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Abstract

This project explores the impact of the COVID-19 pandemic on the stock market net-

work and its community structure. Firstly, we create a temporal bipartite network of

stocks and investors, and attempt to use NPSBM to detect the communities of time

sliced subnetworks. Due to difficulties encountered in attempting community detec-

tion, the project adopted a simulated annealing method, but has yet to achieve results.

We decided to use ABC to calculate weights to create a dynamic stock network. Rep-

resentative selections were made for three sub networks in 2018, 2020, and 2022, and

community detection and dynamic analysis were conducted. The results show that the

emergence of Covid-19 leads to frequent disappearance and restructuring of commu-

nities, indicating that a lot of investors choose to update their investment portfolios

at the beginning of the epidemic. During the pandemic, investors chose a co-holding

strategy to reduce risk. After the end of the pandemic, its impact on the stock mar-

ket continued, reflecting persistent changes in investor psychology and behavior. This

project also discusses the limitations of network analysis and NPSBM, while providing

suggestions for future development directions.
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Chapter 1

Introduction

1.1 Motivation

In the past few decades, financial markets have undergone tremendous changes, with

unprecedented growth in the complexity and speed of stock trading. Previous models

often found it difficult to capture the true structure of the market. Therefore, new non-

parametric techniques must be used to improve stock market analysis. Non-parametric

stochastic block model is a method used to infer structures in complex networks. It

can use non-parametric Bayesian methods based on random block models to adap-

tively determine the number of communities in the network[25]. This means that you

don’t need to pre-set the number of communities, it can adjust parameters to infer the

most suitable number and structure of communities. At present, NPSBM is widely

used in various fields, such as bioinformatics[33], social network analysis[1], financial

network analysis[37], etc. Due to its excellent performance, it is widely used to help

people analyze complex network models.

At the same time, with the development of computer computing power and the

deepening of people’s understanding of the stock market, dynamic networks have

gradually entered people’s vision. The stock market can be seen as a complex net-

work, where nodes represent different financial entities, while edges represent their

interactive relationships[29]. In the early days, people mainly used static networks to

describe various relationships in the stock market. These static networks capture the

market structure at specific time points, such as certain correlations in the stock market

on a certain day or period. However, this method has limitations as it cannot capture

features generated by time changes. A dynamic network is a network model that re-

flects the changes in system state over time. It adds a time tag to the static network,

1



Chapter 1. Introduction 2

making it a time slice network, and countless time slice networks combine to form a

dynamic network. Dynamic networks often have better insights, as they can better un-

derstand the interaction mechanisms and potential influencing factors in the market by

observing the changes in the network on a time scale. Building such a network might

can enhance investment portfolios and raise the possibility that returns will benefit

different stakeholders, such as individual and institutional investors[23].

The COVID has brought unprecedented difficulties and adjustments, and the stock

market is no exception. Undoubtedly, there has been a significant structural change

in the stock market, which provides us with a unique opportunity to analyze the stock

market network before, during, and after the pandemic. Through these analyses, we

can try to understand how the market responds to such a major shock event and what

specific changes it has made after being shocked.

1.2 Problem Statement

The crisis caused by the Covid-19 pandemic has had a profound impact on the stock

market, and in this context, deepen analysis and understanding of the stock market has

become particularly important. However, traditional network analysis methods may

not be able to fully capture the rapid and complex changes in the stock market caused

by the Covid-19 pandemic. Therefore, using NPSBM to analyze dynamic networks

established using data from this period has become very important. They provide us

with a new perspective to study the dynamic changes of the stock market, thereby

avoiding further economic losses in the future.

1.3 Hypothesis and Objectives

1.3.1 Hypothesis

We have three research hypotheses for this project: Assumption 1: The data we obtain

is objective and accurate, and there is indeed a certain relationship in the data. This

relationship and some special attributes of the data can also be reflected in the dynamic

network. Assumption 2: During the epidemic, there is a stable community structure

in the stock market network, and there are some similarities between nodes in the

same community. Assumption 3: The NPSBM is very effective in detecting potential

community structures in dynamic networks.
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1.3.2 Objectives

Based on the provided data, establish a dynamic network representing the stock mar-

ket. Using a non-parametric random block model to identify the core communities and

subnetworks in dynamic networks during the epidemic, as well as how they evolve

and change over time. observe the impact of the COVID-19 pandemic on the dynamic

network and its community structure. The project aims to provide valuable insights

into complex relationships in the stock market, which may lead to the development of

more informed investment strategies. However, it is also possible that the algorithms

of non-parametric statistic block models may not work on certain network structures

in certain situations, resulting in the inability to accurately obtain the correct num-

ber of communities. This has happened in our project, and I will provide a detailed

introduction to this issue in 4.1.3 of the paper.

1.4 Dissertation Outline

This dissertation is divided into 6 chapters. Chapter 2 will introduce the releted work

of the Temporary Bipartite Network, Association Beyond Chance, and non-parametric

stochastic block models, as well as some well-known network analysis methods. The

methods of data acquisition and preprocessing will be introduced in Chapter 3. In

Chapter 4, we will mainly demonstrate the methods used in this project, including the

two constructed networks, model selection, community detection, etc. The results of

the project, as well as the analysis and evaluation of the results, will be presented in

Chapter 5. Finally, we will present the conclusion, limitations, and future work in

Chapter 7.



Chapter 2

Related work

2.1 Temporary bipartite network

A temporal bipartite network is a network where the interactions between two different

sets of nodes evolve over time. This type of network provides a richer representation

of the system, where not only are there two types of interactive entities, but the in-

teractions themselves also change over time. In practical terms, imagine a network

composed of authors and scientific papers. The bipartite property captures the rela-

tionship between the author and their paper (assuming that the author and author are

not directly related, and the paper is also not related to other papers). If this network

still captures the writing time of each paper and displays the progress of each author’s

publication over time, then it becomes a temporal bipartite network. (As shown in

Figure 2.1). This network integrates two important concepts in network theory: the

temporal evolution characteristics of dynamic networks and the dual node set struc-

ture of bipartite networks. This fusion will address some of the pain points of these

two type networks and provide a powerful framework for analyzing complex system.

Below, we will introduce bipartite networks and temporal networks respectively.

4
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Figure 2.1: [16]

2.1.1 Bipartite network

Bipartite Networks is a core concept in network science that describes the relationship

between two sets of vertices. A bipartite network will divide nodes into two groups

according to their attributes or people’s requirements, and then add edges between

the two groups of nodes, ensuring that there are no edges between the nodes within

this group. In other words, all links only occur between these two different groups.

The characteristic of bipartite networks that can only connect different groups of ver-

tices has led to their prominent position in various scientific research. As early as the

last century, mathematicians had already begun to study this special type of graph,

which was systematically elaborated by König in the early 20th century[27]. But it

wasn’t until the emergence of Hungarian algorithms that this powerful concept truly

had a profound impact on graph theory and combinatorial optimization. The Hungar-

ian algorithm was proposed by Harold Kuhn in 1955 based on the work of König and

Egerváry[28]. This algorithm is mainly used to solve allocation problems, utilizing

the characteristics of bipartite graphs to find the best match. Its success has attracted

widespread attention in the field of graph theory and has been used in many practical

applications. Over time, financial scholars and analysts are increasingly adopting the

application of bipartite networks in the stock market to study the interaction and corre-

lation between stocks. For example, Guillaume and Latapy explored interbank expo-

sures by leveraging a bipartite network approach, which uncovers the intricate relation-

ships between banks based on the strength and structure of their mutual exposures[17].
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However, a bi partite network still belongs to a static network, which lacks considera-

tion for the time dimension, which means it cannot capture the dynamic interaction of

nodes in the system, such as the activity of nodes, the establishment and disappearance

of relationships, etc.

2.1.2 Temporary Network

Temporal networks are also dynamic networks, referring to networks that connect and

evolve over time, providing dynamic changes for traditional static network models.

