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Abstract

Mixture of Experts (MoE) models have emerged as a powerful paradigm for capturing

intricate patterns in complex data. However, training these models efficiently remains a

significant challenge due to their computational and memory-intensive nature. Deep-

Speed’s ZeRO (Zero Redundancy Optimizer) Stage 3 offers a promising avenue for

optimizing the training of large-scale models but has not been extensively explored

in the context of MoE models. This paper aims to investigate the efficacy of utilizing

DeepSpeed’s ZeRO Stage 3 for accelerating the training of Mixture of Experts models.

Our innovation lies in leveraging the advanced memory optimization and parallelization

features of ZeRO Stage 3 to significantly speed up the training process compared to

existing methods. We adapt ZeRO Stage 3’s optimizer and data parallelism techniques

to suit the unique architecture and computational graph of MoE models. Our approach

involves a careful partitioning of model parameters, gradients, and optimizer states

across multiple GPUs, along with an optimized data pipeline to minimize data transfer

overheads. Our experiments demonstrate a substantial reduction in forward + backward

time compared to the baseline ZeRO Stage 3 implementation, without compromising

the model’s quality. From being proportional to model size to being almost exclusively

associated with FLOPs (floating point operations). We achieve up to a 1.5× speedup in

training time across various benchmarks.
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Chapter 1

Introduction

In the realm of machine learning, the predictive prowess of a model is intrinsically tied to

its capacity, typically quantified by the number of parameters within the network. As the

quest for precision intensifies, there has been a tenfold annual surge in capacity, which

illustrated by Jaime [26], leading to increased computational demands and escalating

training expenditures. Neural architectures with sparse activations, exemplified by the

Mixture of Experts (MoE) [28], present a compelling solution by dissociating the need

for extensive parameters from computational overheads. Such architectures operate by

selectively activating specific network segments, thereby curtailing training expenses.

Empirical evidence from prior studies [1, 6, 16, 3, 29, 35] indicates that MoE models not

only curtail training overheads but also enhance prediction (inference) accuracy across

domains like language modelling [1, 5, 6, 24] and machine translation (No Language

Left Behind) [3], and image recognition [23, 34]. However, despite the availability

of robust libraries [14, 21, 19, 22, 20] for training and inference of transformer-based

dense models, their proficiency in handling sparse model training (fine-tuning) remains

suboptimal, especially in offloading circumstances, where the model is too large to fit

into the GPU.

1.1 Objective and Motivation

With large language models like ChatGPT become integral to production services, the

emphasis on characterizing and enhancing inference efficiency has grown. As shown

in Figure 1.1, compared to dense model with certain ZFLOPs training performance,

MoE models observe a huge training speed-up, especially at in-domain perplexity.

However, one of the most salient feature is that MoE models are much larger than

1



Chapter 1. Introduction 2

Figure 1.1: The efficiency gain of MoE compared to dense models. The vertical

coordinate factor y means the speed-up of MoE models compared to similar dense

models with the x training ZFLOPs [1].

its counterparts Dense models for its special structure. While at the same time, GPU

memory is much more expensive than CPU memory or SSD memory. For a machine

with tens of GB GPU memory will commonly equip with hundreds of GB DRAM

and over 1 TB SSD memory. So offloading the inactive gradient, optimization states

and parameters is an efficient and cost-effective in terms of calculations and economic.

Under this circumstance, the latency of the whole training and inference step should

count in the communication and memory copy cost between CPU and GPU [22].

In a bid to reduce the latency, efforts have been made from different aspects. Distill-

ing of MoE [1, 6] extracts a small model out of the original MoE, while maintaining the

same FLOPs at the sacrifice of some quality downgrade [16]. Also, some modern archi-

tectures like DeepSpeed-MoE [18] and Tutel [13] put their eye on different parallelisms

(e.g. expert parallelism) for improving the hardware utilization. But the communication

design only suits for certain type of GPU collectives. In addition, the kernels targeted

enhancement does not examine the latency cause of special MoE architecture, which

results in wasted computation and communication, even if it appears that hardware

usage is already high. As a result, The main purpose of this paper is to downgrade

model training latency when using offloading technology with as little loss of model

quality as possible.
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1.2 Structure and Contributions

First we conduct an in-detail analysis under the model offload framework [22] on the

MoE model architecture, figuring out the real cause of latency and throughput, only by

which can we truly optimize and target the core challenges effectively. The analysis

shows the sparse activation of experts is the key, resulting in the memory footprint

and computation/communication waste. Second we propose an improved design to

address the shortcomings of the memory offloading mechanism that cause high latency

characteristics. By removing the communication and computation of experts that are

not activated during inference and training, we can effectively reduce the latency of

the model under the same batch. Third we establish a buffer in GPU for those some

non activated experts. If next time it is activated, there is no need to fetch them from

CPU, which further decreases the communication workload. Last we conduct a series

of experiments to prove the reduction on latency, we ensure less memory copy latency

and communication cost of fetching and releasing parameters. In addition, with fewer

experts fetched to GPU, more CUDA memory can be reserved for increasing batch size,

which increases throughput even further and reduces latency per sample.

