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Abstract

Modern language models typically rely on a finite vocabulary for both input and

output, which restricts the diversity of applicable text and gives rise to a vocabulary

bottleneck. Also, the large number of vocabulary embeddings brings significant compu-

tation overhead.

However, humans can robustly process langue through visual input without a defined

vocabulary. Inspired by this, some existing works build language models with pure

vision inputs to overcome these problems and achieve promising performance. In this

research, we proposed 2 new methods for vision language models: (1) We found visual

language models trained in semantic-rich latent space converge faster and conduct

better downstream task performance compared with training directly on text images; (2)

We proposed the Visual Adversarial GPT (VAGPT) model, which is trained with pure

vision input and output. We verified the feasibility of vocabulary-free vision generative

language models.
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Chapter 1

Introduction

Mainstream language models rely on rule-based tokenizers, which convert input text

sentences into discrete indexes within a defined vocabulary. And the model will map

the indexes to embedding vectors to represent the semantic meanings. Consequently,

the finite size of the vocabulary constrains the variability of the language which the

model can handle and brings a vocabulary bottleneck [27]. The matrix which contains

token embeddings also causes significant computation overhead during the training and

the inference [15].

Subword-level tokenizers, such as Wordpiece [39] and BPE [33] tokenizers can

mitigate the vocabulary bottleneck problem by encoding rare and unknown words as

sequences of subword tokens. However, humans engage with linguistic information

through vision or sound. Tokenizers forfeit the graphical information of text during

the tokenization process, thereby creating a disparity between human language com-

prehension and NLP models. This discrepancy becomes even more pronounced for

logographic languages like Chinese[35].

1.1 Visual Language Model in Latent Space

A natural solution is training language models with visual input as well. PIXEL [27]

adapts Masked Autoencoder (MAE) [10] as a masked language model with pure vision

input and achieves comparable downstream performance with BERT [5]. PIXEL also

exhibits robustness to noisy inputs and generalizability to look-alike texts.

PIXEL accepts image patches containing texts as input. The training objective is to

reconstruct masked text image patches. So the output is also an image. The training

objective is similar to image inpainting or image generation tasks. Directly training

1



Chapter 1. Introduction 2

(a) target (b) PIXEL (c) LatentPIXEL

Figure 1.1: Reconstruction of PIXEL and LatentPIXEL. Masked patches are circled by

green squares.

models to reconstruct images focus on both high-frequence details and semantic infor-

mation [26]. However, we do not require the language model to perfectly reconstruct

image details but to focus on high-level semantic meanings.

Thus, in this research 1, we adapted a VQGAN-based image compressor which

encodes the text images into a semantic-rich space. Then we train the PIXEL on the

encoded latent images. We obverse that LatentPIXEL converges faster and has better

downstream task performance than the original PIXEL trained with the same setting.

Figure 1.1 shows the reconstruction output of our models.

Visual Adversirial
GPT

Autoregressive
Next Patch Prediction

Discriminatorreal / fake

Figure 1.2: The Architecture of VAGPT.

1.2 Generative Visual Language Model

Similarly, [29] proposed a generative sequence-to-sequence language model with pure

visual input. They append a Convolutional [23] image encoder before an encoder-

1Our work is accessible through GitLab. https://git.ecdf.ed.ac.uk/s1891075/msc project

https://git.ecdf.ed.ac.uk/s1891075/msc_project
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(a) prompt (b) VGPT (c) VAGPT

Figure 1.3: Text images are generated patch by patch autoregressively by the corre-

sponding model. VGPT trained with only reconstruction loss suffers the “average patch”

problem. VAGPT mitigates this problem by training with an extra adversarial fidelity loss.

The quality of generated texts is not promising due to limited pretraining steps.

decoder Transformer [38] to feed rendered text images to the Transformer backbone.

And the Transformer output translated texts. However, this model still suffers the vocab-

ulary bottleneck because the output text is tokens selected from the output embedding

layer.

In our implementation, we build a vocabulary-free decoder-only Transformer-based

model, Visual GPT (VGPT), whose input and output are all text image patches. We

exploited the GPT2 [24] as our language backbone, and linearly map image patches as

embedding vectors to feed to the backbone. For the output, VGPT linearly maps the

output vectors into image patches. As Figure 1.2 shows, the model generates new text

in the next patch autoregressively. Also, we evaluated training in both images and in

latent space.

However, VGPT suffers the “average patch” problem since predicting a non-text

“average patch” has a lower loss than a wrong patch. We mitigate this problem by adding

an adversarial loss. Thus, VGPT becomes Visual Adversarial GPT (VAGPT). VAGPT

is capable of generating long text patches. Figure 1.3 displays the generated text images.

To mitigate the mode collapse and avoid the catastrophic forgetting problem [36] of

GANs [9], we applied the following measurements:

• The adversarial training is short and only applied in the final stage of pretraining.

• Linear warm up the ratio of the adversarial loss.



Chapter 2

Background

2.1 Language Model with Visual Information

2.1.1 Applications in Non-Alphabetic Languages

Language models with visual input are majorly applied for Chinese due to its loggraphic

feature. Chinese, Japanese, and Korean characters have compositional parts that carry

semantic meanings. [17] used a CNN-based encoding block with max-pooling to extract

character-level visual representations to capture the visual semantics of the compo-

sitional parts in text classification tasks. Similarly, [34] rendered Chinese sentences

into fixed-size images and thus used a CNN network to do text classifications. Models

proposed by [17] and [34] solely rely on visual inputs. Researchers also explored

methods to combine id-based embedding and visual information.

[20] exploited the Tianzige feature of Chinese characters, and proposed a specific

Tianzige-CNN encoding layer to capture graphic information as embeddings. They

combine graphic embeddings with traditional ID-based embeddings as a mixed input

of RNN-based models. [4] and [35] explored using character-level visual feature for

BERT-based models. [4] also applied a CNN encoder to capture visual features as Glyph

Embeddings and added to ID-based embeddings as a mixed embedding. Furthermore,

[35] proposed ChineseBERT which embeds each Chinese character as three embeddings,

visual embedding, Pinyin (pronunciation feature) embedding, and the ID embedding as

the input of the RoBERTa backbone [18]. ChineseBERT uses linear mapping to convert

each character image to an embedding, rather than CNN layers.

The aforementioned works, except [34], treat each character as a token because a

single Chinese character could be regarded as an individual word [35]. MacBERT [3]

4



Chapter 2. Background 5

also uses single-character tokenization and achieved state-of-the-art performance on

many Chinese NLP tasks.

2.1.2 Applications in Alphabetic Languages

Researchers also explored using visual input for alphabetic languages. [28] used visual

similarity for romanization of Egyptian and Russian. [29] is a Transformer-based

machine translation model that uses a CNN-based input layer to convert overlapping

rendered text image patches to embeddings. [27] uses non-overlapping patches as input

to the MAE backbone and is pretrained to predict the masked image patches.

2.2 Transformers in Vision

The following is based on my IPP report.

