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Abstract

Scotland is challenged with higher rates of drug harm compared to other developed

countries. In this context, the Scottish Ambulance Service (SAS) plays a critical role

in responding to drug-related emergencies. While existing methods used by SAS

contribute to drug harm identification, an opportunity exists to improve identification

using a systematic data-driven approach that leverages textual data within electronic

patient records (ePRs). This study aims to understand what classification performance is

attainable in the task of classifying drug harm cases and interpret outputs to understand

important predictive words and phrases that can be used to also improve the existing

rule-based flag that SAS has deployed.

A penalised logistic regression model using n-gram features and TF-IDF weighting

was implemented. This served dual purposes: facilitate model interpretation and to

provide a baseline for evaluating model performance. The study identified a set of 466

predictive words and phrases associated with drug harm, which will be used combined

with expert knowledge from SAS to enhance the existing rules-based flag.

Moreover, this study is the first application of deep learning techniques to ePRs

captured in an emergency setting. BERT, DistilBERT, BioBERT, and RoBERTa models

were employed in various experiments, exploring hyperparameter tuning in a resource-

constrained environment and different text pre-processing approaches that included

abbreviation expansion and adding additional features to free-text.

Among the models tested, the highest performing model was BioBERT with addi-

tional text processing, which achieved an F1 score of 57.2%, seeing an uplift of 23.4%

from the existing flag. Analysis also revealed that the use of diagnostic codes, the

current gold standard label, might miss drug harm in complex cases with multiple pre-

senting conditions. This suggests a potentially higher true performance and importantly

underscores the model’s capability to identify patients that were previously overlooked.

This model will be deployed at a national level, enabling SAS to tailor policies more

effectively, ensuring the right patients get the right help that they need.
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Chapter 1

Introduction

1.1 Background

Drug-related harm is a global problem with almost 500 thousand deaths attributed to

illicit1 drug use in 2019 [1, 2]. Scotland has, particularly, faced worse rates than most of

the developed world, and has seen rates 4.6 times higher than in 20002. As a result, the

Scottish Government declared a National Mission “to reduce drug deaths and improve

the lives of those impacted by drugs” 3 with an additional investment of £50 million

per year until 2026. A key service that is affected by and is tackling drug harm is the

Scottish Ambulance Service (SAS). SAS is the national ambulance service that responds

to over 500 thousand emergency callouts per year, providing care to 5.5 million citizens,

and is often the frontline care provider for acute drug-related emergencies.

1.2 Identifying drug-harm related patients within SAS

SAS identifies drug-harm patients at three points, two points within the patient care

journey and once after-the-fact through data inference. At the point of call, the patient

is assigned a dispatch code from a selection of 35 different codes (see Appendix A.1)

which is deemed to be the main presenting problem whilst triaging over the phone.

Once the paramedic arrives at the scene, they also assign a code from the same list,

known as the diagnostic code. In addition, the paramedics write free text notes to

describe the patient’s situation at the scene. Any further assessments completed by

1use of opioid, amphetamine, cocaine, cannabis, and other drugs
2https://www.gov.scot/publications/national-drugs-mission-plan-2022-2026/
3https://www.gov.scot/policies/alcohol-and-drugs/national-mission/

1



Chapter 1. Introduction 2

hospital clinicians are not accessible to SAS (Figure 1.1).

Figure 1.1: Data Capture of patient touch points within SAS. ePR includes dispatch and

diagnostic codes, free-text notes and a suite of other salient data points. Stored within

SAS DataWarehouse.

For inferring drug-harm from the data in an electronic patient record (ePR), SAS

have a rules-based flag called the non-fatal overdose (NFOD) flag. This flag identifies

drug harm if the paramedic has checked a box signalling: ‘naloxone was given’, or

the ‘substance affecting condition’ is ‘opioids’ or ‘street benzodiazepine’, or if any

of the four following words are present in the free-text; ’Naloxone’, ’Methadone’,

’Narcan’ and ’Heroin’. Investigating the three points is crucial to understanding the

improvements to be made.

1.3 Problem statement and hypothesis

Despite the service collecting a vast amount of data within the ePRs, there is currently

an absence of an effective systematic and data-driven approach to leverage the true

value of text data and gain detailed insights to help identify the right patients for support.

