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Abstract

This thesis focuses on the enhancement of wrk benchmarking tool by integrating

io uring asynchronous I/O framework, aimed at optimizing its performance. Tradi-

tionally, wrk employs the epoll I/O mechanism, which, while efficient, encounters

performance bottlenecks due to the increasing overhead of system calls as concurrent

connections rise. By harnessing the power of io uring’s shared space between user

and kernel, we significantly reduce system calls, using the benefits of operation batching

and asynchronous I/O.

Two implementations were introduced: one utilizing batching (io uring) and an-

other without batching (io uring-nb). Experimental results demonstrated that both

io uring implementations outshine the traditional epoll mechanism in terms of per-

formance, with io uring showcasing an upsurge of up to 33% in throughput, and

io uring-nb showing an improvement of 12%. Notably, while io uring excelled in

high-load scenarios, its batching mechanism was less effective under limited connec-

tions, highlighting the nuances of different implementation approaches.

Furthermore, other factors such as varying response buffer sizes, QUEUE DEPTH)

of submission and completion rings, connections were evaluated, with the io uring

implementations consistently outperforming epoll across all configurations. This

research underscores the potential of io uring as a transformative I/O mechanism,

paving the way for future optimizations in web benchmarking tools. The findings

also advocate for an in-depth understanding of system requirements, emphasizing

the necessity of choosing the right I/O mechanism tailored to specific scenarios for

optimal performance. Future avenues include multi-core support, extended protocol

and scripting support, and benchmarking across diverse hardware platforms.
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Chapter 1

Introduction

The Hypertext Transfer Protocol (HTTP)[11], operating at the application layer, is the

primary protocol for data communication on the World Wide Web. It has become the

standard mechanism for transmitting information across the vast ecosystem of web

browsers, servers, proxies, and related networking tools. With the widespread use and

growth of the internet, it is crucial to ensure that the efficiency and security of these

HTTP protocols are not compromised. It operates as a request-response protocol within

a client-server architecture, facilitating effective communication. Servers often handle

simultaneous requests from numerous clients. As such, it’s crucial for these servers

to efficiently manage high volumes of incoming requests while ensuring they respond

quickly, accurately, and securely to each client.

As the complexity and demands of web servers and applications have escalated, the

tools designed to evaluate their performance must evolve in tandem. It is important

for these tools to generate realistic, high-concurrency loads to assess the capabilities

of HTTP servers genuinely. Benchmarking tools[4] play a crucial role in this scenario,

offering rigorous testing and measuring web server performance. They produce quan-

tifiable metrics such as response time, throughput, and concurrent connection handling,

thus, providing insight into a server’s strengths and potential bottlenecks. Among the

available HTTP benchmarking tools, wrk stands out as a representative of modern-day

benchmarking utilities. Its proficiency in generating significant traffic, even under

stressed resources, makes it a widely used tool for understanding and optimizing an

HTTP web server’s performance. When wrk is used to benchmark a server, it opens

multiple concurrent connections to simulate high number of GET requests to the HTTP

server and then read the response received from it.

In this dissertation, we focus on the wrk benchmarking tool, aiming to understand
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Chapter 1. Introduction 2

its operations and potential enhancement. wrk employs the epoll system on Linux

for I/O event alerts. epoll is an advanced I/O event notification system offered by the

Linux kernel, which helps in tracking multiple file descriptors, such as sockets, for

specific events, including read or write readiness. Within wrk, this epoll framework is

critical in effectively overseeing the numerous active connections made to the targeted

HTTP server. This capability is crucial for a benchmarking utility like wrk, given its

primary function of exerting significant stress on servers through the use of concurrent

connections.

During the benchmarking process, wrk establishes numerous connections to simulate

high traffic or load. Once these connections are made, it waits for the kernel to send an

event notification when there is any activity on them, such as when a socket is ready

to send more data or when there is incoming data to be read. When wrk receives a

notification event, it acts immediately, reading the data or sending more requests, as

appropriate. However, each time wrk needs to wait for events or register interest in

events, it makes system calls[22] that involves a transition between user space (where

wrk operates) and kernel space (the core of the operating system). These transitions

come with overhead that is time and resource-consuming. In situations where ultra-

high performance is essential, and every microsecond counts, the overhead from these

frequent system calls can become a bottleneck.

In order to help mitigate the issues caused by the current I/O mechanism in wrk and

help improve its performance, we will utilise the new I/O interface called io uring[8,

5, 6]. io uring is a modern and advanced interface for asynchronous I/O operations

in the Linux kernel. It is designed to offer efficient, scalable, and fast I/O without the

complexities and limitations of traditional I/O mechanisms. Unlike previous methods of

I/O handling in Linux, io uring has enhancement features such as operation batching,

asynchronous I/O, shared memory space between user & kernel. These qualities are

extremely beneficial in improving the performance of the benchmarking tools. Our goal

is to use io uring in wrk and prove that it indeed plays a significant role in overall

performance improvement.

1.1 Problem Statement

In this section, we will establish a clear baseline to highlight the issues observed

when the wrk benchmark is done on an HTTP server. So, an experiment is conducted

between a single-core CPU client containing the wrk benchmark tool and a powerful
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multiple-core HTTP server to demonstrate the latency and throughput achieved in the

benchmarking process. This is because we want to show the potential problems that may

arise even in the most simplest configuration. To do so, we will use 2 cloud machines

in a small-lan profile provided by the CloudLab research infrastructure tool. These

machines are xl170 nodes, that have deafult OS as UBUNTU, x64 86 architecture and

use the Two Dual-port Mellanox ConnectX-4 25 GB NIC1 for effective communication

between them. . By default, the machines have 20 active CPU cores on them. For

our experiment and to outline the problem, we will activate only 1 CPU core in the

client and 8 CPU cores in the server by turning off the remaining CPU cores using

CPU hotplugging. The wrk benchmarking tool will be set up on the client machine.

Meanwhile, the server machine will host an operational nginx web server, guaranteeing

that port 80 is open and active. Now, we are ready to perform the benchmarking test

on the server. Keeping in mind that the client has only 1 active CPU core, we need to

execute the test on a single thread.

As part of the thesis, we will focus primarily on the single-core CPU performance,

determine the underlying problem and aim to improve the performance. The wrk

benchmarking tool lets a user customize the total number of threads, connections, and

duration of the test before sending requests to HTTP servers. Keeping in mind that

the client has only 1 active CPU, the number of threads for this experiment will be 1

and the duration of the test will be 5 seconds. We will, however, change the number of

concurrent connections by increasing them gradually. Below is a sample benchmark

run on the server and the description of the output:

User@node0:˜/folder/wrk$ ./wrk -t1 -c10 -d5 http://10.10.1.2:80

Running 5s test @ http://10.10.1.2:80

1 threads and 10 connections

Thread Stats Avg Stdev Max +/- Stdev

Latency 113.95us 46.23us 820.00us 82.88%

Req/Sec 84.07k 4.78k 90.72k 88.24%

426578 requests in 5.10s, 349.44MB read

Requests/sec: 83650.01

Transfer/sec: 68.52MB

From the benchmarking output, we can discern that during the interval of 5 sec-

1Network Interface Card



Chapter 1. Introduction 4

onds, the tool generated a total of 426,578 requests, with a cumulative data transfer

of 349.44MB. The specific metrics for the thread, such as latency and requests per

second, offer insights into the server’s responsiveness and throughput during the test.