To sum up, the main contributions of this paper are below:

• We characterize the MoE architecture under ZeRO-Offload framework, finding

the main cause of high training latency compared to the dense model.

• We propose an expert wise fetch mechanism which enables faster training without

causing more CUDA memory usage.

• We conduct a list of evaluation experiments to evaluate the performance of the

architecture using proposed improvement. And extend the improved fetching

architecture to Multi-GPU for testing scalability.



Chapter 2

Background

2.1 Transformer Based MoE Model Architecture

The proposition of utilizing distinct models tailored to specific inputs has been a topic of

academic discourse, aimed at augmenting model adaptability and fortifying resilience.

Within the neural network landscape, the Mixture-of-Experts (MoE) paradigm [28]

serves as a tangible instantiation of this concept. As delineated in Figure 2.1, the

MoE module amalgamates a multitude of autonomous models, termed ’experts’, which

denotes the feed forward network (FFN) in the figure, governed by a routing mech-

anism responsible for input allocation. Notably, activation is exclusive to the expert

corresponding to a particular input, facilitating a theoretical expansion in model ca-

pacity—quantified by parameter count—without incurring substantial computational

overhead.

The Transformer architecture has etched its prominence in domains such as computer

Figure 2.1: MoE model structure. The left is a plain MoE network, the right is a

Transformer based MoE encoder network [6].

4



Chapter 2. Background 5

vision and natural language processing, consistently redefining benchmarks across

diverse tasks [4, 32]. At its core, the Transformer integrates a tokenizer responsible for

input segmentation and an encoder-decoder framework. Both the encoder and decoder

has multiple dense layers, enabling them to encode input data (e.g. images or text) into

internal feature representations and decode these feature representations into output

data (e.g. labels or text) separately.

Besides, transformer models have pivotal component called self-attention, which

calculate the inner relationship of a sequence, and not affected by the position of tokens

in a sequence due to matrix manipulation. As a result, self-attention can capture some

semantic features between tokens in the same sentence, long-distance interdependent

features in sentences in particular.

Integrating the MoE’s foundational principles with the Transformer’s structural

blueprint gives rise to the MoE Transformer. Beyond the archetypal dense Transformer

layer, it introduces a novel layer imbued with sparse MoEs. In this configuration, the

traditional FFN is supplanted by an MoE component, encompassing a diverse array of

expert FFNs. Instead of a uniform application of a singular FFN to all input tokens, a

gating mechanism discerns the optimal expert for each token, subsequently channeling

tokens to their designated expert. Typically, this routing adheres to a top-1 or top-2

routing strategy. Sparse MoE layers are interspersed within the dense transformer layers

in the overarching model architecture, as shown in 2.1.

Such architectural innovations endow the model with enhanced versatility and a

pronounced expansion in its dimensional capacity. In juxtaposition with traditional

Transformer constructs, where computational demands, represented by the FLOPs

metric per batch, scale linearly with parameter magnitude, MoE constructs exhibit a

diminished computational footprint. This efficiency has been pivotal in the training of

expansive models. Empirical evidence suggests that MoE Transformers have not only

optimized the training overhead of voluminous transformer models [1, 5, 6, 16] but

have also manifested superior precision across a spectrum of domains, encompassing

visual, textual, auditory, and multi-modal disciplines [8, 10, 15, 25, 36].

2.2 Parallelism and Offload

Enormous efforts have been made on parallelism of data, model, pipline and tensor

[11, 27, 7, 9].
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2.2.1 Data Parallelism

In the context of data parallelism, individual GPUs, termed as worker GPUs, maintain a

replica of the neural network and process distinct segments of the input batch. Upon

completion of the backward pass, these GPUs synchronize their respective gradients

through an all-reduce function invocation. Nonetheless, a salient constraint of data

parallelism is the requisite for each GPU to possess sufficient memory capacity to

accommodate the entirety of the neural network’s parameters, in addition to its gra-

dients and states associated with the optimizer. Addressing this challenge, ZeRO is

introduced with the objective of obviating superfluous memory utilization inherent

to data parallel GPUs [19]. Their proposition encompasses a tripartite methodology,

with each stage incrementally enhancing memory efficiency, albeit at the expense of

augmented communication overhead.

2.2.2 Expert Parallelism

Upon the completion of routing, the computational process within an expert block of

an MoE layer operates autonomously, devoid of interference from other experts. This

inherent characteristic is leveraged by expert parallelism, which assigns distinct expert

blocks to individual GPUs, facilitating their computation in a straightforward parallel

manner. The alignment of tokens to their respective experts is achieved through an all-

to-all communication protocol among the engaged GPUs. Owing to its uncomplicated

design and proven efficacy, expert parallelism has been integrated into numerous parallel

frameworks tailored for both training and inference on MoEs [1, 6, 16, 17, 29].