Across the three points to identify drug harm, there need to be analyses to understand

potential improvements to be made.

The only previous empirical application within SAS, that investigated this type

of ePR was conducted by Manca et al. [3] who demonstrated that by using machine

learning techniques, on a similar dataset, it is possible to identify patterns within the free

text and drive more precise predictions of alcohol-related harm in comparison to human

classification. This showed a lot of promise and potential for leveraging information

from the text and raises the hypothesis that there are, similarly, finer nuances between
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drug-harm and non drug-harm text that can be identified through the use of more

advanced natural language processing techniques.

1.4 Research Aims and Questions

This project aims to address the opportunity to better identify cases that are related to

drug harm by analysing free-text data. It proceeds incrementally, first understanding

the performance of the current state approach within SAS, then establishing a baseline

model for improved classification. The goal subsequently is to use deep learning

techniques, specifically BERT models, to develop a systematic, data-driven approach

to identifying patterns in the free text, and classifying cases into drug-related harm

or not. The study details explainable additions to the current rules-based approach,

builds classification models using state-of-the-art techniques, and provides directions

for future research. Therefore, two research questions are addressed:

1. (RQ1) What performance can be achieved in detecting likely cases of drug harm,

and what models and features facilitate accurate classification?

2. (RQ2) What keywords and phrases in the free text are indicative of drug-harm-

related cases?

1.5 Research objectives

RQ1 and RQ2 have distinct objectives. RQ1 seeks to transform SAS’s capabilities,

using state-of-the-art classification techniques, to drive an increase in precision and

recall. This will mean that fewer patients that are impacted by drug harm are missed by

the service (recall), whilst limiting an increase in inefficient use of resources (precision)

in delivering proactive support.

RQ2 objective is to provide interpretable insights into important words and phrases

to improve SAS’s current NFOD flag. Since the NFOD flag uses a dictionary look-up

to find words, the intricate semantic context and nuances found by BERT cannot be

implemented, therefore the stakeholder’s requirement is to find additional words or

phrases (that do not depend on surrounding context). Consequently, a deliberate choice

was made to select a simpler machine learning model, penalised logistic regression,

due to its inherent interpretability. This provides actionable insights for SAS’s team

to improve the current rules-based flag whilst meeting the requirements to explain the
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rationale of the identifier when for example, reporting drug-harm-related figures or

freedom of information requests.

1.6 Expected contributions

In this study, contributions are made across two layers: academic advancement and

clinical enhancement.

Academic advancement There has been very limited work done on text classification

on ePRs captured in an emergency setting. Building on the previous alcohol-

related study [3] conducted in SAS which used a random forest algorithm as their

classifier, this study marks the first application of deep-learning techniques, which

is commonly applied to clinical in-patient medical reports, to this type of data. By

doing so, the upfront costs and time burden of manually hand-crafting features

are removed, instead allowing the model to learn directly from the vast amounts

of data that SAS captures. This lowers the barriers and provides a foundation for

further work to be done to fully leverage the potential of emergency medical data

within SAS.

Clinical enhancement Additionally, the investigation seeks to improve the current

practices that SAS employs to identify drug harm, better enabling the service to

have a more comprehensive understanding and facilitate investigations at a more

granular level on cases that would previously not have been identified.

The model will be deployed at a national level, providing SAS and broader

healthcare professionals with the latest cutting-edge deep learning techniques to

proactively improve patient care and to make more informed policy decisions

using new actionable insights.



Chapter 2

Relevant Work

This chapter covers the background knowledge required to understand the approach and

findings of this project. Section 2.1 provides a landscape of text classification techniques,

and 2.2 discusses applications in the medical space. Section 2.3 then addresses further

considerations specific to the medical domain that will need to be addressed in this

project. Sections 2.4 and 2.5 delve into BERT and its model variants that could be

applicable to clinical text, and finally section 2.6 gives a spotlight on interpretability.

2.1 Text classification landscape

The landscape of text classifiers covers rule-based, traditional statistical and machine

learning classifiers, and then more recently, deep learning based classifiers. Rule-based

examples will be briefly covered in the next section but given most recent literature

focuses on the latter technologies, the focus will be on those in this section.