The difference between these two types of networks is that the links between nodes in

static networks are fixed, while these links in temporal networks disappear or recon-

nect over time, and the strength or properties of edges also change over time. Early

foundational work, such as the work of Holme and Saramäki, established the core con-

cepts and methods for analyzing temporal networks[22]. Later, Perra et al. explored

the dynamic processes of temporal networks and elucidated how these temporal char-

acteristics can significantly change people’s understanding of networks[36]. Temporal

networks have many practical application scenarios, which can describe the spread of

infectious diseases over time and record financial transaction records that change over

time. The characteristic of dynamic networks being able to record time labels makes

these networks more complex but also fascinating, as they may be able to uncover

unique patterns and behaviors that are still masked in static network analysis[8]. How-

ever, a simple temporal network may have the disadvantage of being too complex in

structure, as it may contain complex connection patterns where one node may be con-

nected to multiple other nodes. In contrast, temporal bipartite networks have a clearer

structure, where nodes in one set are only connected to nodes in another set, making

them easier to analyze and interpret.

2.2 ABC

2.2.1 Background

Within the scope of statistical evaluations, understanding the potency and relevance

of relationships between variables is pivotal for sound conclusions. Various measures

have emerged over time to articulate this degree of correlation, with relative risk being

a prominent example[49]. This article presents a novel metric, Association Beyond

Chance (ABC), formulated within a Bayesian context[31]. ABC’s primary goal is to
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offer a deeper understanding of associations, emphasizing co-occurrences linked to

shared risk factors.

ABC delineates the proportion comparing the joint occurrence tied to shared risks

and the incidental appearance associated with separate factors. At its core, this measure

tries to identify associations that are unlikely to have occurred purely by chance. Such

a measure becomes crucial in studies where it’s vital to distinguish between genuine

associations and those that might be mere coincidences.

Traditional statistical methods rely on fixed probabilities and often use the frequen-

tist framework. However, Bayesian statistics introduces the concept of ”prior beliefs”,

allowing researchers to incorporate prior knowledge about a parameter. It then updates

this belief based on new evidence (data) to provide a ”posterior” belief. ABC lever-

ages the Bayesian approach, focusing on the co-occurrence of events beyond what is

expected by chance. This Bayesian framework is more flexible, accommodating prior

information and new evidence to produce more nuanced results.

One of the unique challenges in statistical modeling is dealing with extreme cases,

especially when data is sparse. For situations with limited observations, results can be

heavily influenced by outliers. ABC addresses this by incorporating weakly informa-

tive priors. These priors play a regulating role, ensuring that the model doesn’t produce

extreme values based purely on a limited set of data points. The prior essentially acts

as a gentle guide[53], ensuring that the ABC remains grounded. In ABC, as more

empirical evidence becomes available, the influence of the prior diminishes. This is a

testament to the dynamic nature of Bayesian statistics, where data continually informs

the assumptions, refining them with additional information.

Incorporating prior beliefs can be a double-edged sword. While they provide con-

text and direction, there’s always a risk of introducing bias, especially if the priors are

too strong or misinformed. The ABC approach emphasizes the use of weakly informa-

tive priors. This choice is deliberate, ensuring that the results are not unduly influenced

by the priors. It reflects the exploratory nature of the framework, prioritizing new find-

ings and associations over preconceived notions.

At the same time, an innovative aspect of the ABC framework is the incorporation

of hyperpriors. Though beneficial, Priors still bring along the challenge of choosing

appropriate values. Hyperpriors, priors on priors, offer an added layer of flexibility. By

including hyperpriors, ABC reduces the arbitrariness in the choice of priors, making

the model more robust and adaptable.

The Association Beyond Chance (ABC) framework presents a promising approach



Chapter 2. Related work 8

to association analysis, especially in scenarios where discerning genuine associations

from mere chance is challenging. By seamlessly blending the Bayesian approach with

strategic choices of priors and hyperpriors, ABC offers a more refined, flexible, and

context-aware tool for researchers. It stands as an exemplar of how modern statistical

methods can evolve to address contemporary research challenges.

2.2.2 Formula and Value

iven two conditions, we propose that the occurrence of each condition for an individ-

ual can be represented by a binary variable, Ci, which can take values 0 or 1. We

also posit that there exist specific independent risk factors, represented by Fi, influ-

encing the presence of each condition individually. In addition, there is a shared risk

factor, denoted by Fij, that simultaneously impact a combination of two conditions.

Based on conditional independence and Bayesian prior calculations, the following

ABC formula[39] is obtained:

ABC = (Pi j−Pi∗P j)∗ (1−Pi)∗ (1−P j)/(Pi−Pi j)/(P j−Pi j)/(1−Pi−P j+Pi j)

Pi represents the likelihood of event i taking place. Pj denotes the chance of event j

happening. Pij signifies the probability of both events i and j occurring together.

As previously noted, RR and ABC bear a close resemblance, leading to analogous

interpretations of their values. We first introduce what is RR and its value meanings.

Relative risk stands out as an essential statistical tool when analyzing data from

a variety of studies, as pointed out by [49]. This encompasses ecological, cohort,

medical, and intervention-based research. The primary objective is to gauge the re-

lationship between specific exposures, such as medical interventions or potential risk

factors, and the outcomes they lead to. Essentially, (as shown in figure 2.2) the com-

putation involves comparing the incidence rate among the exposed, denoted as Ie, with

the incidence rate among the unexposed, symbolized as Iu. This measure becomes par-

ticularly insightful when assessing the possible detrimental effects linked to medical

treatments, especially when juxtaposed against scenarios without such treatments, or

in contexts of environmental risk evaluations.

One can consider the following guidelines when interpreting the direct relationship

between exposure and outcome via relative risk:

• A relative risk of 1 indicates the exposure leaves the outcome unchanged.
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• A value below 1 denotes that the exposure diminishes the outcome’s likelihood,

acting as a safeguard.

• Conversely, a value exceeding 1 suggests that the exposure amplifies the risk of

the outcome, labeling it a potential hazard.

ABC values span from approximately -1 to a conceivable positive infinity. Within

this spectrum, -1 signifies a completely opposing relationship while positive infinity

indicates a fully aligned association. A value of 0 suggests that the two elements

are unrelated, showing no association. If the denominator becomes 0, it reflects an

impeccable correlation, resulting in an boundlessly positive value.

Figure 2.2: [49]

2.3 Non-parametric Stochastic Block Model (NPSBM)

2.3.1 SBM

Stochastic block model (SBM) stands out as a significant category of statistical mod-

els used in the study of social networks. It has also risen to prominence as a pivotal

instrument in deciphering the complex architecture of networks. It presents a prob-

abilistic framework for graphs, wherein nodes are organized into specific groups or

”blocks”. By adopting an SBM, network nodes are grouped into distinct clusters, with

nodes within each cluster exhibiting consistent connectivity behaviors. This concept is

referred to as stochastic equivalence[21].The fundamental principle behind the SBM
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is simple yet powerful: nodes belonging to the same cluster tend to connect more fre-

quently than those in separate clusters. This methodology has proven invaluable in

shedding light on community patterns across diverse real-world networks, from bio-

logical pathways to human social dynamics. When an SBM is applied and statistical

analysis conducted, it not only reveals the previously undisclosed group affiliations

but also often accomplishes community identification or assortativity. This indicates

that nodes within a particular cluster are stochastically alike and closely linked, while

inter-group connections remain predominantly sparse.

Central to the SBM is a probabilistic graph model that embeds predefined clusters.

Two primary elements define an SBM: the count of clusters or blocks and a probability

matrix that signifies the chances of connections between these clusters. This matrix is

the heart of the SBM (as shown in figure 2.3), illustrating the likelihood of a connection

between two nodes based on their affiliated blocks. For example, considering two

clusters A and B, the matrix might indicate probabilities such as P(A, A) (the chance

of a connection between two nodes within block A) and P(A, B) (the chance of a

connection between a node from block A and another from block B).

