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Abstract

Datalog has emerged as a powerful language to do recursive analysis. In this dissertation

project, we propose a benchmark based on four real-life applications such as declarative

network, data analysis in the knowledge graph, data exchange, and financial compu-

tation. This project includes generating network/social graphs and relevant queries

in those applications. In order to understand how the Datalog engine processes the

query and manages the data, we execute the benchmark over five different Datalog

engines: Souffle, BigDatalog, Myria, Bloom, and RecStep. We conclude that our

current Datalog engine have the expressiveness to solve the required tasks in various

applications. Amongst those engines, Souffle is leading in expressiveness and performs

well in most cases. Regarding scalability, Recstep shows promising performance in

large datasets but it has limited expressiveness.
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Chapter 1

Introduction

1.1 Motivation

Datalog is a query language that was introduced for the first time in the 1970s. Datalog

is well known as a subset of Prolog [11]. In some cases, Datalog can work as a relational

database. We may be more familiar with relational databases like SQL as a relational

database language because it was first standardised by the ANSI and ISO in 1986 [4].

However, several real-life problems can not be solved using a relational database.

If it could, it would require a long time to analyse it. The typical situation is in

graph data. That is why there is a different database system, such as a graph database

to analyse graph data. Furthermore, SQL has limitations when expressing common

graph operations, such as transitive closure in a single query. On the other hand,

Datalog appeared with the new generation of applications with high-level abstraction of

reasoning and the capability to process complex procedures in large amounts of data [6].

Moreover, there has been a study on Datalog that its capability to support applications in

graph data [12, 16], declarative routing [10], program analysis [15, 18], data exchange

[13], analysis in knowledge graph [2, 19], and security [3].

Recent studies show us the recent development of the Datalog system and the

performance comparison of Datalog systems with the other systems in graph analysis

and program analysis [5]. However, there is no clear benchmark of Datalog performance

in more complex applications such as declarative networking, data exchange, data

analysis in knowledge-graph, and financial computation.

Our project aims to explore the Datalog system’s ability to solve real-world problem

besides graph analysis and program analysis. We focus on implementing declarative

networking, data exchange, and data analysis in graph data. In addition, we also provide

1



Chapter 1. Introduction 2

new Datalog queries to solve financial computation with recursive programming. At

the end of our project, we will understand Datalog’s capability and system performance

in solving real-life problems.

1.2 Research Objectives

The main goal of this project is to present clear benchmarking on recent Datalog

systems on performing tasks in four different applications, networking, data analysis in

the knowledge graph, data exchange, and financial computation. Based on this goal, we

can break down the objectives of this project into the following research questions.

1. What kinds of real-life problems can be solved using Datalog?

2. How to write a Datalog program to solve those problems?

3. How do we evaluate recent Datalog systems to perform those tasks?

4. What are the advantage and disadvantages of using Datalog in solving this prob-

lem compared with another system?

1.3 Research Structure

This dissertation is divided into five chapters as follows,

In Chapter 1, we explain the problem/opportunity that we have. We mention the

goal of our project. We write down several specific objectives to help keep us on track

and ensure success.

In Chapter 2, we do a literature review about the recent development of the Datalog

engine and the previous implementation of the Datalog engine in various applications.

This chapter also highlights our involvement with the Datalog system.

In Chapter 3, we elaborate our approach for this project. We explain how we gather

data (synthetic and real data), then continue writing the Datalog program based on the

specific task. We specify the system configuration and evaluation metrics used in this

project.

In Chapter 4, we show the benchmarking result based on the evaluation metrics

mentioned in the previous chapter. We put our analysis regarding the result that we

have from this experiment.
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Finally, Chapter 5 presents the conclusion and our thoughts on this project. The

answers to research questions from Chapter 1 is available in this chapter. Furthermore,

we mention our limitations during our work and discuss future work to develop this

project.



Chapter 2

Background

2.1 Datalog Basics

Datalog is well-known as a declarative query language system. The syntax in Datalog

consists of facts and rules [11]. Facts are representations of the relevant information that

we have. Rules are built from our facts to generate a more comprehensive understanding

of the facts. For example, we have facts about the parent-child relationship. Then we

can represent ancestors as collections of rules from our parent-child information. We

have information that Joe is the father of John, and Josh is the father of Joe. From

the two facts we have, we create a rule to know who is the grandfather of someone by

creating this rule. If X is a parent of Y and Y is a parent of Z, then X is a grandfather of

Z. From that rule, we can gather new information that Josh is a grandparent of John.

Facts and rule are represented as Horn Clause [14] as shown in here

L0 :−L1,L2, . . . ,Ln (2.1)

Where Ln are atoms in the form R(t1, t2, . . . , tm) such that the predicate symbol R and

terms tn. For atoms on the left-hand side (LHS), we call them the head of a rule, while

for the atoms on the right-hand side (RHS), we call them the body of a rule. Terms on

the left must appear in the terms on the right to satisfy the safety rule. A term can be a

string constant, integer constant, or variable.

The clause that we use to represent facts is unconditional hold. It means there is

the head rule but no body rule. The argument we put in facts must be in constant terms

(string or integer). In the previous example we can put fact as

parent(”Joe”,”John”).

4



Chapter 2. Background 5

parent(”Josh”,”Joe”).

It means the relation parent has two tuples, (”Joe”,”John”) and (”Josh”,”Joe”). More-

over, facts could be read from another input sources or Existential Databases (EDB).

A rule has one predicate (or more) in the head of a rule and one or more literals in

the body of a rule. The literals could be a predicate, constraint, or negated predicate.

For example, if we want to create a rule for grandfather from the facts parent that we

have, we can write,

grand f ather(X ,Z) :− parent(X ,Y ), parent(Y,Z).

In this example, grandfather and parent are predicate names while X, Y, and Z are

variables. There is no constraint or negated predicated in this example. In the Datalog

program, the rule will store the value in IDB (Intentional Database).

Recursion. If there is no recursion in the Datalog program, the syntax has the

same understanding as relational algebra in the relational database. Recursive Datalog

expresses queries that can’t be expressed in a relational database (SQL). IDB predicate

P depends on predicate Q if there is a rule for predicate P in the head and predicate Q

in the body of a rule. Based on this information, we can draw a graph and call them

recursive if there is a cycle in the program. In evaluating a recursive Datalog program, it

must have an iterative fixed point. If there are no changes in IDB by applying the rules,

it would stop and give us the final result. Here is some example of a recursive query.

Ancestor(X ,Y ) :−Parent(X ,Y ).

Ancestor(X ,Z) :−Ancestor(X ,Y ),Parent(Y,Z).

In the first rule, we understand that Ancestor contains tuples from relation Parent.

The second rule is the recursive situation where to find the ancestor of Z, we can find it

by knowing who is the parent of Y. As long as a tuple(s) satisfies the rule, the relation

ancestor would generate new tuples until they reach a fixed point.