Traditional statistical and machine learning classifiers

The usual approach is two-step, beginning with feature extraction, then followed by

classifier [4]. Features are typically extracted using frequency based techniques such as

Bag of Words [5], n-grams [5] or word embeddings such as word2vec [6] to represent

text data as numerical features, with different types of feature weighting such as term

frequency inverse document frequency (TF-IDF) [7] to give stronger importance to rare

predictive words. Classifiers then use these features to make decisions. Algorithms

such as Naive Bayes [8], support vector machines (SVMs) [9], logistic regression,

and random forests [10] have been widely used for text classification. Naive Bayes

5
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takes frequency counts of features and uses Bayes’ rule to calculate probabilities of

being in a class. Whilst is it known for its simple implementation, it assumes that

each feature is independent and hence struggles to capture relationships between words.

Logistic regression is a linear classifier that also calculates probabilities of belonging

to a class by assigning weights to different features. It has been a popular choice

given the ease of implementation and ability to interpret using the coefficients of

the features. However, in high dimensional spaces can be prone to overfitting. An

effective solution is often used, such as in the study by Genkin et al. [11], where an L1

lasso regulariser is used to promote feature sparsity, hence improving generalisability.

Moreover, SVMs, which find hyperplanes that best separate the two classes, are also

shown to be very effective in high dimensional spaces, where there are more dimensions

than observations, and differentiate from the previous approaches by also working well

on non-linear classification tasks. A challenge however is that they are computationally

expensive on large datasets. Similarly, random forests which take the outputs from a

combination of decision trees to make a classification, are a popular choice on high

dimensional tasks. It benefits from the ability to understand interactions between

features, manages sparsity, and is less prone to overfitting since it takes in the input over

several trees before making a decision [12].

One of the key challenges associated with the traditional classifier models is the

need for feature engineering. Expert knowledge is required to create useful features

which can be highly time-consuming and costly [13], and limits the ability of the model

to learn hidden nuances and relationships between words from the training data.

Recent deep learning approaches

Without the requirement to hand-engineer features, deep learning models are trained

on large datasets with a focus on learning the relationships within the data to make

effective classification models. This reduces the requirement for domain experts and

reduces the time taken to build the model and implement and reduce costs [13]. In

the absence of funding or significant time, this feature of deep learning becomes very

useful.

Within deep-learning language models, the best-in-class broadly can be split into

traditional neural networks and transformers [14]. Traditional neural networks include

RNNs and LSTMs. Recurring neural networks (RNNs) work by processing words one

by one through individual neurons, where the hidden state of the previous word serves
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as the context for the subsequent word. This sequential approach allows the model to

pick up short-range contextual relationships effectively. However, they struggle with

long-range dependencies due to the vanishing gradients problem; where context from

older words diminishes as is passed through a sequence (due to small gradients). This

is where LSTMs then become beneficial. LSTMs introduce a hidden layer of memory

blocks into the architecture with a trainable linear memory cell hence mitigating any

vanishing gradients and allowing the model to learn longer-range dependencies in the

text better.

Transformers benefit from the power of the attention mechanism [15], which assigns

weights from each word to every other word in the sequence based on their significance.

This mechanism makes it possible to capture long-range contextual dependencies across

the full sequence, and importantly, simultaneously through parallelisation as opposed to

traditional neural networks using sequential word-by-word processing. This capability

enables the training of significantly larger language models on GPUs faster [15]. Using

the transformer technology, the pioneering BERT model [16] was developed (discussed

in detail in section 2.4). BERT continues to be the state-of-the-art embedding model

across several classification datasets [14].

2.2 Free text analysis in a medical setting

Electronic medical files hold a vast amount of free text, providing valuable information

about patients. As a result, extracting information from this text has been an active

area of research [17, 18, 19]. Effective text classification can help healthcare profes-

sionals to gain a granular understanding of patients, including symptoms, diseases, and

medications, leading to improved patient care. Rules-based, machine-learning, and

deep-learning approaches have been tested extensively in this space.