Transformer makes few architectural assumptions about the input data formats, it

could be easily adapted to vision input without heavy modification. In 2021, the Vision

Transformer (ViT) [6] successfully applied Transformer in vision tasks and achieved

comparable performances with SOTA models on several vision benchmarks. ViT

segments input images into 16-by-16 patches and maps them into vector embeddings

through a linear projection. Unlike the convolutional neural networks (CNN) [23],

Transformers lack the inductive bias for 2-dimensional images. ViT uses a set of learned

positional embeddings to embed the position information of each image batch.

ViT is trained with the image classification objective, lack of generation ability.

Inspired by the Masked Language Models (MLMs) in NLP, MAE-ViT [10] is trained

by predicting a masked image patch, displays of applying NLP training objectives in

vision tasks. MAE-ViT is the backbone model of PIXEL, which is also trained with a

similar MLM objective.

Similarly, BEiT [2] is also trained by predicting masked image patches. The

difference between BEiT and MAE-ViT is that BEiT does not directly take raw image

patches as input, but encodes the image patches into a latent space by a Quantised-

Variational AutoEncoder (VQVAE) [37]. Training in a latent space brings several

potential benefits, such as reducing the computational cost of the Transformer block and

leaving the high-frequency details to the VQVAE, therefore, the backbone can focus on

semantic meanings rather than image textual details [26].



Chapter 3

Methodology

3.1 Text Render

Figure 3.1: The left-hand side image is the rendered text of 1 sentence. The right-

hand side is the rendered text of a pair of sentences split by a black patch. For better

demonstration, we fold 1-line images into a square image.

Our model accepts images with text as input. As the figure 3.1 shows, we render

a sample of text into one line as one RGB or grayscale image using the PangoCairo-

TextRenderer render from PIXEL. All line breaks are ignored to keep one sample of

text rendered in one line. The rendered image composes 529 patches with the same

width. A text image could be represented as P = (p1,p2, ...,pn), where pi ∈ Rc×w×w. c

is the number of channels and w is the width of an image patch. c = 3 when the image

is rendered into RGB color. For grayscale, c = 1.

6



Chapter 3. Methodology 7

We render the end of sentences as black patches and padding all images into 529

patches using white patches. For sentence-pair input, we use the black patch as the

splitter.

Patch width, font, font size, and DPI are configurable for different experimental

setups. We will demonstrate the settings in 5. For computational efficiency, we

parallelize the rendering process during training to take advantage of multi-core CPUs

and pre-render the next batch of images asynchronously.

3.2 Adversarial Training

3.2.1 “Average Patch” Problem

Different from traditional generative language models which always output valid text

within the vocabulary. As Figure 1.3(b) exhibits, VGPT generated only one patch text

and then begin to generate non-text or unrecognizable image patches. We hypothesize

this problem is due to some non-text patches, such as an ”average patch”, having lower

loss compared with a wrong text patch. VGPT prunes to generate ”average patches”

when the next patch is uncertain or unpredictable.

3.2.2 Fidelity Loss

To mitigate this problem, we apply an adversarial loss from a lightweight discriminator

D which classifies whether an image patch is generated or real. The discriminator

is trained to minimize the classification loss but the generator is trained to maximise

it. Therefore, one of the generator’s objectives is to generate image patches with

high fidelity to fool the discriminator to classify them as real. We regard the inversed

classification loss as fidelity loss. When fidelity loss and reconstruction loss are properly

balanced, the model can generate long and valid text images rather than non-text

“average patches”. We refer to VGPT trained with fidelity loss as Visual Adversarial

GPT (VAGPT).

We can regard the output of the generator as a distribution p′(x̂i+1|x1, ...,xi). For a

generated next patch x̂i+1, we use the Mean Squared Error (MSE) between xi as the

reconstruction loss. For the discriminator, we use the Cross-Entropy between p′(x̂) and

p(x) as the loss. Therefore, the complete training objective is to find a Nash equilibrium

[22] of θG and θD in a minimax game.
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argmin
θG

max
θD

λ[Ex̂∈p′[logD(x̂)]+Ex∈p[log(1−D(x))]]+

(1−λ)Ex̂i+1∈p′(x̂i+1|x1,...,xi),xi+1∈p(xi+1|x1,...,xi)[MSE(x̂i+1,xi+1)]

In the above equation, λ is the adversarial ratio which controls the significance of

the recognizability objective.

3.2.3 Two-Stage Training

GANs often catastrophic forgetting and mode collapse problems. Our purpose of

adversarial training is only to mitigate the “average patch” problem. And language

understanding is harder than generate high-fidelity images. Thus, VAGPT is pretrained

in two stages. The first long stage we only apply the reconstruction loss. The adversarial

fidelity loss is only applied in the short second stage. Also, in this stage we linearly

warm up the fidelity loss ratio from 0.

3.3 Training in the Latent Space

En
co

de
r

Language
Backbone

Encoded patches
classfication labels,
predicted patches,
regression values,
loss,
...

Latent space

Figure 3.2: Models are trained in the latent space.

Our target is to understand or generate the text contents in images but not to

reconstruct the image itself. Thus, the mismatched pixel details and mislocation of the

contents are irrelevant to our objective. However, computing the loss directly on the text

images will take the high-frequency details into consideration. To mitigate this problem,

following other generative models in image or multi-modal tasks [26, 25, 41], we apply

a VQGAN [7] as an image compressor to compress raw high-resolution text images

into a low-resolution latent space where image representations are more effective [26].

As Figure 3.2 shows, when the model is trained in latent space, we first apply

the encoder of the compressor to encode each image patch into a sequence of low-

dimensional vectors and feed them into the language backbone. For MLM training, we
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randomly mask some of the encoded patches and the model is trained to reconstruct the

masked encoded patches. For Causal Inference training, the objective is to predict the

value of the next encoded patch at every feasible position of the input sequence.

All the training is done in the latent space thereby we do not need the decoder

during the training. For most discriminative tasks, such as classification or regression,

the output of the model is labels or continuous values corresponding to the task. The

decoder is functionless for these tasks thus we will not load the parameters of the

decoder to reduce the cost.

In our implementation, we didn’t train the compressor model on our own but directly

use the trained VQGAN model from Stable Diffusion 1. We freeze all parameters of the

compressor during the training.

3.4 Text Recognizability Measurement

Applications of generative language models, such as chatbots, AI translators, text sum-

marization, etc., require the model to generate correct and human-understandable texts.

Therefore, we need to consider both the correctness and the recognizability of the gen-

erated contents when measuring the quality or performance of the generative language

models. However, the mainstream generative models do not suffer the recognizability

problem because they only direct generate texts defined in a fixed vocabulary and these

defined texts are always recognizable. Thus, traditional metrics, such as perplexity, for

generative language models do not consider recognizability.

Also, the traditional metrics for image-generation tasks focus on the quality or the

fidelity of generated images rather than the accuracy of texts inside and therefore do not

suitable for our purpose.

To consider both the correctness and recognizability of generated text images, we

propose a simple metric which is the recognized Edit-distance (RecDist). The RecDist

is the character-level Edit-distance between the ground-truth text and the recognized

text averaged by the length of the ground-truth text.