In particular, the latency metrics provide the average, standard deviation, and maxi-

mum time taken between sending a request and receiving a response. Concurrently,

the requests per second (throughput) indicate the processing rate for each thread. To

determine the problem statement, we increment the number of concurrent connections

in our benchmarking test on the server and monitor the resulting performance patterns.

Figure 1.1: Thread Statistics during benchmark with 1 thread for 5 seconds

We conducted a benchmarking test on the nginx server, adjusting the concurrent

connections in the range of (1, 10, 25, 50, 100 - 500). The derived thread statistics

(latency and throughput at the rate of 1000 requests / second) are presented in Figure

1.1. During the experiment, the CPU utilization of both client and server was observed.

Initiating a single connection to the server led to the processing of approximately 9k

requests per second, with an even distribution of load across all eight CPU cores on

the server. Meanwhile, the client, with its single-core, used up to 25% of its CPU

capacity. As the concurrent connections increased, the server maintained efficient use

of its eight cores, ensuring optimal request processing. In contrast, the client’s CPU

usage displayed a divergent trend. For 10 concurrent connections, the client’s CPU was

already burdened, reaching around 87% utilization. When the concurrent connections

escalated to 25 or beyond, the client’s CPU was fully saturated, operating at its 100%

capacity.

This complete utilization of the client’s CPU has a direct impact on the through-
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put. As the CPU becomes a bottleneck, it’s unable to manage additional connections

efficiently, leading to stagnancy or even a decline in throughput. The server is still

capable of handling more requests, but the client’s limitation becomes a restricting

factor, preventing further scaling and introducing increased latency. The second graph

illustrates an exponential growth in latency, signifying a longer time taken to process

requests as the number of connections escalates. This surge in latency can be attributed

to the mounting backlog of requests, which accumulates further with the increase in

concurrent connections. This indicates that the client is emerging as the limiting factor.

Its inability to sustain efficiency becomes evident when the graphs prove the throughput

becoming stagnant, indicating a saturation point where the client struggles to manage

the increasing demands efficiently.

A key aspect to consider is the epoll mechanism that wrk employs for I/O event

notification. epoll is designed for scalable I/O, but its efficiency can be compromised

under extreme loads as seen above. As the number of connections increases, the

epoll system makes frequent calls, like epoll ctl() to manage file descriptors, and

epoll wait() to block and wait for notifications. Each of these system calls introduces

the overhead of transitioning between user space and kernel space, known as context

switches. This overhead can lead to increased CPU usage and subsequently higher

latency. Furthermore, with a growing number of connections, the epoll mechanism

will be continuously triggered by incoming events. The time to process these events to

determine the operations, and then to act upon them becomes CPU-intensive, thereby

contributing to the increasing latency. Moreover, the mounting backlog of requests,

a direct consequence of the rising connections, can cause data to be buffered longer

before being processed. This ‘queueing delay‘ in the system increases as the requests

grow.

Drawing a connection between the latency trend and the stagnation in throughput, it

becomes evident that the client, despite its use of the epoll mechanism, is reaching a

saturation point. The client’s resources and its event-driven mechanism are being fully

taxed, leading to a plateau in throughput and an uptick in latency. This suggests that

while epoll provides scalability advantages, it’s not devoid of challenges when pushed

to its limits, making the client the bottleneck in this scenario.
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1.2 Aim

The primary aim of this research is to explore the potential advantages of the io uring

I/O interface in addressing the identified bottleneck and inefficiencies associated with the

epoll mechanism in the wrk benchmarking tool. io uring is a modern and advanced

I/O interface introduced in the Linux kernel to overcome the limitations of previous I/O

systems, including epoll and aio. Unlike epoll, which often handles multiple system

calls to set up, modify, and retrieve events, io uring[19, 20] streamlines the process by

allowing asynchronous I/O, batched submissions and completions, thus, significantly

reducing system call overhead.

The main objective is to integrate the io uring mechanism into the wrk benchmark

tool as an alternative I/O mechanism. We will conduct a series of benchmark tests,

similar to the one shown in the problem statement, using wrk with io uring, com-

paring its performance metrics—especially latency and throughput—with the existing

epoll mechanism. The completion criteria of this thesis are to implement io uring

successfully into the wrk benchmarking tool and justify that it brings improvement in

the single thread performance.

1.3 Dissertation Structure

This dissertation contains 5 chapters in total. Chapter 1 introduces foundational concepts

related to HTTP and underscores the importance of benchmarking in assessing web

server performance. Within the scope of this thesis, the benchmarking tool of focus

is wrk. The chapter provides insights into various I/O mechanisms, with a particular

emphasis on epoll and io uring. It delves into the identified problem statement,

highlighting the challenges posed by the epoll mechanism, which results in the client

becoming a bottleneck during benchmarking processes.

Chapter 2 provides the necessary background information by discussing networking

concepts, emphasizing I/O mechanisms, the nuances of benchmarking, and the potential

of io uring. Previous work is also highlighted to the reader, to understand how the

dissertation stands out from the prior work.

Chapter 3 offers a deep dive into the io uring mechanism, detailing its functionality

and benefits. It explains the various strategies and methodologies employed to achieve

the aim outlined in the first chapter.

Chapter 4 focuses on the empirical aspect, detailing the experiments carried out
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based on the methodologies presented in the preceding chapter. It offers a compre-

hensive evaluation of the results, assessing how they align with the set completion

criteria.

Concluding the dissertation, Chapter 5 reflects on the findings, discussing possible

avenues for future enhancements. It underscores the success of the thesis in realizing its

primary aim.



Chapter 2

Background and Related Works

The internet, with over 5.1 billion users, is a testament to the importance of robust digital

infrastructure. At the heart of this vast network is the HyperText Transfer Protocol

(HTTP), which ensures smooth digital interactions. The efficiency of HTTP owes a lot

to various benchmarking tools developed over the years.

In the late 1990s, the ab tool marked its presence. Born from the Apache Software

Foundation, this Apache HTTP benchmarking tool was tailored to assess the prowess

of servers, especially gauging the number of requests they could handle per second.

However, its scope has been limited due to constraints like its single-threaded nature

and limited protocol compatibility.

Fast forward to 2015, the landscape witnessed the introduction of ink[18] by Peter

Kehl. Distinguishing itself, ink simulated user traffic and meticulously recorded event

traces for each emulated client. Its innovative approach found validation in a study

by Virginia Tech, emphasizing its capabilities in offering profound insights into server

behaviors.

Meanwhile, other tools like siege and JMeter were shaping the contours of the

benchmarking domain. siege, recognized for its adaptability, emerged as a go-to

HTTP load testing utility. It garnered acclaim for its capability to emulate a spectrum

of user behaviors, thereby enabling developers to anticipate and prepare for varying

server loads. This level of granularity in testing scenarios made siege indispensable

for comprehensive server performance evaluations.

