flow. The programmable switch in Prism is tasked with managing

and directing data traffic [1]. It works in tandem with Prism’s unique connection hand-

off protocol, allowing TCP connections to be smoothly migrated between different

machines. This ensures that data can be processed more efficiently, without unnecessary

relays or interruptions.

Furthermore, with the advent of advanced state management techniques, these

programmable switches can handle a vast number of concurrent data flows. To ensure

data is delivered promptly without any hindrances, the switch is tailored using custom

UDP packets [1]. These packets provide directives on how the switch should adjust

the IP addresses and port numbers. For incoming packets from the client, the switch is

instructed to alter the packets’ destination IP addresses, ports, and MAC addresses to

match those of the backends. Conversely, for outgoing packets directed to the client, the

switch modifies the packets’ source IP addresses and ports to align with the frontends.

The hand-off protocol introduced by Prism not only guarantees superior data rates

and response times compared to its traditional counterparts but also sets the stage for a

new era of streamlined and fortified object storage infrastructures in the times ahead.

2.4 NS3

NS3 is a discrete-event network simulator that operates primarily through scripting,

typically using C++ or Python [17, 18, 19]. It doesn’t come with a built-in graphical

user interface (GUI) for designing or running simulations. Instead, users write scripts

to define the network topology, set parameters, and run simulations.

NS3 allows users to design network topology with ease. In NS3, creating a network

topology is akin to crafting a story using node [4]. Using the NodeContainer class,

users can instantiate as many nodes as they need. Next, define the interconnections

between nodes. Depending on the desired link type—be it point-to-point, Wi-Fi,

or others—utilize the appropriate helper classes, such as PointToPointHelper or
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WifiHelper, to facilitate the configuration of the physical and MAC layers. Essential

attributes, including data rates and delays, can be fine-tuned to optimize the topology.

Upon establishing nodes and their links, the InternetStackHelper class is used to

equip each node with an Internet stack. IP addresses can then be assigned via the

Ipv4AddressHelper class. With the configurations in place, the NS3 script now

presents a well-defined network topology, prepared for subsequent simulations and

analyses.

In NS3, establishing a TCP connection between two nodes involves creating socket

instances for both nodes using the TcpSocketFactory and the Socket::CreateSocket

method [4]. The server node binds it socket to a specific address and port using the

Bind() method and then invokes the Listen() method to await incoming connection

requests. The client node uses the Connect() method to initiate a connection to the

server’s address and port.

To manage different stages of the TCP connection and ensure a structured and effi-

cient communication process in NS3, callbacks are extensively used to handle various

events that can occur during the lifecycle of a TCP connection [4]. For instance, the

SetConnectCallback is employed to handle both successfully connection establish-

ments and failed attempts. For server-side sockets, SetAcceptCallback is used for

handling incoming connection requests. It has two associated functions: the first is

triggered when a new connection request is received, allowing the server to decide

whether to accept or reject the connection; the second is invoked once the connection

is successfully established with the client. After the TCP connection is established,

the client can send data using Send() method. When data is ready to be read from

a socket, the SetRecvCallback is invoked, while the SetDataSentCallback is trig-

gered when a packet has been sent from transport protocol. Through these callbacks,

NS3 adeptly handles asynchronous network events, negating the need for constant

socket or connection status checks and ensuring an efficient, event-driven simulation.



Chapter 3

Problem Statement

In the realm of modern networking, the advent of Prism has introduced a novel approach

to enabling scale-out systems. By dynamically adjusting service capacity through the

addition or removal of backend machines in a cluster, Prism promises enhanced resource

utilization and efficient service partitioning. However, as with any innovative technology,

Prism is not without its challenges and uncertainties.

Prism’s unique capability allows active TCP connections to migrate to a different

backend without the client noticing, thereby optimizing cluster resource utilization.

However, this introduces connection handoff overheads, which have a performance

trade-off. These overheads are challenging to characterize as they encompass numerous

operations that can introduce processing or network latency, or even both. The intricate

nature of these operations makes it difficult to ascertain their overall impact on end-to-

end performance. For instance, while Prism was evaluated in a small cluster comprising

three physical servers partitioned into six dual-core logical servers, its performance in

diverse and larger deployments remains an open question. The potential decrease in

end-to-end performance, depending on the workloads due to these overheads, further

clouds Prism’s generality and practicality.