Rules-based approaches such as dictionary look-ups and regular expressions have

traditionally shown good scores, for example in a review by Spasic et al. [20], using

this approach for the identification of cancer-related words in ePRs achieved F-scores

between 80% and 90%. Yang et al. [21] took a hybrid approach, combining rules-based

and machine learning. Using hospital discharge summaries that contained multiple

categories, including “Diagnosis”, “Past or Present History of Illness”, and “Medica-

tion/Disposition”, they were able to effectively predict obesity and 15 related diseases

with a macro F-score of 81%. Moreover, Bates et al. [22] achieved an impressive F1

score of 93.5% by using an SVM model on radiology reports to identify patients who
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have experienced falls. Heo et al. [23] employed several deep learning models such as

convolutional neural networks (CNN) and long short-term memory (LSTM) to predict

poor outcomes from stroke patients using brain MRI text reports.

Comparing the literature in this space, whilst there have been several applications

using different medical reports, a holistic patient understanding such as past medical

history is often used as an important feature for making classifications. This level of

context is generally not available in ePRs using emergency text, and therefore, the

same application of models on these reports could see a drop in model performance.

Moreover, compared to general text, medical text has a number of unique properties

such as medical jargon, abbreviations, and poorer grammar [18, 24], and therefore focus

has predominantly been on text pre-processing to design informative features.

As discussed in the previous section, BERT has consistently been shown to produce

state-of-the-art results, but Lee et al. [25] showed that it struggles to generalise as

well to the biomedical space. Mascio et al. [26] tested a number of algorithms on

medical text classification including BERT, BioBERT and found that without any

additional customisation, the general domain and domain-specific BioBERT model

outperformed all of the other models - 93.4% F1 score for BioBERT and 91.5% for

BERT vs 88.4% for the next best performing model - bidirectional LSTM. They argued

that training on domain-specific text improves ability to clinical text classification.

Some domain-specific BERT models include; BioBERT, ClinicalBERT, MedBERT

are likely to perform better by effectively picking up longer-range dependencies by

recognising domain-specific terminologies [25, 27, 28].

Applications on ePRs with emergency medical text

There has been very limited work on ePRs using emergency medical text. Prieto et

al. [29] looked at the application of machine learning techniques on emergency text to

address the challenges of misclassifying cases with naloxone as opioid use cases. They

applied four machine learning models; random forest, k-nearest neighbours, support

vector machines, and L1-regularized logistic regression to classify cases associated

with opioid and heroin misuse. They found that the L1 regularised logistic regression

model performed the best, and improved precision by 30.3% from their rules-based flag.

Manca et al. [3] conducted a study looking at the burden of alcohol-related cases on the

ambulance service, which demonstrated the richness in the text to effectively identify

alcohol-related cases through the use of random forest algorithm on emergency medical

reports. Senior paramedics reviewed over 5k ePRFs and pulled words and phrases
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that were alcohol-related. These words and the existing alcohol flag were then used as

features in a random forest model, which showed a large improvement in sensitivity

(0.942 for RF vs 0.380 for the existing flag). No study has looked at deep learning

techniques on this type of data. By applying deep learning techniques, the requirement

in Manca’s study for a experienced paramedic create features is removed, reducing the

costs, and time burden to go from model build to implementation.

2.3 Additional considerations with medical data

2.3.1 Privacy and anonymisation

Ensuring the privacy of patients is respected whilst reducing the risk of potential bias in

training any deep learning model [30, 31] is paramount and core to this study. Given

the unstructured nature of the free text, there is a risk that identifiable information such

as patient names may be contained in this text.

A common approach to automatically anonymse data is token level classification,

using named-entity-recognition (NER) [32]. NER is the task identifying words or

phrases that are associated with names, places, or organisations [33]. Garcia et al. [34]

tested both spaCy and BERT on the detection of sensitive words and classification

of the type of word (e.g. name, age, location). Under detection, they showed BERT

outperformed across each dataset with an F1 score of 96.5% vs 95.1% for spaCy. They

also suggested different forms of anonymisation of sensitive data, through complete

removal, replacement or obfuscation [35]. For example; “64-year-old patient operated

on a hernia on the 12/01/2016 by Dr Lopez” can be replaced with “XXXX patient

operated on a hernia on the XXXX by XXXX”, “[AGE] patient operated on a hernia on

the [DATE] by [NAME]”, or “59-year-old patient operated on a hernia on the 05/06/2019

by Dr Sancho” 1. Interestingly, Dayanik and Pado [36] found that masking names in

training removes personally identifiable bias but also improves model performance in

out-of-domain settings.