Suppose we have a sequence of characters S = (s1,s2, ...,sn) as the ground truth and

an image I of predicted or reconstructed text. To measure the RecDist, we first use an

OCR tool to recognize the text in the image, then calculate the Edit-distance between

the ground-truth text and the recognized text. Finally, average the distance with respect

1Parameters are available here https://huggingface.co/stabilityai/stable-diffusion-2-1

https://huggingface.co/stabilityai/stable-diffusion-2-1
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to the number of characters of the ground-truth text. The RecDist could be defined as

the below equation.

RecDist(S, I) = EditDistance(S,OCR(I))/n

In this research, we use the Tesseract OCR2 software, which contains a lightweight

LSTM-based [13] text recognition model. To calculate the Edit-distance, we use

Python’s “editdistance” package 3.

2Tesseract OCR is publically available here https://github.com/tesseract-ocr/tesseract
3“editdistance” package is publically available here https://pypi.org/project/editdistance/

https://github.com/tesseract-ocr/tesseract
https://pypi.org/project/editdistance/


Chapter 4

Model Architectures

4.1 Transformers

Both of our backbones apply the Transformer structure. Transformer is a deep neural

network architecture proposed by [38] in 2017 and became the dominant choice for

natural language processing (NLP) tasks in following years [6]. The Transformer

structure was also been proven effective in vision tasks, including image classification,

image recognition, [6, 10], and image generation [25] tasks. In our proposed models, we

also adapt the Transformer structure. The original Transformer model is composed of an

encoder and a decoder. Each layer of the encoder and the decoder contains self-attention

or encoder-decoder-attention layers. The encoder-decoder-attention is also referred as

cross-attention in the following works [16].

4.1.1 Self-attention Mechanism

For NLP tasks, the semantic meaning of each token relies on all other tokens in the

context. To model this relationship, the self-attention accepts a sequence of vectors

X = (x1,x2, ...,xn) as input, each of them represents one input token. Each input

embedding is linearly mapped to 3 vectors, k, q, and v. If we write them into matrices,

the procedure could be represented as

Q = WQX; K = WKX; V = WVX,

where WQ, WK, and WV are h by h matrices and h is the dimensionality of hidden

embeddings xi. It’s not necessary to make the Q, K, and V have the same dimension.

But for simplicity, we follow the other works to use the same hidden dimension h

11



Chapter 4. Model Architectures 12

through the network. Thus, qi ∈ Rh represents the “query” of xi, ki ∈ Rh represents the

“key” of xi, and vi ∈ Rh represents the “value” of xi.

The attention score from xi to x j is the dot production of related “query” and “key”

scaled by the dimensionality.

score(xi,x j) =
qi ·k j√

h
Then, the embedding of xi is the average of “values” weighted by the softmax of

the attention scores.

SelfAttention(X) = softmax(
QK⊤√

h
)V (4.1)

In our settings, we apply the multi-head self-attention, which split each vector of k,

q, and v into k sets. Thus, each of them has the dimensionality h/k. Then calculate the

SelfAttention for k sets and concatenate the final result to get the h dimension result.

The Transformer block then applies Layer Normalizations [1] and a feed-forward

layer to the result to get the final contextualized output embedding. To mitigate the

gradient vanishing problem, a residual connection [11] is applied before each Layer

Normalization in the original Transformer structure.

The calculation of encoder-decoder-attention, or cross-attention, is very similar to

self-attention but takes embeddings from another encoder rather than from the previous

layer as input. In the original Transformer model, the decoder takes the contextualized

embeddings from the encoder through cross-attention.

4.1.2 Attention Masks

To improve the calculation efficiency on modern GPUs, we pack several input sequences

into a batch. Therefore, we need to pad each sequence of a batch to the same length

using special meaningless padding embeddings. To avoid the token embedding xi attend

to the padding embeddings, we can set the attention score to −∞ before the softmax

function by adding an attention mask MA ∈ Rn×n.

MA
i, j =

0 if x j is not a padding

−∞ if x j is a padding

We thus modify the equation 4.1 to
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SelfAttention(X) = softmax(
QK⊤√

h
+MA)V. (4.2)

Similarly, for models trained with Causal Inference (next patch prediction) task,

we need to add causal attention masks MC ∈ Rn×n to the attention scores to prevent

embeddings attending the “future” information [24]. xi’s causal attention mask MC
i is

defined as below.

MA
i, j =

0 if j ≤ i

−∞ if j > i

The self-attention calculation of causal inference could be represented as the follow-

ing equation.

SelfAttention(X) = softmax(
QK⊤√

h
+MA +MC)V. (4.3)

4.1.3 Transformer Layer

Both the PIXEL backbone and the GPT2 backbone exploit the Transformer layers as

their main structure. Figure 4.1 shows the detailed structure of the Transformer layer.

Firstly, the input embeddings are normalized with the layer-wise mean and variance. The

Layer Normalization operation mitigates the “covariate shift” problem and stabilizes

the training [1]. Then the normalized embeddings are passed to the Masked Multi-Head

Self-Attention layer to calculate the attention between each embedding and output

contextualized embeddings as Section 4.1.1 discussed. The masking strategy of the

Self-Attention layer depends on the model.

There is also a residual connection between the input and the output of the Self-

Attention layer to mitigate the gradient vanishing problem for deep neural networks.

Then, the added results are normalized again by a Layer Normalization operation using

the layer-wise mean and variance. The normalized results are passed to a 2-layer

fully-connected neural network with the GELU [12] activation function. Normally, the

intermediate dimension of the fully-connected neural network is larger than the hidden

dimension h. Finally, the results of the fully-connected neural network are fed to a

dropout layer which randomly set some of the values to 0 during the training. And add

the output from the self-attention layer to construct another Residual Connection.

In our models, the position of 2 Layer Normalizations is different from the original

Transformer model. The original Transformer performs Layer Normalizations after
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Masked
Multi-Head

Self-Attention

+

Layer Normalization

Layer Normalization

Linear Layer

GELU

Linear Layer

Dropout

+

input

output

Residual
Connection

Residual
Connection

Figure 4.1: Structure of Pre-LN Transformer layer.

the Multi-Head Attention layer and the fully-connected layers in a Post-LN style [40].

Instead, our models apply Pre-LN style Layer Normalization. The Layer Normalization

is applied before the Multi-Head Attention layer. Compared with Pre-LN, the Pre-LN

Transformer layer is more stable during the initial stage of the training and more robust

to different hyperparameter settings [40].

4.2 Patch Embedding & Transposed Patch Embedding

As we mentioned in the previous chapter, the self-attention mechanism models the

relationship between every pair of input patches or tokens by calculating the attention

score between every pair of keys and queries. The computational complexity of the

Transformer increases quadratically with the length of the input sequence. Thereby,
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directly applying the Transformer structure to pixels requires dramatical computation

[6]. To reduce the computation overhead, similar to other Transformer-based vision

models [6, 10, 27]. Our models treat an image patch as a token rather than a pixel.

We applied the Patch Embedding as the first layer of both the PIXEL and GPT2

backbone. The functionality of the Patch Embedding layer is to firstly partition an input

image into a sequence of consecutive but non-overlapping regular image patches, then

map them into embedding vectors of shape h. For ith patch pi ∈ Rc×w×w, the layer

flattens all values into a vector xin
i ∈ Rd , where d = c×w×w. Then conduct a dot

product between xin
i and a parameter matrix Wp ∈ Rb×h to get the embedding vector

xi = xin
i ·Wp.