Figure 2.3: [12]
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2.3.2 NPSBM

To effectively delve into the concealed structures of networks, it’s imperative to utilize

generative models, followed by a systematic deduction of their parameters from the

data at hand. When these hidden structures manifest as modules or ”communities,” the

stochastic block model (SBM) emerges as the go-to strategy. In this framework, nodes

find themselves categorized into groups, and the presence of edges is conditioned upon

these group associations. In our current exploration, we leverage a Bayesian non-

parametric methodology[35] to decode the layered architecture of empirical networks,

shedding light on both the count and hierarchical arrangement of these modules. We

also call this methodology- non-parametric stochastic block model (NPSBM).

Delving deeper, nonparametric methods, especially within the Bayesian paradigm,

offer a robust toolkit to navigate the complex terrains of data, with network analy-

ses being a prime application. Our proposal of a Bayesian adaptation of the SBM

aims to amplify our grasp over the nuanced, multi-tiered organization intrinsic to net-

works. The Dirichlet process[48], a cornerstone in Bayesian non-parametrics, pre-

dominantly features in nonparametric data representations, shining particularly in the

realms of Dirichlet process mixture models, also termed as infinite mixture models. In

essence, this process serves as a distribution over distributions, implying that each ex-

traction from the Dirichlet process encapsulates a unique distribution. The nomencla-

ture ”Dirichlet” arises from its intrinsic property: its finite-dimensional marginal distri-

butions are Dirichlet-distributed. This bears a resemblance to the Gaussian process, an-

other heavyweight in the nonparametric space, characterized by Gaussian-distributed

finite-dimensional marginals. Notably, while distributions sampled from the Dirichlet

process are inherently discrete, they aren’t confined by a static parameter set, justifying

their nonparametric tag. Although the Dirichlet process was originally envisioned as

a prior with expansive support coupled with manageable posterior computations, it’s

not without its challenges, especially its predilection for discrete distributions. The

transition to more flexible priors seemed unattainable until the revolutionary wave of

MCMC techniques. This evolution marked the dawn of a plethora of innovations span-

ning inference mechanisms, model expansions, theoretical explorations, and tangible

applications.

In summary, implementing a non-parametric SBM requires sophisticated prob-

abilistic modeling methods, frequently using concepts like the Chinese Restaurant

Process[7] or the Dirichlet Process to account for the indeterminate number of blocks.
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Computing these models can be resource-intensive, and specialized techniques, such

as Gibbs sampling[15], are typically employed for data interpretation.

2.3.3 NPSBMs’ Advantages

The Nonparametric Stochastic Block Model (NPSBM) stands as an advanced tech-

nique, exhibiting several notable advantages over traditional community detection ap-

proaches and the standard Stochastic Block Model (SBM). Firstly, the nonparametric

nature of NPSBM offers a significant edge when handling intricate networks. Tra-

ditional community detection strategies typically necessitate the pre-setting of certain

parameters, like the number of communities, or they rely on some form of prior knowl-

edge regarding the network’s attributes. However, in the real world, these parameters or

prior knowledge might be unknown or challenging to ascertain. NPSBM, employing a

nonparametric approach, overcomes this limitation, allowing the data itself to guide the

discovery of community structures[34]. Secondly, in comparison to traditional SBM,

NPSBM can identify and manage communities of varying sizes and shapes. In nu-

merous practical applications, community sizes and densities within networks might

significantly differ. The flexibility of NPSBM ensures capturing this diversity more

accurately instead of compellingly dividing the network into uniformly sized blocks.

Thirdly, many traditional community detection methods are tailored for specific net-

work types, such as undirected networks. In contrast, NPSBM can effortlessly be

applied to undirected, directed, weighted, and multilayered networks, expanding its

applicability across a variety of network data. Lastly, in comparison to certain conven-

tional methods, NPSBM demonstrates enhanced robustness when confronting noise

and uncertainties in the network. This aspect becomes especially salient as real-world

network data is frequently incomplete or noisy. NPSBM can furnish stable and precise

community divisions even under less than ideal data conditions.

2.4 Network Analysis Methods

In an age characterized by the proliferation of data, the ability to represent and un-

derstand vast datasets in meaningful structures is pivotal. The foundational steps to-

wards understanding networks began with research into regular and stochastic net-

works. However, the intricacies of real-world networks remained elusive to these tra-

ditional models. Pioneering research by Watts and Strogatz[52] lifted the veil on the
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concept of small-world networks, revealing a distinctive blend of short average path

lengths between nodes and high clustering. Meanwhile, Barabasi and Albert’s ground-

breaking study[4] unveiled the notion of scale-free networks, wherein node connectiv-

ities astoundingly obey a power-law distribution. These theoretical models have laid

an immensely important foundation for network analysis and have aided researchers

in better depicting and analyzing various real-world networks. Network analysis is a

powerful tool to study complex relationship in the network by breaking them down

into simpler components to understand. A network consists of nodes and edges, where

nodes represent entities and edges represent the relationships or interactions between

them. The number of nodes and edges in a network directly indicates its size and the

extent of relationships.

One of the fundamental metrics in network analysis is the degree of a node[41],

which refers to the number of connections or edges a node has. The average degree of

a network offers a macro-level perspective, suggesting how interconnected, on average,

the nodes are. By considering the maximum and minimum degree, one can identify

the most connected (hubs) and least connected nodes, respectively. These hubs often

play crucial roles in network functionality and robustness.

Network density, another crucial metric, measures the proportion of actual connec-

tions to the total number of possible connections[32]. A dense network implies that the

nodes are closely connected, facilitating rapid information or substance flow. In con-

trast, a sparser network suggests fewer connections and possibly slower dissemination

rates.

Average path length, a measure of efficiency in a network, calculates the average

number of steps it takes to travel between any two nodes[14]. In a ’small-world’ net-

work, characterized by a short average path length, information or influence can spread

quickly across the network. It provides insights into how efficiently entities in the net-

work can communicate or interact with each other.

The clustering coefficient quantifies the likelihood that two neighbors (nodes con-

nected to the same node) of a node will also be neighbors of each other[45]. It reveals

the extent to which nodes in a network tend to cluster together. A high clustering co-

efficient indicates a pronounced tendency for nodes to form tightly-knit groups, char-

acteristic of many real-world networks where entities tend to form communities or

clusters.

Lastly, degree distribution[18] is a fundamental concept in network theory that

describes how the number of links (or edges) connecting to nodes (or vertices) is dis-
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tributed in a network. In other words, it provides a statistical measure of how many

nodes have a certain degree.

As a result, network analysis, through its suite of metrics, provides a holistic ap-

proach to understanding complex systems.



Chapter 3

Data

3.1 Data Source

In this project, the main dataset comes from https://www.dataroma.com/m/home.php.

The website records portfolio (investor) data of well-known investors. It also includes

the top 20 holding histories of each investment portfolio. The comprehensive dataset

includes data from 67 quarters, starting from the fourth quarter of 2006 and ending in

the second quarter of 2023. We hope to divide the data into 67 Excel files based on

time, and the file name of each Excel file is the corresponding time for this set of data.

In Excel, the first column contains the names of all investors at that time, while the

remaining columns represent the top 20 stocks held by the investor during that time.

However, one challenge encountered is that this set of data is not directly presented

on the webpage, so we need to click on the hyperlink to view a certain investment

portfolio and its top 20 stock holding historical data, and then need to traverse all the

hyperlinks. Next, we will proceed with this operation.

3.2 Operation for Extracting Data

We initially set a user agent to emulate a browser for web content requests. The next

step is to use the ‘requests‘ library to accesses the manager list page and then em-

ploy ‘BeautifulSoup‘[38] for HTML parsing. Based on the parsed content, the URL

links for each portfolio are fetched which can lead to each investor’s specific portfolio

page. On these pages, the links which is related to portfolio history continue to be

retrieved and revisits them to extract detailed information about various holdings. For

every holding in a portfolio, the stock name, its specific details, and its percentage in

15
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the portfolio are extracted. All this information is organized into a list and stored in

‘pf list‘, with each row representing a specific held stock. Transitioning to the second

phase, we mainly perform the task of segmenting the data, previously scraped from the

Dataroma website, by quarter and then exporting the data for each quarter into separate

Excel files. The first job is iterating through the data list, identifying and gathering all

distinct quarters. Subsequently, it is important to create a new data sublist for each

identified quarter, containing only the relevant data for that specific quarter. Lastly, the

data for each quarter is converted into a DataFrame format and saved as an Excel file,

named after the corresponding quarter, stored in the ”/content/” directory.