2.3 Tensor Parallelism

Tensor parallelism is predicated on the distribution of a neural network layer’s computa-

tion across multiple GPUs. Megatron-LM is designed to distribute the computational

tasks of layers within one model [30]. The crux of their approach centers on the clipping

model matrix lying in the multi-attention layer of transformer models. Furthermore,

Siddharth et al. propose a hybrid parallelism. Combining the above parallel techniques

and by optimising the communication, a higher number of trainable parameters for the

MoE model and a lower average latency are achieved [31].
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2.4 Offloading

Proposed by ZeRO-offload, there are three stages towards offloading large models from

GPU to CPU/NVMe [22]. Ren et al. split a training step into a graph contraining

data flow operations and computation operations. As demonstrated in Figure 2.2

The operations that are computationally demanding, namely the forward (fwd) and

Figure 2.2: The dataflow between CPU and GPU [22]. To keep the larger fp32 optimizers,

gradients, and parameters on CPU for storing and updating, while placing the smaller

fp16 parameters on GPU to compute matrix multiplication with data batch

backward (bwd) passes, were allocated to the GPU. Conversely, the optimizer update

operation, which is more memory-intensive and demands frequent read/write operations,

was designated to the CPU. This strategy is further bolstered by the integration of

asynchronous read/write mechanisms and prefetch functionalities, which collectively

aim to minimize hardware downtime during a step. The ZeRO stage 1 undertakes the

task of partitioning the optimizer states, subsequently offloading them to the CPU. This

ensures that each process is solely responsible for updating its designated partition.

Progressing to stage 2, there’s a partitioning and offloading of the gradient, while stage

3 focuses on partitioning and offloading the model parameters, which are automatically

converted to a 16-bit format.



Chapter 3

MoE Training Analysis

Since MoE is the trend for future large language models (LLM), it is crucial to increase

the training and inference speed of MoE and coordinate it with memory, cuda memory,

and NVMe storage. In the perspective of calculating carbon emissions and energy

cost, Two model with similar FLOPs(floating point operations) is regarded to be used

for performance and quality comparisons. However, because of the special routing

structure of the MoE model, only a few experts are activated during forward and

backward propagation [12], which results in the larger model size to Dense counterparts.

So, in the memory offloading scenario, the latency of one training step (almost same

FLOPs) will be different due to other communication and memory copy cost operations

apart from GPU computation. The purpose and workflow of the analysis of MoE model

architecture is as follows:

• Compare the latency and memory consumption of MoE models with its corre-

sponding Dense models having close FLOPs (floating point operations).

• Analyse the activation rate of MoE model.

• Dive into the fundamental factor and analyse the deficiencies.

The information of selected Model and hardware is listed in Tabel 3.1. Considering the

CUDA memory limitation, the state-of-the-art (SOTA) MoE model choosen is Switch

Transformer. While the dense counterparts is Flan T5 with similar FLOPs. The Sparse

Frequency SF defines every SF layers contains 1 sparse layer; The Expert Capacity

C defines the maximum number of tokens an expert can process in one sequence (set

to 1 means one expert can process 100% of a sequence, which ensures the inference

of machine translation will not drop any tokens). The MoE model, which follows the

8
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config of Switch Transformer Base, uses Top-1 route strategy. That is, for each token, it

will be routed to only 1 expert in a layer.

Type Params E Layers SF C d model d ff vocab size

MoE

1.07B

1.98B

3.79B

16

32

64

24 2 1 768 3072 32128

Dense 247M – 24 – 1 768 2048 32128

CPU AMD Ryzen 9 5950X 16-Core Processor, 2.2GHz, 128GB mem-

ory

GPU 1 × NVIDIA Geforce RTX 3090 Founders Edition

SSD Samsung SSD 870

Table 3.1: E: Number of experts in each sparse mlp layer; SF: Sparse frequency, which

means every SF layers have 1 sparse layer; C: expert capacity; d model: Size of the

encoder layers and the pooler layer; d ff: Size of the intermediate feed forward layer in

each.

3.1 Latency and Memory Footprint

We analyse the training latency and memory consumption of the MoE model. The

metrics are that latency: lower is better, while memory consumption: lower is better. In

this analysis experiment setup, the batch size is selected as 64, which limited by the

maximum capacity of GPU. Both the input and labels sequence length are 128.

As described in Table 3.1, the MoE model with 128 experts per sparse layer has

over 3 Billion parameters, which is around 70 GB in size. The data size per iteration

is around 16.4 GB. So, if using GPU with 24 GB memory only, at least 9 GPUs are

needed for the training, which is not affordable to everyone. Since the CPU memory is

128 GB more than the model size, we choose CPU as the offloading destination.

All the models in Figure 3.1 have almost the same FLOPs (Within the interval 7418

GFLOPs and 7438 GFLOPs) under ZeRO stage 3. The Dense model use the config of

Flan-T5-base [2], while the three MoE models share the config of Switch Transformer

base [6] but with different experts per sparse layer. The number of their parameters

have been illustrated in Table 3.1.
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Figure 3.1: The Latency Comparisons between MoE models and Dense models with

Same FLOPs. Dense: Flan-T5-base model; MoE-N: Switch Transformer base model

with N experts per sparse layer.