2.2 Datalog Extension

In this section, we will discuss semantics and several extensions needed to run all

programs for our project. Datalog is a subset of the Prolog program. However, unlike

Prolog, Datalog has an additional extension for complex analysis. Negation, constraint,

arithmetic/string arguments, and aggregation are essential extensions in Datalog to do

more complex analysis in this project.
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Negation is the contradiction of arguments. It is symbolized with ¬ or !. For

example, in rule r :−¬p, r has value true if p is false, and false if p is true. In Datalog,

using negation must be careful that still satisfy safe rules. It means the variable that

appears in a negative atom must appear in a positive atom. Second, there is no negation

appearing in the head of a rule. Figure 2.1 shows us some examples. The result

1 R(X) : − !U(X) .

2 R(X) : − U(Y) .

3 R(X) : − U(Y) , X<Y.

Figure 2.1: Unsafe Negation in Datalog Program

(relational R) could be infinite in these three scenarios, even though the relation I is

finite. The first rule is not safe because variable X does not appear in positive atom in

the body. The second and third rules are unsafe because variable X in the head does not

appear in any atom in the body.

Constraint is an atom in the body of rules that gives value true or false. Constraint

can be inequality and equality such as <,>,≤,≥,≡, ̸=, and string check like contain-

ment or matching. By enabling this constraint, it can help determine the IDB to store

necessary value based on our rule.

Arithmetic argument can be used to determine the value of terms in IDB that

we want to store. For example, Z = X +Y means we want to store value Z based on

summation between X and Y. Datalog system should support basic arithmetic arguments

such as +,−,×,ˆ,/, and %.

String argument defines the value of the string that we have. For example, con-

catenation will give us the output of a string as the combination of two strings. We can

express concatenation with function or use arithmetic argument + as an indication of

concatenation.

Aggregation, such as sum, count, max, min, and avg, are needed to find some

statistics in our data. Aggregation could be found in the recursion or not in recursion.

2.3 Related Work

A previous study shows that the Datalog language can solve problems in various

applications, such as program analysis, declarative networking, and graph query. This
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section will discuss several Datalog engines that we use in this project. Souffle1 is a

Datalog engine that translates rules to a C++ program to utilize the multi-core machine

to evaluate the program. Souffle provides all the extensions that mention in the previous

section. Numerous applications have been implemented in Souffle, such as static

program analysis [15], security analysis for smart contracts, etc. BigDatalog is a

Datalog engine implementation on top of Apache Spark [17]. It outperformed GraphX

and native spark queries on large test graphs. It supports declarative queries to do

recursive and iterative computations. RecStep is a general-purpose Datalog engine that

is built on top of existing parallel in memory of relational database, QuickStep. The

latest study about Recstep claims that the system design demonstrate the scalability of

their approach [5]. Myria is a database system with imperative language supporting SQL

query, iterative, user-defined syntax. Myria is specified for extensive data management

and analytics system. Bloom is a programming language for cloud and distributed

systems. It supports declarative query language (Dedalus). Dedalus simplifies many

challenges in specifying and analyzing program, and it works well on declarative

networking [1].

2.4 Our Contribution

In this thesis, we focus on real-life applications for Datalog queries. It will give benefit

to assess the expressiveness of the Datalog language. The program in declarative

networking represents typical network protocol, such as distance vector, policy-based

routing, or finding the best paths. We present common scenarios in data analysis, like

getting connection recommendations and company control problems. Furthermore, we

provide a new approach to express recursive computation in two technical analyses

in finance, simple moving average and auto-regression. The proposed queries can be

adjusted to build more complex purposes in the future.

Moreover, we also describe the basic graph data schema representing real-world

data distributions. This data generation could be used to build larger graphs without

large memory requirements.

We have conducted extensive experiments using large-scale problems. We compare

the performance of five current state-of-art Datalog systems.

1https://souffle-lang.github.io/docs.html

https://souffle-lang.github.io/docs.html


Chapter 3

Statement of Work

IThis chapter explains how we create a query based on the specific task in declarative

networking, data analysis in knowledge graph, data exchange, and finance related

applications. Then we explain how we gather the data to do our experiment. We also

mention our experimental setup and how we measure the performance.

3.1 Datalog Program

This section will discuss about Datalog expressiveness in several applications in different

scenario, like declarative networking, data analysis in knowledge graph, data exchange,

and financial calculation. The program is written in handful lines of code and declarative

language.

3.1.1 Declarative Networking Program

This subsection will discuss several well-known routing protocol, such as distance

vector, path vector protocol, and link-state.

3.1.1.1 Path Vector Protocol (PVP) Program

PVP program (Fig 3.1) is used to understand all possible paths from the graph network,

and then find the shortest path from source to destination by showing the next hop [10].

A predicate link is a fact which contains an entirely directed graph in the form of an

extensional database. It has source, destination, and cost. The declaration for predicates

is stated in lines 1-4. The first rule (line 6) introduces a predicate path as IDB, which is

a mirroring of the link and defines hop same as the destination. The second rule, line 7,

8



Chapter 3. Statement of Work 9

1 . d e c l l i n k ( s o u r c e : s t r i n g , d e s t i n a t i o n : s t r i n g , c o s t : i n t e g e r )

2 . d e c l p a t h ( s o u r c e : s t r i n g , d e s t i n a t i o n : s t r i n g , hop : s t r i n g , c o s t :

i n t e g e r )

3 . d e c l s h o r t e s t ( s o u r c e : s t r i n g , d e s t i n a t i o n : s t r i n g , c o s t : i n t e g e r )

4 . d e c l nextHop ( s o u r c e : s t r i n g , d e s t i n a t i o n : s t r i n g , hop : s t r i n g , c o s t :

i n t e g e r )

5

6 p a t h ( s r c , d e s t , d e s t , c o s t ) : − l i n k ( s r c , d e s t , c o s t ) .

7 p a t h ( s r c , d e s t , z , c ) : − l i n k ( s r c , z , c1 ) , p a t h ( z , d e s t , w, c2 ) , c=c1+c2 .

8 s h o r t e s t ( s r c , d e s t , c ) : − p a t h ( s r c , d e s t , , ) , c = <min> c o s t : { p a t h (

s r c , d e s t , , c o s t ) } .

9 nextHop ( S , D, H, C) : − p a t h ( S , D, H, C) , s h o r t e s t ( S , D, C) .

Figure 3.1: PVP Program

is to find all possible paths by joining the path with the link on the destination from the

link equal to the source from the path recursively. IIf they find the tuple that satisfies

the condition, it will summate two costs and generate a new tuple with a source from

the link and a destination from the path, with a new cost. It will stop when they reach

the point where there is no additional path after joining the path with the link. The third

rule (line 8) will find the minimum cost based on source and destination. Finally, the

fourth rule (line 9) gives us the final path with a minimum cost based on source and

destination. In this case, there may be more than one path to reach a destination from a

specific source as long as the cost is the lowest.

3.1.1.2 Distance Vector (DV) Program

1 . d e c l b e s t p a t h ( s o u r c e : s t r i n g , d e s t i n a t i o n : s t r i n g , p a t h : s t r i n g , c o s t

: i n t e g e r )

2

3 p a t h ( S , D, S , C) : − l i n k ( S , D, C) .

4 p a t h ( S , D, P , C) : − l i n k ( S , Z , C1 ) , p a t h ( Z , D, P2 , C2 ) ,C=C1+C2 , P=

c o n c a t e n a t e ( S , P2 ) .

5 s h o r t e s t ( S , D, C) : − p a t h ( S , D, , ) ,C = min c o s t :{ p a t h ( S , D, , c o s t ) } .

6 b e s t p a t h ( S , D, P , C) : − s h o r t e s t ( S , D, C) , p a t h ( S , D, P , C) .