Chapter 4

Methodology

4.1 Investor and Stock Network

In this section, we will establish a temporal bipartite network of stocks and investors,

and conduct community detection on all time slice networks. We will focus on the

time slice network and its community structure before, during and after the epidemic

to achieve our Objectives.

4.1.1 Network Construction

We first introduced 67 Excel data and constructed an undirected graph ’g’, in this

graph, nodes represent either investors or stocks. Each node is assigned specific prop-

erties: the ”name” property ensures easy identification, and the ”type” property serves

as a crucial differentiator, classifying nodes either as investors (label ’0’) or stocks (la-

bel ’1’). Edges in this network describe relationships, each edge signifies an investor’s

holding of a specific stock, and to capture when this holding occurred, it’s given a

”time label” property. A data slice is a block of data from different time frames and is

then used to populate the graph. For each data slice, each investor and their holdings

are checked, the code checks the graph to determine if the investor already exists as a

node, the process adds new investors and identifies existing investors. The same pro-

cedure applies to stock, and for each stock held by the investor, the chart is checked

for existence. New stocks are added as nodes, while existing ones are identified. Each

investor - stock pair creates an edge in the graph that represents the investment re-

lationship with the ”time label” attribute. This process ensures that nodes or edges

are not duplicated to ensure clarity and accuracy. The result is a dynamic bipartite

17
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network[19]: one side is the investor and the other is the stock (As shown in Fig-

ure 4.1). The introduction of ”time label” provides a dynamic perspective on the in-

vestor’s investment patterns over time, the popularity of stocks, and the consistency

of their portfolios. Since we need to perform community detection on 67 time slice

networks, we will continue to process our newly obtained time bipartite network. We

hope to filter out a subgraph from a large graph based on specific time labels, which

only contains edges that match a given time label and vertices associated with these

edges. We first defined a function ‘filter By time label’, this function first creates a

Boolean edge for the ‘edge filter’ attribute is used to determine whether to retain the

edge in the filtered graph. At the same time, a Boolean vertex was also created for the

‘vertex filter’ attribute determines whether to preserve vertices related to the specified

timestamp. After defining these attributes, the function starts traversing all edges in

the original graph g and checks each edge ‘time label’ attribute. As long as the time

label of an edge matches the specified timestamp, the edge will be retained and the

two vertices connected to it will also be marked as preserved. If it does not match, the

edge will not be retained. After this series of operations, using the ‘GraphView’ class,

a new filtered graph view filtered is generated from the original graph g based on these

reserved tags. Only those Vertices and edges with a filter attribute of True will appear

in the new graph view. The function will ultimately return the filtered graph view.

Figure 4.1: Stock and investor temporal bipartite network diagram, red dot for investor,

blue dot for stock, time information on every edge.
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4.1.2 Community Detection

Community detection has always been an important topic in complex network re-

search, especially in dynamic graphs or scenes with time series data. The method

we have chosen is a time based subgraph and Non-parametric Stochastic Block Model

(NPSBM). This method aims to detect and track the community structure over time.

Firstly, we obtain subgraphs for a specific time. A subgraph is extracted from the

original network and only contains nodes and edges that exist at a given time point.

This method allows me to focus on the network structure at a specific time, while

ignoring other irrelevant information. This is particularly valuable for understanding

the temporal evolution of networks, as it can reveal how communities form or disap-

pear within a certain period of time. After checking the subgraph, we must determine

whether it contains valid information. If the subgraph does not have vertices or edges,

it is actually an empty graph and there is no need for community detection. In this

case, I will return a message like ’No vertices or edges for this time label’. This not

only provides me with a clear indication of data integrity, but also allows me to avoid

wasting computing resources unnecessarily. However, if the subgraph does contain

vertices and edges, I will execute a Non-parametric Stochastic Block Model. NPSBM

is a powerful community detection tool that can automatically identify and allocate

communities without the need to know the number of communities in advance. This

is a huge advantage, especially when facing large and complex networks, where the

number and structure of communities may be unknown or changing. To save the re-

sults at each time point, we used a structure called ‘npsbm states’. This is a collection

that stores the output of NPSBM for each timestamp. This allows me to not only save

the current results, but also easily trace and view past results, which is very valuable

for analyzing the time evolution of the network. Finally, once we have completed the

community detection of all subgraphs, we will traverse the ‘npsbm states’. We can

use time labels as reference points to ensure that the results are viewed in chronologi-

cal order. This step provides us with a complete time series view, showcasing how the

community has developed and changed over time.

4.1.3 Difficult and Suggestion

After using the NPSBM model for community detection, we encountered unexpected

issues. For each time slice network, the model is divided into two main communities:

one containing only investors, and the other containing only stocks (shown as figure
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4.2). This result is clearly not what we expected. Considering that it may be a local

optimization problem in the model, I further attempted to use simulated annealing

technology to optimize community partitioning, but unfortunately, such an attempt did

not change the initial results. One possible reason is the structural characteristics of

the bipartite network I am dealing with. In a bipartite network, there are two different

types of nodes, and their connections form the basic framework of the network. When

using models like NPSBM for community detection, the common result is to divide

these two types of nodes into a community, as this division is usually the most obvious

way structurally. Another possible reason is data volume issues, especially when the

data volume of a single time slot network may be too small. The amount of data

is crucial for revealing the substructure and community patterns of a network. Only

when the data is sufficiently rich can we expect to see more communities and more

complex structural patterns. For this issue, this article provides the following solution

suggestions: 1. Network pre-processing: Before starting community testing, some pre-

processing steps can be taken. One possible method is to use network projection, which

can convert a bipartite network into a single mode network. In a single mode network,

similar nodes are linked based on their connection with other nodes, which may help

reveal the community structure hidden in the bipartite network. 2. Consider other

community detection methods: Although NPSBM is an effective tool in many cases,

it may be necessary to consider other community detection methods when dealing

with specific types of networks, such as bipartite networks. For example, bi spectral

clustering can be applied to bipartite networks, which can better capture the community

structure in the network. Tensor decomposition[26][44] is another possible method

that can handle complex networks containing multiple types of nodes or links, and has

the potential to reveal more community patterns.

Figure 4.2: Community situation after NPSBM, dark blue dots belong to investor com-

munity and light blue dots belong to stock community.
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4.2 Stock Network

Due to the difficulties encountered in establishing the Investor and Stock Network that

we cannot solve, and addressing these difficulties is not the main focus of this paper,

we have decided to use ABC to construct a stock network and conduct community

detection on the network to achieve our goal. The stock network has a more simplified

network structure, which may make community detection and other analysis more in-

tuitive and effective. In addition, a single stock network may be more likely to reveal

the impact of the epidemic on the economy. For example, certain stocks may exhibit

strong correlations during the pandemic, which are not significant in other periods.

4.2.1 Data pre-processing

The data format we possess has the first entry of each row as the investor, while the

subsequent entries correspond to the stocks associated with that investor. This does not

meet our requirements for constructing a stock network. Additionally, to discern trends

more easily, we aim to consolidate quarterly data into annual data, necessitating data

transformation and pre-processing. Firstly, we must import data from all four quar-

ters, integrating them into a complete annual dataset. Next, to build the desired stock

network, it becomes crucial to extract each investor and their associated stocks from

this yearly dataset. This involves navigating through each row, pairing the initial entry

(the investor) with each subsequent entry (the stocks). In doing so, we can distinctly

associate every investor with their respective stocks. To ensure the uniqueness of the

data, we add each of these pairings to a set, leveraging the set’s intrinsic property of

automatically eliminating any duplicate items. Once we’ve established these investor-

stock pairings, the subsequent step entails gathering all investors for each stock. This

implies a shift from a many-to-many relationship to a one-to-many relationship, given

that a single stock might be associated with multiple investors, and conversely, an in-

vestor might invest in multiple stocks. We employ a dictionary structure to achieve

this: within this dictionary, the stock name serves as the key, and its corresponding

value comprises a list of all investors linked to that stock. Finally, after the aforemen-

tioned data consolidation and transformation processes, we have a structured dataset,

illustrating the precise relationship between each investor and their invested stocks.