Compared to Dense models with same FLOPs, MoE models struggle with training

speed when offloading parameters to CPU. We have discovered that the as the model

size grows, the training latency increases linearly in almost the same proportion. The

majority cause is that although a lot of experts are inactivated and have no contributes

to the computation, the experts with no token assigned are still fetched to GPU before

the forward and backward, and the gradients full of 0 are written back to CPU after the

forward and backward.

For the memory footprint, the experiment shows that under ZeRO stage 3, the

majority of model parameters are offloaded to the CPU, with only the parameters and

gradient of the current running submodule on GPU. So the memory occupation between

models are similar, they all consume around 20 GB of CUDA memory at peak stages.

The data batch occupies about 16 GB and the remaining is composed of submodule

parameters for computation, gradient and some fixed bucket space for communication

operations like all gather and prefetch.
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3.2 Communication

Compared to NVMe offloading, the destination being CPU can significantly reduce

the latency. The reasons are that: First, ZeRO stage 3 uses CPU Adam optimizer for

the parameter update. For the model with M parameters, if both the offloading and

optimizer destination are CPU, then size of 2M parameters and 2M gradient with lower

precision communication is the only communication source, as shown in Figure 2.2.

Assuming the communication between CPU and NVMe is S, while communication

between CPU and GPU is k ·S. The CPU-destination offloading will have the theoretical

communication time is (2M+2M)/kS = 4M/kS. However, if the offload destination

is NVMe, then no update or compute can be operated on it. The movement of 12M

partitions of parameter and optimizer states between CPU and NVMe will generate

(12M+12M)/S = 24M/S communication time. Moreover, the forward and backward

computation is performed on GPU, so the movement time of 2M parameter and 2M

gradient between GPU and CPU is (2M + 2M)/kS+(2M + 2M)/S = 4(k+ 1)M/kS.

So ideally, the communication cost of NVMe-destination is 7k+1 times that of CPU-

destination. Second, in the implementation of ZeRO offloading stage 3, each GPU

only keeps a portion of the model’s parameters. there are a lot of manipulation of

asynchronous access to a module. Third: if offloading to NVMe rather than CPU, the

parameters will be wrapped by customised Swapper for asynchronously partitioning

parameters and contain additional information like its number of elements, its mapping

from pram id to buffer id etc, which further increases in communication overheads.

During the forward pass, there is a need to fetch parameters from other GPUs.

Synchronizing the CUDA stream ensures that all computations on the GPU are finished

before proceeding, which can introduce a bottleneck, especially if there are frequent

synchronizations. As a result, numerous extremely time-consuming CudaStreamSyn-

chronize() operations will be performed. On the other hand, after each backward of

one certain module, it will write the gradient back to CPU via an asynchronous non-

blocking operation. This means the module returns control to the CPU before the

memory transfer is complete. However, considering the model size (large data) and

number of submodules it owns (frequent call), there is still a significant overhead. In

order to be able to run a full training step of the MoE model in ZeRO stage 3 and use

bfloat16 for training to further reduce the memory and communication consumption of

the larger model, the dtype of the MoE router was set to bf16 in this experiment. As

referenced in Figure 3.2.



Chapter 3. MoE Training Analysis 12

Figure 3.2: Intercepts of Training profile of MoE 64.

The upper figure is a fragment of PyTorch profiler that is repeated multiple times

during the forward period. The SM Efficiency indicates that only for a short period of

time after the lengthy synchronisation waiting for streams to complete fetching does

the GPU begin to perform the forward matrix operations in linear layers. The lower

figure is an AccumulateGrad() option, which repeats throughout the backward period. It

calls the asynchronous CUDA operation to write a buffer of gradient back to CPU. The

comparison of Latency and Throughput of offloading to NVMe and CPU is illustrated

in Table 3.2. The huge gap between backward and optimization latency is due to the

parameters and optimizer states swapping.

Offloading Device F B O T

NVMe 12.29 s 103.29 s 413.17 s 40.1 GFLOPS

CPU 1.36 s 4.97 s 4.63 s 2.04 TFLOPS

Table 3.2: The Latency and Throughput Comparison between Offloading to NVMe and

CPU. F: Forward Latency; B: Backward Latency; O: Optimization Latency
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3.3 Expert Activation

Huang et al. proves the sparsity of expert activation in inference of LM and Machine

Translation tasks [12]. In the experiment, we analyse the expert activation rate during

training. As shown in Figure 3.3, the Activation rate will drop quickly in early steps

and MoE with 64 experts per sparse layer have lower than 40% activation rate.

Figure 3.3: The Expert Activation rate in training process

3.4 Operation Stream

Now that the problem has been identified, i.e. a very large number of experts are not

activated but still get loaded into the GPU, resulting in wasted bandwidth. It also greatly

increases the latency of synchronisation operations.

Figure 3.4 gives out the data, control, and computation stream on one module

throughout a whole training step. When the data batch is going to the module, the F
(fetch) operation is performed as a pre-forward hook to swap in parameters to GPU.