The calculation could be effectively done by a non-biased Convolutional layer [23]

with stride and kernel size set to w. For a Convolutional layer with stride w, kernel size

w×w, c input channels, and h output channels, there is a kernel tensor K ∈ Rc×h×w×w.

The jth value of the output embedding xi is the sum of the element-wise product between

corresponding kernels and all input channels. The equation below precisely describes

this calculation.

xi, j = ∑
k=c

∑
k=1

Kk, j⊙ pi,k, where j ∈ {1, ...,h}

The ⊙ symbol represents the element-wise product between two matrices. The

procedure is equivalent to the convolutional calculation when the stride length is set to

w.

x·, j =
k=c

∑
k=0

Kk, j ⋆ p·,k, where j ∈ {1, ...,h}

The ⋆ symbol in the equation ahead is the 2D discrete cross-correlation operation

with stride w.

To reconstruct the image patches from embedding vectors, we apply Transposed

Patch Embedding layers at the output layer of our models. Similarly, we can effectively

implement the Transposed Patch Embedding using the Transposed Convolutional layer

with stride w, input channel h, output channel c, and kernel size w×w. The Transposed

Patche Embedding layer converts an embedding of dimensionality h into an image

patch of shape c×w×w. In the original PIXEL implementation, the Transposed

Patch Embedding is conducted by a series of tensor reshapes and concatenations. We

implement it using the Transposed Convolutional operation to improve efficiency.
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4.3 PIXEL Backbone

4.3.1 Architecture

Figure 4.2: The ViT-MAE architecture from [10].

The PIXEL model is a Transformer-based masked autoencoder (MAE) [10]. It

adapts the structure of ViT-MAE. As Figure 4.2 demonstrates, the model composes an

encoder and a relatively small decoder. The encoder only operates on a partial of the

input and others are masked [10]. When the image compressor is applied, the encoder

takes the compressed image representation as input. Otherwise, the encoder directly

takes the image patches as input. Then, the encoder converts each input patch into a

vector embedding in the encoder’s space. The decoder accepts the representations in

the encoder’s space as input and reconstructs the missing parts in the latent space or

directly reconstructs the missing pixels depending on whether the image compressor is

applied.

4.3.2 Span Masking

During the pretraining, only part of the patches are fed to the model. The ViT-MAE

model selected a high masking ratio, 75%. Since the ViT-MAE is trained on natural

images which are more informatically redundant compared with the human-generated

text data or text images [10]. It is easier for the model to reconstruct natural images

compared with text images. Thus, we select a much lower masking ratio, 25%, during

the pretraining process.

Following the PIXEL, we apply the span masking strategy. We mask consecutive

spans of patches according to a pre-defined distribution. We use the same masking
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distribution as the PIXEL, a mask may span 1, 2, 3, 4, 5, or 6 patches with respect to

probability 0.2, 0.2, 0.2, 0.2, 0.1, and 0.1 for each length. Algorithm 10 represents the

pseudo-code of the span masking strategy.

Algorithm 1 the Span Masking Algorithm
Input: #Input patches n, masking ratio R, maximum masked span length L, span length

cumulative probability P = {p1, p2, ..., pL}
Output: Masked patch positions M

M ← /0

while |M | ≤ R ·n do
l← randchoice({1, ...,L},P) ▷ Sample a span length from the distribution

s← randint(0,max(0,n− l)) ▷ Sample a starting position

e← l + s ▷ The ending position of the span

if M ∩{s− l, ...,s−1}= /0 and M ∩{e+1, ...,e+ l}= /0 then
M ←M ∪{s, ...,e} ▷ Make sure two spans are not too close

end if
end while
Return M

4.3.3 MAE Encoder

The encoder is a Vision Transformer [6, 10] but only accepts the unmasked patches as

input. Thus, there is no calculation on the masking embeddings in the encoder which

reduces the computation overhead.

As Figure 4.3 shows, the first layer of the encoder is a learnable patch embedding

layer, which linearly maps the input patches into vectors of dimension h. In our

implementation, for computation efficiency, we apply a Convolutional layer without

bias to conduct the linear mapping. The stride and kernel size of the layer are set to the

patch width w and the number of the output channel is set to the hidden embedding

dimension h. By this setting, an image patch x ∈ Rc×w×w] will produce a “single-pixel”

image z ∈ Rh×1×1 with h channels. We can easily reshape z into a vector of dimension

h.

Due to Transformer layer lacks inductive bias, the model does not acquire the

position information of each patch automatically like the CNN layer. Thus, we use a

positional encoding layer to add position information to the patch embeddings. In our
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Patch Embedding Layer
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Figure 4.3: Structure of PIXEL encoder. Patches filled with black color represent the

masked patches. The input is latent image patches when the image compressor is

applied.

PIXEL backbone, we apply fixed position embeddings rather than relative positional

embeddings. The positional embeddings are stored in a matrix P ∈ RN×h, where N is

the maximum number of patches the model can accept. The ith vector pi of the matrix

represents the ith position in the input sequence. The computation of the embedding

layer could be represented as Equation 4.4.

We prepend a CLS token at the start of the input sequence as Figure 3 shows.

Embeddings of the CLS token are also trainable parameters. During the pretraining, the

CLS token is nonfunctional. We use the output CLS embedding in downstream tasks,

such as classification and regression tasks.

PatchEmbedding(xi) = Convolutional(xi;w,h)+pi (4.4)

Following the patch embedding layer, there are several Pre-LN Transformer layers,

as we discussed in Section 4.1.1, in the encoder. [10] refers to the Transformer layer

as the ViT layer. The ViT layer has the identical structure as the Figure 4.1. Specif-

ically, the Multi-Head Self-Attention layers are bidirectional which only applies the

attention masking mechanism but not the causal masking mechanism, as Equation 4.2

demonstrates.
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Figure 4.4: Structure of PIXEL decoder. Input embeddings are contacted with masking

embeddings.

4.3.4 MAE Decoder

The decoder has a very similar structure to the ViT encoder. As Figure 4.4 shows, it

also has a trainable positional embedding layer and 8 Transformer layers but with a

smaller hidden dimension. The decoder takes the output of the encoder as the input and

linearly maps the encoder embeddings into vectors of the decoder’s hidden dimension.

Because the encoder does not output the embeddings of the masked patches, the decoder

appends a trainable masking embedding to the corresponding positions of the input

sequence. Masking embeddings append to all positions are the same. And similarly,

adds positional embeddings to each vector and feeds them into subsequent ViT layers.

The self-attention layers of the decoder also apply the calculation of Equation 4.2.

Thus, the model will predict embeddings at masking positions depending on all previous

and subsequent embeddings.

4.3.5 Classification & Regression

In this paper, we evaluated the model with PIXEL backbone across both regression and

classification tasks. For a classification task involving C classes, we initialize a linear

layer which takes the CLS embedding from the encoder as its input and outputs a vector

with a dimensionality of C. Subsequently, a softmax operation is applied to this vector

to derive the probabilities associated with each individual class.