Figure 3.2: DV Program

The Distance Vector program (Fig 3.2) is similar to the previous program (PVP).
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The main difference is that the DV program produces the path from source to destination

instead of a hop. We generate a path by concatenating two strings between the source

and the path itself, as shown in the second rule (line 4). Similar to the previous program,

the third (line 5) and fourth (line 6) rules will give us a detailed path from source to

destination with minimum cost.

3.1.1.3 Policy Based Routing (PBR) Program

1 # i n v o l v e (DV)

2 . d e c l n o t p e r m i t P a t h ( s o u r c e : s t r i n g , d e s t i n a t i o n : s t r i n g , p a t h : s t r i n g ,

c o s t : i n t e g e r )

3 . d e c l p e r m i t P a t h ( s o u r c e : s t r i n g , d e s t i n a t i o n : s t r i n g , p a t h : s t r i n g ,

c o s t : i n t e g e r )

4 . d e c l exc ludeNode ( s o u r c e : s t r i n g , d e s t i n a t i o n : s t r i n g )

5

6 n o t p e r m i t P a t h ( S , D, P , C) : − p a t h ( S , D, P , C) , exc ludeNode (A, W) ,

m i n i P a t h = c o n c a t e n a t e (A,W) , c o n t a i n s ( min iPa th , P ) .

7 p e r m i t P a t h ( S , D, P , C) : − p a t h ( S , D, P , C) , ! n o t p e r m i t P a t h ( S , D, P , C) .

Figure 3.3: PBR Program

The PBR program (Fig 3.3) extends the previous program. The PBR program

identifies paths from policies set by the network administrator. The program involves

the first and second rules from the DV program. Then, in the first rule (line 6), we

introduce a new IDB notpermitPath as a collection of paths that the system must ignore.

It will ignore any path containing minipath from excludeNode. Finally, the second rule

(line 7) uses negation to get our final result. It has the same function as a minus in

relational algebra as we need tuples in relation path and not in relation notpermitPath

are present. The symbol exclamation mark (!) represents the negation.

3.1.1.4 Cache Routing (CR) Program

The CR program (Fig 3.4) is a variation from policy-based routing. In the previous

scenario, we have information on the blocked link. However, we now get the preferable

link with better cost value because we store data (cache) to get better data retrieval

performance. We trade off capacity for speed.

The first rule (line 3) specifies the path from the link we have on the link but not in

linkwithcache. The second rule (line 4) generate all possible path based on it. After that,
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1 . d e c l l i n k w i t h c a c h e ( s r c : s t r i n g , d e s t : s t r i n g , c o s t : i n t e g e r )

2

3 p a t h b p r ( S , D, S , C) : − l i n k ( S , D, C) , ! l i n k w i t h c a c h e ( S , D, ) .

4 p a t h b p r ( S , D, c a t ( S , P2 ) ,C) : − l i n k ( S , Z , C1 ) , p a t h b p r ( Z , D, P2 , C2 ) , !

l i n k w i t h c a c h e ( S , D, ) , C=C1+C2 .

5 p a t h b p r ( S , D, c a t ( ” ” , S ) ,C) : − l i n k w i t h c a c h e ( S , D, C) .

6 p a t h b p r ( S , D, c a t ( S , P2 ) ,C) : − l i n k w i t h c a c h e ( S , Z , C1 ) , p a t h b p r ( Z , D, P2 ,

C2 ) , C = C1+C2 .

7 b e s t p a t h C o s t ( S , D, C) : − p a t h b p r ( S , D, , ) , C = min c o s t :{ p a t h b p r ( S , D,

, c o s t ) } .

8 b e s t p a t h c a c h e ( S , D, P , C) : − b e s t p a t h C o s t ( S , D, C) , p a t h b p r ( S , D, P , C) .

Figure 3.4: CR Program

the third and fourth rules (lines 5 & 6) add the link from the desirable path linkwithcache,

which contains the cache and generates all the possible paths on it. Finally, the last

two rules (lines 7 & 8) give us the preferable paths from source to destination with the

minimum cost.

3.1.1.5 Multi Cast (MC) Program

1 # i n v o l v e (DV)

2 . d e c l j o i n G r o u p ( s o u r c e : s t r i n g , d e s t i n a t i o n : s t r i n g , g r o u p i d :

i n t e g e r )

3 . d e c l j o i n M e s s a g e ( c u r r e n t N o d e : s t r i n g , prevNode : s t r i n g , p a t h :

s t r i n g , d e s t i n a t i o n : s t r i n g , g r o u p i d : i n t e g e r )

4

5 j o i n M e s s a g e (C , N, P , D,G) : − j o i n G r o u p (N, D,G) , b e s t p a t h m c (N, D, P1 , C) ,C=

f i r s t ( P1 ) , P= s h i f t ( P1 ) .

6 j o i n M e s s a g e (C , J , P , D,G) : − j o i n M e s s a g e ( J , K, P1 , D,G) ,C= f i r s t ( P1 ) , P=

s h i f t ( P1 ) , P1 ! = ” ” .

Figure 3.5: MC Program

This program (Fig 3.5) shows us another complexity that can be done by Datalog

language in a declarative network. MC is used to construct desirable paths from one

single/multiple sources to multiple destinations. It involves the rule from the DV

program. From that point, the first rule (line 5) will give us the paths P from source to

destination that we state in predicate joinGroup. The following rule (line 6) will derive
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the paths into next node, C, until it reaches its final destination node, D.

3.1.1.6 Link State (LS) Program

1 . d e c l L i n k S t a t e ( c u r r e n t N o d e : s t r i n g , s o u r c e : s t r i n g , d e s t i n a t i o n :

s t r i n g , c o s t : i n t e g e r , nextNode : s t r i n g )

2

3 L i n k S t a t e ( S , S , D, C , S ) : − l i n k ( S , D, C) .

4 L i n k S t a t e (M, S , D, C ,N) : − l i n k (N,M, C1 ) , L i n k S t a t e (N, S , D, C ,W) , M!=W.

Figure 3.6: LS Program

Another protocol that commonly uses is the link-state protocol. This program (Fig.

3.6) gives information on every node to construct a network connectivity map. The

initial state in the first rule (line 3) is that each node knows its neighbour’s cost. The

second rule (line 4) sends the information to their neighbour to create a routing table

(flooding). In this case, Variable M is a current node, while variable N is a source of

information. Node M construct the connectivity for a whole network by pointing out

the next available node that can be accessed from that node or the previously accessible

path to node M.

3.1.2 Data Analysis in Knowledge Graph Program

Now, we are discussing some exciting scenarios for data analysis in a knowledge graph.

3.1.2.1 People You May Know (PYMK) Program

1 . d e c l c o n n e c t i o n ( personA : s t r i n g , personB : s t r i n g )

2 . d e c l uconn ( personA : s t r i n g , personB : s t r i n g )

3 . d e c l mutua lconn ( personA : s t r i n g , personB : s t r i n g , c : i n t e g e r )

4

5 uconn ( x , y ) : − c o n n e c t i o n ( x , y ) .

6 uconn ( y , x ) : − c o n n e c t i o n ( x , y ) .

7 mutua lconn ( y , z , c ) : − uconn ( x , y ) , uconn ( x , z ) , y != z , ! uconn ( y , z )

, c = c o u n t :{ uconn ( , z ) } .