2.3.2 Imbalanced data

Class imbalance typically leads to poorer classifier model performance [37]. Usually,

higher levels of misclassification are observed in the smaller-sized class, also known

1translated from Spanish to English from [34]
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as the minority class. To address imbalance, researchers often use undersampling or

oversampling techniques [18]. Undersampling is a popular and efficient method to

address this issue, by taking only a subset of the major class (cases that are not related

to drug-harm) [38]. Oversampling techniques, such as SMOTE, synthetically create

instances of the minority class, thereby artificially increasing the size of the set [39].

However, there are challenges towards both approaches, where undersampling can

lead to important information being removed and over-sampling can lead to overfitting

[40]. Sullivan et al. [41] assessed text classification using both undersampling and over-

sampling for detecting misdiagnosis of Epilepsy. They found that their best-performing

model used an undersampled dataset to achieve an F1 measure of 71.4% compared to

64.7% using oversampling. Similarly, Afzal et al. [40] compared the two techniques on

two imbalanced datasets for classifying cases of acute renal failure and hepatobiliary

disease and found both approaches drove improvements, but undersampling performed

slightly better. However, Garcia et al.[42] found in cases of severe imbalance, oversam-

pling performed better than undersampling, likely due to the level of discriminatory

information loss from the majority dataset. This suggests that there is not only one

’best approach’ with choices dependant on the dataset being used, such as the level of

imbalance and variability of text within each class.

Alongside rebalancing, model choice also impacts performance on imbalanced data.

Lu et al. [43] applied different deep learning models, including, CNN, Transformer

encoder, and BERT on medical text data with varying levels of imbalance. They

saw transformer encoders were the most resilient to varying levels of imbalance and

surprisingly BERT did not perform as well. However, they observed the use of domain-

specific embedding BioWordVec had a positive impact on performance, hence could

suggest that domain-specific BERT such as BioBERT could also show more resilience

under imbalance and therefore is interesting to explore.

2.3.3 Abbreviations

Abbreviations and acronyms can reach up to 50% of words in clinical text, compared to

less than 1% in general text [44]. Surfacing more words that are human and machine

understandable is likely to help the model make better classifications. As a result,

a number of comprehensive datasets have been produced for medical abbreviations

[45, 44]. A challenge with abbreviations, however, is that each abbreviation may have

several potential expansions, hence correct expansion is a critical pre-processing task in
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order to help improve model performance. For example, The Medical Abbreviation and

Acronym Meta-Inventory [44] contains over a hundred thousand abbreviations, within

which there are several expansions for each abbreviation, such as ‘OD’ expands to 34

full forms such as ‘overdose’, ‘optimal dose’, and ‘occupational dermatitis’. To identify

the most likely expansion, Pakhomov et al. [46] used cosine similarity to measure the

similarity between training and test context vectors. The vector corresponding to the

largest cosine (greatest similarity) would then be picked to represent the expansion

of the acronym. Furthermore, Liu et al. [47] explored the use of word embeddings

measuring cosine similarity but then also combined with a rating score, based on the

popularity of the word, and saw an accuracy of 82%. Whilst these approaches perform

well, they fall slightly behind domain expert accuracy of c.90%.

2.4 A focus on BERT

BERT (Bidirectional Encoder Representations from Transformers) [16] is a deep con-

textualised language model. Its architecture is structured on a stack of 12 layers of

transformer models, first introduced by Vaswani [15]. Each layer uses a mechanism

called self-attention to assign a weight between each of the words with every other word

in the sequence (both directions), hence capturing long-range contextual relationships

within the text. BERT benefits from transfer learning [48], where it is first trained on a

source task, and then fine-tuned onto a specific task. During pre-training, BERT uses an

unsupervised masked learning model approach and next sentence prediction [16] using

a large unstructured dataset of 3.3bn words from BooksCorpus and Wikipedia. This

enables BERT to learn language patterns. During fine-tuning, all of the parameters are

tuned together to learn further intricacies of the language used in a specific task.

