
Towards Translating Graph Query Language

Youning Xia
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2023

Abstract

Property graph query languages such as Cypher have recently gained significant popu-

larity due to the increasing application demands. On the other hand, logic programming

languages such as Datalog have been explored as a graph query language in much earlier

days than the current revival of interest in graph databases. Despite their shared use

case, the connections and performance comparisons between the two have barely been

investigated. To bridge the gap, in this paper, we present a full source-to-source pipeline

that translates from Cypher queries to semantically equivalent and optimised Datalog

programs to enable executions of generic graph queries on modern Datalog engines.

Our experiments show that translated Cypher queries with optimisation evaluated on a

modern Datalog engine demonstrate competitive query execution times compared to a

leading industrial graph database.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Youning Xia)

ii

Acknowledgements

First and foremost, my deep gratitude and respect goes to my thesis advisor Amir

Shaikhha for his dedicated support and guidance. Amir has always been very helpful

in pointing me to interesting directions during the course of this research, which often

time leads to exciting findings and new knowledge.

On a personal note, I would like to thank my parents and sister for their emotional

support on my intellectual endeavours.

iii

Contents

1 Introduction 1

2 Background 3
2.1 Cypher a Graph Query Language . 3

2.1.1 Property Graph and Schema 3

2.1.2 Cypher language features . 5

2.2 Datalog as a Query Language . 9

2.2.1 Syntax and Semantics . 9

2.2.2 Optimisation . 12

3 From Cypher to Datalog 14
3.1 Data Model Transformation . 14

3.1.1 PG Schema to Datalog schema 15

3.1.2 PG to Datalog facts . 18

3.2 Datalog Translation for Cypher Queries 19

3.2.1 Overview . 20

3.2.2 Match and Graph Patterns 21

3.2.3 Filter . 22

3.2.4 Variable Projection . 23

3.2.5 Optional Match . 24

3.2.6 Aggregation . 25

3.2.7 Projection . 26

3.3 Optimisation . 27

3.3.1 IDB Inlining . 28

3.3.2 Schema-driven Inlining . 29

3.3.3 Join Ordering . 30

iv

4 Performance Study 32
4.1 Setup . 32

4.2 End-To-End Benchmarks . 33

4.3 Evaluation of Optimisation . 35

4.3.1 Inlining . 35

4.3.2 Join Ordering . 35

4.3.3 Magic-set Transformation 37

5 Conclusions 38

Bibliography 39

A Property Graph 43

v

Chapter 1

Introduction

The last decade has seen the rise of interest in graph database [19]. This is mainly led

by the trend that many modern applications require graph-structured data for analytics

due to its intuitive way of modelling data. For instance, use cases of graph databases

span various problem domains including fraud detection, social media, customer rec-

ommendation and drug discovery. Many popular commercial graph databases such

as Neo4j, Memgraph, Amazon Neptune store graphs natively in the form of property

graph [3] and supports the property graph query language Cypher [14] for expressing

graph queries. Cypher and property graphs also contribute to the core components of

the currently being developed standard graph database query language GQL [13].

Despite the recent development of property graph language, initial work of laying

the theoretical foundation for graph databases was in fact conducted over 30 years ago

which leverages a logic-based language called Datalog [7, 8, 9, 18]. In these early

works, Datalog is explored as a graph query language, which attempts to represent

graph nodes and edges via relations and construct graph queries through rules. What’s

more, Datalog itself is an interesting language and has been extensively studied in the

database and programming language communities [1, 2], mostly outside the context of

graph query. As a result, various powerful optimisation techniques [6, 20] have been

developed and implemented in modern Datalog engines [5, 21, 16] to achieve efficient

Datalog program evaluation.

Although the property graph language Cypher and logic programming language

Datalog share the same use case of querying data from graphs, the two are mostly

studied independently and hence their connections are not yet fully exploited. Property

graph language such as Cypher, on the one hand, is a popular graph query language

in the industry but only has very recent theoretical advancements [10, 12] and lacks

1

Chapter 1. Introduction 2

sufficient studies with respect to optimisation. Datalog, on the other hand, has well-

established optimisation techniques but is not actively used as a general-purpose graph

query language in practical applications.

In this thesis, we aim to bridge the gap between property graph query language and

Datalog. In light of this, we present a systematic translation pipeline that translates

Cypher queries to Datalog programs. The pipeline also includes a data model transfor-

mation step that converts the property graph to Datalog facts, over which the translated

queries are evaluated. In addition, two optimisation techniques are proposed to rewrite

the naively translated Datalog programs for more efficient evaluation. Our experiment

results show that optimally translated Cypher queries executed on Datalog engine have

significant improvement in runtime performance.

To the best of our knowledge, no prior work has compared the two in terms of

execution performance, let alone investigating how to possibly leverage optimisations

available in Datalog in evaluating property graph queries. The most relevant work on the

interplay between the two is conducted in the context of examining the expressiveness

of the graph query language with a simplified data model in terms of Datalog from a

theoretical perspective [8, 9, 12].

The rest of the thesis is organised as follows. Chapter 2 provides the background

information of Cypher and Datalog for the rest of the thesis. Chapter 3 presents the

full translation pipeline from Cypher to Datalog, including data model transformation

in Section 3.1, query translation in Section 3.2 and query optimisation in Section 3.3.

Chapter 4 provides the experimental results that verify the effectiveness of our approach

and Chapter 5 concludes our thesis with directions of future work.

Chapter 2

Background

This chapter provides key background information for the rest of the thesis. We start

with introducing the graph query language Cypher in Section 2.1, by presenting its data

model and basics of the query language through examples. We then present Datalog

concepts in Section 2.2 and briefly touch upon its established optimisation techniques.

2.1 Cypher a Graph Query Language

Cypher is a declarative query language developed for extracting information from graph

data. Such graph data is typically stored in a database, with its contents mapped to a

data model called property graph, which incorporates various properties about nodes

and edges of a graph dataset. To extract data from a property graph, Cypher allows

users to specify graph patterns of their interests in a query. The graph patterns are

used to intuitively describe some desirable conditions and relationships among graph

elements (nodes, edges and their properties). Cypher then matches data that satisfies

such patterns and returns the outputs in a table. In the following sections, we review

the property graph model and give a high-level overview of key features of Cypher

language.

2.1.1 Property Graph and Schema

Property Graph. Property graph is a popular data model for graph dataset and has

gained adoption in many commercial database systems, such as Neo4j, Amazon Neptune

and ArangoDB. As opposed to the perhaps more familiar graph from classic graph-

theory literature that is often defined as pairs of nodes and edges (either directed or

3

Chapter 2. Background 4

Figure 2.1: A property graph with information on people, their friends and locations.

Node information is depicted in solid boxes and edge information is contained in dashed

boxes. Node identifiers are coloured in red and edge identifiers in blue.

undirected), property graph is more complicated yet expressive. Property graph models

the data as a partially directed (that is, both directed and undirected edges can exist in

the graph) multigraph1. Both nodes and edges can have their own labels, and carry an

arbitrary collection of key-value pairs that describe their properties. To better illustrate

a property graph, we give an example graph inspired by the LDBC’s Social Network

Benchmark (LDBC SNB) [11]. For the formal definition of property graph, we refer

the reader to Appendix A.

Example 1 (Social Network Graph). Figure 2.1 shows an example property graph

consisting of persons, locations and posts. Nodes and edges are identified by node

identifiers (p1, . . . , p4, c1, c2, c3, m1, m2) and edge identifiers (k1, . . . , k3, li1, . . . ,

li4, po1, po2, hc1, hc2), respectively. Note that edges (k1, . . . , k3) are undirected

and (li1, . . . , li4, po1, po2, hc1, hc2) are directed. Both nodes and edges can

carry labels, for instance, node p1 has a single label Person and edge li1 has label

isLocatedIn. Nodes and edges can also store a collection of key-value pairs (or

interchangeably, property-value pairs). For example, node p1 has property firstName

and lastName with associated values Ramon and Sotto, respectively, and edge k1 has

property creationDate with value 2012-07-07.

Property Graph Schema. Property graph schema provides a way to describe the

structure of property graph data. More concretely, it specifies possible combinations of
1In a multigraph, there can be multiple edges between two nodes.

Chapter 2. Background 5

1 Schema {

2 (personType: Person {firstName:STRING, lastName:STRING}),

3 (cityType: City {name:STRING}),

4 (countryType: Country {name:STRING}),

5 (placeType: cityType | countryType),

6 (:personType)-[knowsType: Knows {creationDate:INT}]-(:personType)

7 (:personType)-[locationType: isLocatedIn]->(:placeType)

8 }

Figure 2.2: An example property graph schema of social media graph in Figure 2.1.

labels and properties in nodes and edges of different types, as well as constraining the

types of edges allowed between certain types of nodes. As such, property graph schema

plays an essential role in the query translation work of this thesis. We now provide an

example of a schema for the property graph shown in Figure 2.1.