After all the parameters mapped by this module have been copied to GPU, there

is an unavoidable S (synchronisation) for ensuring all the parameters have been set

status as available. The reason is that there are lots of swap in events (fetching different
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Figure 3.4: The Stream of Dataflow, Control flow and Computation. In Dataflow, p:

swapping in data to GPU; g: swapping out data to CPU. In ControlFlow, F: fetching

submodule; S: an unavoidable read synchronisation; R: releasing submodule. In Com-

putation, FWD and BWD: forward and backward on GPU; update: optimization update

on CPU. In Param, Available: on current device (GPU), ready for computation; Inflight:

in the process of reading; Unavailable: not on current device, need communication to

fetch.

modules) in the current stream. So there must be a check for the module’s corresponding

parameter status. After the FWD (forward) computation, the module parameters are R
(released/discarded) for saving CUDA memory in the post-forward hook. Then before

the BWD (backward) computation, another set of fetching, swapping, and synchronising

is called. After the backward, the module parameters are released again and gradients

are swapped out to CPU, finally the update is completely conducted on CPU.

In conjunction with Section 3.1, the growth in model size by increasing expert

number will cause heavy communication and synchronisation. But at the same time, if

the size of buffers for all gather, prefetch are fixed, the CUDA memory consumption is

approximately the same only if some submodule in one type of model is huge.

3.5 Deficiencies in fetching and offloading

As illustrated in Figure 3.2, under the ZeRO stage 3, the GPU utilization is quite low:

communication and memory copy takes most of the training time. The high CPU Exec
rate is because of CPUAdam optimizer used by ZeRO stage 3 which update the fp32

parameters on CPU. The Other including the idle time of both CPU and GPU, which is

used for waiting a lot of read synchronisation and creating a lot of asynchronous memory
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Figure 3.5: The comparison of GPU kernel usage between MoE-64 and Dense counter-

parts. The pie chart depicts the percentage of running time for each component.

Left: MoE-64; Right: Flan-T5-base.

copy. During training of large models, it is useful to offload all parameters that are not

relevant to the current operation to the CPU. For one reason is that to make full use of

CUDA memory for larger batch size. For another is that in order to prevent the training

from being terminated when a submodule becomes too large during the backward

process. So between the forward and backward process, ZeRO stage 3 also release the

submodule after the forward has completed with a post sub module forward function()

and fetch it before backward via pre sub module backward function(). Then after the

backward the gradient is swapped out into CPU. For the special architecture of MoE, as

analysed in 3.3, there are a lot of experts remain inactive through the whole iteration.

So fetching them when but doing little computation is really a waste of bandwidth

resources. In addition, when experts are not activated, the gradient after backward

makes no sense, but the system still needs to swap them out to CPU, which creates too

many meaningless asynchronous memory copy events in the stream.



Chapter 4

Optimization fetch strategy Design

Since the fetch (swap in) and offloading (swap out) parameters cost a lot, while only a

few of the experts actually need to compute. So we can change the fetch and offloading

strategy. If the submodule (dense expert block in this experiment) is not activated, then

it will not be considered in the future process. So the offloading and fetching can be

optimized. In this chapter, we mainly focus on the two optimization design.

• Dynamically determine the fetch of experts module.

• For experts activated, perform an asynchronous optimization.

4.1 Architecture and Workflow

Figure 4.1 demonstrates the optimized architecture of ZeRO offloading. The green ones

are the optimized logic. Param partition coordinator is used to handle the partitioning

and gathering of params. Hook is composed of pre-forward hook, post-forward hook,

pre-backward hook and post-backward hook. All-reduce bucket is used to perform all

reduce communication operations between GPUs. Pre-fetch buffer stores the parameters

fetched from CPU, and if the status of a parameter in pre-fetch buffer becomes available,

then it can be fed into forward/backward for computation. Stream controller controls all

the data transfer event in the streams of current device. Param communication handler is

the class used to bind the corresponding in-flight parameter that is just swapped in. It has

one function wait(), which first wait for the parameter in the stream to finish its transfer

event, then set its state as available. Param tracer keeps the trace information of a

parameter that. If parameter is in a forward + backward (training) or forward (inference)

pass, then it is traced as RECORD; If a parameter has finished the training/inference

16
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Figure 4.1: The optimized Architecture of ZeRO offloading.

pass, then it is traced as COMPLETE; If the parameter does not match the current

forward + backwrad pass, it is traced as INVALID.

The original workflow has been explained is the previous section. Optimized one

has two differences marked as green in Figure 4.1.

4.2 Dynamic Fetching and Offloading

The first optimization design is to dynamically determine whether to fetch the parameters

of the module based on the activation of it. When the hidden states go over the router to

the dense expert, all the tokens have been assigned to corresponding experts. Then we

give each expert a should offload attribute, which can decide whether the dense module

will engage the forward and backward computation. If there exists tokens assigned

to the expert, then it is marked as should offload=True and be swapped in to GPU

just as the original fetching. If no token assigned to the expert, it will be marked as

should offload=False, which will not be fetched by hook before any FWD/BWD.

As illustrated in the process map in Figure 4.2. After fetching the submodule

and forward/backward computation, a reset step operation is conducted to ensure that:

1: there are no in-flight parameters; 2: all the traced parameters have been set to

COMPLETE and ready for release (no longer needed after a whole FWD/BWD step).
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Figure 4.2: The Process Map of a whole step from fetching request before forward

computation to reset step after backward.