Figure 3.7: PYMK Program
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We may be familiar with social network graphs, like Facebook, Twitter, and

LinkedIn. In this scenario, we would like to give an example of how social media

recommend their users to connect with others. The algorithm behind people you may

know (PYMK, Fig.3.7) relies on our understanding of how many mutual connections

we have with other people. We can assume that the graph in the predicate connection

does not have direction. So in the first and second rules (lines 5 and 6), we generate the

connection without direction. The third rule (line 7) does a calculation on the number

of mutual friends, c, that variable y has with variable z by self-join predicate uconn. We

assume that y and z are not directly connected, as stated in the negation !uconn(y,z).

3.1.2.2 Multi Level Marketing Bonus Calculation (BC) Program

Multi-level marketing is widely used in the selling strategy of various companies. The

idea of this scheme is that one person can join by getting an invitation from another

member. Every member is obligated to sell the product to another consumer or invite

another person to join them in this scheme. In this scheme, the bonus calculation is

our sales performance and other people’s performance under us. If the people under

us (means we are at the root of the tree) have a good sales record, we will get several

percentages of additional income. This program (Fig 3.8) replicates the simple bonus

calculation formula by considering the number of sales from the people within your

network [17].

The first, second, and third rules (lines 13, 14, and 15) create network connectivity

for all scheme members. Members at the top of the tree will appear multiple times,

depending on how many members are under them. While the lowest member of the

tree will appear only once because they do not have any children under them. The

bonus calculation will be based on two sales performances. Individual performance is

represented by the 5th rule (line 18), and collective performance is represented by the

6th rule (line 19). The 7th rule (line 21) calculates the total bonus by summing those

two values. At the end, the eighth and ninth rules (lines 22 and 23) will calculate the

net profit after subtracting the bonus from gross profit, NP = GP - B.

3.1.2.3 Company Control Problem (CCP) Program

Company control is a classic problem in understanding company behaviour [2]. By

ownership information, we would like to understand the relationship between one

company and another. Company A has strong influence to company B by having more
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1 . d e c l r e c r u i t (m: s t r i n g , n : s t r i n g )

2 . d e c l s a l e s (m: s t r i n g , r e v e n u e : i n t e g e r , p r o f i t : i n t e g e r )

3 . d e c l memberSales (m: s t r i n g , s a l e s : i n t e g e r )

4 . d e c l r u l e ( l s : i n t e g e r , us : i n t e g e r , s : i n t e g e r )

5 . d e c l networkMLM (m1 : s t r i n g , m2 : s t r i n g )

6 . d e c l memberTo ta lSa l e s (m: s t r i n g , ns : i n t e g e r )

7 . d e c l memberBonusSelf (m: s t r i n g , b : i n t e g e r )

8 . d e c l memberBonusFrontLine (m: s t r i n g , b : i n t e g e r )

9 . d e c l bonus ( b : i n t e g e r )

10 . d e c l g r o s s P r o f i t ( p : i n t e g e r )

11 . d e c l n e t P r o f i t (NP : i n t e g e r )

12

13 networkMLM (M, M) : − r e c r u i t (M, ) .

14 networkMLM (M, M) : − r e c r u i t ( , M) .

15 networkMLM (M, M2) : − networkMLM (M, M1) , r e c r u i t (M1, M2) .

16

17 memberTo ta lSa l e s (M, SS ) : − networkMLM (M, ) , SS = sum S : {networkMLM

(M,NM) , memberSales (NM, S ) } .

18 memberBonusSelf (M, B) : − memberSales (M, ST ) , memberTo ta lSa l e s (M, S ) ,

r u l e ( LS , RS , BP ) , S>=LS , S<=RS , B=ST*BP .

19 memberBonusFrontLine (M, B) : − r e c r u i t (M, ) , B = sum S*BP : { r e c r u i t (

M,NM) , memberTo ta lSa l e s (NM, S ) , r u l e ( LS , RS , BP ) , S>=LS , S<RS} .

20

21 bonus (B) : − B = sum B1+B2 : {memberBonusSelf (M, B1 ) ,

memberBonusFrontLine (M, B2 ) } .

22 g r o s s P r o f i t ( P ) : − P = sum pp : { s a l e s ( , , pp ) } .

23 n e t P r o f i t (NP) : − g r o s s P r o f i t ( P ) , bonus (B) ,NP=P−B .

Figure 3.8: BC Program
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1 . d e c l own ( owner : s t r i n g , company : s t r i n g , p e r c e n t a g e : f l o a t )

2 . d e c l owns v ia ( owner : s t r i n g , midcompany : s t r i n g , company : s t r i n g , p

: f l o a t )

3 . d e c l d i r e c t c o n t r o l s ( owner : s t r i n g , company : s t r i n g )

4 . d e c l c o n t r o l s ( owner : s t r i n g , company : s t r i n g )

5 . d e c l t o t a l o w n s v i a ( owner : s t r i n g , company : s t r i n g , n : number )

6

7 owns v ia ( x , x , y , n ) : − own ( x , y , n ) .

8 d i r e c t c o n t r o l s ( x , z ) : − own ( x , z , n ) , n>50.

9 owns v ia ( x , z , y , n ) : − d i r e c t c o n t r o l s ( x , z ) , own ( z , y , n ) .

10 t o t a l o w n s v i a ( x , y , sn ) : − owns v ia ( x , , y , ) , sn = sum n :{ owns v ia ( x ,

, y , n ) } .

11 c o n t r o l s ( x , z ) : − t o t a l o w n s v i a ( x , z , n ) , n>50.

12 c o n t r o l s ( x , z ) : − c o n t r o l s ( x , b ) , t o t a l o w n s v i a ( b , z , n ) , n>50.

Figure 3.9: CCP Program

than 50% share on its company. Not only that, if A controls B, it means A controls all

companies under B. The interesting scenario is when A controls B and C, and then B

and C partially control company D, 30% and 25%, respectively. In this case, company

A controls company D because the ownership combination of B and C is more than

50%.

In the first and second rules (lines 7 and 8) of this program (Fig 3.9), we would like

to understand the direct controls of the company. It means the controller holds more

than 50% of the company. The third and fourth rules (lines 9 and 10) calculate the

indirect control in our ownership relation. Finally, the last two rules (lines 11 and 12)

will recursively evaluate the ownership by calculating the total or partial control of the

company to another company.

3.1.3 Data Integration and Exchange Program

3.1.3.1 Data Exchange (DE) Program

The simple data exchange is shown in Figure 3.10. From this scenario, we would like

to replicate our data in predicate gus into two predicates uBio, and BioSQL [6]. The

first rule (line 5) describes that predicate BioSQL directly connects to predicate gus,

as it replicates the variable nam and can from gus. The second rule (line 6) shows that

BioSQL generates a bid based on gid from gus with the function ord(gid) and then
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1 . d e c l gus ( g i d : i n t e g e r , nam : s t r i n g , can : s t r i n g )

2 . d e c l uBIO ( nam : s t r i n g , can : s t r i n g )

3 . d e c l BioSQL ( b i d : i n t e g e r , nam : s t r i n g )

4

5 uBIO ( nam , can ) : − gus ( gid , nam , can ) .