Example 2 (Social Network Graph Schema). Continuing Example 1, Figure 2.2 shows

an example of its schema definition. For brevity, we only show a subset of the full

schema here. Schema specifies node types in line 2-5 and edges types in line 6-7.

For example, line 2 defines a node type personType which has label Person and two

property keys firstName and lastName of datatype STRING; line 7 defines an edge type

knowsType whose label is Knows and connects nodes of type personType. Node and

edge types can also be built from previously defined types. For instance, node type

placeType is defined as a union of node type cityType and countryType, meaning that

placeType can have either label City or Country and have properties associated with

City or Country. Such node type is called union type node. Otherwise, when a node or

edge type is not built from other types, it is considered as base type.

2.1.2 Cypher language features

We now explain how Cypher query works. As discussed previously, Cypher takes as

input a property graph and matches graph patterns against the property graph to produce

results. Generally, a graph pattern specifies a set of nodes and their connection via edges,

with possible filtering of their labels and values of properties. Graph patterns form

the core of Cypher language features and are constructed from basic building blocks,

such as node, edge and path patterns. We next describe the Cypher query structure and

introduce the basic building blocks of graph patterns using a simplified example query

Chapter 2. Background 6

taken from LDBC SNB.

1 MATCH (person:Person)-[:KNOWS*2..]-(friend),

2 (friend)-[:IS_LOCATED_IN]->(city:City)

3 WHERE person.id = "p1" AND NOT friend=person AND NOT

(friend)-[:KNOWS]-(person)

4 WITH friend, city

5 OPTIONAL MATCH (friend)<-[:HAS_CREATOR]-(post:Post)

6 WITH friend, city, count(post) AS postCount

7 RETURN friend.firstName AS FirstName, friend.lastName AS LastName, city.name

AS CityName, postCount

Figure 2.3: A Cypher query that returns information regarding names, locations and

social media posts of all friends of person p1 from the property graph in Example 2.1.

Example 3 (Recommended Posts by Friends). Assume the underlying property graph

defined in Example 1. The query in Figure 2.3 finds friends of friends of a given person

with id p1 and returns the name information of such friends, their location and the

number of posts they have created (if any) on social media.

Cypher query is structured linearly in the sense that it is processed from the

start of the query text linearly to the end. Keywords such as MATCH, WHERE, WITH,

OPTIONAL MATCH and RETURN used in the query are called clauses and are used to

compose the flow and intermediate data of the query in the order they appear. Each

clause takes the data output by its previous clause and produces new data results to pass

onto the next clause. We next analyse each clause in this example.

The MATCH clause in line 1 is used to match data of the property graph that satisfies

the given graph patterns. Cypher uses “ASCII-art” syntax to specify graph patterns,

where node patterns are enclosed in parentheses, and edge patterns in square brackets.

Both nodes and edges may have label conditions and variables assigned to them. For

example, (city:City) denotes a City-labeled node pattern with node variable city;

node pattern (friend) has node variable friend but does not have label specified;

edge pattern -[:IS_LOCATED_IN]-> has label IS_LOCATED_IN but does not have an edge

variable. Node and edge patterns can be chained together to form path patterns.

Intuitively, this allows us to specify how to link some graph elements with other graph

elements of our interests. For example, (friend)-[:IS_LOCATED_IN]->(city:City) in

line 2 concatenates two node patterns with one edge pattern to form a graph path which

finds the city that friend is located in.

Chapter 2. Background 7

Aside from alternating node and edge patterns to explicitly create fixed-length paths,

Cypher also allows users to create variable length paths2. Pattern -[:KNOWS*2..]-

in line 1 is an example of that. It indicates that two or more KNOWS edges should be

included in this graph path. Essentially, pattern -[:KNOWS*2..]- is equivalent to search-

ing pattern -[:KNOWS]-()-[:KNOWS]- and -[:KNOWS]-()-[:KNOWS]-()-[:KNOWS]- and

-[:KNOWS]-()-[:KNOWS]-...-()-...-[:KNOWS]- so on, until it reaches a termination.

A side note that () denotes an anonymous node.

Several path patterns can be further combined together using comma separators to

form graph patterns. For example, path (person:Person)-[:KNOWS*2..]-(friend) in

line 1 and path (friend)-[:IS_LOCATED_IN]->(city:City) in line 2 are put together

to shape the graph pattern to be matched by MATCH clause. In this case, the two paths

share the node variable friend, implying that the graph pattern tries to find the friends

of friends of a person (length of two), or friends of friends of friends of a person (length

of three), and also find the city where that friend lives. Normally in a graph pattern,

multiple paths may or may not share variables; in case they do, then those paths are

joined using the shared variables between them. The results produced by the MATCH

clause can be found in Figure 2.4a.

The WHERE clause in line 3 applies filters to the result produced by the previous

MATCH clause, restricting the values of some of its elements’ properties and imposing

some search conditions. These restrictions and conditions may be logically combined

using AND, OR, and NOT. In our example, we are only interested in person with id p1;

and the matched friend should not be the person itself3; and the friend should not be

a direct acquaintance of the person. The filtered results are shown in Figure 2.4b.

The WITH clause in line 4 can be used to project only a subset of the variables in

the current scope to the later part of the query and also to compute aggregation (which

we will see shortly after). Here, we are only passing variable friend and city onto the

next clause, which means information regarding person is no longer visible to the rest

of the query. This gives us outputs in Figure 2.4c

The OPTIONAL MATCH clause in line 5 matches graph patterns just as MATCH does,

with the difference being that if no matches are found, null value will be used for the

missing parts of the pattern. In this case, OPTIONAL MATCH matches the post created

by friend, and if friend does not have any post, then post will be set to null. The

produced results are in Figure 2.4d.

2Essentially, transitive closure. We will defer the explanation to the Datalog section.
3This could potentially happen when there are cycles in the graph.

Chapter 2. Background 8

The WITH clause in line 6 is used to compute aggregation over post. Here, friend

and city serve as the implicit grouping keys for the aggregating function count(post).

Taking the results by the previous clause shown in the above table, we count the non-null

values of post for each (friend, city) pair and yield outputs shown in Figure 2.4e.

Finally, the last clause RETURN is used to project the final outputs of the query.

Given the previous result, it projects values of property firstName, lastName of variable

friend, and name of variable city, along with the value of postCount, which are shown

in Figure 2.5.

person friend city

p1 p3 c1

p1 p4 c2

p3 p4 c1

p3 p1 c2

p4 p1 c2

p4 p3 c1

(a) Outputs by MATCH clause

person friend city

p1 p3 c1

p1 p4 c2

(b) Outputs by WHERE clause

friend city

p3 c1

p4 c2

(c) Outputs by the first WITH clause

friend city post

p3 c1 m1

p3 c1 m2

p4 c2 null

(d) Outputs by OPTIONAL MATCH clause

friend city postCount

p3 c1 2

p4 c2 0

(e) Outputs by the second WITH clause

Figure 2.4: Intermediate results of the Cypher query in Example 3

FirstName LastName CityName postCount

Francis Garcia Laoag 2

John Reyes Manila 0

Figure 2.5: Final query outputs by RETURN clause

Throughout this section, we have covered the essential language features of Cypher

and briefly explained their functionalities via a running example. We refer the interested

reader to [14] for more comprehensive discussions of Cypher language.

Chapter 2. Background 9

2.2 Datalog as a Query Language

Historically, Datalog was first introduced as a declarative logic programming language

in the 1980s. However, it has since been actively developed by the database community

as an expressive database query language due to its support of both non-recursive

and recursive queries. Particularly, Datalog’s abstraction for recursive computation

provides a natural way to express graph queries, which we will see examples later. In

this thesis, we consider an extended version of Datalog called stratified Datalog which

also supports negation and aggregations4. Moreover, various optimisation techniques

have been developed to allow more efficient evaluation of Datalog queries. As far as

language goes, Datalog is very simple. In the following sections, we introduce the data

model, syntax and semantics of Datalog from the view of query language and review

some current work in the field of Datalog optimisations.

2.2.1 Syntax and Semantics

In this section, we give a brief primer into the syntax and semantics of Datalog. We aim

to illustrate the flavour of Datalog, rather than give full formal definitions. See [1] for a

thorough exposition that complements this section.

A Datalog program is typically composed of two types of relations: extensional

relations (EDB) and intentional relation (IDB). EDB can be viewed as data inputs to

the Datalog program and IDB can be viewed as queries of the program. EDB and IDB

can also be referred to as facts and rules, respectively. Intuitively, a Datalog program

starts from EDB and derives new facts of the user’s interests through IDB.