Typically, in regression tasks, models are expected to generate continuous values

for each sample. To facilitate this, we similarly set up a linear layer that accepts the

CLS embedding from the encoder as input and generates a singular scalar value as the
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outcome. Following the original PIXEL model, for both regression and classification

tasks, we only use the 12-layer encoder.

4.4 GPT2 Backbone

4.4.1 Architecture

Convolutaionl Layer

+ + + + + + + + +
1 2 3 4 5 6 7 8 9Position

Embeddings

Transformer Layers
with Causal Masking

Transposed Convolutaionl Layer

Predicted Next
Patches

Figure 4.5: Structure of GPT2 backbone. When applying the image compressor, inputs

are latent image patches.

We exploit the GPT2 model as our backbone model in generative tasks. Figure 4.5

exhibits the structure of our GPT2 backbone. The GPT2 model is a decoder-only [24]

12-layer Transformer model. The GPT2 backbone is identical to the original GPT2

model except we replace the input embedding layer as a Patch Embedding layer and the

output embedding layer as a Transposed Patch Embedding layer, as we discussed in

Section 4.2.

The GPT2 backbone applies the same positional embedding strategy as the PIXEL

backbone. We initialize a new trainable vector of dimensionality h for each possible

input position. And add the corresponding position embedding to each mapped em-

bedding to integrate the location information. Then the embeddings of each patch are

passed to the subsequent Transformer layers to predict the next patch at each position.
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The GPT2 backbone also uses the Pre-LN Transfomrer layer as Figure 4.1 demonstrates.

For the self-attention calculation, GPT2 attention applies both Causal Inference masking

and attention masking mechanism as Equation 4.3 shows. Thus, all tokens can only

attend previous tokens through uni-directional attention.

Since the uni-directional attention, the GPT2 backbone is trained to predict the next

patch at all feasible possible positions and thus a generative model.

4.4.2 Discriminator

Discriminator Layers

fake fake fakereal reak fakerealreak fake

Convolutional Layer

Linear Layer

Affine Layer

Layer Normalization

GELU

Affine Layer

GELU

Dropout

Input

Output

+

Residual
Connection

Dropout

GELU

GELU

Layer Normalization

Figure 4.6: Discriminator Structure.

Figure 4.6 demonstrates the structure of the discriminator, which is trained together

with the GPT2 backbone. The discriminator applies the Patch Embedding on the output

of the backbone’s output and judges whether a patch is generated.

Normally, the discriminator’s objective is much simpler than the generator’s [30].

Therefore, we design the discriminator with a lightweight structure that only has 4

Affine layers and 2 linear mapping layers. We can regard the Patch Embedding layer as

1 linear mapping layer as we discussed in Section 4.2.

4.4.3 Classification & Regression

When we apply our GPT2 backbone on classification and regression tasks, we initialize

a linear mapping layer at the end of the model. The linear mapping layer maps an

embedding to a distribution among C tasks or a continuous value. Since only the
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final embedding can attend all information from previous patches, we only input the

embedding of the output embedding at the last position to the linear mapping layer.

4.5 Image Compressor

Figure 4.7: VQGAN Structure. This figure is taken from [7].

We use the VQGAN [7] structure with a compress ratio of 8 as our image compressor

for our latent models. The VQGAN compresses an image patch of shape 3×w×w into

a latent patch of shape 4× w
8 ×

w
8 .

The VQGAN model is composed of CNN-based encoder and decoder, a vector

quantization layer [37], and a CNN-based discriminator as Figure 4.7 shows.

During the training, the encoder converts image patches into embeddings and outputs

the closest embedding in the quantization layer. Then the decoder reconstruction the im-

age from the discrete embeddings. The discriminator is also a patch-wise discriminator

trained together with other parts of the model.

However, the quantization layer is not continuous and thus not derivable. During the

backward propagation, we copy the gradients of the discrete embeddings to the output

embeddings of the encoder. Thus, gradients of other parts can be calculated accordingly

using the chain rule.

During the inference, since the output of the encoder layer is the closest embedding

of the output vector, we can skip the embedding layer and directly feed the output vector

to the decoder. In our case, latent models are trained on the output vectors. We didn’t

train the image compressor from scratch. We directly applied the VQGAN from Stable

Diffusion [26] which is trained on LAION dataset [32, 31].
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Experiments & Analysis

5.1 Pretraining Data

Our models are pretrained on a dataset collated from an English Wikipedia dump [8] and

the BookCorpus dataset [42]. The size of the English Wikipedia and the BookCorpus

dataset is 19 GB and 4.6 GB. The dataset is similar to the pretraining datasets of BERT

and PIXEL. Because both Wikipedia and BookCorpus contain long documents which

exceed the maximum length of the model input. We segment long documents into short

documents by splitting them at line breaks. If a sample is still too long after the splitting,

we only render the non-exceeding part.

Some samples are too short and require a lot of padding patches during the training.

However, the padding patches do not contribute to the training but waste calculation

overhead. During the pretraining, we set 400 as the minimum length for each training

sample. If a sample is shorter than 400 characters, it will be concatenated to its following

samples until it’s longer than 400 characters.

We also balance the 2 datasets by randomly drawing samples from them with the

probability proportion to their quantity. Thus, we can iterate an epoch over them at

about the same time. Different from PIXE which renders all data in advance, we render

all samples in real-time during the training using our parallel render software.

5.2 Recognizability Evaluation

We measured the RecDist of different rendering settings to ensure texts are recognizable

after the image compressor. Table 5.1 exhibits the results with or without the image

compressor. When measured with the image compressor, we first compress the image

23
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Font Patch Width Width Compressed DPI RecDist without/with compressor

GoNotoCurrent 32 4 240 6.5e-3/6.4e-3

GoNotoCurrent 24 3 180 1.9e-2/3.8e-2

GoNotoCurrent 16 2 120 1.1e-2/0.52

GoNotoCurrent 8 1 60 0.92/1.0

Table 5.1: RecDist under different rendering settings.

and then reconstruct the image from the compressed latent embeddings. Details of the

RecDist metric are discussed in Section 3.4.

When the patch width is 32 or 24, both the original image and compressed images

have very low RecDist from the target text. However, when the patch width is set

below 24, the RecDist of compressed images is very high and hence hard to recognize.

Therefore, we trained our models with input patch width 32 or 24 in our experiments.

This is different from the original PIXEL or ViT models, since they are trained with

patch width 16.

5.3 Masked Language Reconstruction

We pretrained 2 models with PIXEL backbone with similar configurations and compared

them on downstream tasks. We found the LatentPIXEL, which is trained in the latent

space, is more robust to training hyperparameters and achieves better downstream

performance.

5.3.1 Pretraining

Pretraining Hyperparameters

Model w batch size lr β1 β2 decay steps min lr

PIXEL 32 196 1.5e-4 0.9 0.999 0.05 100k 1.5e-5

LatentPIXEL 32 196 1.5e-4 0.99 0.999 0.05 100k 1.5e-5

VGPT 24 196 1.5e-4 0.99 0.999 0.05 100k 1.5e-5

LatentVGPT 24 196 1.5e-4 0.99 0.999 0.05 100k 1.5e-5

Table 5.2: Pretraining hyperparameters of visual language models. Models begin with

“Latent” are trained in latent space. w represents the patch width.
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For both models, we conducted 100k steps of pretraining with batch size 196 and

trained on text images with 32×32 patches. Following BERT and PIXEL, we applied

the AdamW optimizer during the pretraining using the hyperparameters in Table 5.2.