6 BioSQL ( bid , nam ) : − gus ( gid , nam , can ) , b i d = c o n v e r t ( g i d ) .

7 BioSQL ( b , n ) : − BioSQL ( b , m) , uBIO (m, n ) .

Figure 3.10: DE Program

stores it together with nam. Finally, the third rule (line 7) does recursion to join BioSQL

and uBio on nam, so we get the final table consisting of n with a specific bid. If two

names have the same bid, it belongs to one full name.

3.1.4 Financial Application Program

This sub-section shows that the Datalog query can do simple calculation methods that

require recursion on time-series data. Furthermore, it is possible to perform more

advanced calculation techniques by modifying these queries.

3.1.4.1 Simple Moving Average Program

A simple moving average is a standard financial tool for determining stock decisions.

With a simple moving average, we can determine if the next future value of a stock is

more likely to increase or decrease. The formula of SMA is shown in Eq. 3.1.

SMAn =
An +An−1 + . . .+An−t

t +1
(3.1)

An is the current value, while t is the number of total periods we want to consider in our

calculation. A 3-day moving average would average the close price for the first three

days as the first-day data point (see Eq 3.2.

SMA =
An +An−1 +An−2

3
(3.2)

Given the time series stock price data, we can derive the moving average value

using this query in Datalog, as shown in Figure 3.11. We have predicate salesMA as

historical closing price data for a stock. In the first rule (line 5), we initiate the first

value with c equal to one. The second rule (line 6) will add this value to the previous

value three times. Finally, the third rule (line 7) calculates the average avgMA and stores

it in the predicate resultfinal.
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1 . d e c l salesMA ( i d : number , s a l e s : f l o a t )

2 . d e c l resul tMA ( i d : number , s a l e s : f l o a t , movingAverage : f l o a t , c :

number )

3 . d e c l r e s u l t f i n a l ( i d : number , s a l e s : f l o a t , avgMA : f l o a t )

4

5 resul tMA ( id , s a l e s , s a l e s , c ) : − salesMA ( id , s a l e s ) , c =1 .

6 resul tMA ( id , s a l e s , t o t a l , c2 ) : − resul tMA ( id , s a l e s , movingAverage , c ) ,

salesMA ( id2 , s a l e s 2 ) , i d 2 = id −c , c<=3, c2=c +1 , t o t a l =movingAverage+

s a l e s 2 .

7 r e s u l t f i n a l ( id , s a l e s , avgMA) : − resul tMA ( id , s a l e s , movingAverage , c ) , c

=3 ,avgMA=movingAverage / 3 .

Figure 3.11: MA Program

3.1.4.2 Auto Regression Program

1 . d e c l p r i c e ( i d : f l o a t , y : f l o a t )

2 . d e c l d a t a ( i d : f l o a t , y : f l o a t , l a g : f l o a t )

3 . d e c l d e t a i l ( i d : f l o a t , mean : f l o a t , s t d : f l o a t , cov : f l o a t , r : f l o a t )

4 . d e c l f i n a l p a r a m e t e r ( b : f l o a t , a : f l o a t )

5 . d e c l p r e d i c t i o n ( i d : f l o a t , y p r e d i c t e d : f l o a t )

6

7 d a t a ( id , y , l a g ) : − p r i c e ( id , y ) , p r i c e ( i d l a g , l a g ) , i d = i d l a g +1 .

8 d e t a i l ( id , mean , s t d , cov , r ) : − d a t a ( id , y , l a g ) , d e t a i l ( idd , mmean , s s t d ,

ccov , r r ) , i d d = id −1 , mean=<eq3 .6> , s t d=<eq3 .7> , cov=<eq .38> , r r =<

eq3 .5 > .

9 f i n a l p a r a m e t e r ( b , a ) : − d e t a i l ( id , mean , s t d , cov , r ) , b=<eq3 .3> , a=<eq3

.4 > .

10 p r e d i c t i o n ( id , y p r e d i c t e d ) : − d a t a ( id , y , l a g ) , f i n a l p a r a m e t e r ( b , a ) ,

y p r e d i c t e d =a+b* l a g .

11 p r e d i c t i o n ( i d +1 , y p r e d i c t e d ) : − p r e d i c t i o n ( id , y ) , f i n a l p a r a m e t e r ( b , a )

, y p r e d i c t e d =a+b*y .

Figure 3.12: Simpilified AR Program

Another time-series analytic is Auto Regression (AR). This program (Fig 3.12)

aims to generate value based on the immediate past value. This work uses the previous

timestamp (t-1) to represent auto-regression. Hence, the regression formula will be

y = a+bx (3.3)

where y = Y (t) and x = Y (t −1).
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We could find parameter a and b using Pearson correlation coefficient (r). The

formula to get parameter b and parameter a are,

b = r
Sx

Sy
(3.4)

a = ȳ−bx̄ (3.5)

r =
cov(x,y)

σxσy
(3.6)

In order to get that coefficient, we need to analyse the mean, variance, and correlation

given our data. In a mathematical way, using Welfrod’s online algorithm1, we can

compute mean and variance recursively using this formula

x̄n = x̄n−1 +
xn − x̄n−1

n
(3.7)

Sn = Sn−1 +(xn − x̄n−1)(xn − x̄n) (3.8)

We implement recursive calculation to get that value as shown in the second rule (line

8).

Cn =Cn−1 +(xn − x̄n)(yn − ȳn−1) (3.9)

Cn =Cn−1 +(xn − x̄n−1)(y− ȳn) (3.10)

In the third rule (line 9), we get the final parameter by using equations 3.4 and

3.5. Finally, the last two rules (lines 10 and 11) do recursion to get the closing price

prediction by substituting the previous closing price with x in the equation 3.3.

3.1.5 Datalog Program and Extension Metrics

We are examining the functionalities of our Datalog programs, and in order to com-

prehend their operations effectively, we have identified the necessary extensions. The

outcomes of this analysis are detailed in Tables 3.1 and 3.2. Across all the programs,

the ability to perform recursion has proven crucial, except for the PYMK program. The

negation statement is utilized in PBR, CR, and PYMK. To ensure the successful execution

of these programs, the inclusion of arithmetic arguments is essential, except for LS and

DE. Moreover, the string argument serves a primary purpose in constructing a path in

declarative networking. Constraints have been effectively employed to define specific

conditions within our programs. Lastly, implementing aggregation functions, such as

determining minimum/maximum values, conducting counts, and calculating averages,

allows us to tackle problems across all applications proficiently.
1https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
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Extension PVP DV PBR LS MC CR

Recursion v v v v v v

Negation v v

Artihmetic
Argument

v v v v v

String
Argument

v v v v

Constraint v v v v v v

Aggregation v v v v v

Table 3.1: Program and Datalog Extension Metrics for Network

Extension PYMK BC CCP DE SMA AR

Recursion v v v v v

Negation v

Artihmetic
Argument

v v v v v

String
Argument

Constraint v v v v v

Aggregation v v v

Table 3.2: Program and Datalog Extension Metrics for Knowledge-Graph, Data Exchange,

and Financial Computation
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Dataset Vertices Edges PVP/DV PBR LS CR

G4k 4,000 7,945 157,000 110,000 227,000 174,000

G5k 5,000 12,503 412,000 289,000 679,000 453,000

G6k 6,000 18,011 1,070,000 798,000 2,261,000 1,260,000

G7k 7,000 24,524 2,710,000 2,180,000 6,222,000 3,440,000

G8k 8,000 31,986 6,280,000 5,900,000 15,822,000 8,610,000

G9k 9,000 40,704 13,000,000 14,300,000 40,768,000 18,610,000

Table 3.3: Synthetic Data Gn-p Graph

Dataset Vertices Edges MC BC CCP

Tree3 106 106 1,420 1,450 921

Tree4 464 464 6,280 6,470 2,480

Tree5 1,999 1,999 35,200 35,200 13,200

Tree6 7,274 7,274 147,000 151,000 37,900

Tree7 22,400 22,400 458,000 484,000 169,000

Tree8 85,670 85,670 2,300,000 1,880,000 595,000

Tree9 328,549 328,549 9,960,000 4,060,000 1,060,000

Table 3.4: Synthetic Data Tree Graph on MC, BC, and CCP

3.2 Data Gathering

Table 3.3 sshows the synthetic graph used for routing protocol in declarative network

experiments. We use these graphs to understand how the Datalog program evaluates

PVP, DV, PBR, LS, and CR on graphs that have specific properties. We use the Erdos-

Renyi model to generate these graphs. In the G(n, p) model, the graph is constructed by

n nodes and their connection (edges) with independent probability p. The default value

of p is 0.001.