Example 4 (Locations of Friends). The Datalog program in Figure 2.6 is inspired

by a subset of the Cypher query from Example 3. It finds the cities where Bobby’s

friends live. Line 1-7 are EDB of the program. A fact knows("Ramon", "Bobby") can be

interpreted as the first argument of relation knows knows the second argument, namely,

Ramon knows Bobby. Similarly, isLocatedIn("Ramon", "Manila") implies Ramon is

located in the city of Manila. Here, knows and isLocatedIn are referred to as relation

names. A relation can have an arbitrary number of arguments (called arity) but the

arity needs to be fixed with respect to each relation name. In this case, both relation

knows and isLocatedIn have arity 2. Line 8 defines the IDB of the program. The left

4Datalog programs with aggregates has its own difficulties and thus has been a topic of research in
various studies. However, a thorough discussion of Datalog as a language is out of the scope of our thesis,
and therefore details are omitted.

Chapter 2. Background 10

1 knows("Ramon", "Bobby").

2 knows("Bobby", "Francis").

3 knows("Bobby", "John").

4 isLocatedIn("Ramon", "Manila").

5 isLocatedIn("Bobby", "Laoag").

6 isLocatedIn("Francis", "Laoag").

7 isLocatedIn("John", "Manila").

8 query(friend, city):- knows("Bobby", friend), isLocatedIn(friend, city).

Figure 2.6: A Datalog program that returns the friends of Bobby and their locations.

side of an IDB (or rule) separated by :-, is referred to as head and specifies the output

of the IDB. The right side is referred to as body and declares how the IDB should be

computed. The body of an IDB is typically formed by a sequence of relations that can

be either EDB or IDB, having constants or variables in their arguments. An IDB is

intended to return a set of facts that are deducible from its body. What that means is, for

instance, with respect to the body of the IDB query, if knows("Bobby", friend) and

isLocatedIn(friend, city) can find such values (say f1 and c1) for variables friend

and city that the relations knows("Bobby", f 1) and isLocatedIn(f 1, c1) exist within

pre-defined facts or previously deduced rules, then we can say fact query(f1, c1) is

deducible. Note that since variable friend is shared between the two relations, its value

is shared. The following resulting facts can be obtained for this IDB.

query("Francis", "Laoag").

query("John", "Manila").

The previous example is a non-recursive query in that the rule is not defined with

reference to itself. In other words, the head of the rule does not appear in its own

body. What makes Datalog more interesting is that queries are allowed to be recursive,

meaning they can be defined by themselves.

Example 5 (Friends of Friends). The Datalog program in Figure 2.7 finds all direct and

indirect acquaintances friend of a person. Line 5 defines the base case of this recursive

query query to be the direct acquaintances of person. In line 6, query appears on both

the head and the body of the rule. This recursion is essential for this rule to express

variable length of knows relations included in the query, to find indirect acquaintances

of person. By expanding this query using its base case and recursive case, the following

sets of rules are implicitly implied:

Chapter 2. Background 11

1 knows("Ramon", "Bobby").

2 knows("Bobby", "Francis").

3 knows("Bobby", "John").

4 query(person, friend):- knows(person, friend).

5 query(person, friend):- query(person, someone), knows(someone, friend).

Figure 2.7: A transitive closure Datalog program that returns all pairs of friends

query(person, friend):- knows(person, friend).

query(person, friend):- knows(person, someone), knows(someone, friend).

query(person, friend):- knows(person, someone), knows(someone, someone2),

knows(someone2, friend).

... /* the rules continue */

As can be seen from above, instead of having to explicitly write out all the possible

cases, Datalog provides a neat abstraction to express recursion. To conclude, the

following facts are deduced from the query.

query("Ramon", "Bobby").

query("Ramon", "Francis").

query("Ramon", "John").

query("Bobby", "Francis").

query("Bobby", "John").

We now relate the discussion to graph queries. In fact, the above recursive query

can be viewed from a graph problem perspective. Recall the discussion from previous

Cypher sections, here for example, fact knows("Ramon" , "Bobby") can be interpreted

as a directed edge where "Ramon" and "Bobby" are the source and target nodes of this

edge. Rule query(person, friend) is trying to find all paths such that node friend

that can be reached from node person via edges knows. This is known as reachability

problem in graph context and the paths between person and friend are called the

transitive closure of a graph.

In terms of Datalog query evaluations, there are several techniques that have been

developed, which can typically be classified as either bottom-up evaluation or top-down

evaluation strategies. We next provide a high-level overview of each to conclude this

section. Bottom-up evaluation starts from the sets of facts and works towards the query.

A classic technique is a fixpoint approach called naive-evaluation where the query

evaluator starts with an empty database and repeatedly applies all rules until no new

Chapter 2. Background 12

facts are generated. Top-down evaluation starts from the query and works towards the

facts instead. SLD resolution is a standard one of such technique in which queries are

expanded and kept being evaluated until it reaches EDB facts. For more details, we

refer the reader to [1].

2.2.2 Optimisation

Various optimisation techniques have been developed over the years to facilitate efficient

evaluations of Datalog programs to meet the demands of industrial applications. In

this section, we first present the key ideas of two popular techniques called semi-naive

evaluation and magic-set transformation which are also implemented in the Datalog

engine used as the backend for our work. We then conclude by providing a review of

recent work in the field of Datalog optimisation.

Semi-naive evaluation. As its name suggests, semi-naive evaluation is a technique

which improves the performance of naive-evaluation [20]. Since naive-evaluation pro-

gresses from facts towards rules, it is likely to constantly produce irrelevant facts that

do not contribute to computing the query. Its procedure also requires to recompute all

previous relations in each iteration, resulting in inefficient computation. Semi-naive

evaluation solves this inefficiency by computing a safe approximation of the difference

between iterations and only generates new facts in each iteration, bringing down the

complexity of computations.

Magic-set transformation. Another well-known optimisation technique is called

magic-set transformation [6]. As we mentioned above, bottom-up evaluation inevitably

computes unnecessary facts that are not relevant to produce the final query output.

Magic-set transformation improves it by rewriting the Datalog program with respect to

its query so that irrelevant intermediate facts will not be computed. Intuitively, it tries

to push some filtering operations ahead of computations, as opposed to completing all

computations first and then conducting post-filtering in the naive-evaluation.

Example 6 (Magic-set Transformation). Figure 2.8 shows how an example Datalog

program is rewritten after applying magic-set transformation. Rather than computing

the relation friendLivesAt(person, city) for all persons in the database first and

then filtering the results for Bobby, the transformed program only computes the re-

lation friendLivesAt("Bobby", city) for Bobby in the first place to avoid creating

Chapter 2. Background 13

1 friendLivesAt(person, city):-

knows(person, friend),

isLocatedIn(friend, city).

2 query(city):- friendLivesAt("Bobby",

city).

(a) Original Datalog program

1 friendLivesAt("Bobby", city):-

knows("Bobby", friend),

isLocatedIn(friend, city).

2 query(city):- friendLivesAt("Bobby",

city).

(b) Transformed Datalog program

Figure 2.8: Magic-set transformation is applied to a Datalog program that finds the city

where Bobby’s direct acquaintance lives.

unnecessary intermediate facts.

Apart from these two well-studied techniques, there are many other optimisation

techniques that have been researched. Counting algorithm [15] is developed based on

magic-set transformation which stores the number of alternative rules for deducing

facts in a materialised view to minimise the number of generated facts; The Delete

and Rederive method [15] is particularly effective for optimising recursive queries; A

provenance-based incremental maintenance approach [17] is proposed to refine the

deletion mechanisms of the Delete and Rederive method.

Chapter 3

From Cypher to Datalog

In this chapter, we propose an end-to-end pipeline for translating Cypher queries to

semantically equivalent and optimised Datalog programs. An overview of the pipeline

architecture is presented in Figure 3.1. The chapter is organised as follows. We first

describe our approach for data model transformation in Section 3.1. We then explain

a full naive query translation pipeline, showing how a Cypher query is decomposed

and converted into Datalog IDB in Section 3.2. Finally, we present three techniques

for optimising the naively-translated Datalog program to achieve more efficient query

evaluation in Section 3.3.

Figure 3.1: Overview of the translation pipeline architecture

3.1 Data Model Transformation

As we discussed in the previous chapter, Cypher and Datalog adopt different data

models to represent data. Therefore, as the first step of query translation, we need to

transform a property graph into a set of Datalog facts, over which Datalog queries can

be evaluated. The transformation process is broken down into two steps. First, we map

14

Chapter 3. From Cypher to Datalog 15

the property graph schema to Datalog schema. Next, we map the actual property graph

data to Datalog facts which conform to the mapped Datalog schema.

3.1.1 PG Schema to Datalog schema

Recall that a property graph schema consists of node and edge types. During transfor-

mation, each node and edge type is mapped to a set of Datalog relations declarations

and queries (IDB) in a way that encodes label, properties information and inheritance

between types. For property graph schema, we use a simplified subset of PG-schema

introduced in [4]. The syntax of our schema language is given in Figure 3.2. A property

graph schema S consists of a collection of elements T which are comprised of node

types N and edge types E. Both types are described by their label and properties

information T S, with edge types having additional label information of their source

nodes and target nodes.