We also apply the CosineAnnealingLR [19] which decreases the learning rate from

1.5e-4 to 1.5e-5 during the pretraining. The model structure details are in Appendix

A.1.

Since the pixel value varies within the range [0, 1], which is different from the input

range of our image compressor. We minus each value of 0.5 and times 2 to map them

into the range [-1, 1] before feeding to the image compressor. Then direct input the

encoded latent value to the PIXEL backbone. When calculating the loss, we normalize

the input and the output of the PIXEL backbone by per-image mean and variance.

The loss is per-pixel averaged MSE between the normalized input and output. When

calculating the loss, we only consider the loss on masked non-padding patches.

We also normalize the input and out of the PIXEL model. The input is normalized

by per-channel mean and variance. We use the statistics from the PIXEL training scripts.

The mean is [0.5, 0.5, 0.5] and the std is [0.5, 0.5, 0.5]. The output is also normalized

by per-image mean and variance as we did for LatentPIXEL. The loss is also the MSE

averaged on masked patches.

Figure 1.1 visually exhibits reconstructed patches after 100k training steps. When

we visualize the output image, we reverse all the normalization procedures so that

the output value range matches the input range. Because the parameters of the image

compressor are frozen, we deleted image compressor’s decoder during the pretraining.

The decoder is useful only when we need to visualize the output.

5.3.1.1 Pretrain Analysis

Figure 5.1: Training curves of PIXEL and LatentPIXEL.

From Figure 5.1, we can observe that when AdamW’s β1 is set to 0.99, PIXEL
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converges much slower than which when β1 is 0.9 in the first 40k steps. And there

are very few loss drops during the first 10k steps. However, for LatentPIXEL, the

convergence speed is faster when β1 is set to 0.99. But the loss halting problem didn’t

appear in the first 10k steps. Thus, we set β1 to 0.9 and 0.99 for PIXEL and LatentPIXEL

correspondingly.

Transformer-based MLM models are selective to hyperparameters [18]. However,

due to limited resources, we didn’t conduct exhaustive hyperparameter searching. In

100k steps, the training has not finished one epoch of the training data. Consequently,

every batch during the training is unseen to the model. We can regard the training loss

trend as the validation loss trend. Since it’s still dropping and has not converged yet.

We expect models to have better performance if more training steps are conducted.

One drawback of LatentPIXEL is the extra computation brought by the image

compressor. It costs about 35 hours on 16 16GB Tesla V100-SXM2-16GB GPUs to

train LatentPIXEL for 100k steps. But the same amount of training for PIXEL only

takes about 16 hours on the same devices. However, the extra computation overhead

could be amortized when a larger language model backbone is applied. Compared with

recent large models with tens or hundreds of billions of parameters, PIXEL has only

111M parameters and the encoder of the image compressor has 34M parameters, which

makes the extra computation overhead significant. The extra computation overhead will

be ignorable when a much larger language backbone is applied.

5.3.2 General Language Understanding Performance

We cannot compare the performance of PIXEL and LatentPIXEL directly through

losses since they are computed in different spaces and may have different scales. Hence

we finetuned pretrained models on the GLUE dataset and measured the validation set

performance to compare. Due to the resource limitation, we haven’t done an exhaustive

hyperparameter search for each task but used similar training settings as the original

PIXEL paper. The 2 models are finetuned with identical hyperparameters.

5.3.2.1 GLUE Tasks

For each task, we measured the corresponding metric on the validation set according to

the GLUE benchmark. We report Matthews’ correlation for CoLA, Accuracy and F1

score for MRPC and QQP, Pearson’s correlation and Spearman’s correlation for STSB.

All other metrics are accuracy.
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GLUE Performance (Validation)

Model
Patch

Width

CoLA

(Mat.)

SST-2

(Acc.)

MRPC

(Acc./F1)

STS-B

(Pea./Spe.)

QQP

(Acc./F1)

MNLI-

m/mm

(Acc.)

QNLI

(Acc.)

RTE

(Acc.)

WNLI

(Acc.)

PIXEL

(0.1M)
32 8.2 69.2 68.4/78.9 17.3/16.3 77.7/65.9 50.0/50.3 59.7 59.9 56.3

LatentPIXEL

(0.1M)
32 9.0 71.6 64.3/73.8 21.9/20.7 78.7/71.2 52.9/53.8 59.1 55.6 56.3

PIXEL

(1M)
16 38.4 89.6 - /88.2 - /81.1 - /84.5 78.1/78.9 87.8 60.5 53.8

BERT - 60.3 92.6 - /90.2 - /88.8 - /87.6 84.0/84.2 91.0 69.5 51.8

Table 5.3: GLUE performance of MLM models. The number beside each model indicates

the number of pretraining steps. The performance of PIXEL with 1M pretraining steps

and BERT are taken from [27]. For each metric, the best overall performance is in

bold, and the best performance of our models is in italics.

In GLUE tasks, only STSB is a regression task and others are classification tasks.

CoLA and SST2 are single-sentence tasks. MRPC, QQP, and STSB are sentence

similarity or sentence paraphrase tasks with 2 sentences input for each task. For each

input, we separate the two sentences with a black patch. MNLI, QNLI, RTE, and WNLI

are Natural Language Inference tasks also with two-sentence input.

As we can see in Figure 5.2, the sample quantity distribution for each GLUE task

is unbalanced. There are more than 100k training samples in QQP, MNLI, and QNLI

tasks, but only 635 in WNLI. And the focus of each task is also different. Thus we need

to set different training hyperparameters for each task. Such as, for tasks with more

than 100k samples we set the total training steps as 15000 or 30000. And for WNLI

we only conducted 400 steps for each model. The detailed training hyperparameters

are in Appendix B. However, due to resource limitations, we didn’t exhaustively search

hyperparameters. We report the best validation performance in our experiments.

5.3.2.2 Performance Analysis

As Table 5.3 shows, LatentPIXEL achieves better overall performance than PIXEL

when pretrained with 0.1M steps. The score is the macro-average score among all tasks.

For tasks with multiple metrics, we use the averaged score as the score of that task.

Also, LatentPIXEL has a higher score in the 10/14 metrics. For comparison, we also

write the performance from the original PIXEL model which is pretrained with 1M

steps. Although our model is not comparable with the original PIXEL because lacking
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Figure 5.2: The logarithmic scale bars represent the sample counts for each GLUE task.

pretraining. Our experiments indicate training in latent space has faster convergence

thus conducting better downstream task performance.

5.4 Language Generation

The performance of PIXEL and LatentPIXEL in language understanding tasks approves

that vocabulary-free models with solely vision input can achieve comparable perfor-

mance with traditional NLP models. In this section, we further verified the feasibility

of generative language models with pure visual input and output.

5.4.1 Pretraining

Figure 5.3: Training curves of VGPT and LatentVGPT with EMA smoothing [14].