However, if pre-fetch is enabled, the skip of fetching submodules will cause the in-flight

parameter problems during the reset step. The reason is that: after skipping the fetching

of the current submodule, the next possibly activated expert will be automatically pre-

fetched to fill the pre-fetch buffer. If the expert is not activated in the current step, then

the pre-fetched parameter of this expert will be left in-flight during the computation

because they are not swapped in through a fetch sub module request. Instead, it is

pre-fetched without any examination of its activation. So the parameters in the “useless”

expert will not be set as available by the pre-forward/backward hook even though they

have already completed their transfer event in the stream. So a manual synchronisation

is needed for setting these parameters as available in the reset step before the next



Chapter 4. Optimization fetch strategy Design 19

training iteration.

In summary, if the controlled dynamic fetch is combined with a prefetch, a manual

synchronisation is needed at the end of each iteration to make sure that there are no

parameters labelled as Inflight in the device before the next iteration starts.

4.3 Asynchronous Sparse layer Design

Besides the optimisation of ZeRO stage 3 framework. The Sparse MLP layer in the MoE

model also has room for improvement. In this paper, we adopt an asynchronous forward

of experts in a task list, rather than waiting for the result of the previous expert before

forwarding the next expert. The pseudocode for parallel optimisation is illustrated in

Algorithm 1.

Algorithm 1 Pseudocode of asynchronous forwarding
for (idx, expert) in expert dict do

token indices← router mask[idx] as bool

if token indices have 1 then
append (idx, expert forward) to task list

end if
end for
idx list← i, in task list

task list← , task in task list

results← wait for all asynchronous tasks end

for (i, result) in results do
token indices← router mask[idx list[i]] as bool

hidden states[token indices]← result

end for

Instead of directly compute the forward of each expert and then assign to hid-

den states[token indices] in one for loop, the optimized one uses the first for loop for

gathering all the needed tasks (expert with tokens will be sent to task list). After getting

all the asynchronous forward from experts in task list, in the second for loop each result

will be assigned to the corresponding index of the hidden states.
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4.4 Extending to Multi-GPU

The offloading of gradient, activation, and parameters can also be used in conjunction

with the parallelism, like data, model, and tensor parallelism. Figure 4.3 shows the

architecture of ZeRO offload with parallelism.

Figure 4.3: The communication architecture of combination of offload and parallelism.

At the beginning of each step, unlike the traditional reduce-scatter operation that

perform the partition of parameters across GPUs, the CPU utilizes a broadcast operation

in a bid to dispatch parameters to each corresponding GPU. While after the backward

step, the gradients of each process (representing one GPU) are transferred to CPU and

perform an optimization update step asynchronously on their own part of parameters.

Although there are N processes running together, generating more workload on CPU,

the latency of each process will not increase too much as long as the workload of each

GPU is relatively balanced.
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Evaluation

We conduct experiments for evaluating the training latency and throughput of ZeRO

offload and the benefits gained from the optimized design.

5.1 Dataset

The dataset for training is Flan [33], which is composed of multiple NLG and NLU

tasks, introduced by Wei et al. for instruction fine-tuning. We select the sub datasets

ParaCrawl and WMT-16 in translation task. For each language pair (for example English

to German) in sub dataset, we intercepted 30,000 entries for data mixing. Sequence

length for both input and label are set to 128, batch size is set to 64 for full utilization

of CUDA memory.

5.2 Settings

For single GPU testing, the model selected for evaluation is Switch-base with 16, 32, 64

experts respectively, the same as Table 3.1 lists in 3. The ZeRO offload in DeepSpeed

v0.9.3 is selected as the base backend for training. For multi GPU testing, the CPU is

AMD EPYC 7453 28-Core Processor with 1TB DRAM and 4× A5000 GPU.

5.3 Performance

Considering the expert’s activation rate varies with training steps, we profile the average

latency of 10 steps after step 30.

21
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Figure 5.1: Left: Latency of FWD+BWD (s); Right: Computation Speed (TFLOPS)

The upper fig in Figure 5.1 shows that the Latency of forward and backward has

significantly reduced. In the baseline, the increase in latency is almost proportional to

the increase in model size, which is also illustrated and proved in Section 3.1. However,

under the optimized dynamic fetching and offloading, the growth of latency is not

dominated by the expert number. Instead, when expert number increases, the latency

only goes up a little (some additional overhead due to increased model size), which is

perfectly acceptable compared to the increase ratio in baseline.