S ::= { T̄ } Schema

T ::= N | E Element type

N ::= (T S) Node type

E ::= (L)− [T S]→ (L) Edge type

T S ::= X LS {k : b} Label property spec

LS ::= L | X | X |X Label spec

k ::= k ∈ K Property name

b ::= b ∈ B Property type

Figure 3.2: Grammar of property graph schema

The schema transformation rules are presented in Figure 3.3. Notation J KT is read

“is transformed to”, decl stands for Datalog relation declaration of any EDB and IDB,

and query refers to Datalog IDB.

We now consider two concrete examples to illustrate how to apply the transformation

rules to basic node and edge types.

Example 7 (Basic Node type). Figure 3.4 first transforms basic node type personType

to an EDB where node label is mapped to the relation name and the node identifier

always mapped to the first argument. The ordered collection of property names with

their data types is mapped to the rest of the relation arguments, with its order preserved.

An IDB with node type as the relation name is then created, which is deduced from the

previously defined node EDB.

Chapter 3. From Cypher to Datalog 16

J sch KT = ⟨{ decl },{ query }⟩ Transform to a set of Datalog declarations and IDB

⟨d1,q1⟩∪ ⟨d2,q2⟩≜ ⟨d1 ∪d2,q1 ∪q2⟩ Union of schema elements transformation
q(

x l
{

ki : bi
})y

T = ⟨{.decl x(ki:bi),l(ki:bi)} ,{.input l,x(ki):-l(ki)}⟩

Basic node type transformation
q(

x1 x2
{

ki : bi
})y

T = ⟨{.decl x1(ki:bi)} ,{x1(ki):-x2(ki)}⟩

Inherited node type transformation
q(

x1 x2|x3
{

ki : bi
})y

T = ⟨{.decl x1(ki:bi)} ,{x1(ki):-x2(ki),x1(ki):-x3(ki)}⟩

Union node type transformation
q
(l1)−

[
x l3

{
ki bi

}]
→ (l2)

y
T =

〈{
.decl l1xl2(sid:b,tid:b,ki:bi),

l1l3l2(sid:b,tid:b,ki:bi)
}
,
{
.input l1l3l2,

l1xl2(sid,tid,ki):-l1l3l2(sid,tid,ki)
}〉

Basic edge type transformation
q
(l1)−

[
x1 x2

{
ki : bi

}]
→ (l2)

y
T =

〈
{.decl l1xl2(sid:b,tid:b,ki:bi)} ,

{l1xl2(sid,tid,ki):-l1x2l2(sid,tid,ki)}
〉

Inherited edge type transformation
q
(l1)−

[
x1 x2|x3

{
ki : bi

}]
→ (l2)

y
T =

〈
{.decl l1x1l2(sid:b,tid:b,ki:bi)} ,

{l1x1l2(sid,tid,ki):-l1x2l2(sid,tid,ki),l1xl2(sid,tid,ki):-l1x3l2(sid,tid,ki)}
〉

Union edge type transformation

Figure 3.3: PG-schema transformation rules to Datalog EDB and IDB

1 (personType:

2 Person {

3 first:STRING,

4 last:STRING})

(a) PG-schema

.decl Person(id:UID, first:string, last:string)

.input Person

.decl PersonType(id:UID,

first:string, last:string)

PersonType(id,fn,ln):- Person(id,fn,ln).

(b) Transformed Datalog schema

Figure 3.4: Transformation of basic node type personType

Example 8 (Basic Edge type). Figure 3.5 shows the transformation of the basic edge

Chapter 3. From Cypher to Datalog 17

1 (:Person)

2 -[hasInterestType:

3 hasInterest]->

4 (:Tag)

(a) PG-schema

.decl PersonhasInterestTag(sid:UID, tid:UID)

.input PersonhasInterestTag

.decl PersonhasInterestTypeTag(sid:UID, tid:UID)

PersonhasInterestTypeTag(sid,tid):-

PersonhasInterestTag(sid,tid).

(b) Transformed Datalog schema

Figure 3.5: Transformation of basic edge type hasInterestType

type hasInterestType. It is first transformed to an EDB where source node label, edge

label and target node label are concatenated together to form the relation name. The first

relation argument denotes the source node identifier and the second denotes the target

node identifier with their data types. The rest of the relation arguments are reserved for

edge properties if there are any. An IDB with edge type as the relation name is then

created, which is deduced from the previously defined edge EDB.

So far we have seen the basic cases. We next present two other examples that

demonstrate transforming union type node and edge to Datalog schema.

1 (cityType:

2 City {name:STRING}),

3

4 (countryType:

5 Country {name:STRING}),

6

7 (placeType:

8 cityType |

9 countryType)

(a) PG-schema

.decl cityType(id:string, name:string)

.decl City(id:string, name:string)

.input City

cityType(id, n):- City(id, n).

.decl countryType(id:string, name:string)

.decl Country(id:string, name:string)

.input Country

countryType(id, n):- Country(id, n).

.decl placeType(id:string, name:string)

placeType(id, n):- cityType(id, n).

placeType(id, n):- countryType(id, n).

(b) Transformed Datalog schema

Figure 3.6: Transformation of union node type placeType

Example 9 (Union Node type). Figure 3.6 transforms union node type placeType to

Datalog schema. Similar to Example 7, basic node types cityType and countryType are

mapped 1:1 to Datalog IDB cityType and countryType which are derived from EDB

City and Country respectively. Since node type placeType is a union of the previous

Chapter 3. From Cypher to Datalog 18

two, it is mapped to a Datalog IDB placeType which is defined as the union of IDB

cityType and countryType.

Example 10 (Union Edge type). Figure 3.7 shows the transformation of union edge type

messageHCType to Datalog schema. Base edge types postHCType and commentHCType

are mapped 1:1 to IDB postHCType and commentHCType, deriving from corresponding

EDB. Union edge type messageHCType is mapped to an IDB which is defined as a union

of IDB postHCType and commentHCType.

1 (:Post)

2 -[postHCType:

hasCreator]->(:Person),

3

4 (:Comment)

5 -[commentHCType:

hasCreator]->(:Person),

6

7 (messageHCType: postHCType |

commentHCType)

(a) PG-schema

/* Assume EDB is defined previously */

.decl postHCType(s:string,t:string)

postHCType(s,t):- PosthasCreatorPerson(s,t).

.decl commentHCType(s:string,t:string)

commentHCType(s,t):-

CommenthasCreatorPerson(s,t).

.decl messageHCType(s:string,t:string)

messageHCType(s,t):- postHCType(s,t).

messageHCType(s,t):- commentHCType(s,t).

(b) Transformed Datalog schema

Figure 3.7: Transformation of union edge type messageHCType

3.1.2 PG to Datalog facts

The second stage of the data model transformation process is to map property graph

data to Datalog facts. This is conducted by mapping data instances of the property

graph schema to Datalog facts over the corresponding Datalog schema. To illustrate,

given a property graph G defined in Figure 2.1 with an example schema S specified

in Figure 2.2. Example 11 and Example 12 show mappings from node and edge data

instances to Datalog facts respectively.

Example 11 (Node data Transformation). Figure 3.8 shows the mapping from data

instances of node Person to Datalog EDB Person.

Example 12 (Edge data Transformation). Figure 3.9 shows the mapping from data

instances of edge isLocatedIn to Datalog EDB PersonisLocatedInPlace. Note that

only the identifiers of source nodes and target nodes are encoded in the facts.

Chapter 3. From Cypher to Datalog 19

1 (:Person, {firstName:"John",

lastName:"Reyes"}),

2 (:Person, {firstName:"Ramon",

lastName:"Sotto"}),

3 (:Person, {firstName:"Bobby",

lastName:"Garcia"})

(a) Node data instances

Person("p4","John", "Reyes")

Person("p1","Ramon", "Sotto")

Person("p2","Bobby", "Garcia")

(b) Datalog facts

Figure 3.8: Transformation of Person node data to Datalog facts

1 (:Person, {firstName:"John",

lastName:"Reyes"})

2 -[:isLocatedIn]->

3 (:City, {name:"Manila"),

4 (:Person, {firstName:"Ramon",

lastName:"Sotto"})

5 -[:isLocatedIn]->

6 (:City, {name:"Manila"),

7 (:Person, {firstName:"Bobby",

lastName:"Garcia"})

8 -[:isLocatedIn]->

9 (:City, {name:"Laoag")

(a) Edge data instances

Person("p4","John", "Reyes")

Person("p1","Ramon", "Sotto")

Person("p2","Bobby", "Garcia")

City("c1", "Laoag")

City("c2", "Manila")

PersonisLocatedInPlace("p4", "c2")

PersonisLocatedInPlace("p1", "c2")

PersonisLocatedInPlace("p2", "c1")

(b) Datalog facts

Figure 3.9: Transformation of isLocatedIn edge data to Datalog facts

Note that only Datalog EDB are mapped data instances from property graph. Facts

for IDB are deduced from bodies.