As we did for MLM models, we also pretrained 2 generative models. One is VGPT



Chapter 5. Experiments & Analysis 29

trained with image input. Another one is LatentVGPT trained in the latent space with

the VQGAN image compressor. Different from MLM models, we set the patch width

as 24 to save calculation overhead. Model architecture details are in Appendix A.2.

Figure 5.3 records the pretraining losses of VGPT and LatentVGPT. We pre-

trained them with identical hyperparameters for 100k steps with AdawM optimizer and

CosineAnnealingLR scheduler. Table 5.2 records detailed hyperparameters.

During the training, images are normalized with channel-wise mean and variance

of the corresponding dataset. For VGPT, the mean and variance are calculated among

the first 4000 samples. For LatentVGPT, since it’s trained in latent space, the mean

and variance are calculated among the compressed latent embeddings of the first 4000

samples. Training loss is MSE calculated between the model output and the normalized

input image. We regard the MSE loss as the reconstruction loss. While calculating the

loss, we shift input patches left by 1 patch to correctly perform the Causal Inference

task.

As we mentioned in Section 5.3.1, 100k steps do not consume a whole epoch of the

pretraining dataset. Every batch is unseen to the model. We could regard the training

loss trend as the validation loss trend. Figure 5.3 also indicates that the training has not

converged or overfitted yet. More pretraining steps will improve the model performance

further.

5.4.2 VAGPT

Figure 5.4: Training curves of VAGPT with EMA smoothing. The model is trained from

the VGPT 100K checkpoint. We linearly warm up the fidelity loss ratio from 0 to 0.27.

As Figure 1.3(b) shows, models trained with only reconstruction loss suffer the

“average patch” problem and can only generate very few text patches after the prompt.
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We continued the pretraining of the VGPT for 30k adversarial steps, where the generator

is trained with both reconstruction and fidelity loss and the discriminator is trained with

classification loss. Thus VGPT became VAGPT. The ratio of the fidelity loss increased

from 0 to 0.27 linearly during the 30k step training. The discriminator structure details

are in Appendix A.3.

For each step, VAGPT is trained together with the discriminator. We first generate

fake patches and update the parameters of the generator with the composited loss. Then

we train the discriminator on real and generated patches for one step.

From Figure 5.4, we can observe that during the adversarial training, the reconstruc-

tion loss increases and the fidelity loss decreases. The model is focusing on minimising

the fidelity loss in this stage. 1.3(c) is an example of VAGPT generation. VAGPT is

capable of generating long text patch by patch, but the quality is not promising due to

the limited training steps.

5.4.3 Generation Performance

RecDist on Wikitext-103

VGPT (100k) LatentVGPT (100k) VAGPT (130k) GPT2 dummy

0.77 0.54 0.69 0.65 0.89

Table 5.4: The number beside each model indicates the total pretraining steps. GPT2

performance is measured by the next token prediction rather than the next patch predic-

tion. The dummy performance is the average Edit-distance between the ground truth

and the sentence with the same length but filled with only the most common character.

We evaluate the next patch prediction performance on the Wikitext-103 dataset

[21] using RecDist as the metric. We didn’t finetune models but directly measured

the RecDist on the validation set. There are 3.76k rows, or 1.1M characters, in the

validation set.

When processing the data, we used a sliding window with a length of 750 characters

to segment the dataset. For each partition, we first render it into image patches and

predict the next patch at each feasible position using the model. Then calculate the

RecDist between predicted text images and the ground truth text.

Table 5.4 exhibits the RecDist of each model. We find that although the reconstruc-

tion loss increases during the latest 30K adversarial training steps, the performance
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of VAGPT is still better than VGPT. We hypothesize it’s due to the model stopped

generating “average patches” which have lower reconstruction loss. Also, LatentVGPT

pretrained in latent space has better performance than VGPT. However, we can not draw

the conclusion that generative models also converge faster in the latent space because

the CNN structure of the image compressor may cause information leakage between

consecutive patches, which makes the next patch prediction task simpler.

The GPT2’s performance is measured using the smallest GPT2. But GPT2 predicts

the next token, which contains more characters than a patch, the task for GPT2 is harder.

We cannot directly compare our models with GPT2. The metric is only for reference.

We left the comparison between traditional generative language models to the future.

5.4.4 Calculation Overhead

Model #Parameters #Embedding parameters Inference Speed

GPT2 (12-layer) 124.4M 38.6M / 31.0% 6.56 (batch/sec)

VGPT2 (12-layer) 88.5M 2.65M / 3.0% 7.52 (batch/sec)

Table 5.5: Number of parameters of the entire model and the embedding layer. For

VGPT2 we count the parameters in the Patch Embedding layer and the Transposed

Patch Embedding layer. The inference speed is measured on RTX3090Ti GPU with

batch size equals 16.

One advantage of vocabulary-free models is reducing the large token embeddings

and the corresponding calculation. Table 5.5 shows that 31.0% parameters in the

12-layer GPT2 model are token embeddings. In our model, the input and out Patch

Embedding layers only capture 3.0% parameters and thus 14.6% faster than the GPT2

model during the inference.



Chapter 6

Conclusions & Future Work

6.1 Conclusions

In this research, we evaluated training visual language models in latent space, including

BERT-style language models and GPT-style generative language models. In generation

tasks, we proposed a new adversarial training to overcome the “average patch” problem.

Our major contributions are:

• We found training in semantic-rich latent space converge faster and conduct better

downstream task performance compared with training directly on text images;

• We proposed a new training method for generative visual language models and

proposed VAGPT, which is trained with pure vision input and output. We verified

the feasibility of vocabulary-free vision generative language models.

6.2 Limitations & Future Work

However, our experiments have not achieved promising downstream task results com-

pared with modern state-of-the-art models. We expect longer pretraining and larger

model scales will improve the performance. For generative models, our experiments are

preliminary, the autoregressive patch-wise generation method is still under exploration.

Also, compared with traditional generative language models, the patch-wise generation

lacks beam-search mechanism.

In the future, we plan to train the image compressor on text images rather than

natural images to have more representative visual features for text images. Also, we

will conduct more training steps to improve the performance of downstream tasks. To

32
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emulate the beam-search mechanism, we will explore training language backbones on

VQ embedding IDs. Our long-term goals include rendering natural images and text in

the same image and exploring the multi-modality training.



Bibliography

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization,

2016.

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of

image transformers, 2022.

[3] Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, and Guoping

Hu. Revisiting pre-trained models for Chinese natural language processing. In

Findings of the Association for Computational Linguistics: EMNLP 2020, pages

657–668, Online, November 2020. Association for Computational Linguistics.

[4] Falcon Dai and Zheng Cai. Glyph-aware embedding of Chinese characters. In

Proceedings of the First Workshop on Subword and Character Level Models in

NLP, pages 64–69, Copenhagen, Denmark, September 2017. Association for

Computational Linguistics.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding, 2019.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth

16x16 words: Transformers for image recognition at scale. CoRR, abs/2010.11929,

2020.

[7] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for

high-resolution image synthesis, 2021.

[8] Wikimedia Foundation. Wikimedia downloads.

34



Bibliography 35

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial

networks, 2014.

[10] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Gir-

shick. Masked autoencoders are scalable vision learners. CoRR, abs/2111.06377,

2021.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition, 2015.