To guarantee data persistence and to facilitate future operations, we export this re-

structured data into a new Excel file. This offers a clear, structured data source for

further analysis, visualization, or other related tasks. To establish a stock network that
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demands datasets in both ”stock-to-investor” and ”investor-to-stock” forms, we must

perform similar operations on the recently obtained Excel file to yield the annual data

of investors corresponding to stocks.

4.2.2 Network Construction (by ABC)

To devise a stock network through the ABC methodology, one must first grasp the

significance of stock correlations, particularly those shaped by overlapping ownership

structures, within stock networks. The ABC methodology presents itself as a pioneer-

ing tool to capture these correlations by spotlighting the probabilities of co-ownership

across stocks. The initial step entails gathering data on the stock portfolios of indi-

vidual investors, ensuring a clear picture of which investors own which stocks. From

this data, one can then calculate the probabilities Pi,Pj, and Pij for every duo of stocks

present in the market. Within this stock network backdrop, Pi illuminates the proba-

bility that an investor owns stock i, while Pj conveys the odds of this investor holding

stock j. Together, Pij encapsulates the combined probability of an investor owning both

stocks i and j. Subsequent to this, for each stock pair, determine the ABC value through

the given equation. This numerical value becomes an instrumental weight, shedding

light on the co-owners-based relationship between two stocks. In essence, the ABC

value crystallizes the correlation in ownership patterns of two stocks. A nearing -1

value implies a divergent owners trend between two stocks, hinting that stock i hold-

ers might seldom invest in stock j and vice versa. In contrast, a value tilting towards

positive infinity signifies a near-perfect alignment in the owners of the two stocks, sug-

gesting a scenario where the owners of one stock almost guarantees the possession

of the other. On the other hand, a zero value delineates an absence of any noticeable

correlation in the owners dynamics of the two stocks. the ABC methodology offers a

nuanced lens through which one can decode and interpret stock ownership intricacies.

Embedding co-ownership probabilities into this network structure paves the way for

richer insights, intertwining investor choices with overarching stock market ebbs and

flows. When building the network, if for any stock pair, the value of Pij exceeds 0,

an edge is drawn between them, bearing a weight equivalent to its associated ABC

value. This strategy of edge creation provides a granular understanding of relation-

ships between stocks. The entire process is iteratively executed for each year present

in ‘time labels’. As the procedure unfolds for a specific year, the constructed network

for that year is appended to the ‘temporal networks’ dictionary. By iterating through
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each year and preserving the generated networks in ‘temporal networks’, we achieve a

dynamic stock network. At the same time, with ‘temporal networks[time label]’, it’s

possible to instantly call upon a subgraph for any given time slice, providing a clear

snapshot of the stock relationships for that particular period. The meticulous con-

struction of this dynamic stock network ensures that stock relationships are not only

captured accurately but are also easily accessible for any desired timeframe, which of-

fers a holistic yet detailed view of the stock market’s changing dynamics over time,

making it a potent tool for analyses and predictions.

4.2.3 Model selection

4.2.3.1 Nested Models and Non-nested Models

Within the domain of non-parametric stochastic block models, two predominant cate-

gories exist: the nested models and the non-nested models.

Nested Models[24] operate under the assumption that community structures within

a network inherently exhibit a hierarchical nature. This hierarchical approach[50] is

reminiscent of the way an extensive tree might branch into smaller sub-trees. The

fundamental strength of nested models lies in their ability to discern and represent

intricate network structures with great detail. For instance, in a vast network, like a

biological system, you can observe macro-structures like organ systems, which can

further be divided into individual organs, tissues, cells, and so on. Similarly, in social

networks, large communities could represent countries, which further consist of states,

cities, neighborhoods, and eventually individual households. This ability to delineate

fine-grained hierarchical structures enables the nested models to capture both broad

and nuanced interrelations, making them invaluable for deeply interconnected systems.

Non-nested Models[51], juxtaposing their nested counterparts, work under the

premise that all nodes exist coherently on a single level. Non-nested Models view

the network as a flat structure. So, instead of delving deep into hierarchical nuances,

non-nested models segregate the network into distinct non-overlapping communities

or blocks. This model is akin to looking at a forest and classifying based on types of

trees without concerning the individual branches and leaves. While this might seem

oversimplified for intricate networks, its strength lies in its simplicity, making it ex-

ceptionally efficient for less complex networks where hierarchical breakdown might

be redundant or unnecessary.

Distinguishing the two, the nested models stand out with their layered hierarchical
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organization, allowing them to depict networks with varying levels of granularity. In

contrast, non-nested models, with their single-level portrayal, are more straightforward

and computationally less demanding. This simplicity, however, might come at the cost

of depth in representation, especially in multifaceted networks.

For a stock network, nested models appear to be the optimal choice for several

reasons. Firstly, because our stock network is multi-level and interrelated, any stock in

the network may have edges with other stocks. Furthermore, stock market dynamics

often reflect cascading effects: global economic trends influence sectors, which in

turn affect individual companies and eventually the stock prices of these entities. This

cascading, multi-tiered influence underscores the intricate hierarchical nature of stock

markets. Thus, utilizing nested models for stock networks ensures a more detailed,

nuanced, and, most importantly, accurate representation of these inherent hierarchies

and interrelations, facilitating a superior analysis.

4.2.3.2 Degree Correction

Degree correction is an important concept in complex network analysis, especially

during community detection[54][9]. In network science, the ”degree” of a node refers

to the number of edges connected to it[42]. In certain networks, especially social

or financial ones, there’s a vast disparity in degree distribution, meaning that some

nodes (referred to as hub nodes or high-degree nodes) connect to many other nodes,

while most others connect to only a few. During community detection, these high-

degree nodes can disproportionately influence the results. To mitigate this influence

and achieve a more meaningful community structure, the concept of ”degree correc-

tion” is introduced. The goal of degree correction is to ensure that each node’s influ-

ence in community partitioning is proportional to its degree, thus avoiding biases that

arise due to the presence of high-degree nodes. By considering each node’s degree and

adjusting its weight in the community partitioning process accordingly, degree cor-

rection provides a more authentic and meaningful way to understand and reveal the

community structure of a network. For our project, aiming to analyze the impact of

the pandemic on the stock market, three time-sliced networks from 2018, 2020, and

2022 were chosen as samples before, during, and after the pandemic respectively. This

is because these years played pivotal roles in the timeline of the COVID-19 outbreak.

2018 provides a benchmark as a typical year before the pandemic, reflecting the nor-

mal circumstances of the stock market. 2020 represents the peak of the pandemic

when most countries were severely affected. By 2022, many nations began recover-
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ing and adjusting to the new norm, offering insights into the stock market’s recovery

and shifts post-pandemic. We employed the NPSBM nested model for community

detection on each time-sliced network with and without degree correction. After con-

ducting degree-corrected and non-degree-corrected community detections on the three

time-sliced networks, we compared the entropies of the two community detections for

the same time-sliced network. The results indicated that when degree correction was

applied, the entropy of the community detection was smaller. entropy can be under-

stood as a metric that measures the complexity of community partitioning. A smaller

entropy typically indicates a more structured and clearer community partition. This

implies that by incorporating degree correction, a more structured, clearer, and mean-

ingful community partition result was achieved. This further validates that applying

degree correction is essential for your stock market network data.

4.2.4 Community Detection

In this project, we employed NPSBM for community detection within stock networks.