In contrast, JMeter brought a different flavor to the table. Another brainchild of

the Apache Software Foundation, akin to ab, JMeter appealed to a broader audience

with its user-friendly graphical interface. But beneath its intuitive exterior, it was a

powerhouse. Introduced initially for web application testing, over time it evolved,

8
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supporting a wide array of protocols beyond just HTTP. Its versatility, combined with

detailed performance metrics, ensured that JMeter became the preferred choice for

many aiming for in-depth load testing and performance analysis.

The recent entrant to this arena is wrk. This open-source HTTP benchmarking tool

distinguishes itself with its multithreaded design, poised to measure server performance,

especially in high-concurrency scenarios. For the project in question, wrk is the primary

tool of interest, with extensive documentation supporting its use [10, 17, 9].

However, tools alone don’t weave the entire narrative. The smoothness of interac-

tions between servers and clients hinges on efficient I/O operations. The traditional

UNIX I/O approaches often hit roadblocks when it came to scalability. In response,

Linux championed the introduction of io uring, an ingenious framework tailored for

asynchronous I/O. Animesh Trivedi’s research underscored its edge over existing I/O

frameworks, highlighting its potential in revolutionizing server performance [24]. The

ambition now is to meld io uring’s prowess with wrk to drive superior performance

on Linux servers.

2.1 wrk

wrk is an open-source HTTP benchmarking tool, known for its ability to generate

significant load on a server, even with limited resources. The tool’s popularity can be

attributed to its simplicity in design and its capability to offer detailed insights into

server performance under stress.

wrk uses an event-driven model for its I/O operations, which is a stark contrast to

traditional threaded models where each connection might have a dedicated thread or

process. In an event-driven model, events (like data arriving on a socket or a socket

becoming writable) drive the program’s execution.

• Non-blocking Sockets: All sockets in wrk are set to non-blocking mode. This

ensures that I/O operations, such as reading from or writing to a socket, return

immediately instead of waiting (or blocking) for the operation to complete. If

the operation can’t be completed immediately, it’s deferred, and wrk continues

processing other events.

• Event Multiplexing: wrk uses an event multiplexer (often epoll on Linux sys-

tems) to efficiently monitor multiple sockets for events. The multiplexer notifies

wrk when there’s an event on a socket, such as incoming data or readiness to
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accept more data for sending. This mechanism allows wrk to handle thousands of

concurrent connections with minimal overhead.

• Event Loop: At the core of wrk’s event-driven architecture is the event loop.

It continually checks for and processes socket events. When an event occurs,

such as a server response arriving for a request, the event loop dispatches it to the

appropriate handler in wrk.

It provides a comprehensive set of statistics that offer insights into the server’s

performance under the load generated by the tool. Upon completing a benchmarking

session, wrk displays a summary of the test results. These statistics are designed to give

users a clear picture of how the server performed under the simulated load. The primary

statistics provided by wrk include:

• Throughput: Throughput, often represented as requests per second (RPS or

req/sec), is a measure of the server’s capacity to handle and serve requests. In the

context of wrk, it represents the average number of requests the server was able to

process every second during the benchmarking duration. High throughput values

suggest that the server can handle a larger load, whereas low values might indicate

potential bottlenecks or performance issues. Factors that can influence throughput

include server hardware, server software configuration, network bandwidth, and

application logic.

• Latency: Latency represents the time taken to process an HTTP request, from

the moment it’s sent until the response is fully received. wrk provides a detailed

breakdown of latency, including average, maximum, and various percentile val-

ues. The percentile values are particularly informative as they shed light on the

distribution of latencies:

– Average Latency: The mean time taken to serve all requests.

– 50th Percentile: The median latency value, meaning 50% of the requests

were served faster than this value, and 50% were slower.

– 99th Percentile: Only 1% of the requests had a latency higher than this

value. It’s a crucial metric to identify long-tail latency issues, which might

affect a small percentage of users but can be indicative of deeper system or

application problems.



Chapter 2. Background and Related Works 11

2.2 io uring

io uring[2] is a Linux kernel interface introduced in version 5.1 to facilitate high-

performance asynchronous I/O operations. Traditional Linux I/O interfaces, such as

select, poll, and epoll, have limitations when handling a large number of file de-

scriptors or when performing multiple I/O operations at once. io uring was introduced

to overcome these limitations and offer a more scalable and efficient asynchronous I/O

mechanism. [12, 25, 26]

Figure 2.1: Asynchronous interface provided by io uring between user space & Linux

kernel

The io uring interface has two fundamental operations associated with its mecha-

nism: the submission of a request, and the event that is associated with the completion

of said request. For submission of an I/O operation, the application is the producer and

the kernel is the consumer. However, regarding the completion of these operations, the

kernel produces the completion events and the application consumes them. Hence, it

uses a pair of ring buffers that provide an effective communication channel between

the application and kernel. These pair of rings are the core of io uring interface as

seen in Figure 2.1. It consists of 2 shared memory ring buffers at its core: submission

queue (SQ) and completion queue (CQ). They are mapped into both the application

(user) and kernel space, allowing for efficient communication and minimization of data

copying. Each queue consists of an array of entries that are maintained using head and

tail pointers to effectively manage I/O operations.
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• Submission Queue (SQ):

– Submission Queue Entry (SQE): Each I/O request that a user-space appli-

cation intends to submit to the kernel is packaged into an SQE. The SQE

contains all the necessary details about the I/O operation, such as the type

of operation (read, write, etc.), the file descriptor, buffer pointers, and other

relevant data.

– After populating one or more SQEs, the application pushes these entries

into the SQ. This can be done in batches, allowing multiple I/O requests to

be enqueued together, which reduces the overhead of frequent system calls.

• Completion Queue (CQ):

– Completion Queue Entry (CQE): Once the kernel has processed an I/O

request from an SQE, it wraps up the results and status of the operation

into a CQE. The CQE provides feedback about the completed I/O operation,

including any potential errors or the number of bytes read/written.

– User-space applications then inspect the CQ to retrieve these CQEs, allowing

them to ascertain the outcomes of their I/O requests and take appropriate

actions based on the results.

The introduction of io uring with its submission and completion queue events

offers several advantages over the traditional epoll mechanism, especially in the

context of a benchmarking tool like wrk. While epoll requires system calls to submit

and retrieve events, io uring allows batching of operations, often without needing any

system calls due to the shared memory rings. The application can enqueue multiple I/O

requests in the SQ at once and can read multiple completions from the CQ in a single

operation. This minimizes the overhead associated with frequent context switching and

repeated system call invocation.

2.3 Related Works

The integration of io uring into various software applications signifies its growing

importance in the realm of high-performance I/O operations. This asynchronous I/O

interface, introduced in the Linux kernel 5.1, has been heralded for its efficiency

and scalability, especially in environments demanding intensive I/O operations. As
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a testament to its potential, several software projects have endeavored to incorporate

io uring to enhance their performance and responsiveness. Highlighted below are a

few notable software applications that have embarked on this integration journey:

• QEMU: QEMU (short for ”Quick Emulator”) is an open-source software intended

to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64

toolchain) and a variety of other UNIX targets. It operates as a hypervisor,

enabling full virtualization of guest systems on host systems. QEMU can work in

conjunction with the Linux KVM to run virtual machines at near-native speeds

by executing the guest code directly on the host CPU. KVM is a virtualization

module in the Linux kernel that allows the kernel to function as a hypervisor.