The scalability of Prism, especially in larger deployments, is yet to be thoroughly

understood. While simulations can offer insights into its performance in large-scale

experiments, the real-world implications of connection handoff overheads, especially in

extensive clusters, remain ambiguous.

In conclusion, while Prism presents a promising solution to some of the challenges

faced by modern networking systems, its full potential can only be realized once

these uncertainties are addressed. A comprehensive understanding of the impact of

connection handoff overheads on end-to-end throughput and latency, as well as the

9



Chapter 3. Problem Statement 10

performance characteristics in large-scale systems, is crucial for its widespread adoption

and optimization.



Chapter 4

Design

To address the problems described in the previous Chapter, we evaluate Prism using

a custom simulator. We extend NS3 by implementing a set of TCP features that are

absent in the NS3 TCP implementation although required for Prism and available in

Linux. Some features, such as extracting connection status, are trivial to implement, but

those modifying TCP behavior, such as TCP REPAIR, are not, as described in the rest of

this chapter.

4.1 TCP REPAIR

We implement TCP REPAIR in NS3. To facilitate the use of TCP REPAIR in NS3,

we have introduced several modifications and new methods. Unlike Linux, which

toggles TCP REPAIR using the setsockopt interface, NS3 lacks such a native interface.

To address this gap, we implement a new method called SetTcpRepair within the

TcpSocketBase class, which instantiates a TCP connection. The socket instance can

be cast to this specialized class for the activation or deactivation of repair mode.

We add a flag named m repair to the TcpSocketBase class, which serves as an indi-

cator for the repair mode status of the connection. We choose to extend TcpSocketBase

rather than TcpSocket because the former provides the concrete implementation of

TCP functionalities, while the latter merely defines a set of common interfaces that

can be employed across various TCP implementations supported by NS3 (NS3 accom-

modates multiple TCP implementations, unlike Linux). We use that flag to enable

operations specifically allowed in the repair mode. Since TCP connections do not send

and receive data, nor do they process data in the repair mode in Linux, we modify the

NS3 TCP implementation to suppress regular packet transmission and reception based

11



Chapter 4. Design 12

on this flag. Likewise, since no FIN or RST are sent when the socket is closed in the

repair mode in Linux, we modified the close implementation in NS3 to simply change

its TCP state to CLOSED after calling DeallocateEndpoint() if the socket is in the

repair mode.

We then implement the GetRepairWindow method that retrieves window-related

information from the repair-mode socket. It provides the same functionality with

getsockopt with TCP REPAIR WINDOW in Linux. Since Linux returns the window pa-

rameters in struct tcp repair window, we define an equivalent structure, TcpRepairWindow.

The Linux implementation also provides information regarding the received urgent

pointer through TCP REPAIR WINDOW. However, we have deferred its implementation

in NS3 to future work, considering that the use of urgent pointers is increasingly rare

and not pertinent to Prism.

Finally, we implement a method named SetTcpRepairQueue. It specifies which

queue, which is either send or receive queue, will be targetted by subsequent queue oper-

ations. The selected queue is internally recorded in the m repairQueue variable and can

be queried using the GetTcpRepairQueue method. GetTcpQueueSeq returns the se-

quence number being used for the new data transmission (m tcb->m nextTxSequence())

when the queue has been set to TCP SEND QUEUE; it returns the sequence number ex-

pected in the next in-order segment (m tcb->m rxBuffer->NextRxSequence()) when

it has been set to TCP RECV QUEUE.

4.2 Other Socket Operations

TCP connection migration needs a number of operations in addition to those specific

to repair-mode sockets. Fortunately, we found that most of them are already available

or trivial to implement in the TcpSocketBase class, unlike the repair-mode operations

described in the previous section.

We need local and remote port numbers when restoring the connection. We can

use built-in methods, GetSockName and GetPeerName instead of getsockname and

getpeername in Linux. The restored connection needs the maximum segment size. It

can be retrieved using GetAttribute() with the SegmentSize attribute. To retrieve

the latest TSval found in the Timestamp option [20] received from the peer, which the

restored connection should echo, we implement the GetTimestampToEcho method that

simply reads the m timestampToEcho in TcpSocketBase.