This approach is very similar to the section 4.1.2 of the paper. The difference is that

we need to transform the newly created stock network from a Network X graph to a

GraphTool graph[2] so that we can conduct community detection. A unique variation

we introduced was a novel iterative detection procedure to enhance the reliability and

stability of our findings. Specifically, rather than merely conducting a single com-

munity detection for each temporal slice network, we implemented it tenfold. This

iterative approach was instituted to capture variations potentially induced by initial

conditions or other stochastic elements. Each detection iteration yields a community

partition result and its corresponding entropy value, with the latter serving as a met-

ric to evaluate the quality and complexity of the community division. Ultimately, we

elected the detection with the smallest entropy value as our final community detection

result, as a lower entropy typically signifies a more structured and stable community

partition.

However, our exploration didn’t end there. Upon the completion of NPSBM com-

munity detection, we delved into the temporal sequence data of the detection results.

Initially, we calculated the number of communities each year, aiming to discern pos-

sible structural shifts within the stock market. Our focus subsequently shifted to the

dynamic alterations between communities across consecutive years.

For instance, examining the span from 2018 to 2019, we ventured beyond just
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quantifying communities. Our analysis deeply probed the stability, dissolution, and

emergence of communities during this period. To be specific:

Stable Communities: These are communities present in both 2018 and 2019, main-

taining their structural integrity over the two years. Disappearing Communities: These

communities, present in 2018, vanished by 2019. This might suggest a weakening or

loss of interconnections between the stocks within these communities in 2019.

Emerging Communities: In contrast to the disappearing ones, these communities

manifested in 2019 but were absent in 2018. This might indicate certain stocks begin-

ning to exhibit new analogous trends or mutual connections.

In summation, through the NPSBM community detection and the subsequent in-

depth analysis, we aim to uncover the structural nuances of the stock market and its

dynamic evolution over time.
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Result and Evaluation

5.1 Community Analysis

5.1.1 Result Analysis

Drawing insights from the stock network structure through the lens of NPSBM com-

munity detection across the years 2018, 2020, and 2022 allows for a keen understand-

ing of market dynamics in the face of the global turbulence caused by COVID-19.

Prior to the pandemic’s onset in 2018, the stock network portrayed a graph of diversity

and a well-defined hierarchical depth, initiating with 716 stocks that bifurcated into

133 vibrant communities. Transitioning into 2020 when the COVID-19 was raging,

the network expanded, accommodating 813 nodes. This expansion can be attributed

to a possible surge in companies gaining prominence or opting for public listing, with

sectors like health tech and telecommuting software gaining traction due to their rel-

evance in a pandemic-stricken world[11]. The consistency of the hierarchical depth

across the years 2018, 2020, and 2022, with all presenting a level of 5, offers insights

into the structural properties of the network. Despite the expected fluctuations and

changes that might occur in the market due to various factors, including the influence

of the COVID-19 pandemic, the overall structural hierarchy of the market remains un-

changed. This might indicate that stock market has a certain degree of adaptability

and elasticity, which can withstand short-term shocks and changes. Even in the face of

significant challenges such as the pandemic, the market may maintain its community

level through internal adjustments and optimizations.

Moreover, 2022 year’s result signifies a world recuperating from the pandemic’s

major onslaughts, the network manifested a marginal shrinkage to 794 stocks. This

27
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may be because investors feel that the market is starting to recover, uncertainty is de-

creasing, and people no longer need to buy more stocks to share risks, resulting in a

decrease in the number of stocks. While the hierarchy remains the same in 2022 com-

pared to other years, the actual constituents or characteristics of the individual levels

might undergo changes. The consistent numbers in the foundational communities, os-

cillating between 125 and 150, suggest an enduring significance of certain sectors or

investment philosophies. By analyzing the structure of the stock network in 2018, 2020

and 2022, we can gain insight into the impact of the global COVID-19 pandemic on

the market. Despite challenges such as the pandemic in the market, the overall struc-

ture and hierarchy of the network remained stable. This highlights the stock market’s

resilience to external challenges and its ability to maintain community levels through

internal adjustments and optimizations.

Before Covid

Results for year 2018:

l: 0, N: 716, B: 133

l: 1, N: 133, B: 52

l: 2, N: 52, B: 16

l: 3, N: 16, B: 5

l: 4, N: 5, B: 1

l: 5, N: 1, B: 1

During Covid

Results for year 2020:

l: 0, N: 813, B: 150

l: 1, N: 150, B: 51

l: 2, N: 51, B: 13

l: 3, N: 13, B: 4

l: 4, N: 4, B: 1

l: 5, N: 1, B: 1

After Covid

Results for year 2022:

l: 0, N: 794, B: 125

l: 1, N: 125, B: 48

l: 2, N: 48, B: 13

l: 3, N: 13, B: 3

l: 4, N: 3, B: 1
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l: 5, N: 1, B: 1

5.1.2 Visualization

Visualizing the NPSBM results presents an intuitive grasp of the stock market’s intri-

cate landscape. Each node and its hierarchical level can represent conglomerations of

stocks that possess certain common features or characteristics to draw the interest of a

group of investors. The breadth and depth of these hierarchies provide a direct insight

into the diversity and specificity of investment strategies.

Each community or node in the hierarchy might represent dominant sectors or

industries[30]. By observing which nodes (sectors or industries) persist across differ-

ent time frames, one can infer which sectors are more stable or robust against various

economic challenges. New nodes or communities appearing in the hierarchy might

suggest the emergence of innovative sectors or industries, which could be a result of

technological advancements, changing consumer preferences, or new market opportu-

nities. In addition, by examining the connections between these nodes, one can derive

information about the interplay between different industries. For instance, strong ties

between the technology and finance nodes might indicate the rise of fintech. It is worth

mentioning that the strength and number of interconnections between communities can

provide insights into collective investor behaviors. Tight-knit communities might re-

flect a unified investor base with a shared belief in particular stock combinations. When

we examine the weakening or strengthening of these connections across the pandemic

phases, these changes reflect the evolution of investor sentiment, risk preferences, and

confidence levels.

A comparison of the three phases uncovers the evolution of market dynamics. The

pre-pandemic period in 2018 shows six community levels, indicating diverse invest-

ment strategies and a deeper market penetration, suggesting a robust economic sce-

nario. The year 2020 during the height of the pandemic keep the same community

hierarchy as 2018. This suggests that despite the tumultuous changes brought about

by the pandemic, the underlying structural depth of the market remained intact. Such

persistence indicates that, while individual investment strategies might have shifted

during the crisis, the overall complexity and depth of the market’s structure persisted.

Come 2022, the network, although reminiscent of 2018 in its primary layer, indicates

a richer, more varied investment landscape, suggesting market recovery and diversifi-

cation post-pandemic.[40]
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Studying patterns and shifts in the community hierarchy over time can empower

economists and analysts to predict future trends. If certain community structures or

behaviors consistently precede economic booms or recessions, these become invalu-

able predictive tools. The pandemic, in this regard, can serve as a significant case study

for future crisis management. For institutional and retail investors, the visualized hi-

erarchy can serve as a roadmap. By identifying dominant communities or nodes, they

can align their portfolios with prevailing market trends. Additionally, the visualization

can serve as a tool for identifying outlier communities that might represent untapped

investment opportunities or high-risk areas.

(a) 2018 (b) 2020 (c) 2022

5.1.3 Dynamic changes in the community

The evolution of stock market communities between 2018, 2020, and 2022, as charac-

terized by the NPSBM community detection, mirrors the dynamic nature of the finan-

cial world in response to broader socio-economic circumstances. In 2018, with 133

communities, the market presented a multifaceted landscape reflecting a myriad of

investment patterns, yet, by 2019, a significant 113 of these communities vanished, re-

placed almost in kind by 114 new ones. This means that with the advent of the COVID-

19 epidemic, most investors may be changing their investment models. Transitioning

into 2020, a pivotal year marked by the zenith of the COVID-19 crisis, there was a

noticeable swell in the number of communities to 150, possibly indicating heightened

market fragmentation or diversified strategies, yet this surge was accompanied by a

staggering disappearance of 115 communities from the previous year, supplanted by

an even more pronounced influx of 131 new communities. This fluidity, in part, can be

attributed to the global tumult and uncertainties brought about by the pandemic, reshuf-

fling investor priorities and sectoral focuses. However, as the world started grappling
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with the aftermath of COVID-19, there was a subsequent contraction to 134 commu-

nities in 2021, and eventually, a further decline to 125 communities in 2022. This

sequential reduction, juxtaposed with the loss of 115 communities and the emergence

of 106 new ones from 2021 to 2022, perhaps hints at a gradual return to stability, with

the market slowly recalibrating itself. Yet, with only 19 stable communities in 2022

compared to 2018’s 20, it underscores the profound reshaping of the stock market

landscape over these years, with enduring communities potentially representing re-

silient sectors or steadfast investment approaches amidst rapid change. In 2018, there

are 133 communities.