It currently supports LINUX AIO API, and Aarushi Mehta [23, 16] has tried to

implement io uring interface to improve performance of the QEMU hypervisor.

They have implemented it in 2 ways, with basic io uring and Submission Queue

polling with file descriptor registration. With the help of her implementations,

she could see better throughput than the traditional Linux AIO as well as threads.

This is one of the successful implementations of io uring which proved that

it usually improves the speed of processing requests against the traditional I/O

systems.

• Frodo: Frodo is a POC, that was developed to experiment with the io uring

APIs in Go [21, 1]. In this experiment, Agniva de Sarker states that he wanted

to implement io uring to test it’s performance for simple operations like read

and write to files. With the help of fio, they have performed few benchmark

tests by varying block sizes (the response size) as well as the QUEUE DEPTH

of io uring ring to perform random read and write operations. The results of

their experiments show that against the traditional libaio, io uring was able

to perform write operations at thrice the speed and read operations at almost 5x

the speed without polling. He suggests that implementation of io uring with

polling could potentially improve this performance even higher and there are

future works to do so. This is a second case that shows how powerful io uring

can be and how fast it can process requests regardless of the block size and ring

depth.

• Echo Server: An echo server was a bare minimum server that was developed to

implement io uring by Hielke de Vries [7] to conduct benchmark tests against

the traditional epoll system. It is a simple server that listens for incoming
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connections and data. When data is received from a client, the server immediately

sends the same data back to the client without processing it. In his implementation,

he has used IO URING FAST POLL and IORING OP PROVIDE BUFFERS requiring

Linux 5.7 version or higher to perform benchmark tests. The server is set up

to read data from a client connection and then immediately write the same data

back to the client, effectively ‘echoing‘ the client’s message. These operations

are handled using an event loop to perform operations like accepting connections,

sending requests and reading responses. The same server is implemented with

epoll system as well and bench marking tests are performed on various response

buffer sizes. io uring showed the best performance in all cases of response

buffers and number of clients compared to epoll. This showed the efficient usage

of batching and asynchronous I/O against the traditional epoll mechanism that

sends system calls to kernel repeatedly, creating an overhead. Since wrk also

employs epoll mechanism and makes use of ae event loops, the inspiration for

implementation of io uring in it was taken from this work. Detailed explanation

of how io uring was used in a similar manner is discussed in Chapter 3.

• Haskell I/O Manager: The Haskell I/O manager is a component of the Haskell

runtime system, particularly in the Glasgow Haskell Compiler (GHC), which

handles asynchronous I/O operations. The I/O manager is crucial for the efficiency

of concurrent Haskell programs that perform I/O operations, such as network

communication or file access. A new event manager for backend was designed

using io uring and evaluated against the epoll mechanism. [13] Upon testing

and plotting the results, it was claimed that io uring gave 7% of improvement

at 5 connections and gradually increased to 9% at 50 connections, 10.8% at 500

connections compared to the original epoll mechanism during benchmarking.

The author claims that with increase in connections epoll was ‘overloaded with

more garbage collection‘, meaning that the amount of retained objects was higher

than that of io uring (it can drain the request queue at a faster rate, hence being

able to take in next batch of requests immediately). So far, all the research has

consistently shown that io uring is very fast and can generate better throughput

than most I/O systems. The aim of this paper is also to prove the same in the

further chapters.

• ZeroHTTPd: It is a simple web server that was created by Shuveb Hussain

[14, 15] and implemented using the io uring interface to accept requests from
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multiple clients and return appropriate responses at a quicker rate than epoll.

This server can send files in the response, and he implemented io uring to

read these responses and send them back to the client. The implementation of

io uring was largely inspired by this method where an event loop is used to

transition between states among the clients (in our case, connections). However,

a similar approach used in the Echo server showed how the direction of choosing

an event loop is beneficial for its implementation. The detailed analysis of the

event loop used in accordance to the wrk benchmarking tool is done in Section

3.2.



Chapter 3

Methodology

This chapter details the approaches taken to incorporate io uring into the wrk bench-

marking tool. Our strategy involves two distinct methods of integrating io uring into

wrk. The differentiation between these methods depends on their implementation of

batching operations to the ring buffers.

io uring is a complicated interface that has in-depth code implementation even for

its most basic use cases. To mitigate some of the complexities, we use <liburing.h>,

a C library developed to provide a more accessible interface to the io uring asyn-

chronous I/O framework in the Linux kernel. It provides a set of utility functions to

simplify common tasks, such as setup, teardown, retrieval of submission and completion

of requests.

3.1 General Flow

With the help of <liburing.h> library we follow the generic steps to initialise io uring
in the wrk repository1:

1. We’ll leverage the existing data structures provided by the wrk framework, specif-

ically the structs designated for threads and connections. While wrk currently

employs epoll to manage connection operation states, we’ll enhance them by

introducing three additional states to be managed by io uring: CONNECT, READ,

and WRITE.

2. We will introduce a new command-line option, -i, to the wrk tool to integrate

io uring mechanism during benchmark tests. This provides flexibility to the

1https://github.com/wg/wrk/

16
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user in choosing the desired I/O mechanism to benchmark the servers. If the user

chooses not to provide the -i option, the benchmarking will proceed with the

regular wrk workflow.

3. Threads are spawned using the established wrk code, with each thread typically

allocated its own set of connections. However, in our endeavor to enhance

single-thread performance, we’ve configured it so that only one thread manages

all the connections. We employ the pthread create() method to channel

these connections into the thread io uring() function, where the io uring

mechanism is present. This ensures that no conflicts or disruptions occur with the

existing mechanism.

4. To initiate the io uring flow, we first declare a ring buffer using the struct

io uring ring;. All the operations during the benchmark test happen within

this ring. After declaration, we initialize it using the io_uring_queue_init(QUEUE_

DEPTH,\&ring,0) function where QUEUE DEPTH specifies the maximum number

of entries that the ring buffer can hold. This effectively sets a limit on the number

of outstanding I/O requests that can be managed by io uring at any given time.

5. Next, each connection in the thread is assigned a unique socket file descriptor

using the socket() function. Each connection’s state is initially set to CONNECT

and other attributes are assigned in the usual wrk process. Now, we create a

submission queue entry and call prep_connect() method. This method han-

dles connections using io_uring_prep_connect(); function. This function

prepares a submission queue entry (SQE) for a non-blocking connect operation.

6. With the SQE now set up for the connect operation, it has to be communicated

with the kernel. By submitting this SQE, a signal is sent to the kernel that a

request is queued and ready for execution. Once the operation completes, the

kernel populates a completion queue entry (CQE). This CQE holds the outcome

of the connection request that is ready to be seen by the application.

7. After retrieval of the completion queue entry (CQE), the connection is ready to

handle the next operation. Drawing inspiration from the wrk’s epoll mechanism,

I/O operations in our io uring are structured to be implemented in the sequential

order of: CONNECT→ WRITE→ READ. This sequence ensures that we first establish

a connection, send a request to the server, and then read the server’s response. This
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flow is handled through an event loop that runs for the given duration specified

by the user in the wrk command.