When restoring the connection, we also need the scaling factor of the advertised
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window that has been negotiated over the Window Scale option during the connection

setup. In Linux, it can be retrieved as a part of TCP INFO in getsockopt. Although

we would simply read the scaling factor value (m rcvScaleFactor), we opted for

implementing entire TCP INFO in NS3, because of future extensibility.

4.2.1 TCP Connection Serialization

TCP connection serialization plays a vital role in the migration of TCP connections. It

is the process of transforming the state of a TCP connection into a format suitable for

storage and future use. The state of a TCP connection encompasses crucial information,

as we described before, including sequence numbers for the next byte to be sent or

received, TCP options, congestion window status, and more. Through serialization, the

intricate state is converted into a compact, storable format that captures all the necessary

details. The serialized state can then be saved, allowing for the recreation and continuity

of the original TCP connection at a later time.

Within NS3, serialization also holds significant importance in evaluating Prism

because it enables operations to retrieve and replicate the TCP connection state of

a socket and helps with the restoration of a new socket on the target backend to the

required state.

Built-in methods such as GetSockName() and GetPeerName() offer basic socket

information, delivering the port numbers and addresses of the socket and its remote peer,

respectively. To enhance this, we add five specialized methods in NS3 that emulate

the capabilities of the getsockopt() system call for a comprehensive snapshot of the

connection state:

• GetTcpInfo() extracts a broad set of TCP metrics and returns them within a

TcpInfo struct.

• GetRepairWindow() fetches the TCP repair window state and encapsulates it in

a TcpRepairWindow struct.

• GetTimestampToEcho() retrieves the timestamp currently set to be echoed by

the socket.

• GetTcpRepairQueue() identifies the active queue (either send or receive) when

the socket is in TCP repair mode.



Chapter 4. Design 14

• GetTcpQueueSeq() discloses the next sequence number for either sending or

receiving data, depending on the active queue.

In NS3, when we establish a TCP connection between two nodes, the accepted

socket can be dynamically cast to TcpSocketBase. By setting m repair to 1 through

SetTcpRepair() and invoking aforementioned methods, we can extract the serialized

data of the socket. Furthermore, built-in methods GetTxBuffer() and GetRxBuffer()

provide details about the send queue and the receive queue. Once the retrieved data

is validated, we can save it in the format returned by these methods for precise deseri-

alization at a later time. The formats used to store the socket state, like TcpInfo and

TcpRepairWindow structures, contain sufficient detail to facilitate a comprehensive

restoration of the TCP connection state.

TCP connection serialization serves as the foundation of our TCP REPAIR imple-

mentation in NS3. By capturing and storing the TCP connection state as serialized data,

we gain the ability to pause and resume the TCP connection without noticing the client.

4.2.2 TCP Connection Restoration

TCP connection restoration is an essential feature for facilitating the live migration

of TCP connections between hosts. Simply closing and reopening a TCP socket

would inherently disrupt ongoing network communications. This could be especially

problematic for real-time or mission-critical applications. Restoring the TCP connection

ensures that the communication remains uninterrupted after migration.

The restoration process commences by capturing the existing state of a TCP socket

through serialization. This state is subsequently replicated at the destination host through

deserialization. A new socket is instantiated on the destination host and immediately

placed into repair mode. This state allows for manual adjustments to the socket’s

internal parameters, leveraging the serialized data to reconstruct the original socket’s

state.

In the NS3 environment, a newly created socket on a different node can be dynam-

ically cast to the TcpSocketBase class and set into repair mode. Following this, we

employ a series of specialized methods to gain granular control over the connection state.

These methods emulate the functionalities available through Linux’s setsockopt()

but are tailored for NS3:

• SetTimestampToEcho() specifies the timestamp to be echoed in subsequent

TCP acknowledgments.
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• SetTcpInfo() adjusts the socket’s internal state based on the supplied TcpInfo

structure.

• SetHighTxMark() establishes a new high-water mark for the transmission se-

quence number.

• SetTcpRepairWindow() modifies the TcpRepairWindow parameters, applica-

ble only when the socket is in repair mode.