3.2 Datalog Translation for Cypher Queries

We now discuss how to translate a Cypher query into a Datalog program. The translation

pipeline is presented in several steps. The first step consists of decomposing a Cypher

query into a sequence of query fragments according to the type of operations being

performed. The remaining steps describe a systematic approach to translate each Cypher

query fragment into equivalent Datalog rules and to incrementally compose these rules

to produce the final Datalog query.

Chapter 3. From Cypher to Datalog 20

3.2.1 Overview

As we have seen in Chapter 2, Cypher query is a composition of linearly ordered clauses,

each of which takes the output from previous clause as input and produces results that

get passed onto the next clause. We develop the query translation strategy by leveraging

such decomposability of clauses. To start with, a Cypher query is first decomposed by

clauses such as MATCH, WHERE, WITH and then each clause statement is translated into

Datalog rules. Due to the dependency between clauses, the translated Datalog rules will

be dependent on previously defined rules. As such, the full translation is performed by

incrementally constructing Datalog rules in the same order as the clause statements until

reaching the end of the Cypher query. We use the same Cypher query from Example 3

as a running example to first illustrate the process of query translation on a high level.

1 MATCH

2 (person:Person)-[:KNOWS*2..]-(friend),

3 (friend)-[:IS_LOCATED_IN]->(city:City)

4 WHERE person.id = "p1"

5 AND NOT friend=person

6 AND NOT (friend)-[:KNOWS]-(person)

7 WITH friend, city

8 OPTIONAL MATCH

9 (friend)<-[:HAS_CREATOR]-(post:Post)

10 WITH friend, city,

11 count(post) AS postCount

12 RETURN

13 friend.firstName AS FirstName,

14 friend.lastName AS LastName,

15 city.name AS CityName,

16 postCount

(a) Cypher query

MATCH_state(...):- ...

WHERE_state(...):-

MATCH_state(...), ...

WITH_state1(...):-

WHERE_state(...), ...

OPTIONAL_MATCH_state(...):-

WITH_state1(...), ...

WITH_state2(...):-

OPTIONAL_MATCH_state(...), ...

RETURN_state(...):-

WITH_state2(...), ...

(b) Overview of translated Datalog program

Figure 3.10: Cypher query from Example 3 and overview of translated Datalog program

Example 13 (Running Example). Figure 3.10 shows an overview of how a Cypher

query is translated to a series of Datalog IDB. The query in Figure 3.10a can be broken

down into six individual clause statements: line 1-3 correspond to the first clause

statement for graph pattern matching; line 4-6 are the second clause statement for

filtering conditions; line 7 is the third clause statement for variable scoping; line 8-9 are

the fourth clause statement for optional graph pattern matching; line 10-11 is the fifth

Chapter 3. From Cypher to Datalog 21

statement for aggregation; line 12-16 is the final statement for query result projection.

Each of the statements are translated into Datalog IDB, which are used to compose the

final Datalog program that has the structure shown in Figure 3.10b.

Although not shown above, some additional intermediate Datalog IDB are needed

to handle cases of variable length paths (transitive closure), as we shall see shortly.

The rest of Section 3.2 describes the translation procedure in more details for the

subset of Cypher clauses considered in our work.

3.2.2 Match and Graph Patterns

The core idea of translating a MATCH clause is to extract the elements of its matching

graph patterns and use Datalog relations that stand for nodes and edges to represent

the graph patterns as conjunctions of relations. Such Datalog relations are previously

defined during the data model transformation process. We now demonstrate this process

using the first clause statement of the running example.

(person:Person)

-[:KNOWS*2..]-

(friend)

(a) The first path pattern

.decl KnowsTc(x:UID, y:UID)

KnowsTc(x, y):- Knows(x, z), Knows(z, y).

KnowsTc(x, y):- Knows(x, z), KnowsTc(z, y).

.decl path1(person:UID, friend:UID)

path1(person, friend):- KnowsTc(person, friend).

(b) Translated Datalog IDB

Figure 3.11: Translation of the first path pattern

(friend)

-[:IS_LOCATED_IN]->

(city:City)

(a) The second path pattern

.decl path2(friend:UID, city:UID)

path2(friend, city):-

PersonisLocatedInPlace(friend, city).

(b) Translated Datalog IDB

Figure 3.12: Translation of the second path pattern

Example 14 (Translate MATCH clause). Continuing Example 13, Figure 3.11, 3.12, and

3.13 illustrate the step by step translation process for the first MATCH clause statement.

The graph patterns in the statement can be decomposed into two graph paths where

Chapter 3. From Cypher to Datalog 22

MATCH

(person:Person)

-[:KNOWS*2..]-(friend),

(friend)

-[:IS_LOCATED_IN]->(city:City)

(a) Cypher clause

.decl MATCH_state(person:UID,friend:UID)

MATCH_state(person,friend,city):-

path1(person,friend),

path2(friend,city).

(b) Translated Datalog IDB

Figure 3.13: Translation of MATCH clause statement

node variable friend is shared between them. The first path is a variable length path

with source and target node having Person type, connected by undirected edge KNOWS.

To simplify the discussion, we assume the following relation Knows that represents the

edge KNOWS including source and target node as a result of data model transformation.

The first path which is in effect a transitive closure (as we see in Chapter 2) can be trans-

lated as path1 shown in Figure 3.11b. The intermediate IDB KnowsTc(x, y) defines

the transitive closure and IDB path1 defines all possible pairs of person and friend

obtainable from the path pattern. The variable arguments of IDB path1 are determined

by the variables specified for the path in the original Cypher query. Similarly, the second

path can be translated into path2 depicted in Figure 3.12b. The reason of choosing

EDB PersonisLocatedInPlace is because an edge with label IS_LOCATED_AT connect-

ing Person-labeled node to City-labeled node is mapped to PersonisLocatedInPlace

during data model transformation.

3.2.3 Filter

WHERE clause is essentially filtering its input by some conditions such as constraints on

label or property values. To translate a WHERE clause statement, we need to extract its

filtering conditions and turn these into equivalent Datalog expressions.

Example 15 (Translate WHERE clause). Continuing Example 14, Figure illustrate the

translation process for the second WHERE clause statement. There are three conditions

to filter here: (1) a constraint on the identifier value of node variable person, which can

be translated to Person(person, _, _), person = "p1" where the first argument of

relation Person denotes identifier; (2) the second condition restricts that node friend

should be different from node person, which is translated to person != friend where

!= denotes not equals; (3) the third condition is a search path constraint that there is

Chapter 3. From Cypher to Datalog 23

WHERE

person.id = "p1"

AND NOT friend=person

AND NOT

(friend)-[:KNOWS]-(person)

(a) Cypher clause

.decl

WHERE_state(person:UID,friend:UID,city:UID)

WHERE_state(person,friend,city):-

MATCH_state(person,friend,city),

Person(person, _, _), person = "p1",

person != friend,

!Knows(friend, person).

(b) Translated Datalog IDB

Figure 3.14: Translation of WHERE clause statement

no edge KNOWS connecting node friend and person, which is translated to a negated

relation in Datalog, i.e. !Knows(friend, person). Since the WHERE clause takes input

from the first WHERE clause, IDB MATCH_state should be included in the IDB body.

Combining all translated condition expressions, the statement can be written as IDB

WHERE_state shown in Figure 3.14b.

3.2.4 Variable Projection

The first WITH clause in Example 3.10a is used to project a subset of the variables

currently in scope to the next clause. In the query context, this means only pairs of

(friend, city) values are returned as the output of the WITH clause. This leads us to

the following translation.

WITH friend, city

(a) Cypher clause

.decl WITH_state1(friend:UID,city:UID)

WITH_state1(friend,city):-WHERE_state(_,friend,city).

(b) Translated Datalog IDB

Figure 3.15: Translation of WITH clause statement

Example 16 (Translate WITH clause Part 1). Continuing Example 15, Figure gives the

translation for the third WIHT clause statement. Argument person in IDB WHERE_state

is replaced with a wildcard since it is removed from the variable scope through the

WIHT clause, and only variables friend and city remain as the arguments of rule

WITH_state1.

Chapter 3. From Cypher to Datalog 24

Apart from variable projection, WITH clause is also used to compute aggregation

which we will discuss its translation later in Section 3.2.6.