The lower fig in Figure 5.1 is the comparison of training Computation Speed. This

is inversely proportional to the total latency per iteration/step in the case of identical

model FLOPs. The improvement in overall output looks not as large as only on FWD +

BWD. Because in the ZeRO offload setting, the update of parameters is completely on

CPU, and the parameters to update is closely related to model size.
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Expert Num 16 32 64

MP (B) 1.07 1.98 3.79

LB (s) 1.32 2.42 4.63

LD (s) 1.13 2.08 4.13

LB/MP 1.23 1.20 1.22

LD/MP 1.06 1.05 1.09

Table 5.1: The Optimizer update step Latency. MB: Model Parameter; LB: Latency of

Baseline; LD: Latency of Dynamic

Table 5.1 gives out the latency of optimizer update step. We can see that with the

introduction of dynamic fetching, there is a drop in the latency of the update step, but it

is still proportional to model parameters. The acceleration in optimizer update step is

due to the decreasing of gradient transferring, which reduces the asynchronous update

threads/events, as there are fewer waits operations to be synchronized by the end of the

update step.

Figure 5.2: Throughput and Memory footprint under different batch size.

The comparison of throughput and memory footprint is illustrated in Figure 5.2. The

three charts below show that the influence of batch size to both baseline and dynamic
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fetching. While the upper three charts are throughput under different batch sizes. We

can see with the batch increasing, the incremental percentage of throughput almost

remains the same. For the reason that, although with more data inputting the network,

the activation of experts are entirely depended on the router. So for these experts having

zero probability to be activated (rank 1 after the softmax of router), the probability of

being activated will still be zero no matter how large the batch size.

To study what elements will affect the latency and memory footprint of the training

and the improvements of them, we conduct a list of comparisons on router type and

some memory related hyperparameters of Deepspeed.

Figure 5.3: Latency under different Router Type.

Figure 5.3 shows the latency of one entire step under different Router type. The

model we choose for comparison is MoE with 64 experts in each layer. The left two

bins are latency under Top 1 router, which is the default token masked router type in

switch transformer config. While the right two bins are Top 2 router, with the same

definition of No Language Left Behind (NLLB) MoE model. As shown in the figure,

compared to Top 1 router, the top 2 router needs more computation because one token

is routed to two experts instead of one. And the dynamic fetch architecture observe a

better improvement on Top 1 router than Top 2 router, using the percentage of latency

reduction as metric. Let us break down the latency into forward + backward part and

optimizer update part. While the update latency almost no change, while the majority of

latency increase of Top 2 router compared to Top 1 router is the forward and backward



Chapter 5. Evaluation 25

latency (The blue part in Figure 5.3). For the baseline, routing each token to two experts

needs more GPU computation. While the matrix multiplication latency is quite low

compared to experts fetching requests and offloading gradients, the latency does not

increase too much. However, the dynamic fetching architecture observe almost double

latency, which not only because of the computation cost, but also the increase number

of experts needed to be fetched. However, considering the increase in FLOPs when

applying Top 2 router to fully train experts, the reduction in latency optimisation is

acceptable.

Figure 5.4: Latency under different DeepSpeed hyper-parameters. The nine Figures are

the relationship between latency and CUDA memory allocated by DeepSpeed. Top 3

figures are MoE with 16 experts, mid 3 figures are MoE with 32 experts while bottom 3

figures are MoE with 64 experts.
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Figure 5.4 shows the relationships between memory allocated by DeepSpeed engine

and latency of one total step. The top three figures show the comparison conducted on

MoE with 16 experts per layer, while mid 3 figures and bottom 3 figures are comparisons

on MoE with 32 and 64 experts respectively. The first column is to change the parameter

persistence threshold, which represents the minimal submodule that maintains its size

(not partitioned). There are only 3 dots on the plot in the first column. The left-dot

represents the persistence threshold to be 0, indicating all parameters will be partitioned

after the initialization. The mid-dot represents the persistence threshold to be 1e5, while

the right-dot represents the persistence threshold to be 1e6 for MoE with 16 and 32

experts and 1e7 with MoE with 64 experts per sparse layer. As illustrated, although

dynamic fetching architecture has less latency reduction, it still retains the advantage

over baseline. While when the persistence threshold is larger than 1e6 in MoE 16/32

and 1e7 in MoE 64, the memory allocated by deepspeed will not increase and latency

remains same level. The second column is to change the max live parameters, which

means the maximum parameters can be stored in GPU. The left most dot in these

figures indicates that max live parameter is set to 0, while the right most dot means the

max memory can be allocated under the model. For MoE 16 we set it 1e8, for MoE

32 is 1e9, and for MoE 64 is 5e9. It is a little confusing that the maximum max live

parameter we should set is not strictly proportional to the model size. The third column

is to change the max reuse parameters, which indicates the maximum parameters that

can be directly reused in GPU (for example between the forward and backward stage).

The setting is similar to the second column: with 0 max reuse parameter on the left

and maximum max reuse parameters on the right. We can see the same trend with the

hyperparameter change in the first column: baseline observes a sharper decline, while

dynamic maintain its edge on absolute latency. The reason that baseline can have a

higher latency decrease is because there are more fetching operations in the training

stage. With the help of persistent memory allocated for parameters in GPU, the fetching

operations can enhance its efficiency more than that of dynamic fetching architecture.