In 2019, there are 134 communities.

In 2020, there are 150 communities.

In 2021, there are 134 communities.

In 2022, there are 125 communities.

From 2018 to 2019:

Stable communities: 20

Communities that disappeared: 113

New communities: 114

From 2019 to 2020:

Stable communities: 19

Communities that disappeared: 115

New communities: 131

From 2020 to 2021:

Stable communities: 24

Communities that disappeared: 126

New communities: 110

From 2021 to 2022:

Stable communities: 19

Communities that disappeared: 115

New communities: 106

5.2 Network Analysis

Let’s focus on the stock network’s evolution across three distinct periods related to

COVID-19: before COVID-19 (2018), during COVID-19 (2020), and after COVID-

19 (2022).
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1. Node and Edge Dynamics:

The dynamics of nodes and edges from 2018 to 2022 depict a market that was

in flux, rapidly responding to the externalities of the pandemic. The 13.5% uptick

in nodes between 2018 and 2020 mirrors a marketplace that was both reactive and

opportunistic. As sectors like healthcare and technology became frontline defenders

against the pandemic, they likely saw increased investor interest, translating to new

stocks entering the network[5]. Similarly, the boom in e-commerce, propelled by

global lockdowns and a paradigm shift in consumer behavior, further expanded the

network[6][47]. The substantial 25.% surge in edges in the same timeframe paints a

picture of investors actively reshaping their portfolios. This doesn’t just reflect an in-

creased interest in specific sectors, but also a broader strategy to diversify portfolios.

However, the descent in the number of nodes and edges by 2022 raises intriguing ques-

tions. The data might be indicative of a market that’s becoming more discerning. After

the initial reactive phase, there seems to be a strategic retreat. This could be a sign

of investors consolidating their positions, focusing on stocks that promise long-term

stability over short-term gains. It’s also plausible that the market, having ridden the

volatile waves of the pandemic, is now veering towards a more balanced and matured

stance. This transition from a reactive to a proactive approach in investment strategy

is emblematic of a market that has learned, adapted, and is now more prepared for

unforeseen challenges in the future.

2. Degree Analysis:

The upward trajectory in the average degree during 2020 underscores a market

that was evolving rapidly. The increase in average degree could be influenced by two

reasons. Firstly, there are more direct connections between nodes, suggesting that most

stocks have a growing number of common investors. The term ”co-holding patterns”

typically refers to the scenario where different investors or institutions have the same

or similar stocks in their portfolios. With escalating uncertainty, the surge in such co-

holding patterns can be seen as a safety net cast by investors in turbulent waters. This

is because most investors are likely to make similar decisions during market shifts,

and having a portfolio similar to other major investors can mitigate the risks of price

fluctuations. The second reason is the potential emergence of a hub in the network[3].

As the pandemic progresses, more and more investors invest in this hub stock, leading

to an increase in the network’s average degree. This hub stock is most likely in the

medical sector. This too represents a form of co-holding pattern.

Although the average degree decreased slightly in 2022, it still maintains a high



Chapter 5. Result and Evaluation 33

level, which is particularly indicative. It suggests that the habits formed or strategies

adopted during the stormy phase of 2020 might have entrenched themselves into the

investment psyche. This could be indicative of a more systemic and structural shift

in the market’s modus operandi. Investors might now be prioritizing a broad-based

approach over a concentrated one, perhaps influenced by the lessons of the pandemic,

where over-reliance on a specific sector or stock could have led to significant losses.

In addition, the wide range of degrees in 2020 is board, which might imply a more

inclusive market, where even lesser-known or traditionally less popular stocks found

favor in portfolios. Such broad-based diversification is emblematic of a market bracing

for the unknown, ensuring that all bets aren’t placed in one basket, no matter how

lucrative or stable that basket may have seemed in pre-pandemic times.

3. Density and Path Length:

Network density provides a robust insight into how interconnected a system is. The

observed decrease in density in both 2020 and 2022 suggests a more sprawling but less

densely interconnected stock network. This reflects a market phenomenon where there

is the entry of new stocks, which may be related to emerging industries or they are

adjusting to adapt to the new environment. But this does not mean that there has been

a corresponding increase in proportional connectivity. These stocks might have been

welcomed into portfolios, but the relationships between them and the existing stocks

weren’t as deeply established as among the pre-existing entities.

Several factors might account for this phenomenon. For instance, these newly in-

troduced stocks may come from emerging industries and represent new technologies,

and they may not be suitable for the established co-holding model[20]. Furthermore,

these stocks, due to their novelty or the inherent risks associated with untested tech-

nology during turbulent times, might have been approached with caution, resulting in

fewer immediate connections within the network.

The constancy in the average path length shows the resilience in the stock network.

In network analysis, the average path length serves as an indicator of the network’s

efficiency, elucidating how quickly information or influence can spread. Despite the

volatility introduced by the pandemic, the unaltered average path length suggests that

the overall efficiency of the stock market remained intact. This indicates that while

investors diversified and the network expanded, the fundamental interconnectedness

of the system held firm. It’s as if the foundational threads binding the market together

were elastic, stretching but not breaking. This is a testament to the agility and re-

silience of the global financial system. In the face of an unprecedented crisis, while the
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landscape of investments shifted and morphed, the core structure demonstrated adapt-

ability. The steadfast average path length showcases that, despite the turbulence of

the pandemic, the market’s inherent ability to communicate, to transfer value, and to

respond remained unscathed.

4. Clustering Coefficient:

The clustering coefficient is an insightful metric, shedding light on how closely

stocks tend to cluster or group together[46]. A rising clustering coefficient during

these periods suggests that investors are not just buying stocks at random, but are rather

meticulously curating their portfolios to reflect specific themes, sectors, or trends. The

continuous ascent of this coefficient during the periods of our interest is indicative of

a market that’s becoming progressively more discerning and strategic. It’s plausible to

surmise that, confronted by the uncertainties brought about by COVID-19, investors

sought solace in solidarity. They converged around those stocks or sectors that show-

cased either proven resilience or offered a promise of growth amidst the upheaval. Such

convergence is emblematic of a risk-averse strategy, where investors cluster around

known safe havens or emerging growth stories to mitigate potential downturns. For

instance, as conventional business models were challenged, investors might have grav-

itated towards innovative sectors, such as cloud computing or telehealth, recognizing

their transformative potential in a post-COVID world.

The heightened clustering also speaks to a shared investment sentiment. In tur-

bulent times, market sentiment often gets shaped by a blend of economic forecasts,

emerging narratives, and collective investor psychology. The increasing clustering

could be a manifestation of this collective sentiment, where shared beliefs and strate-

gies lead to similar investment behaviors, creating tighter and more defined clusters.

In essence, the evolving clustering coefficient captures a narrative of adaptation and

collective strategy. In times where uncertainty was the only certainty, the stock net-

work’s ability to maintain its functional structure showcases the strength and resilience

embedded in the very fabric of the global financial ecosystem.

5.Degree distribution

The degree distribution of a network offers profound insights into its structure and

the behavior of its members, and in the realm of a stock network, the degree of a node

showcases the quantity of other stocks it’s typically co-held with by investors[10].

A pronounced peak in this distribution hints at prevalent co-holding patterns within

the market. Interestingly, the distributions for 2018, 2020, and 2022 all prominently

peak at a degree of approximately 25, revealing a consistent co-holding pattern among
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investors. Despite the myriad of challenges and disruptions ushered in by COVID-19,

this consistency underscores the remarkably unwavering nature of investor behavior in

terms of diversification.