3.2.5 Optional Match

OPTIONAL MATCH clause is a variant of MATCH clause which matches graph patterns

in the same way as MATCH does but returns null for the variables in the optional graph

patterns if no data can be matched to them. This makes the translation challenging

because it is generally tricky to handle null values in Datalog. Therefore, our strategy is

to only deal with those null values that are actually relevant for computing the query

results. This requires us to look ahead of the current statement and identify how those

variables appearing in the optional graph patterns are used.

OPTIONAL MATCH

(friend)

<-[:HAS_CREATOR]-

(post:Post)

(a) Cypher clause

.decl

OPTIONAL_MATCH_state(friend:UID,city:UID,post:UID)

OPTIONAL_MATCH_state(friend,city,post):-

WITH_state1(friend,city), post = "null".

OPTIONAL_MATCH_state(friend,city,post):-

WITH_state1(friend,city),

PosthasCreatorPerson(post, friend).

(b) Translated Datalog IDB

Figure 3.16: Translation of OPTIONAL MATCH clause statement

Example 17 (Translate OPTIONAL MATCH clause). Continuing Example 16, Figure

illustrate the translation process for the OPTIONAL MATCH clause statement. In Ex-

ample 13, post is the new variable introduced in the OPTIONAL MATCH clause which

holds the post created by friend if any. If not, post will have null value. Regarding its

usage in the successive part of the query, post is aggregated in the WITH clause, and

the aggregation result postCount is returned in the final RETURN clause. Since post

is actively used as the target of aggregation later, in this case we do want to represent

the null value. For convenience, we introduce string "null" as null value for variables

whose data type is string. The OPTIONAL MATCH clause is then translated into shown

in Figure 3.16b. Note that post = "null" will be used later to deal with the next

aggregation statement.

Another example to deal with OPTIONAL MATCH is when the new variables intro-

duced in the optional graph patterns do not contribute directly to the query result. As

Chapter 3. From Cypher to Datalog 25

an example, we consider the following Cypher query modified from LDBC SNB short

query 7.

MATCH

(m:Message)<-[:REPLY_OF]-(c:Comment)

-[:HAS_CREATOR]->(p:Person)

OPTIONAL MATCH

(m)-[:HAS_CREATOR]->(a:Person)

-[r:KNOWS]-(p)

RETURN

c.id AS commented,

c.content AS commentContent,

c.creationDate AS

commentCreationDate,

p.id AS replyAuthorId,

p.firstName AS replyAuthorFirstName,

p.lastName AS replyAuthorLastName

(a) Cypher clause

.decl

MATCH_state(m:UID, c:UID, p:UID)

MATCH_state(m, c, p):-

CommentreplyOfMessage(c,m),

CommenthasCreatorPerson(c,p).

.decl

OPTIONAL_MATCH_state(m:UID, c:UID,

p:UID)

OPTIONAL_MATCH_state(m,c,p):-

MATCH_state(m, c, p).

OPTIONAL_MATCH_state(m,c,p):-

MATCH_state(m, c, p),

MessagehasCreatorPerson(m,a),

Knows(a,p).

/* Translation of RETURN omitted */

(b) Translated Datalog IDB

Figure 3.17: Translation of OPTIONAL MATCH clause statement

Example 18 (A different OPTIONAL MATCH case). Figure 3.17 shows the translation

of a different case of OPTIONAL MATCH clause, where new node variable a and edge

variable r appearing in the OPTIONAL MATCH clause are not used in the successive

query. In this case, the OPTIONAL MATCH clause is really just optionally providing an

additional graph pattern to match variables in the current scope (which are m and p).

3.2.6 Aggregation

Aggregation in Cypher can be translated to Datalog due to the stratified aggregates

available in Datalog.

Example 19 (Translate WITH clause Part 2). Continuing Example 17, Figure 3.18 gives

the translation for the fifth WITH clause statement. The WITH clause implicitly groups its

input by variable friend and city and applies the aggregating function count to post.

This operation can be equivalently broken down into two steps. First, assigning numeric

value 1 to every post within a (person, city) group if the post is not null and assigning

value 0 if post is null. This is done through an intermediate IDB WITH_state2_inter

Chapter 3. From Cypher to Datalog 26

WITH

friend, city,

count(post)

AS postCount

(a) Cypher clause

.decl

WITH_state2_inter(friend:UID,city:UID,sCount:int)

WITH_state2_inter(friend,city,sCount):-

OPTIONAL_MATCH_state(friend,city,post),

post = "null", singleCount = 0.

WITH_state2_inter(friend,city,sCount):-

OPTIONAL_MATCH_state(friend,city,post),

post != "null", singleCount = 1.

.decl

WITH_state2(friend:UID,city:UID,postCount:int)

WITH_state2(friend,city,postCount):-

WITH_state2_inter(friend,city,_),

postCount = sum sCount :

WITH_state2_inter(friend,city,sCount).

(b) Translated Datalog IDB

Figure 3.18: Translation of WITH clause statement with aggregation

in Figure 3.18b. The count is then equivalent to the sum of all assigned values of post

for each group, which is handled by IDB WITH_state2. By converting counting into a

summation problem, we effectively solve the issue of counting null value.

Aside from counting, Cypher also allows other types of aggregation such as max-

imum, minimum, average and so on. Since each of them needs different treatments

during translation, for simplicity of discussion, we only describe the counting translation

logic here and provide readers with a full list of Datalog translations of LDBC SNB

queries online1 for more aggregation examples.

3.2.7 Projection

Every Cypher query ends with a RETURN clause which projects the final results of the

query. The projection typically projects certain property values of the variables in scope.

Since property values are stored in the transformed Datalog EDB, translating RETURN

clause mostly involves identifying the arguments of EDB that correspond to the node or

edge properties of interests.

Example 20 (Translate RETURN clause). Continuing Example 19, Figure gives the

translation for the final RETURN clause statement. The RETURN clause returns the first
1https://github.com/yxia0/cypher-benchmark/tree/main/souffle-queries

Chapter 3. From Cypher to Datalog 27

name and last name of matched friend and the name of matched city, together with

the postCount values obtained from the previous clause. Recall that Person-labeled

and City-labeled relations have the following schema

Person(id:int, firstName:string, lastName:string)

City(id:int, name:string)

which are obtained during data model transformation. The arguments of the final IDB

RETURN_state are defined as the attribute names returned by the Cypher query, and their

values are obtained from the corresponding EDB.

RETURN

friend.firstName

AS FirstName,

friend.lastName

AS LastName,

city.name

AS CityName,

postCount

(a) Cypher clause

.decl

RETURN_state(FirstName:string, LastName:string,

CityName:string, postCount:int)

RETURN_state(FirstName,LastName,CityName,postCount):-

WITH_state2(friend,city,postCount),

Person(friend, firstName, lastName),

City(city, CityName).

(b) Translated Datalog IDB

Figure 3.19: Translation of RETURN clause statement

It is worth pointing out that RETURN clause also allows aggregation and computation

of expressions to be performed at the projection phase. These can be easily extended in

the translation process by leveraging the strategy from aggregation translation. Inter-

ested readers can find more examples in the Appendix.

3.3 Optimisation

So far we have presented a naive way to systematically translate a Cypher query into

a Datalog program through a running example. While there are existing optimisation

techniques such as magic-set transformation that we can leverage to efficiently evaluate

the Datalog query, our proposed translation pipeline introduces more opportunities for

query optimisation to effectively eliminate irrelevant relations and reduce the complexity

of computation during translation. In the rest of the section, we discuss three such

optimisation techniques.

Chapter 3. From Cypher to Datalog 28

3.3.1 IDB Inlining

The technique of inlining originates from compiler optimisation which tries to merge

commonly shared expression in the program to avoid re-computation of the expression

and also shrink the code size. Inspired by the idea of inling, we merge shared IDB

occurred in the first pass of naively translated Datalog program to reduce the number of

IDBs.

.decl KnowsTc(x:UID, y:UID)

.decl path1(person:UID, friend:UID)

.decl path2(friend:UID, city:UID)

.decl

MATCH_state(person:UID,friend:UID)

.decl

WHERE_state(person:UID,

friend:UID,city:UID)

.decl

WITH_state1(friend:UID,city:UID)

.decl

OPTIONAL_MATCH_state(friend:UID,

city:UID,post:UID)

.decl

WITH_state2_inter(friend:UID,

city:UID,sCount:int)

.decl

WITH_state2(friend:UID,

city:UID,postCount:int)

/* IDB definition omitted */

(a) Before IDB Inling

.decl KnowsTc(x:UID, y:UID)

.decl

merge_state(friend:UID,city:UID)

merge_state(friend,city):-

KnowsTc("p1", friend),

PersonisLocatedInPlace(

friend, city),

friend != "p1",

!Knows(friend, "p1").

.decl

WITH_state2_inter(friend:UID,

city:UID,sCount:int)

WITH_state2_inter(friend,city,sCount)

:- merge_state(friend,city),

post = "null", singleCount = 0.