• SetTcpQueueSeq() sets the sequence number for either the send or receive

queue, depending on the repair queue’s current state.

• SetTcpRepairQueue() selects the active repair queue (either send or receive)

for the socket in repair mode.

• SetTxBuffer() and SetRxBuffer() adjust the properties of the transmission

and reception buffers, respectively.

• SetTcpRepairOptions() modifies various TCP attributes when the socket is in

repair mode, taking input as a TcpOptions structure.

Upon successful restoration of the socket, it can be bound to the node’s local address

and connected to the client without initiating any packet transmissions. Finally, the

socket exits repair mode, enabling it to resume standard communications.

4.3 Connection Handoff Protocol

Serialization and restoration are not enough to implement Prism. To enable the TCP

connection handoff protocol, we implement a programmable switch for Prism and

host-side control plane, including UDP-based RPCs, to configure the switch based on

connection handoff requests.

We implement a Prism switch class called PrismNetDevice by extending the

BridgeNetDevice source code. The BridgeNetDevice in NS3 serves as a foun-

dational module that simulates a simple bridge or switch, making it an ideal starting

point for our Prism switch implementation. It inherent design allows for the forwarding

of packets between bridged devices, closely mirroring the basic functionality required by

the Prism switch. By leveraging the existing mechanisms within the BridgeNetDevice,

we could focus on layering the unique features of the Prism on top, rather than building

from scratch.
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The Prism switch requires the ability to modify packet addresses for specific TCP

connections based on the custom UDP packets it receives. To facilitate this, we define a

struct named PrismAction for adding and changing switch rules. When a device needs

to configure a switch rule, it serializes an instance of PrismAction into a UDP packet

and sends it to the switch. Upon receiving these UDP packets, ReceiveFromDevice()

passes them to ConfigReq(). Depending on the specified action (e.g., ADD, DELETE,

CHOWN, LOCK, UNLOCK), ConfigReq() invokes the appropriate function to execute the

action and returns a status indicating success or an error. After the status returns, the

switch invokes ConfigPrepareResponse() to write the status into the packet and

swap the source and destination IPs and ports, then sends the response back to the

original sender.

To simulate prism hash table in the original source code, we defined two structs: Key

and Prism. The Key struct represents a combination of an IPv4 address and a port, while

the Prism struct encapsulates information about a virtual address, its corresponding

port, the owner’s address, port, and MAC address, as well as a locking status. To

efficiently store and retrieve Prism objects based on their associated Key, a custom

hash function, KeyHash, is provided. This function computes a unique hash value for

each Key by combining the hash of its IPv4 address and port. Finally, we defined

an unordered map m prism that uses Key as its key and Prism as its value, enabling

efficient storage and retrieval of Prism objects.

In addition to the table m prism, we defined a series of functions to manage the

entried of m prism: AddEntry() checks if the key already exists based on the provided

PrismAction and if not, adds a new entry to m prism map; DeleteEntry() removes

an entry if the key provided is found; ChangeOwner() updates the ownder details of

an existing m prism map entry and modifies the owner’s IP, port and MAC address

according to the PrismAction; LockEntry() and UnlockEntry() toggle the locked

state of an entry by searching for the key in m prism and update the locked status

accordingly.

Before forwarding a TCP packet, the switch consults the m prism map to see if

the packet’s source or destination IP address and port match any key. If a match is

found, the switch modifies the packet’s details accordingly. For incoming packets with

a source address and port that match a key, the switch updates the packet’s destination

IP, port, and MAC address to reflect the associated owner’s details. On the other hand,

for outgoing packets destined for an address and port present in the key, the switch

adjusts the packet’s source IP and port to their virtual counterparts.
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Our adaptation of the BridgeNetDevice module in NS3 to create the Prism switch

demonstrates a tailored approach to packet processing. By introducing specialized

structures and enhancing packet handling logic, we’ve seamlessly integrated the unique

functionalities of the Prism switch into the NS3 environment, ensuring efficient and

dynamic packet address modifications.



Chapter 5

Evaluation

5.1 Methodology

We compare NS3 implementation of Prism against the traditional proxy, which we

also implement in NS3. While the proxy represents the conventional approach that has

been widely adopted, Prism emerges as a promising contender that aims to tackle the

inherent challenges of the traditional proxy, which include link utilization and CPU

utilization [1].