Furthermore, an intriguing evolution emerges when we delve into the frequencies

at this degree: while the degree’s peak remains a constant, the frequency has ascended

from 240 in 2018 to a notable 340 by 2022. This evolution suggests an expanding pool

of stocks aligning with this typical co-holding behavior, pointing towards a potential

trend of normalization or even homogenization in investor behavior over the years.

Such a trend might be a reaction, possibly shaped by factors ranging from nuanced

market analyses and widely endorsed investment practices, to broader external cata-

lysts, a prime example being the global responses and adaptations to the COVID-19

pandemic. This steadfast peak in the degree not only mirrors the consistency but also

the resilience entrenched within investment strategies. The multifaceted repercussions

of COVID-19 on financial terrains were varied and profound, with diverse sectors un-

dergoing different magnitudes of impact. Nevertheless, this persistent pattern reflects

that the quintessential strategy of diversification held its ground as a pivotal element in

investment decisions. Adding another layer to this observation, it’s pertinent to note

the tools and resources investors lean on. A significant portion of investors weave their

decisions based on tools, advisory platforms, and analyses. This persistently observed

consistency in co-holding patterns might be an indicator that these prevalent analytical

tools or platforms exert a standardizing influence over investor behavior, culminating

in a degree distribution that has remained steadfast across the years.

Statistics for 2018:

num nodes: 716

num edges: 15328

avg degree: 42.815642458100555

max degree: 292

min degree: 4

density: 0.05988201742391686

avg path length: 2.2511622455756535

clustering coefficient: 0.8052209263648691

Statistics for 2020:

num nodes: 813

num edges: 19274

avg degree: 47.41451414514145
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max degree: 393

min degree: 3

density: 0.058392258799435284

avg path length: 2.2092959845854616

clustering coefficient: 0.8104428831614624

Statistics for 2022:

num nodes: 794

num edges: 17379

avg degree: 43.77581863979849

max degree: 360

min degree: 3

density: 0.05520279778032596

avg path length: 2.2545319403724657

clustering coefficient: 0.8138486023103274

(a) 2018 (b) 2020 (c) 2022

In general, the data offers a snapshot into how the stock market network’s topology

evolved in response to the challenges and uncertainties brought about by COVID-19.

During the height of the pandemic in 2020, there was evident growth in network com-

plexity and interconnectedness, potentially as investors sought refuge in diversifica-

tion. As the world began adjusting to a post-COVID-19 reality in 2022, the network

saw some degree of consolidation, though it did not revert entirely to its pre-pandemic

state. This underlines the lasting impact of global events on market structures and in-

vestor behaviors, with COVID-19 serving as a significant case study in market adapt-

ability and resilience.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this project, our goal is to observe the impact of the COVID-19 pandemic on dy-

namic networks and their community structures. We first created a temporal binary

network about stocks and investors using the ‘graph.tool’ tool, and wanted to use

NPSBM to perform community detection on the time sliced subnetwork of the net-

work. However, we were not able to successfully partition the community for any time

sliced network, and we attempted to use simulated annealing to complete effective

community detection, but the results were still unsuccessful. This may be a problem

caused by the structural characteristics of the binary network. We have provided our

solution suggestions and decided to build a stock network to achieve the goals of this

paper. We used ABC to calculate weights and created a dynamic stock network. Sub-

sequently, we selected representatives from three sub networks before, during, and

after the pandemic, 2018/2020/2022. We selected the optimal model for these three

time slice networks and used npsbm for community detection. Then, we evaluated

the results of community detection and conducted dynamic analysis on these three

time slice networks. By analyzing and evaluating these three time slot networks and

their community structures, we conclude that the emergence of the epidemic has led

to a significant and frequent disappearance and restructuring of communities, which

means that a large number of investors have updated their investment portfolios. Faced

with increased uncertainty, a large number of investors have chosen co holding strate-

gies to reduce their own risks. However, risks often coexist with opportunities, and

the epidemic not only brings turbulence to the market, but also brings opportunities

to some investors. We believe that the abnormal state of the stock network during the

37
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epidemic period is likely due to the addition of medical and information technology

related stocks. We also found that the impact of the epidemic did not end with the end

of the epidemic, as the network in 2022 still showed relevant trends. The psycholog-

ical changes brought by the epidemic to investors continue to affect their investment

strategy choices and investment styles.

6.2 Limitation

Firstly, the NPSBM’s approach, grounded in its ability to model communities within

networks, inherently views the stock market as a collection of interacting entities. This

perspective is incredibly advantageous for capturing overarching community interac-

tions, but the granularity of individual stock behavior might sometimes become sec-

ondary. The stock market, with its myriad of events, announcements, policy changes,

and global cues, responds not just at the community level but also at the level of in-

dividual stocks. When NPSBM focuses on identifying clusters of similar stock be-

haviors, it might inadvertently gloss over the unique stories and journeys of individual

stocks that diverge from the group.

Another consideration is the model’s reliance on past data. Financial markets are

notoriously forward-looking. Investors often make decisions based on expectations of

future earnings, dividends, and macroeconomic events, among other factors. Hence,

while NPSBM might identify historical patterns of stock communities effectively, it

might not always predict how these communities will reconfigure in the face of new

information. For instance, disruptive technologies can reshape stock communities in

ways that past data might not necessarily suggest.

Lastly, the inherently quantitative nature of the NPSBM might not always account

for qualitative aspects that play a significant role in stock market dynamics. Factors

such as market sentiment, investor psychology, and narrative-driven movements are

hard to quantify but have a profound impact on the market. An over-reliance on

NPSBM might result in underappreciating these qualitative factors.

While the Non-parametric Stochastic Block Model offers a novel and powerful lens

to understand the community structures within the stock market, it should be viewed

as one tool among many. To truly grasp the intricacies of the ever-evolving financial

markets, a multifaceted approach that blends quantitative modeling with qualitative

insights and incorporates both historical patterns and forward-looking perspectives is

imperative.
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6.3 Future Work

In light of the insights derived and the limitations acknowledged from the use of the

Non-parametric Stochastic Block Model (NPSBM) in analyzing the stock market’s

dynamics during the pandemic, several avenues for future work emerge.

In constructing a temporal stock network, we can combine machine learning tech-

nology to train models using historical data to predict future dynamics of the stock mar-

ket, including price, trading volume, and potential changes in community structure[43].

Combining machine learning technology[55] can provide a new way to interpret and

predict market dynamics. Furthermore, while a broad overview of the market is in-

valuable, there’s a growing imperative for sector-specific analyses. Each sector, from

technology and healthcare to finance and energy, faced unique challenges and oppor-

tunities during the pandemic. A more granulated examination of these individual sec-

tors could unearth nuanced strategies, innovations, and adaptations that a broader lens

might miss. Such sector-focused insights could be instrumental in tailoring more ef-

fective investment strategies and predicting future sectorial growth trajectories.

Another promising avenue involves integrating NPSBM with other analytical mod-

els and tools. Each model, with its inherent strengths and biases, provides a unique

perspective. A fusion of these perspectives, through a multi-model approach, could

yield a richer and more comprehensive understanding of market dynamics, mitigating

the blind spots that any single model might possess. Lastly, and perhaps most intrigu-

ingly, is the integration of behavioral analysis into future studies. The stock market,

while often perceived as a realm of numbers and logic, is profoundly influenced by hu-

man behaviors and psychologies[13]. By intertwining the rigorous structural insights

of models like NPSBM with principles from behavioral finance, we could delve into

the underlying psychological factors steering market changes. Such an amalgamation

could offer unprecedented insights, merging the quantitative with the qualitative, and

painting a more complete portrait of the market’s performance in the face of global

disruptions like COVID-19.

Building stock networks by ABC and the application of nonparametric stochastic

block models provide a structured understanding of the stock market’s response to

the challenge of COVID-19. While the insights derived are invaluable, it’s crucial

to acknowledge their limitations. Future endeavors can build upon this foundation,

aiming for a more holistic grasp of the market’s dynamics during COVID-19.
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