WITH_state2_inter(friend,city,sCount)

:- merge_state(friend,city),

PosthasCreatorPerson(post, friend),

sCount = 1.

(b) After IDB Inling

Figure 3.20: Apply IDB inlining optimisation to naively-translated Datalog program

Example 21 (IDB Inlining). Figure 3.20 illustrates how a naively-translated Datalog pro-

gram is rewritten after applying inlining optimisation. It can be observed that six IDB

path1, path2, MATCH_state, WHERE_state, WITH_STATE1 and OPTIONAL_MATCH_state

are merged into a single IDB merge_state in the optimised Datalog program. Addi-

tionally, filtering condition person = "p1" is eliminated in the optimised program, and

instead, the filtering value "p1" has replaced all occurrence of variable person.

Chapter 3. From Cypher to Datalog 29

3.3.2 Schema-driven Inlining

In the schema-driven inlining technique, we only consider EDB that either makes sense

to compute from a schema perspective.

MATCH (m:Message {id:9})

RETURN

m.creationDate

AS date,

coalesce(m.content,

m.imageFile)

AS content

(a) Cypher clause

.decl Post(id:UID, image:string,

date:int,...,content:string)

.decl Comment(id:UID,

date:int,...,content:string)

.decl Message(id:UID, date:int,

content:string,...)

// EDB & arguments omitted

Message(...):- Post(...).

Message(...):- Comment(...).

.decl query(date:int, content:string)

query(date, content):-

Post(9, _, date, _, _, _, content),

content != "NULL".

query(date, content):-

Comment(9, date, _, _, content),

content != "NULL".

query(date, content):-

Post(9, content, date, _, _, _, content1),

content1 = "NULL".

(b) Translated Datalog IDB

Figure 3.21: Leverage schema-driven inlining optimisation to translate Datalog program

Example 22 (Schema-driven Inlining). Let’s consider the short query 4 (see Fig-

ure 3.21a) from LDBC SNB which matches any nodes with Message label, and returns

its creation date and contents. If its content is null, then returns its image file. Note

that Message is a union type of post and comment, and whilst both post and comment

has property content, only post has imageFile property. Therefore, instead of using

IDB Message, which matches with what the query explicitly asks for, we inline its body

which are EDB Post and Comment in the translated program. Particularly, we eliminate

the need to use EDB Comment when translating coalesce(_, m.imageFile), because

EDB Comment does not even have property imageFile.

Chapter 3. From Cypher to Datalog 30

3.3.3 Join Ordering

In Datalog, a conjunction of two relations A(...), B(...) is evaluated as the cross-

product between the two. This can lead to computational inefficiency during query

evaluation as the effort of computing and storing the results is quadratic in the size

of A and B. Therefore, we want to avoid having translated Datalog rules that involve

cross-products among multiple large relations. This can be done by pre-computing

some cross-products and storing them as IDB for later use in the program, which is the

core idea of the join ordering technique.

Deciding which cross-products in the naively-translated Datalog query to pre-

compute requires the profiling information regarding the tuple size of Datalog EDB

generated during the data model transformation stage. Therefore, join ordering optimi-

sation is performed in two steps. First, we identify the cross products between Datalog

EDB of large size in the translated queries. Then we add new IDB for the cross-products

and replace the previous occurrence of cross-products with newly created IDB.

.decl

state3(forum:int,

post:int,postCount:int)

state3(forum:int, post:int,

postCount:int):-

state2(forum,_), post = 0,

postCount = 0.

state3(forum:int, post:int,

postCount:int):-

state2(forum,person2),

PosthasCreatorPerson(post,

person2),

ForumcontainerOfPost(forum,

post), postCount = 1.

(a) Before join-reordering

.decl

preJoin(forum:UID,post:UID,person2:UID)

preJoin(forum,post,person2):-

ForumcontainerOfPost(forum, post),

PosthasCreatorPerson(post, person2).

.decl

state3(forum:int,post:int,postCount:int)

state3(forum:int,post:int,postCount:int):-

state2(forum,_), post = 0, postCount = 0.

state3(forum:int,post:int,postCount:int):-

state2(forum,person2),

preJoin(forum,post,person2), postCount = 1.

(b) After join-reordering

Figure 3.22: Apply join-reordering optimisation to naively-translated Datalog program

Example 23. Consider the Datalog query fragment translated from complex query

5 of LDBC SNB (see Figure 3.22a). In the naively-translated program, IDB state3

is deduced from EDB PosthasCreatorPerson and ForumcontainerOfPost which have

tuple size of 1M respectively, and previously defined IDB state2 which has tuple size

Chapter 3. From Cypher to Datalog 31

859K. Therefore, the computation complexity of the cross-products is O(1M×1M×
859K).

Since EDB PosthasCreatorPerson and ForumcontainerOfPost are joined over vari-

able post, we pre-calculate this cross-product beforehand in a new IDB preJoin defined

in Figure 3.22b and replace the cross-product in state3 with this new IDB in the opti-

mised version. IDB preJoin has computation complexity O(1M×1M) with a resulting

tuple size of 1M, and hence the cross-product complexity of state3 is reduced to

O(859K ×1M). The total complexity is therefore improved roughly from O(1M3) to

O(1M2).

Chapter 4

Performance Study

In this chapter, we present an experimental study to evaluate the performance of

translated Cypher queries executed on Datalog engines and verify the effectiveness of

our optimisation techniques.

4.1 Setup

Systems All experiments are performed on a single machine with two AMD EPYC-

7302 @ 3GHz CPUs and 503 GB of RAM running Ubuntu 20.04. We only use one

logical core. All Cypher queries are evaluated on Neo4j community version 5.10.0 and

Datalog programs on Souffé version 2.4. Neo4j is assigned one logical CPU core upon

initialisation and is used with the default setting. To execute queries on Neo4j, we use

Neo4j Python Driver version 5.11. Cypher query runtime is calculated as the sum of

values result available after and result available after reported by the driver. Datalog

program is executed using Soufflé’s compiler mode with a single thread. A profile log

is also generated for each run of Datalog programs by enabling -p flag. Soufflé is an

in-memory system and loads all input data into memory. We calculate the runtime of

Datalog program as the sum of execution time of all relations, excluding input relation

data loadtime, which are all recorded in the profile log. Soufflé compilation time is also

excluded from runtime since query planning time is not our main focus. To make the

result comparable, for Neo4j, we conduct a warm-up running for each query so that

disk IO time is excluded and the query plan is cached. All reported query runtimes

are averages of five successive runs, and for Neo4j the five runs start after a warm-up

running.

Dataset To gauge the potential of utilising Datalog engines as generic graph query

32

Chapter 4. Performance Study 33

execution systems on real-world applications, we use LDBC Social Network Bench-

mark (LDBC SNB) [11], which is a commonly used graph benchmark that models a

complicated social networking application with users, forums, posts and comments.

The LDBC SNB uses a graph schema with 14 node types connected by 20 edge types.

We generate the dataset using scale factor 10, containing a total of 3.18M nodes and

17.44M relationships. We implemented the data model transformation pipeline1 to

automate the generation of Datalog facts of the LDBS dataset.

Queries For queries, we use the LDBC SNB interactive workload [11] which consists

of a set of 7 short and 12 complex read-only Cypher queries that touch a significant

amount of data. Since Soufflé does not support several query features, such as ordering,

extracting years and months from datetime object, limiting the number of outputs etc,

we slightly modified the benchmark. We removed ORDER BY and LIMIT clauses from

the queries, and also deleted filtering constraints that involve extracting year, month or

day from a datetime-type attribute. In addition, since Datalog adopts set semantics, we

change the RETURN clause in all Cypher queries to RETURN DISTINCT so that query

results are given using set semantics. A full list of modified LDBC Cypher queries with

their Datalog translation is available online2.

4.2 End-To-End Benchmarks

In the first experiment, we compare the performance of (1) original Cypher queries (2)

translated Datalog queries without optimisations (3) translated Datalog queries with

the best optimisation strategy. We first manually translate the Cypher queries using

our propose translation pipeline without optimisation, and then apply our optimisation

techniques together with the magic-set optimisation provided by Soufflé to obtain

the most performant optimisation combinations. Figure 4.1 and 4.2 show the query

runtimes. Table 4.1 and 4.2 summarise the optimisation strategy adopted for each query.

For short queries, 5 out of 7 translated queries outperform Neo4j without optimi-

sation. After applying optimisation, Query 3 significantly outperforms and Query 2

shows comparable performance to Neo4j.