8. Event Loop: We have two approaches to implement io uring: with and without

batching of operations. For both scenarios, the foundation remains the same:

using an event loop. This loop continuously checks for completed operations

and initiates new ones based on the updated connection state. The detailed

implementation is explained in Section 3.2.

9. Distinguishing the Approaches: While the core event loop remains consistent,

the two io uring methods differ majorly on how they perceive the completion

queue sent by the kernel. The specifics of these differences are elaborated in

Section 3.3 for ‘io uring-nb‘ (without batching) and Section 3.4 for ‘io uring‘

(with batching).

10. The benchmarking occurs when the event loop is being executed. While oper-

ations are running concurrently in an asynchronous manner, the in-built HTTP

parser validates each response received from the server. It records and stores

thread statistics like total requests parsed in a given period of time and latency

of each request, i.e., the time taken to send a request and read the correspond-

ing response. After the event loop terminates, the ring buffer is closed using

io uring queue exit() function.

3.2 Event Loop and State Machine

In wrk framework, an event loop is instrumental in the successful deployment of the

io uring model. It acts as a central point for I/O coordination and connection lifecycle

management. The loop must handle the flow between asynchronous I/O operations and

connection state progression elegantly. When a connection is created successfully, the

kernel acknowledges this by registering a completion event in the Completion Queue

Entry (CQE).

Now the application must continuously check for the Completion Queue Entry ring

to keep track of completed operations for each connection. Regardless of the io uring

model chosen by the application for benchmarking, the detection of a completion

event must be passed to a new connection object. This object fetches details from the

completion event using io uring cqe get data(cqe) function. It is important to note
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that the first state of each connection will always be set to CONNECT state. To manage

subsequent stages (READ, WRITE) within the event loop, we’ve chosen to deploy a

state machine that operates using a switch loop as below:

• CONNECT:

– Acknowledgment: The completion of the connection is recognized and

acknowledged using the io uring cqe seen(&ring, cqe) function. This

function effectively informs the io uring interface that the application has

seen the completion event and the connection is ready to move to the next

state.

– Parser Initialization: The http parser init() function initializes the

HTTP parser for new connection object to prepare it for parsing the response

received from the server in READ state later on.

– Transition to WRITE State: The connection state is updated to WRITE,

signaling that the next step is to send a simple GET request to the server.

– SQE Preparation to Send Request: A Submission Queue Entry (SQE) is

created to indicate that the connection wants to transition to WRITE state and

passed as an argument in the prep send(sqe, connection) function.

• WRITE:

– Acknowledgment: The io uring cqe seen(&ring, cqe) function tells

the application when kernel has successfully sent the GET request to the

server.

– SQE Preparation for Reading Response: Now that a request has been

sent to the server, the connection is prepared to receive a response. The

connection state is now changed to READ and is sent through a Submission

Queue Entry (SQE) to the prep read(sqe, connection) function.

• READ:

– Acknowledgment: The io uring cqe seen(&ring, cqe) function indi-

cates to the application when kernel has received an HTTP response from

the server. It is stored in a Connection Queue Entry pointer *cqe.

– Data Processing: Function http_parser_execute() checks the incoming

HTTP response from the server. If the response is valid, it means the request
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was handled completely and response_complete() method is called. In

this method, the total completed requests (used in overall throughput statis-

tics) and total requests (used in the calculation of per-thread throughput

at regular intervals of 100 µs) are incremented each. This method is also

responsible for logging latency for each request by calculating the differ-

ence between the time at which the request was sent and the corresponding

response received by the application.

– Error and State Handling: Here, we retrieve the value of cqe->res, which

is the size of response received from the server in bytes. Depending on its

value, further handling is done as below:

* Error Detection: If cqe->res returns a value less than 0, it indicates

an error during data reception. The precise error is documented, and the

error count is incremented. The executing of event loop is terminated.

* Connection Closure: If cqe->res is 0, it suggests that the server

has processed a request and closed the connection gracefully. This

means that it can be re-opened. So, the state of the connection is reset

to CONNECT and sent to a function called initialize connection()

where new socket fd is created and then sent to the prep connect()

function, indicating that it is a fresh connection and the event loop

executes from the beginning.

* Buffer Capacity Reached: If cqe->res is equal to maximum buffer

threshold (char[RECVBUF] = 8192 bytes by default), and the con-

nection is still active, we can re-use the connection to continuing to

read the response.

* Default Action: In the absence of the aforementioned conditions, the

connection state reverts to WRITE state, readying itself to send another

request to the server.

The cumulative byte count for the thread is incremented by the total bytes

received in the current operation (cqe->res).



Chapter 3. Methodology 21

3.3 Method 1: io uring Implementation without Batch-

ing

Batching involves sending multiple requests to the kernel at once, allowing the system

to handle other tasks without waiting for responses. However, using basic functions

provided by the <liburing.h> interface, we can set up io uring in the wrk bench-

marking tool without batching any operations. This means each request is processed

individually and cannot proceed to the next state until a Completion Queue Entry (CQE)

is made. As io uring is meant to be very fast due to asynchronous I/O and shared

buffer space with the kernel, we expect that this approach will still contribute towards

performance enhancement against the traditional epoll handling.

3.3.1 Implementation

The difference between batching and non-batching comes with how the application

perceives the Completion Queue Entry (CQE). In this approach, we make use of an

in-built <liburing.h> function io uring wait cqe(). It is a blocking function. It

means that, if application has submitted a request and it hasn’t been completed yet,

invoking this function will pause the connection until that specific request has been

processed and updated in the CQE by the Kernel. However, the underlying mechanism

of io uring is still asynchronous, meaning that even though the application is waiting

for a Completion Queue Entry (CQE), the kernel will continue to process other queued

tasks concurrently. To use this method, we follow the general flow mentioned in Section

3.1. However, all the connections can be submitted to the Submission Queue Entry

in a single io uring submit() call. Note that this is the first submission call in this

approach.

After all the connection requests have been queued, the kernel retrieves and pro-

cesses these requests, subsequently populating the Completion Queue (CQE) with the

respective completion events. It’s crucial to note that each event in the CQE corresponds

to a specific connection, uniquely identified by its file descriptor. To access the con-

nection queue, we loop through each connection within the event cycle. This implies

that we’ll pause and wait for the CQE to be ready for every individual connection. This

sequential progression through the (CONNECT → WRITE → READ) lifecycle ensures that

each connection is handled with dedicated attention, maintaining a clear order of opera-

tions. The absence of batching inherently means that the system does not group multiple
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connections or their respective stages to be processed concurrently. Instead, after each

state transition, the system reinvokes the io uring submit() function that is written

before the event loop closes. This repetitive invocation, for every individual connection

during the event cycle, guarantees that the kernel is kept busy and consistently updated

with the latest state of each connection.

One primary motivation for adopting this approach is to demonstrate the potential of

io uring in its most basic form within the wrk benchmarking tool. By using io uring

in such a straightforward manner, we aim to highlight that even without harnessing its

batching features, it can potentially outperform the traditional epoll mechanism. This

will be tested and evaluated in the next chapter.