Other synthetic graphs are shown in Table 3.4. The tree data (tree-N) represents

trees of height N, and the degree of a non-leaf vertex is a random number between 2

and 6. For example, Tree3 and Tree8 are trees of height of 3 and 8, respectively. This

type of graph is used for MC, BC, and CCP experiments. As we know in real life, this

model is more suitable for our tasks than the previous model.

The real-world graph is displayed in table 3.5. We perform our experiments for

PYMK not only with the synthetic data but also with the real data. We also performed
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Dataset Vertices Edges PYMK

P2P-Gnutella 04 10,876 39,994 1,090,000

P2P-Gnutella 05 8,846 31,839 865,000

P2P-Gnutella 06 8,717 31,525 833,000

P2P-Gnutella 08 6,301 20,777 593,000

facebook 4,039 88,234 2,980,000

Table 3.5: Real Data

Dataset Initial Tuples DE

List1k 1,000 2,000

List10k 10,000 20,000

List100k 100,000 200,000

List1M 1,000,000 2,000,000

List10M 10,000,000 20,000,000

Table 3.6: Synthetic Data DE

real data in the network protocol, and we will discuss it in section 4.2.

We assume task DE does not require any specific properties for the dataset, so we

generate random words with various numbers of tuples in Table 3.6. List1k means we

have 1000 tuples with two random words for each tuple.

Finally, for financial calculation data AR,SMA, Table 3.7 shows historical data for

selected companies, such as Apple Inc. (AAPL), Alphabet Inc. (GOOG), The Coca

Cola Company (KO), and Tesla Inc. (TSLA) from Yahoo!Finance2. We gather the data

within the maximum period. It means the data shown in Table 3.7 is from the beginning

and is adjusted with the stock split event.

2https://uk.finance.yahoo.com/lookup

Dataset Number of Tuples AR SMA

AAPL 10754 48,200 64,500

GOOG 4776 30,300 28,600

KO 15506 62,500 93,000

TSLA 3301 25,900 19,700

Table 3.7: Historical Closing Price Data

https://uk.finance.yahoo.com/lookup
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3.3 Experimental Setup and Measurement

Our experiment is conducted on a single-unit laptop, Lenovo Ideapad Slim 3. In this

experiment, we build our programs on Ubuntu 22.04 LTS. It has an Intel i5-1035G1

CPU (1.0 GHz, 4 cores/8 threads). The laptop has 8 GB memory and disk space up to

512 GB solid-state drive.

We evaluate our system with two datasets (synthetic and real), as described in

Section 3.2. After we were ready with the query and dataset, we had to decide how to

measure time and resource consumption in each run. Our first approach is to start an

extensive sequence of stand-alone runs. We ensured that when we ran benchmarking,

it was in single-user mode. This way, all the measurements obtained indicated the

performance of each query, as separate, as a stand-alone program. We gather time,

CPU, and RAM consumption while running each query. However, we decided time

consumption as the main performance measure for this benchmarking purpose.



Chapter 4

Result and Analysis

We do our experiment on five different systems, Souffle, Myria, Bloom, RecStep,

and BigDatalog, in four different applications, Declarative Network, Data Analysis in

Knowledge Graph, Data Exchange, and Financial Computation.

4.1 Correctness of Experiments

To demonstrate the usability of our program, we compare the result with existing solu-

tions. The process begins by using a small dataset for initial testing or exploration. In

finding the best path for declarative routing, we compare it with the previous experiment

from the previous study [10] and the Python library, networkx1. For the knowledge

graph, we compare our experiment with related datalog systems, Vadalog [2] and Big-

Datalog [17]. For data exchange, we took several examples discussed in the previous

paper [6]. Finally, for financial computation, we compare the result with the Python

library, statsmodel AutoReg2 for autoregression and rolling function from pandas3. The

implementation code in Python is represented in Appendix A.3. This phase allows

us to familiarize ourselves with the data, understand potential patterns or trends, and

identify any initial challenges. Once this initial phase is complete, the next step involves

conducting the actual experiment using a larger dataset. The performance analysis of

all systems for our programs will be discussed in the next section.

1https://networkx.org/documentation/stable/index.html
2https://www.statsmodels.org/stable/gettingstarted.html
3https://pandas.pydata.org/docs/getting_started/index.html

23

https://networkx.org/documentation/stable/index.html
https://www.statsmodels.org/stable/gettingstarted.html
https://pandas.pydata.org/docs/getting_started/index.html
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Program Souffle Bloom Myria BigDatalog Recstep

PVP v v v v x

DV v v x x x

PBR v v x x x

LS v v v v v

MC v v x x x

CR v v x x x

Table 4.1: Datalog System Expressiveness in Declarative Network Experiment

4.2 Declarative Network Experiments

For Declarative Network Experiments, we use PVP, DV, CR, MC, PBR, and LS program

equivalents in Souffle, BigDatalog, Myria, RecStep, and Bloom. The expressiveness of

the Datalog system in evaluating these programs is shown in the Table 4.1.

G4k G5k G6k G7k G8k G9k G10k G11k G12k
Dataset

10 1

100

101

102

103

Ti
m

e(
s)

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Ou
t o

f M
em

or
y

Path Vector Protocol
Souffle
Bloom
Myria
BigDatalog

Figure 4.1: PVP

For the PVP program, Table 4.1 shows RecStep fails to execute this program.

RecStep does not support arithmetic procedures. Summation is needed to calculate the

total cost of the selected path. Without summation, we could not find the best path with

minimum cost.

Figure 4.1 shows the evaluation time for four systems. After G9k, only Souffle

finishes the evaluation. The rest of the systems run out of memory. Souffle is the only

system capable of running all graphs in Table 3.3.

Souffle has the fastest execution time on all the datasets. BigDatalog has a steady

execution time for all datasets until it runs out of memory on G8k. Bloom has a slightly
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better performance than Myria. On the other hand, the execution time for Bloom and

Myria increases as the dataset size grows.