For complex queries, 10 out of 12 translated queries with optimisation outperform

Neo4j by a large margin. There are two queries (Q1 and Q9) perform worse than

Neo4j with optimisation enabled. Both queries involve cross-products computation

1https://github.com/yxia0/kaeru
2https://github.com/yxia0/cypher-benchmark

Chapter 4. Performance Study 34

Figure 4.1: Runtimes of LDBC short queries

Opt Q1 Q2 Q3 Q4 Q5 Q6 Q7

inline ✓ ✓ ✓ ✓ ✓ ✓

join

magic-set

Table 4.1: Optimisation strategy for short queries

with variable length graph paths consisting of undirected edge knows, which increases

the complexity. This also reveals the shortcomings of the underlying Datalog engine

Soufflé regarding its limited capability of join optimiser.

Figure 4.2: Runtimes of LDBC complex queries

We also observe that enabling magic-set transformation setting together with our

Chapter 4. Performance Study 35

Opt Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

inline ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

join ✓ ✓ ✓ ✓

magic-set ✓ * ✓

Table 4.2: Optimisation strategy for complex queries. For Query 8, applying inlining or

magic-set optimisation achieves the same best query performance.

proposed query optimisation does not always lead to the best performance. Instead, it

can incur some computation overheads that worsen the query evaluation time.

4.3 Evaluation of Optimisation

We next evaluate the effectiveness of individual query optimisation techniques. We

take those queries of which the naively translated Datalog version performed worse

than Neo4j and run experiments with their partially optimised variants where only one

optimisation technique is applied at a time. The rest of the section focuses on analysing

the impact of each optimisation approach.

4.3.1 Inlining

Figure 4.3 compares the performance of translated Datalog queries with and without

inlining optimisation. All query performance get improved with some (SQ2, SQ3, CQ2,

CQ7, CQ8) showing significant decrease in runtimes. In these 5 cases, the queries

all involve some kinds of graph pattern matching with respect to Message-type node,

which consists of Post and Comment nodes and some relationships related to them.

These node and edge types have a large number of data instances and hence provide

opportunities for inlining to reduce the computation of irrelevant Datalog EDB.

4.3.2 Join Ordering

Figure 4.4 shows the runtimes of translated queries with and without join reordering

optimisation enabled. We observe that all queries demonstrate performance improve-

ment. In these four cases, pre-computed cross-products typically involve relations

MessagehasCreatorPerson, MessageisLocatedInPlace, CommentreplyOfPost which

have dominant number of data tuples processed in the queries. Join ordering technique

Chapter 4. Performance Study 36

Figure 4.3: Runtime comparison with Inlining

allows the reuse of such cross-products for later computation in the queries and thus

reduces computation complexity.

Figure 4.4: Runtime comparison with Join Reordering

It is also worth pointing out that, as can be shown in Table 4.2, join reordering is

observed to be more effective when combined with inlining. This is because inlining

often involves substituting some large IDB relations with only their relevant defining

components (IDB bodies), which opens up opportunities for more fine-tuned join

reordering.

Chapter 4. Performance Study 37

4.3.3 Magic-set Transformation

Magic-set transformation is an optimisation technique developed by the Datalog com-

munity (as we have discussed in Chapter 2). In this experiment, we rely on Soufflé

to apply magic-set transformation to the translated Datalog queries and the runtime

comparison is given in Figure 4.5.

In general, magic-set transformation seems to improve query performance. There

are 4 exceptions (CQ1, CQ3, CQ5, CQ12) here where the runtime becomes worse with

optimisation. This requires investigation of how Soufflé transforms the queries, which

is an interesting topic for our future work.

Figure 4.5: Runtime comparison with Magic-set Transformation

Chapter 5

Conclusions

In this thesis, we have presented a source-to-source translation pipeline from Cypher

to Datalog, which includes data model transformation, query translation and query

optimisation. The novelty of our approach consists of (1) formalisation of the schema

transformation from the data model of property graph to the data model of Datalog (2) a

comprehensive systematic translation process that supports core components of Cypher

query, including optional graph pattern matching, transitive closure and aggregation

(3) effective optimisation techniques of rewriting naively-translated Datalog program

towards more efficient evaluation. Our experimental results and analysis show the

performance advantage gained by executing translated Cypher queries with optimisation

on modern Datalog engine.

Future work should cover several directions: First, we plan to implement the full

translation pipeline as a compiler. This would enable users to easily translate Cypher

queries into Datalog programs and open up opportunities for more research into the

connections between the two. Second, a formalisation of the query translation rules

should be provided to assist further work on proving the correctness of the translated

Datalog program from a semantics equivalence perspective. Third, we can extend the

translation source language from Cypher to the standard Graph Query Language, which

is heavily inspired by Cypher. This will provide new opportunities for the community

to improve the standardisation of graph query language through potential insights from

Datalog.

38

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[2] Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri, Gerald Pfeifer, and

Giorgio Terracina. The disjunctive datalog system dlv. In Datalog, 2010.

[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. Foundations of modern query languages for graph databases.

50(5), sep 2017.

[4] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair

Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip

Murlak, Stefan Plantikow, Ognjen Savkovic, Michael Schmidt, Juan Sequeda,

Slawek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc, Mingxi

Wu, and Dusan Zivkovic. Pg-schema: Schemas for property graphs. Proc. ACM

Manag. Data, 1(2), jun 2023.

[5] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. Design and imple-

mentation of the logicblox system. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’15, page 1371–1382,

New York, NY, USA, 2015. Association for Computing Machinery.

[6] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. Magic

sets and other strange ways to implement logic programs (extended abstract). In

Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of

Database Systems, PODS ’86, page 1–15, New York, NY, USA, 1985. Association

for Computing Machinery.

39

Bibliography 40

[7] Mariano P. Consens and Alberto O. Mendelzon. Graphlog: a visual formalism for

real life recursion. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, 1990.

[8] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query

language supporting recursion. SIGMOD Rec., 16(3):323–330, dec 1987.

[9] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query

language supporting recursion. In Proceedings of the 1987 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’87, page 323–330, New

York, NY, USA, 1987. Association for Computing Machinery.

[10] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,

Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak,

Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vrgoč,

Mingxi Wu, and Fred Zemke. Graph pattern matching in gql and sql/pgq. In Pro-

ceedings of the 2022 International Conference on Management of Data, SIGMOD

’22, page 2246–2258, New York, NY, USA, 2022. Association for Computing

Machinery.

[11] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,

Arnau Prat, Minh-Duc Pham, and Peter Boncz. The ldbc social network bench-

mark: Interactive workload. In Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD ’15, page 619–630, New

York, NY, USA, 2015. Association for Computing Machinery.

[12] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor

Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and

Domagoj Vrgoc. Gpc: A pattern calculus for property graphs. In Proceedings of

the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems, PODS ’23, page 241–250, New York, NY, USA, 2023. Association for

Computing Machinery.

[13] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor

Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and

Domagoj Vrgoc. A researcher’s digest of gql. Proceedings of the 26th Interna-

tional Conference on Database Theory (ICDT 2023), 255:1–22, 2023.

Bibliography 41

[14] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. Cypher: An evolving query language for property graphs. In

SIGMOD Conference, page 1433–1445, 2018.

[15] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining

views incrementally. In Proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’93, page 157–166, New York,

NY, USA, 1993. Association for Computing Machinery.

[16] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthesis of

program analyzers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer

Aided Verification, pages 422–430, Cham, 2016. Springer International Publishing.

[17] Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, and

Boon Thau Loo. Recursive computation of regions and connectivity in networks.

In Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng, editors, Proceedings of

the 25th International Conference on Data Engineering, ICDE 2009, March 29

2009 - April 2 2009, Shanghai, China, pages 1108–1119. IEEE Computer Society,

2009.

[18] J. Paredaens, P. Peelman, and L. Tanca. G-log: a graph-based query language.

IEEE Transactions on Knowledge and Data Engineering, 7(3):436–453, 1995.

[19] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,

Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuza-

ima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard

Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki

Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plan-

tikow, Mohamed Ragab, Matei R. Ripeanu, Semih Salihoglu, Christian Schulz,

Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-

masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun

Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. The future is big graphs: A

community view on graph processing systems. Commun. ACM, 64(9):62–71, aug

2021.

[20] Jeffrey D. Ullman. Bottom-up beats top-down for datalog. In ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, 1989.

Bibliography 42

[21] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams. SIGPLAN Not., 39(6):131–144, jun

2004.

Appendix A

Property Graph

We provide a formal definition of a property graph. Let L ,P ,V be countable sets of

labels, property names and property values, respectively. A property graph is defined as

a tuple G = (N,Ed,Eu,λ,end points,src, tgt,δ) where

• N is a finite set of node identifiers

• Ed as a finite set of directed edges identifiers

• Eu as a finite set of undirected edge identifiers used in G

• λ : N ∪Ed ∪Eu → 2L is a labelling function mapping node and edge identifiers to

sets of labels.

• src, tgt : Ed → N define source and target node of a directed edge.

• end point : Eu → 2N define endpoint nodes of an undirected edge.

• δ : (N∪Ed ∪Eu)×P →V is a partial function mapping a (node or edge) identifier

and property names to property values.

43