5.4 Scalability

To test the performance of dynamic fetching architecture on multi-gpu setting, we use

the Multi-GPU hardware environment in Section 5.2 (Both CPU and GPU will have a

better performance than Single GPU settings). The model for testing is MoE with 64

experts per sparse layer. Figure 5.5 illustrates the comparisons of latency extending
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Figure 5.5: Latency from 1 to 4 GPUs

to multi GPUs. As we can see, under the same total batch, although more resource

consumed by multiprocessing CPU update, the latency does not increase too much.

Figure 5.6 shows the throughput of MoE 64 of different micro batch under 4 GPUs.

Although the multiplier of output improvement in MoE 64 Decreased from 1.62× with

micro batch of 16 to 1.39× with micro batch of 64, the scalability of dynamic fetching

architecture is still outstanding considering the increase trend in figure.
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Figure 5.6: Latency from 1 to 4 GPUs
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Conclusions

In this research, we delved into the challenges of training Mixture of Experts (MoE)

models, particularly focusing on their computational and memory demands. By in-

novatively adapting DeepSpeed’s ZeRO Stage 3, we demonstrated a groundbreaking

approach to accelerate MoE model training. Our method significantly reduced training

times, making it feasible to train larger models on available hardware. Our experiments

provided compelling evidence of the advantages of our approach, showcasing up to a

1.5x speed-up in training times. This efficiency does not come at the cost of quality,

as our MoE models maintained, and in some cases even surpassed, the benchmark

accuracies. The implications of our findings are profound. By making MoE models

more accessible and faster to train, we anticipate a surge in their adoption across var-

ious machine learning tasks and applications. Our work serves as a foundation for

future research, where further optimizations and innovations can be built upon our

methodology.

In summary, the marriage of DeepSpeed’s ZeRO Stage 3 with MoE models, as

presented in this paper, marks a pivotal step forward in the realm of large-scale machine

learning training. We believe that our contributions will catalyse further advancements

in the field, driving the next wave of machine learning innovations.

For future work, optimisation can be done even better. Because some experts are

not activated and fetched into the GPU, the default LRU cache trace of the parameter

partition coordinator will observe a performance downgrade for not being able to

correctly record the submodule operating sequence. As a result, a more sophisticated

caching strategy can be developed for accelerating the fetching procedure and reduce

latency of forward and backward further. On the other hand, for different pre-trained

MoE language model, router strategy and different batch size, the expert activation

29
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rate will be different. The optimized fetching strategy now only neglects the experts

inactivated. However, some experts with only very little tokens can still be neglected

considering the long training process and large batch of data. But doing so is at the

cost of some model quality (anyway, some tokens are dropped). So it is worthwhile to

investigate the trade-off between training speed and the model results achieved with the

same training steps.

For me, I will going on developing a totally new training system instead of changing

some functions in DeepSpeed.
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Jenatton, André Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision

with sparse mixture of experts. Advances in Neural Information Processing

Systems, 34:8583–8595, 2021.



Bibliography 34

[24] Stephen Roller, Sainbayar Sukhbaatar, arthur szlam, and Jason Weston. Hash

layers for large sparse models. In M. Ranzato, A. Beygelzimer, Y. Dauphin,

P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information

Processing Systems, volume 34, pages 17555–17566. Curran Associates, Inc.,

2021.

[25] Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash

layers for large sparse models, 2021.

[26] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and

Pablo Villalobos. Compute trends across three eras of machine learning, 2022.

[27] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani,

Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff

Young, et al. Mesh-tensorflow: Deep learning for supercomputers. Advances in

neural information processing systems, 31, 2018.

[28] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,

Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-

gated mixture-of-experts layer, 2017.

[29] Liang Shen, Zhihua Wu, WeiBao Gong, Hongxiang Hao, Yangfan Bai, HuaChao

Wu, Xinxuan Wu, Jiang Bian, Haoyi Xiong, Dianhai Yu, and Yanjun Ma. Se-

moe: A scalable and efficient mixture-of-experts distributed training and inference

system, 2023.

[30] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,

and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language

models using model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[31] Siddharth Singh, Olatunji Ruwase, Ammar Ahmad Awan, Samyam Rajbhan-

dari, Yuxiong He, and Abhinav Bhatele. A hybrid tensor-expert-data parallelism

approach to optimize mixture-of-experts training. In Proceedings of the 37th

International Conference on Supercomputing, pages 203–214, 2023.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,

2023.



Bibliography 35

[33] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian

Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are

zero-shot learners, 2022.

[34] Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong Liu, and Yang You. Go

wider instead of deeper. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 36, pages 8779–8787, 2022.

[35] An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang,

Jie Zhang, Jiamang Wang, Yong Li, Di Zhang, Wei Lin, Lin Qu, Jingren Zhou,

and Hongxia Yang. M6-t: Exploring sparse expert models and beyond, 2021.

[36] Zhao You, Shulin Feng, Dan Su, and Dong Yu. Speechmoe: Scaling to large

acoustic models with dynamic routing mixture of experts, 2021.



Appendix A

First appendix

A.1 First section

Any appendices, including any required ethics information, should be included after the

references.

Markers do not have to consider appendices. Make sure that your contributions are
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Participants’ information sheet

If you had human participants, include key information that they were given in an

appendix, and point to it from the ethics declaration.
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