In the proxy, the frontend terminates a TCP connection with the client, and relays

the data between the client TCP connection and another established with a chosen

backend. Our proxy maintains a pool of persistent TCP connections with each backend

so that the frontend can retrieve data from the backend without newly establishing a

TCP connection. The frontend reserves an available connection in the pool by calling

GetAvailableFrontendConnection(). If no connections are available, the request

is queued for that selected backend. Once another request completes and releases a

connection, our proxy processes the next request in the queue. Unless otherwise stated,

we use 5 TCP connections in the pool for each backend in all the experiments.

Although we evaluate Prism mainly with migrating the connection for every request,

as in the Prism paper [1], we also evaluate Prism without connection migration except for

the first request. This experiment demonstrates the upper bound of Prism performance

without the vast majority of the overheads.

We evaluate Prism’s scalability, which was not done in the original study due to

their limited hardware-testbed experiment, by varying the number of backends. We

also vary the object sizes because the connection handoff overheads of Prism occur per

object and thus are amortized when the object size is large. This experiment helps us

18
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validate our implementation of Prism in NS3.

5.2 Basic Tests

We use a star-topology to connect the client, frontend, and backends. All the links are 1

Gbps, except that the client connects to the switch over a 5 Gbps link, mimicking a high-

bandwidth top-of-rack switch uplink in a datacenter. We vary the number of backends

from 4 to 32; although the original Prism paper used six backend, we experiment with

more backends, taking the advantage of simulation. We vary the object size between

4KB and 256KB. The client uses 10, 100 or 200 persistent TCP connections; inside

each connection, the client sends the next request once the full response is received.

We use a single connection between the frontend and each of the backends to perform

connection handoff.

We expect Prism exhibits higher throughput than the traditional proxy, especially

when object sizes are large, where the overheads of Prism can be amortized, and when

the number of backends are large, where more backend links can be used without being

constrained by the frontend link. We also expect that Prism without multiple connection

handoffs exhibits higher throughput than than Prism that migrates the connection for

every request due to the reduced connection handoff overheads.

Figure 5.1 plots the results. As expected, the proxy throughput remain at 1Gbps in

all the configurations, constrained by the frontend link bandwidth. Prism’s throughput

varies, but not constrained by the frontend link bandwidth, achieving at least 3.23Gbps.

When 4 backends are used, 4Gbps is theoretical maximum, because each backend can

offer at most 1Gbps. Prism (one handoff) can achieve nearly 4Gbps due to minimum

connection handoff overheads, whereas regular Prism configuration takes at least 196KB

of the object size or 200 concurrent connections to achieve the same rate to amortise the

connection handoff overheads. High connection count helps Prism achieve the higher

throughput, because more connections can be active while some connections are not in

the connection handoff process, minimizing the link underutilization.

Similar discussion applies to the cases with larger numbers of backends. When the

number of backends is 16 or 32, the theoretical maximum throughput with Prism is

5Gbps, which is the link bandwidth of the client. When object sizes are small, frequent

connection handoff overheads prevent Prism from achieving high throughput. That

can be confirmed by high throughput with small objects in Prism without multiple

connection handoffs.
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Figure 5.1: Basic test results.

5.3 Advanced Tests

We now evaluate whether our Prism simulator with NS3 can simulate the performance

of Prism in a real hardware testbed. We therefore configure the simulation topology

based on the parameters used in the Prism paper. Object sizes are 1KB–4MB, and 6

servers are used, one acting as the frontend and the others acting as the backends. Each

server is connected to the switch via a 10 Gbps link, while a 40 Gbps link is used for the

client. The client uses 500 persistent TCP connections, and we use 6 TCP connections

between the frontend and each of the backends for connection handoff.

To see how the connection handoff overheads impact the throughput, we also vary

the connection handoff latency by adding up to 300µs of latency on every connection

handoff event. We expect that larger objects are needed to amortise the connection

handoff costs when the handoff latency is higher.