We could not perform tests on actual data for this program. They run out of memory

every time we try to run the query. The issue relies on the programming logic and

data itself. In similar numbers of nodes between synthetic and real data, the real data

has more edges than the synthetic does. It means the real graph has different graph

properties from the synthetic data. Our initial program can not handle if there is an

inner loop in the graph. The real data, as shown in Table 3.5, have more edges and

more possibility for an inner loop in the graph. When we run our PVP program in small

datasets containing a loop, it fails to achieve a fixed point as it has no exit rule. The

program runs until there is insufficient memory space and then kills itself.
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Figure 4.5: CR

For DV, PBR, MC, and CR, only Souffle and Bloom can run these programs (Table

4.1). Myria, BigDatalog, and RecStep failed to execute them because they do not

support any arguments for the string value. These programs require concatenation to

combine two different string values to build a complete path from source to destination.
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Figures 4.2, 4.3, 4.4, and 4.5 show the experimental result for these programs on

synthetic graphs. From those figures, Souffle outperforms Bloom on all programs

and datasets. The MC experiment has been observed to use a dataset that follows a

tree structure. It allows us to generate random data for predicate joinGroup as we

can choose a single source as the root of the tree while we select random nodes as

multiple destinations. We can not randomise the source and destination nodes using the

Erdos-Renyi graph. We do not have any information to know if they have a connection

from one to another.

For real data experiments, we expect to have one or more loops in our graph. We

propose a new query that is capable of identifying loops in Figure 4.6. If the existing

path contains the source, we have already been there before, so we can ignore it (line 2).

1 p a t h b p r ( S , D, P , C) : − l i n k ( S , D, C) , P= c a t ( ” ” , S ) .

2 p a t h b p r ( S , D, P , C) : − l i n k ( S , Z , C1 ) , p a t h b p r ( Z , D, P2 , C2 ) , ! c o n t a i n s ( S ,

P2 ) , C=C1+C2 .

Figure 4.6: DV loop program

However, it does not solve our problem when we run the DV program for entire

datasets in Table 3.5. We found that our memory is insufficient to finish the execution.

Alternatively, we take the first 1000 rows from Gnutella p2p on 8 August. It generated

8.19 million tuples for 17 seconds in Souffle and 183.817 seconds in Bloom. As stated

in Table 3.5, the Gnutella p2p 8 August has 20,777 tuples (edges). The relation between

initial edges and generated tuples from the DV program is exponential. The other thing

that brings on our concern for real data, it generates edges with a long path. Hence,

the longer the path, the DV program will generate more tuples to find all possible paths

from one node to another before finding the best path with minimum cost.

As we can see from Table 4.1, the LS runs successfully in all systems. It happens

because the link state does not require additional functions or extensions. The LS

program is uncomplicated, unlike the other tasks that require arithmetic or string

arguments like addition or concatenation. The first rule, LS1, states the initial cost from

one node to all neighbours. The second rule, LS2, sends information from one node to

all destination nodes. Some paper refers to it as a flooding protocol. Hence, it generates

more tuples than other programs, as seen in Table 3.3. It also consumes more time to

finish the evaluation than other programs.

Figure 4.7 illustrates the performance results in the LS experiment. Souffle demon-
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Figure 4.7: LS

Program Souffle Bloom Myria BigDatalog Recstep

PYMK v v v v x

BC v v v x x

CCP v v v x x

DE v v v v v

Table 4.2: Datalog System Expressiveness in Knowledge-Graph & Data Exchange

strates outstanding performance compared to other systems when dealing with small

datasets. However, as dataset size increases, BigDatalog demonstrates better scalability.

BigDatalog has consistent performance across both small (1k) and large (10M) datasets,

with no significant time difference observed.

4.3 Data Analysis in Knowledge Graph Experiments

Table 4.2 illustrates the Datalog systems’ capability to evaluate PYMK, BC, CCP, and

DE.For PYMK program could be run in four systems, Souffle, Myria, BigDatalog, and

Bloom but not in the RecStep. RecStep failed to do it because of their lack of ability in

the arithmetic argument. It is necessary to understand the total number of our mutual

connections.

In terms of performance in Figures 4.9 and 4.8, Souffle is leading. On the other hand,

Bloom has poor quality compared to other systems. It is always more than 10x slower

for synthetic and real datasets. Similar to the LS experiment, BigDatalog demonstrates

its scalability for large datasets. There is no significant time difference between small
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Figure 4.8: PYMK-S
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Figure 4.9: PYMK-R

and large datasets, as shown in Figure 4.8. However, when it comes to large dataset,

like Facebook, it appears Souffle is better than BigDatalog (Figure 4.9). BigDatalog

failed to evaluate the PYMK program in a large dataset.

Figures 4.10 and 4.11 show the performance in evaluating BC and CCP programs,

respectively. For the CCP program, Bloom and Myria have similar behaviour, while

Souffle is better than those systems. However, in the BC program, Souffle is worse than

two other systems from the Tree7 dataset. We suspect that because of the behaviour of

this program that requires writing extensive data into an intensional database, Souffle

takes more time to do it.

For BC and CCP program, only three systems could finish the evaluation. These

programs are more complex than previous task, PYMK, as it needs recursion more than

one level. After the recursion, it do some calculation combine with predicate logic
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Figure 4.10: BC

Tree3 Tree4 Tree5 Tree6 Tree7 Tree8 Tree9
Dataset

10 2

10 1

100

101

Ti
m

e(
s)

Company Control Program
Souffle
Bloom
Myria

Figure 4.11: CCP

that makes it more complicated. BigDatalog fails to do it. It could not use the existing

predicate which is generated from recursion rule to be used in different scenario.

4.4 Data Exchange Experiment
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Figure 4.12: DE

Figure 4.12 shows the performance of running DE in five different systems. It

shows us that Souffle performs better than four other systems except on the 10M dataset.

Recstep performs better than Souffle on the 10M dataset. Similar to the LS experiment,

Recstep shows its scalability in large datasets. RecStep’s performance is relatively

stable in various sizes of datasets.

Bloom performs well in small datasets but not in large datasets. Ultimately, Bloom

runs out of memory on the 10M dataset. BigDatalog has consistent time execution

before it runs out of memory on the 10M dataset. In comparison, Myria is the only

system to fail to execute DE on the 1M dataset.
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Program Souffle Bloom Myria BigDatalog Recstep

SMA v v v x x

AR v v v x x

Table 4.3: Datalog System Expressiveness in Financial Computation

4.5 Financial Application Experiments

Table 4.3 shows that Souffle, Bloom, and Myria can express financial computation

programs, AR and SMA. BigDatalog is inadequate for scenarios with heavy recursion

computing, while Recstep struggles with complex mathematical arguments.

Figure 4.13 and 4.14 illustrate that Souffle performs well in all datasets. Bloom

evaluates all programs on all datasets perfectly but with a heavy process. In contrast,

Myria only performs well in several datasets for simple moving averages and fails to

compute AR in most datasets because it generates massive tuples in an inner predicate.
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Conclusion

5.1 Summary

Overall, from this experiment, we understand that the Datalog language could solve

various problems requiring recursive work, such as declarative networking, data in-

formation exchange, data analysis in knowledge-graph, and recursive computing in

finance.

We need to understand the basic concept of Datalog, including syntax, rules, ex-

tension, and semantics, to write a Datalog program. Then, we need to make sure

the program is stratified and safe. There are multiple ways to evaluate our Datalog

program. In this experiment, we semantic our Datalog program with a fixed point or

naive evaluation.