[12] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[14] Frank Klinker. Exponential moving average versus moving exponential average.

Mathematische Semesterberichte, 58(1):97–107, dec 2010.

[15] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of

language representations, 2020.

[16] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising

sequence-to-sequence pre-training for natural language generation, translation,

and comprehension, 2019.

[17] Frederick Liu, Han Lu, Chieh Lo, and Graham Neubig. Learning character-

level compositionality with visual features. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 2059–2068, Vancouver, Canada, July 2017. Association for Computational

Linguistics.

[18] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A

robustly optimized bert pretraining approach, 2019.

[19] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm

restarts, 2017.



Bibliography 36

[20] Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan Yin, Muyu Li,

Qinghong Han, Xiaofei Sun, and Jiwei Li. Glyce: Glyph-vectors for chinese

character representations, 2020.

[21] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer

sentinel mixture models, 2016.

[22] J.F. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951.

[23] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks,

2015.

[24] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. 2019.

[25] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec

Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation.

CoRR, abs/2102.12092, 2021.

[26] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models, 2022.

[27] Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam

de Lhoneux, and Desmond Elliott. Language modelling with pixels, 2023.

[28] Maria Ryskina, Matthew R. Gormley, and Taylor Berg-Kirkpatrick. Phonetic

and visual priors for decipherment of informal Romanization. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics, pages

8308–8319, Online, July 2020. Association for Computational Linguistics.

[29] Elizabeth Salesky, David Etter, and Matt Post. Robust open-vocabulary translation

from visual text representations. In Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing, pages 7235–7252, Online and

Punta Cana, Dominican Republic, November 2021. Association for Computational

Linguistics.

[30] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans, 2016.

[31] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross

Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell



Bibliography 37

Wortsman, Patrick Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig

Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. Laion-5b: An open large-scale

dataset for training next generation image-text models, 2022.

[32] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk,

Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki.

Laion-400m: Open dataset of clip-filtered 400 million image-text pairs, 2021.

[33] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of

rare words with subword units. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–

1725, Berlin, Germany, August 2016. Association for Computational Linguistics.

[34] Baohua Sun, Lin Yang, Patrick Dong, Wenhan Zhang, Jason Dong, and Charles

Young. Super characters: A conversion from sentiment classification to image

classification. In Proceedings of the 9th Workshop on Computational Approaches

to Subjectivity, Sentiment and Social Media Analysis, pages 309–315, Brussels,

Belgium, October 2018. Association for Computational Linguistics.

[35] Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu,

and Jiwei Li. ChineseBERT: Chinese pretraining enhanced by glyph and Pinyin

information. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages 2065–2075, Online, August

2021. Association for Computational Linguistics.

[36] Hoang Thanh-Tung and Truyen Tran. Catastrophic forgetting and mode collapse

in gans. In 2020 International Joint Conference on Neural Networks (IJCNN),

pages 1–10, 2020.

[37] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete

representation learning, 2018.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

CoRR, abs/1706.03762, 2017.

[39] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff



Bibliography 38

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George

Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rud-

nick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s

neural machine translation system: Bridging the gap between human and machine

translation, 2016.

[40] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,

Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normaliza-

tion in the transformer architecture, 2020.

[41] Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image

diffusion models, 2023.

[42] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-

like visual explanations by watching movies and reading books. In The IEEE

International Conference on Computer Vision (ICCV), December 2015.



Appendix A

Model Structure Configurations

A.1 PIXEL

• Number of encoder layers: 12

• Encoder hidden size: 768

• Encoder intermediate size: 3072

• Number of encoder attention heads: 12

• Encoder dropout probability: 0.1

• Number of decoder layers: 8

• Decoder hidden size: 512

• Decoder intermediate size: 2048

• Number of decoder attention heads: 16

• Decoder dropout probability: 0.1

• QKV bias: True

• Maximum input length: 529

A.2 GPT backbone

• Number of layers: 12

39
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• Hidden size: 768

• Intermediate size: 3072

• Number of encoder attention heads: 12

• Dropout probability: 0.1

• Maximum input length: 1024

A.3 Discriminator

• Number of layers: 4

• Hidden size: 768

• Dropout probability: 0.2



Appendix B

GLUE Finetuning Hyperparameters

B.1 PIXEL with Patch Width 32

Task lr beta1 beta2 decay steps eval freq warmup steps batch size

CoLA 2e-5 0.9 0.999 0.05 5000 50 100 64

MNLI 3e-5 0.9 0.999 0.0 30000 200 100 192

MRPC 3e-5 0.9 0.999 0.05 5000 200 100 192

QNLI 3e-5 0.9 0.999 0.05 5000 200 100 192

QQP 3e-5 0.9 0.999 0.05 15000 200 100 192

RTE 3e-5 0.9 0.999 0.05 400 20 100 256

SST-2 3e-5 0.99 0.999 0.05 15000 500 100 192

STS-B 3e-5 0.9 0.999 0.05 5000 200 100 192

WNLI 3e-5 0.9 0.999 0.05 400 5 100 192

B.2 LatentPIXEL with Patch Width 32

41
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Task lr beta1 beta2 decay steps eval freq warmup steps batch size

CoLA 2e-5 0.9 0.999 0.0 1000 50 200 64

MNLI 3e-5 0.9 0.999 0.0 30000 200 100 192

MRPC 3e-5 0.9 0.999 0.05 5000 200 100 192

QNLI 3e-5 0.9 0.999 0.05 5000 200 100 192

QQP 3e-5 0.9 0.999 0.05 15000 200 100 192

RTE 3e-5 0.9 0.999 0.05 400 20 100 256

SST-2 3e-5 0.99 0.999 0.05 5000 200 100 192

STS-B 1e-5 0.9 0.999 0.05 5000 50 50 64

WNLI 3e-5 0.9 0.999 0.05 400 5 100 192


	Introduction
	Visual Language Model in Latent Space
	Generative Visual Language Model

	Background
	Language Model with Visual Information
	Applications in Non-Alphabetic Languages
	Applications in Alphabetic Languages

	Transformers in Vision

	Methodology
	Text Render
	Adversarial Training
	``Average Patch" Problem
	Fidelity Loss
	Two-Stage Training

	Training in the Latent Space
	Text Recognizability Measurement

	Model Architectures
	Transformers
	Self-attention Mechanism
	Attention Masks
	Transformer Layer

	Patch Embedding & Transposed Patch Embedding
	PIXEL Backbone
	Architecture
	Span Masking
	MAE Encoder
	MAE Decoder
	Classification & Regression

	GPT2 Backbone
	Architecture
	Discriminator
	Classification & Regression

	Image Compressor

	Experiments & Analysis
	Pretraining Data
	Recognizability Evaluation
	Masked Language Reconstruction
	Pretraining
	General Language Understanding Performance

	Language Generation
	Pretraining
	VAGPT
	Generation Performance
	Calculation Overhead


	Conclusions & Future Work
	Conclusions
	Limitations & Future Work

	Bibliography
	Model Structure Configurations
	PIXEL
	GPT backbone
	Discriminator

	GLUE Finetuning Hyperparameters
	PIXEL with Patch Width 32
	LatentPIXEL with Patch Width 32