Figure 5.2 plots the results. Although throughput of regular Proxy stays at most
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Figure 5.2: Advanced test results.

approximately 10 Gbps, again constrained by the frontend link bandwidth, Prism can

achieve nearly the uplink bandwidth (i.e., 40Gbps), utilizing the aggregated bandwidth

of the backend links when the object size is 64KB or larger. For smaller object sizes,

we observe that connection handoff overheads are gradually amortized with increasing

object sizes. Since our results are similar to those in the original Prism paper, whose

throughput is maximized with 128KB or larger objects, we conclude that our simulator

enables a reasonable approximation of Prism. It is clear that we could observe even

closer throughput to the original paper when we increase the connection handoff time,

which we leave as future work.

When extra latency is added to connection handoff, as expected, we observe lower

throughput when object sizes are small, confirming that connection handoff overheads

impact Prism’s throughput.

5.4 Simulation Time

Finally, we report the wall-clock time taken to execute our simulation experiments. We

employ a single instance of CDH 32C96G in Tencent Cloud, equipped with a 32-core
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Figure 5.3: Simulation time.

CPU, 96GB of RAM, and 50GB of a disk. Since our experiment is simulation, we

expect that, the more packets are generated (by small objects), the longer the simulation

takes. We thus also expect that Prism exhibits longer simulation time than proxy due to

higher throughput.

Figure 5.3 plots the results. When the number of backends is one, Prism (one

handoff) exhibits the shortest simulation time. This is because only two nodes are

involved during most of the simulation. For Proxy, the simulation time is almost

the same regardless of the number of backends, because the throughput is the same

(10Gbps) in the baseline. Prism exhibits the longest simulation time due to a handoff

request packets that are sent at every request. Therefore, when more data packets are

sent for each objects or the object size is larger, the relative (simulation) cost of handoff

request packets become lower, resulting in the similar simulation time to Prism (one

handoff) case when the object size is 128KB.

5.5 Discussion

In the basic tests, throughput for the proxy was limited to approximately 1 Gbps

regardless of the object size or the number of backends, despite the 5Gbps client link

bandwidth, because the frontend must relay the data between the client and backend.

We observed the same in the advanced tests where the client bandwidth is 40Gbps.

This indicates the validity of our proxy implementation in NS3, which maximizes the

performance using connection pools that allow the frontend to retrieve data from a

backend without performing three-way handshake.

For Prism, with just four backends, the peak throughput was close to 4Gbps. As
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the number of backends increases, that approached to 5 Gbps, which is the client

link bandwidth. Those observations indicate validity of our Prism implementation

in NS3. Simultaneous requests from the client lead to concurrent responses from

all the backends (recall that requests are redirected to different backends in a round-

robin fashion), enabling the client to utilize the combined backend bandwidth. When

the number of backends is large, the client link bandwidth becomes the bottleneck.

We confirmed that throughput stays at most at 5Gbps in Chapter 5.2 and 40Gbps in

Chapter 5.3 regardless of the number of backends.

The presence of the connection handoff overheads in our NS3 Prism implementa-

tion was crucial, and we confirmed that by experimenting with a variant of the Prism

application that migrates connections only at their first requests. This variant consis-

tently achieved the maximum throughput even with small object sizes, because of the

negligible (i.e., only once through the simulation trial) connection handoff overheads.

The throughput difference from regular Prism demonstrates that the connection handoff

overheads are successfully included in our NS3 simulation.



Chapter 6

Conclusions

This thesis implemented and evaluated Prism in the NS3 simulator. The evaluation of

the traditional proxy, which we also implemented in NS3, and Prism has highlighted

distinct performance characteristics of those systems. Since the traditional proxy relays

requests and responses at the frontend server, its throughput is constrained by the link

bandwidth of the frontend. Prism outperforms the proxy, leveraging combined backend

bandwidths as long as the client bandwidth is available, especially with large object

sizes and increased numbers of TCP connections. Although Prism’s repeated TCP

connection migrations introduce overheads of serializing and restoring the connection

and configuring the switch, those overheads can be amortized when the object sizes

are large. Our experiment in comparison to the one-time connection-handoff variant

of Prism confirmed those overheads, demonstrating the validity of our implementation

of Prism in the NS3 simulator. We believe our work made significant contribution to

enabling further research with Prism without physical server resources.
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