3.4 Method 2: io uring implementation with Batching

In the second method, we harness the true potential of io uring by leveraging one of

its most powerful features: batching. Batching not only amplifies the performance by

reducing the system call overhead but also optimizes the handling of multiple I/O tasks

concurrently. This approach is particularly beneficial for the wrk benchmarking tool,

where a high volume of requests are executed in rapid succession.

3.4.1 Implementation

The event loop, in this scenario, is executed in a different manner in comparison to

the first method. As usual, the first batch of operations before entering the event

loop will be the connection operations. In contrast to the first approach where con-

nections are submitted before entering the event loop, in this approach, we make

a solitary call to io uring submit() after entering the event loop. Instead of wait-

ing for individual Completion Queue Entries (CQEs) for each connection, we use

io uring peek batch cqe() function that allows the application to inspect multiple

CQEs in the completion ring at once without consuming them. It gives a ‘peek‘ into the

completion queue and fetches a batch of completed tasks. When using this function, the

returned CQEs are stored in the cqes backlog array of size 4096 bytes. Once the cqes

backlog is populated, the application iterates over each CQE in the array and then

calls the same io uring submit() operation that was written at the beginning of the

event loop. In contrast to the previous approach where submission was made for every

state iteration of each connection, this method submits all the operations just once each



Chapter 3. Methodology 23

time the event loop is entered. This batch-processing mechanism significantly reduces

the overhead associated with checking and processing CQEs, leading to an optimized

flow especially when handling a large number of simultaneous connections.

The objective of this approach is to demonstrate enhanced single-thread performance.

By comparing it with the baseline model and the first method (which implements

io uring without batching), we aim to highlight its capability to manage greater

throughput. Given its optimized nature, this method is anticipated to exhibit a significant

improvement on a per-thread basis. The subsequent chapter involves implementing

both methods within a controlled client-server setting. By capturing and analyzing the

results, we can undertake a comprehensive evaluation of their performance.
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Experiments and Evaluation

This chapter reports experimental results with the integration of the two io uring

methods into the wrk benchmarking tool, as outlined in the previous chapter. We first

describe experiment methodology, and then report results and thorough analysis.

4.1 Experiments

4.1.1 Setup

Similar to the experiment in Chapter 1.1, we use a single-core CPU in the client that

runs wrk and multiple cores in the server that runs the nginx web server. We use

CloudLab, a research testbed that allows academic users to access bare metal machines

for networking experiments. We book two nodes of type xl170 on the small-lan

profile, acting as a client and server, respectively. The nodes are equipped with Intel

Xeon E5-2640 v4 processor, 64 GB RAM and two Mellanox ConnectX-4 25 GbE NICs,

and install Ubuntu Linux 22.04.2 LTS. To ensure that the client and server use one or

eight CPU cores, respectively, we disable other cores at the system level using the Linux

CPU hotplugging feature; in particular we use the command:

echo 0 > /sys/devices/system/cpu/cpu*/online. We also ensure wrk uses only

one thread. [3]

4.1.2 Methodology

To measure what techniques improve the performance, we compare three systems: un-

modified wrk that employs epoll, modified one to use io uring but without batching,

24
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and the other custom one that exploits batching with io uring. In the rest of this

chapter, we denote those systems as epoll, io uring-nb and io uring, respectively.

The first performance metric is throughput. We use requests per second instead

of bytes per second because we are interested in how io uring reduces per-request

processing time. When the throughput is higher, it means that the system is able to

process more requests each second, hence reducing the per-request processing time.

With the help of throughput, we will be able to analyze the performance improvement

among the three systems used in benchmarking tests. The second performance metric is

latency. We measure the application-level round trip time for the request and response,

and report the median (P50) and 99%-ile (P99) values.

To emulate different numbers of clients that send requests to the same server, we

vary the number of concurrent TCP connections. When the connection count is high

and thus more requests are sent in parallel, more concurrent responses arrive at the

client, forming a queue. Therefore, when wrk consumes the responses faster, the next

requests can be sent earlier, resulting in higher throughput or requests per second. This

translates into io uring would achieve highest throughput, while epoll would exhibit

the lowest. When the number of connections is small, there would be little or no

difference between io uring-nb and io uring because of an insufficient number of

requests or connections processed in a batch, mainly for system calls.

io uring would increase the latency at a relatively small number of connections

where the queuing delay (of responses to be processed) is negligible due to batching,

but other benefits, such as asynchronous I/O, would outweigh. We experimentally

demonstrate this later in this chapter.

4.2 Results

Figure 4.1 plots the throughput and latency over 1–50 concurrent connections. Through-

put peaks at 30 connections in all the systems, where the latency starts increasing at

a higher degree due to the increasing response backlog (queue). io uring-nb always

achieves higher throughput than epoll because of asynchronous I/O and zero copy, and

io uring outperforms io uring-nb because of batching by approximately 13.76%.

Lower latency of io uring-nb than epoll at 1 connection comes from the same reason,

and higher latency of those is due to higher throughput where more requests are sent in

parallel. Interestingly, io uring-nb exhibits the lowest latency at 50 connections. This

is likely due to the eliminated batching delay while taking advantage of asynchronous
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I/O and zero copy.

Figure 4.1: Throughput & Latency @ P50, P99 over low concurrent connections across

epoll, io uring-nb & io uring

Figure 4.2 plots the throughput and latency over 100-600 concurrent connections.

As before, throughput is always higher in the order of io uring, io uring-nb and

epoll. Due to batching, the degree of improvement with io uring is larger when more

concurrent connections are used. As in 50 connection cases, io uring-nb achieves the

lowest latency. Latency keeps accelerating for epoll with an increase in connections,

thus proving the decline in throughput observed after 100 connections count. It has the

lowest latency at 100 connections, where it was able to process the highest throughput,

after which it becomes stagnant.

Unlike epoll and io uring-nb that start with low latency, io uring starts with

highest latency at 100 connections, as it can process more requests at a faster rate.

However, as the connections grow, io uring shows the most stability with its latency

where as epoll and io uring-nb increase gradually. This in turn reflects io uring

being the fastest mechanism, showing how well it is able to efficiently use its batching

mechanism with increasing load. The difference between the throughput of epoll and

io uring is much more than that in the 1-50 connections range. This indicates that with

higher load, epoll is unable to utilize the CPU core as efficiently as io uring can with

batching of highly concurrent requests.

We detail the absolute throughput and improvement in Table 4.1. For connections

1-50, io uring-nb shows 10.05% of average improvement in throughput than epoll.

On the other hand, io uring can process requests per second at 25.45% faster rate
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Figure 4.2: Throughput & Latency @ P50, P99 over high concurrent connections across

epoll, io uring-nb & io uring

than epoll on average. For 100-600 connections, a similar trend is observed where

both implementations perform much better than epoll. io uring-nb improves it’s

throughput at higher connections by 12.08%, leveraging the underlying asynchronous

architecture. By maximizing the use of its batching capabilities, io uring demonstrates

superior performance under heavy loads, achieving a 31% enhancement over epoll.