After experimenting on five Datalog systems, we found that currently, Souffle

and Bloom have the capability to perform all tasks. It indicates that those systems

satisfy all extensions that we discuss in Section 2.2. While the other systems only

have partial functionality that satisfies the extension. Regarding system performance,

Souffle could perform better than the other systems. Souffle has C++ translation for

their Datalog query to work effectively in a single computer with multiple cores. As

the newest Datalog system, Recstep shows its ability to work well in large datasets. In

LS and DE experiments, it has a similar or better performance than Souffle in the most

extensive dataset. It continues to function properly and without significant differences

when dataset size changes. However, it needs future development to handle complex

programs requiring mathematical or string arguments.

Overall, writing a Datalog language to solve those problems has benefits in terms

of efficiency and performance. Datalog has the expressiveness to perform tasks that

31



Chapter 5. Conclusion 32

we expect. Hence, we can write complex algorithms with concise queries. In terms

of performance, the Datalog systems demonstrate notable efficiency in both time and

resource utilization.

5.2 Future Work

We have identified several opportunities for exciting new projects during our work in

this dissertation. Regarding the benchmarking project, we suggest doing it in a multi-

users scenario. It could give us another perspective on system behaviour in different

environments. Seeing the Datalog system works in a cloud or parallel environment

will be more interesting. Moreover, the work complexity could be enhanced by finding

related applications with complex operations, such as update operators or using dynamic

datasets.

Finally, our proposed query can be used for the next benchmarking project or

development of the Datalog system. It could be utilized to solve more complex scenarios

with some adjustments. For example, in a knowledge graph, we can use it to find a

specific pattern that leads to fraud activity in financial transactions [9, 7, 8]. Another

example is complex financial recursion computation or another machine learning task,

such as logistic regression.
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Appendix A

First appendix

A.1 Memory and CPU Utlization
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Figure A.1: Memory
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Figure A.2: CPU

Figure A.1 and A.2 indicate the memory and CPU utilization while evaluating PVP

program on Souffle. The memory performance goes up to reach 80% of utilization as

soon as the program runs, while the CPU fluctuates but still works under maximum

capacity.

A.2 Synthetic graph

There are two popular synthetic graphs, ErdosRenyi and Watts. Erdos-Renyi represents

the social graph while Watts is more like network graph. However, the more the edges,

the more complex the graph we have. In this diverse world, we may see both models in

real-life graph.
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Figure A.3: ErdosRenyi
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Figure A.4: Watts

A.3 Python Code for Networking and Finance

1

5

2
1

2

3

('shortest path (Dijsktra) from 1 to 3', [1, 2, 3])
('single source bellman ford', {1: [1], 2: [1, 2], 3: [1, 2, 3]})

Figure A.5: Network Analysis with Python
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1 import ne tworkx as nx

2 import m a t p l o t l i b . p y p l o t a s p l t

3 g = nx . Graph ( )

4 g . add edge ( 1 , 2 , we ig h t =1)

5 g . add edge ( 1 , 3 , we ig h t =5)

6 g . add edge ( 2 , 3 , we ig h t =2)

7 l a b e l s = nx . g e t e d g e a t t r i b u t e s ( g , ’ we i gh t ’ )

8

9 pos = nx . s p r i n g l a y o u t ( g , s eed =7)

10 nx . d r a w n e t w o r k x n o d e s ( g , pos , n o d e s i z e =200)

11 nx . d r a w n e t w o r k x e d g e s (

12 g , pos , e d g e c o l o r =” b ” , s t y l e =” dashed ”

13 )

14 nx . d r a w n e t w o r k x l a b e l s ( g , pos , f o n t s i z e =9 , f o n t f a m i l y =” sans − s e r i f

” )

15 nx . d r a w n e t w o r k x e d g e l a b e l s ( g , pos , l a b e l s )

16

17 p l t . t e x t ( − 0 . 5 , − 1 , ( ” s h o r t e s t p a t h ( D i j s k t r a ) from 1 t o 3 ” , nx .

d i j k s t r a p a t h ( g , s o u r c e =1 , t a r g e t =3 , w e i gh t = ’ w e i gh t ’ ) ) , ha= ’ c e n t e r ’ ,

r o t a t i o n = ’ h o r i z o n t a l ’ , va= ’ bot tom ’ , f o n t s i z e =7)

18 p l t . t e x t ( − 0 . 5 , − 1 . 1 , ( ” s i n g l e s o u r c e be l lman f o r d ” , nx .

s i n g l e s o u r c e b e l l m a n f o r d p a t h ( g , s o u r c e =1) ) , ha= ’ c e n t e r ’ ,

r o t a t i o n = ’ h o r i z o n t a l ’ , va= ’ bot tom ’ , f o n t s i z e =7)

19

20 p l t . s a v e f i g ( ’ s h o r t e s t . pdf ’ )

21 p l t . show ( )

22

23 p r i n t ( nx . d i j k s t r a p a t h ( g , s o u r c e =1 , t a r g e t =3 , w e i gh t = ’ w e i gh t ’ ) )

24 p r i n t ( nx . s i n g l e s o u r c e b e l l m a n f o r d p a t h ( g , s o u r c e =1) )

Figure A.6: Network python
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1 import t ime

2 s t a r t = t ime . t ime ( )

3 import pandas as pd

4

5 # i m p o r t i n g numpy as np

6 # f o r M a t h e m a t i c a l c a l c u l a t i o n s

7 import numpy as np

8

9 # i m p o r t i n g p y p l o t from m a t p l o t l i b as p l t

10 # f o r p l o t t i n g graphs

11 import m a t p l o t l i b . p y p l o t a s p l t

12 p l t . s t y l e . use ( ’ d e f a u l t ’ )

13 # m a t p l o t l i b i n l i n e

14

15 r e l i a n c e = pd . r e a d c s v ( ’TSLA . t x t ’ , d e l i m i t e r = ’\ t ’ , )

16 r e l i a n c e . head ( )

17 d e l r e l i a n c e [ ’ Id ’ ]

18

19 r e l i a n c e = r e l i a n c e [ ’ C lose ’ ] . t o f r a m e ( )

20 r e l i a n c e [ ’SMA3’ ] = r e l i a n c e [ ’ C lose ’ ] . r o l l i n g ( 3 ) . mean ( )

21 r e l i a n c e

22 end = t ime . t ime ( )

23 p r i n t ( ” Time e x e c u t i o n , ” , end − s t a r t , ” s ” )

Figure A.7: SMA python
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1 import t ime

2 s t a r t = t ime . t ime ( )

3 import pandas as pd

4 import s t a t s m o d e l s . a p i a s sm

5 from s t a t s m o d e l s . t s a . a p i import acf , g r a p h i c s , p a c f

6 from s t a t s m o d e l s . t s a . a r m o d e l import AutoReg , a r s e l e c t o r d e r

7 df AAPL = pd . r e a d c s v ( ’AAPL . t x t ’ , d e l i m i t e r = ’\ t ’ )

8

9 d e l df AAPL [ ’ Id ’ ]

10 df AAPL

11 AAPL mod10 = AutoReg ( df AAPL , 1 )

12 res APPL = AAPL mod10 . f i t ( )

13 predic t AAPL = res APPL . p r e d i c t ( s t a r t =1 , end =16000)

14 p r i n t ( pred ic t AAPL )

15 end = t ime . t ime ( )

16 p r i n t ( ” Time e x e c u t i o n , ” , end − s t a r t , ” s ” )

Figure A.8: AR python
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