On comparing the performances of both the io uring implementations in low vs

high concurrent connections, io uring-nb processes requests at 25% faster rate with

high connections, indicating that the asynchronous nature of io uring can significantly

improve throughput over epoll event without batching. io uring shows upto 20%

improvement in processing requests at high load than the lower, proving that batching

capabilities are more significant with an increase in connections. Overall, it can be

established that io uring has the fastest throughput rate, followed by io uring-nb

and then epoll at all configurations.

Another experiment was done to study the effect on performance metrics for low

connections (1-50) by turning off adaptive-rx, adaptive-tx and setting rx-usecs

to 0µs. This ensures that packet transmission/reception rates remain constant and the

NIC interrupts are not delayed for low-traffic scenarios respectively. It means that the

CPU processes all the requests immediately without waiting, which could potentially

improve throughput and reduce latency. However, upon analyzing the statistics in both

scenarios (with adaptive-rx, adaptive-tx on, and by resetting rx-usecs), there

was little to no change observed in the thread statistics for all 3 mechanisms. The
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Connections Requests/Second % Increase
epoll io uring-nb io uring io uring-nb io uring

1 9165.46 10297.80 13975.44 12.35 52.48

10 82650.93 89819.30 91812.70 8.19 11.12

20 106413.40 115722.21 124675.15 8.73 17.29

30 107756.67 116569.16 132979.22 8.18 23.43

40 107058.54 119447.13 133550.76 11.60 24.74

50 106929.44 118973.17 132065.93 11.26 23.65

100 108595.67 122302.34 130188.56 12.62 19.88

200 106732.59 121868.95 137093.16 14.18 28.45

300 105850.69 118880.10 138388.17 12.31 30.74

400 105422.16 117217.22 139991.57 11.19 32.79

500 103639.75 116844.19 140219.73 12.74 35.30

600 105330.36 115283.92 141253.61 9.45 34.11

Table 4.1: Percentage Improvement in Throughput between epoll against

io uring-nb, io uring

throughput was almost the same and there was negligible change in latency. This is

because the latency observed in the experiment was not due to the interrupts but could be

due to network stack processing or context switches at low connections where batching

is not completely effective. Eventually, interrupt delays and transmission/reception

rates did not play a significant role for low connections (1-50), rendering performance

of epoll, io uring-nb and io uring unaffected.

In the wrk benchmarking tool, the default response buffer size is 8192 bytes. Per-

formance of epoll, io uring-nb, and io uring was evaluated over buffer sizes of

512, 1024, 2048, and 4096 bytes by conducting similar experiments as above. Upon

evaluation, a recurring pattern was evident: io uring consistently outperformed, trailed

by io uring-nb and then epoll. This indicates the efficiency of these mechanisms

and their ability to handle varied buffer sizes seamlessly. Additionally, the effective

buffer overflow management in epoll and io uring ensures optimal performance

irrespective of buffer dimensions. The negligible performance variations might also

be attributed to consistent network conditions, server response times, and potential

optimizations within the wrk benchmarking tool.
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Conclusion and Future Works

5.1 Conclusion

The primary objective of this research was to explore the potential of enhancing the

performance of the wrk benchmarking tool by integrating it with the io uring asyn-

chronous I/O framework. wrk employs the epoll I/O mechanism, which relies on

system calls to manage communication between the user and kernel spaces. As the

number of concurrent connections rises, the frequency of these system calls increases,

causing a significant overhead. Due to this, the rate at which requests are processed

with the increase in connections becomes slower. This causes an increase in the requests

queue backlog, eventually leading to inefficient CPU usage.

In contrast to epoll, io uring interface uses a shared space between the user and

kernel, resulting in reduced system calls due to batching of operations and asynchronous

I/O. We believe that adding io uring to the wrk benchmarking tool would make it

perform better and handle more requests than before. To check this, we tried two

methods: one using batching (io uring) and one without (io uring-nb). The main

difference between these two is the batching of operations while sending requests to

the submission queue. io uring-nb repeatedly submits operations to the queue for

each connection and waits until a response is received. On the other hand, io uring,

can send multiple requests to the submission queue at once without waiting for any

response. However, the underlying architecture is asynchronous in both cases, which

contributes to enhanced performance.

After conducting the benchmarking experiments, it was evident that both the imple-

mentations of io uring outperformed epoll mechanism. io uring showed the best

performance with up to 33% improvement than the traditional model. io uring-nb

29
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was also better than epoll by 12%. This improvement suggests that both the mechanisms

were able to process requests at a faster rate than epoll, thus resulting in accelerating

our benchmarking tool, wrk. This observation remained unchanged even when there

were varying concurrent connections, response buffer sizes, submission and completion

ring QUEUE DEPTH. In every test we conducted, both new implementations outperformed

the traditional epoll mechanism. However, while the batching approach excelled under

high loads, it was less effective with a limited number of connections. This is because

batching achieves its peak efficiency when there are ample requests to group together.

When faced with fewer connections, the batching mechanism doesn’t fully utilize its

resources, leading to suboptimal performance.

In conclusion, the thesis was deemed successful with the implementations of

io uring in the benchmarking tool, achieving significant improvement over wrk’s

existing I/O mechanism. This accomplishment not only validates the potential of

io uring as a robust alternative to traditional I/O mechanisms but also sets a precedent

for future research and optimization in this domain. The findings highlight the impor-

tance of choosing the right I/O mechanism based on specific use-cases and workloads.

While io uring showed immense improvement, particularly in high-load scenarios,

the nuances observed in different implementation approaches underscore the need for a

thorough understanding of the system’s requirements. Going forward, these insights

can serve as a foundation for further refining benchmarking tools, ensuring they are

both scalable and efficient across diverse scenarios.

5.2 Future Works

Though the thesis is deemed successful, there are scopes for improvement in the

following areas:

• Multi-core support: As mentioned throughout the thesis, the current imple-

mentation is confined to a single-threaded core client. Modern systems often

have multi-core architectures, and many real-world applications leverage multiple

cores for enhanced parallelism and performance. Investigating how io uring

performs in a multi-core environment will provide insights into its scalability

and efficiency on modern hardware. By exploring thread-safe data structures and

synchronization mechanisms tailored for io uring, wrk benchmarking tool can

effectively make use of it in major situations.
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• Extended Protocol and Scripting Support: wrk is renowned for its extensibility,

chiefly due to its support for LuaJIT scripts. These scripts empower users to

define custom HTTP request patterns and simulate diverse client behaviors. With

LuaJIT scripts defining custom concurrency and request patterns, io uring

can be further optimized to work in tandem with these patterns. While io uring

offers a robust foundation for asynchronous I/O in wrk, its true potential can be

unlocked by closely integrating it with the tool’s LuaJIT scripting capabilities.

By doing so, not only can we ensure that wrk remains versatile in benchmarking

a plethora of web scenarios, but we also ensure that each of these scenarios is

handled with optimal efficiency and speed. Future research and development in

this direction could redefine the boundaries of web benchmarking, making wrk

an even more indispensable tool for performance engineers worldwide.

• Benchmarking on Diverse Hardware: Broadening wrk’s scope to operate

seamlessly across varied CPU architectures, storage devices, and network config-

urations is essential. With io uring integrated, testing on diverse hardware will

provide richer insights into its asynchronous I/O benefits and ensure consistent

benchmarking outcomes irrespective of the underlying hardware platform.
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Appendix A

First appendix

Steps to test the wrk benchmarking with io uring and io uring-nb

A.1 Environment Setup

Step 1: There have to be at least 2 systems, one client (node0) and one server (node1),

that are able to communicate over a common NIC(ens1f1np1). Below are the systems

that have been mentioned in Section 4.1.1 :

• Client (node0): Check the public IP address over ens1f1np1 NIC:

User@node0:˜$ ip addr show

.

.

.

5: ens1f1np1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

qdisc mq state UP group default qlen 1000

link/ether 9c:dc:71:49:a8:c1 brd ff:ff:ff:ff:ff:ff

altname enp3s0f1np1

inet 10.10.1.1/24 brd 10.10.1.255 scope global ens1f1np1

valid_lft forever preferred_lft forever

inet6 fe80::9edc:71ff:fe49:a8c1/64 scope link

valid_lft forever preferred_lft forever
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node0 IP: 10.10.1.1

• Server (node1):

Similarly, check the public IP address over ens1f1np1 NIC:

User@node1:˜$ ip addr show

.

.

.

5: ens1f1np1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

qdisc mq state UP group default qlen 1000

link/ether 9c:dc:71:4b:a3:71 brd ff:ff:ff:ff:ff:ff

altname enp3s0f1np1

inet 10.10.1.2/24 brd 10.10.1.255 scope global ens1f1np1

valid_lft forever preferred_lft forever

inet6 fe80::9edc:71ff:fe4b:a371/64 scope link

valid_lft forever preferred_lft forever

node1 IP: 10.10.1.2

Step 2: Ensure that both the machines can communicate with each other:

• Client(node0) to Server(node1):

User@node0:˜$ ping 10.10.1.2

PING 10.10.1.2 (10.10.1.2) 56(84) bytes of data.

64 bytes from 10.10.1.2: icmp_seq=1 ttl=64 time=0.300 ms

64 bytes from 10.10.1.2: icmp_seq=2 ttl=64 time=0.127 ms

64 bytes from 10.10.1.2: icmp_seq=3 ttl=64 time=0.129 ms

64 bytes from 10.10.1.2: icmp_seq=4 ttl=64 time=0.127 ms

ˆZ

[1]+ Stopped ping 10.10.1.2

• Server(node1) to Client(node0):
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User@node1:˜$ ping 10.10.1.1

PING 10.10.1.1 (10.10.1.1) 56(84) bytes of data.

64 bytes from 10.10.1.1: icmp_seq=1 ttl=64 time=0.127 ms

64 bytes from 10.10.1.1: icmp_seq=2 ttl=64 time=0.128 ms

64 bytes from 10.10.1.1: icmp_seq=3 ttl=64 time=0.129 ms

64 bytes from 10.10.1.1: icmp_seq=4 ttl=64 time=0.224 ms

64 bytes from 10.10.1.1: icmp_seq=5 ttl=64 time=0.101 ms

ˆZ

[1]+ Stopped ping 10.10.1.1

Step 3: Check number of online CPUs in node0 and node1. Set them to 1 (CPU 0)

in client and 8 (CPUs 0 - 7) in server using CPU hotplugging1

• Client

User@node0:˜$ nproc

20

Execute below shell script in root:

#!/bin/bash

for i in {1..19}; do

echo 0 > /sys/devices/system/cpu/cpu$i/online

done

Verify the online CPUs:

User@node0:˜$ cat /sys/devices/system/cpu/online

0

• Server:
1https://www.cyberciti.biz/faq/debian-rhel-centos-redhat-suse-hotplug-cpu/
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\begin{verbatim}

User@node1:˜$ nproc

20

Execute below shell script in root:

#!/bin/bash

for i in {8..19}; do

echo 0 > /sys/devices/system/cpu/cpu$i/online

done

Verify the online CPUs:

User@node1:˜$ cat /sys/devices/system/cpu/online

0-7

A.2 Server Setup (node1)

Steps to install nginx: Step 1: Setting up nginx server on node1

Execute below commands in the server:

sudo apt update

sudo apt install nginx

sudo systemctl start nginx

sudo systemctl enable nginx

Step 2: Check if nginx server is running

User@node1:˜$ sudo systemctl status nginx

nginx.service - A high performance web

server and a reverse proxy server

Loaded: loaded (/lib/systemd/system/nginx.service;

enabled; vendor preset: enabled)

Active: active (running) since Thu 2023-08-24 00:59:00 MDT; 19s ago
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Docs: man:nginx(8)

Main PID: 4716 (nginx)

Tasks: 9 (limit: 76935)

Memory: 11.1M

CPU: 46ms

Step 3: Verify that port 80 is listening using

netstat -tpln

A.3 Client Setup (node0)

Steps to install wrk benchmarking tool

Step 1: Install liburing to access io uring interface using below commands:

sudo apt update

sudo apt install -y make gcc libssl-dev

git clone https://github.com/axboe/liburing.git

cd liburing

make

sudo make install

Step 2: Clone wrk code with io uring batching2 or code without io uring batch-

ing3

git clone https://github.com/Nithya-2018/io\_uring\_batching.git

cd io\_uring\_batching

sudo make

A.4 Benchmarking

1. Executing with normal wrk:

2https://github.com/Nithya-2018/wrk io uring no batch.git, https://github.com/Nithya-
2018/wrk io uring no batch/tree/master-1

3https://github.com/Nithya-2018/wrk io uring no batch.git, https://github.com/Nithya-
2018/wrk io uring no batch/tree/master-2
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User@node0:˜io_uring_batching/$ ./wrk -t1 -c100 -d5

http://10.10.1.2:80

Running 5s test @ http://10.10.1.2:80

1 threads and 100 connections

Thread Stats Avg Stdev Max +/- Stdev

Latency 551.63us 311.23us 4.28ms 84.23%

Req/Sec 108.32k 2.33k 109.79k 98.00%

538669 requests in 5.00s, 441.26MB read

Requests/sec: 107674.92

Transfer/sec: 88.20MB

2. Executing with io uring batching:

User@node0:˜io_uring_batching/$ ./wrk -t1 -c100 -d5

http://10.10.1.2:80 -i

Using io_uring!

Running 5s test @ http://10.10.1.2:80

1 threads and 100 connections

Connection created!

Thread Stats Avg Stdev Max +/- Stdev

Latency 662.26us 179.46us 9.58ms 93.90%

Req/Sec 150.28k 5.77k 153.51k 96.08%

773414 requests in 5.16s, 637.54MB read

Requests/sec: 149870.20

Transfer/sec: 123.54MB

3. Executing with io uring no batching:

User@node0:˜/io_uring_nb/io_uring_nb$ ./wrk -t1 -c100 -d5

http://10.10.1.2:80 -i

Using io_uring!

Running 5s test @ http://10.10.1.2:80

1 threads and 100 connections

Connection created!
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Thread Stats Avg Stdev Max +/- Stdev

Latency 833.98us 68.05us 4.28ms 88.60%

Req/Sec 118.22k 3.55k 121.02k 96.00%

600976 requests in 5.09s, 494.59MB read

Requests/sec: 117963.22

Transfer/sec: 97.08MB
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