2.5 Variants of BERT

Following the success of BERT on a range of NLP tasks, both in general domain

and in a clinical setting [16, 14], a number of variants have been developed with

different techniques to improve performance, such as looking at domain-specific cases,

improving BERT model through better training, or different size models. With benefits

and challenges with each model, Minaee et al. [14] provide a helpful framework for

model selection, with suggestions to look at domain adaption, model design, availability

of training class labels, and consideration for real-world feasibility. As a result, a range
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of general models; BERT, RoBERTa, and DistilBERT, and a domain-specific model;

BioBERT are implemented in this study.

2.5.1 RoBERTa

RoBERTa (Robustly optimised BERT approach) [49] improves on the original BERT

model, by increasing training time over significantly more data, removing the next

sentence prediction objective and adapting the pre-training process by dynamically

changing the masking pattern applied on training. Liu et al [49] showed the RoBERTa

model to outperform the BERT model in all tasks, importantly on the SST task, which

looks at text classification, by delta of +2.9% accuracy in comparison to BERT.

2.5.2 BioBERT

BioBERT [25] uses the same architecture as BERT and takes the weights initialised from

the BERT model [16], but then differentiates itself in the data that it is pre-trained on.

BioBERT pre-trains on biomedical corpora using 4.5B words from PubMed Abstracts

and 13.5B words from PMC full-text articles. This has been done since vast amounts of

biomedical text are different to general text, and therefore generally BERT would see a

performance drop-off when used on this domain specific text. Comparing performance

of different text classification approaches on electronic health records, Mascio et al.

[26] showed BioBERT consistently performed better than BERT, for example achieving

a macro F1 score of 93.4% vs 91.5% respectively on a task to classify if the disease is

affirmed or negated.

Other domain-specific models have been developed, for example, ClinicalBERT

[27], which takes BERT and BioBERT models fine-tuned on clinical notes. Interestingly,

Turchin et al. [50] compared the performance of BioBERT and ClinicalBERT on

different tasks such as to classify usage of tobacco in the past, and did not find either

model consistently performing better than the other. Combined with the explained

differences between emergency reports and clinical text, later outlined in section 3.1.3,

for this study, BioBERT has been chosen for the domain-specific model.

2.5.3 DistilBERT

DistilBERT uses knowledge distillation [51] to reduce the size of the BERT model

by 40% whilst still retaining 98% of classification performance [52]. For example,
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on SST-2, which is a sentiment classification task on movie reviews [53], DistilBERT

demonstrated an accuracy score of 91.3% [52] compared to 93.5% [16] for BERT-base.

The reduction in the size of the model means inference time increases by 60%. The

trade-off between training time and performance of using DistilBERT is interesting to

explore if a similar delta in performance is seen within a clinical medical setting as it

does in a general setting. These findings will be used to provide insights for approaches

to future text analysis tasks where there are hardware limitations stopping fast training,

within SAS research.

2.6 Model interpretability

Deep learning models, due to their ’black-box’ nature [54], often lack transparency,

making interpretability a challenge. Explainable AI has become an increasingly popular

area of research. Different techniques have been explored, such as investigating BERT

attentions [55] and deployment of libraries such as Captum [56] that use different

types of algorithms such as layer importance algorithms improve the ability to interpret.

However, debates persist about the effectiveness of these techniques, and is often argued,

such as in the studies by Rudin [57, 58], that in high-stakes areas such as healthcare,

the focus should be given to building interpretable models rather than explainable AI,

since the explanations derived are often wrong.

In contrast, traditional text classification models offer simpler interpretability

through feature selection. Among these, logistic regression stands out for its sim-

plicity and human interpretability. Since the output is a weighted sum of features,

the magnitude and sign of the coefficients can be interpreted to understand feature

importance. The benefit of feature selection such as on n-grams is that these are directly

interpretable by humans by investigating what is the most important for the model [59].

However, it must be noted that feature selections show features correlated with the

outcome, not causal [59], hence expert knowledge must still be applied to interpret the

outputs of a model.

In this study, providing interpretability of the model will support SAS in improving

their rules based flag in a systematic and transparent way so they can continue to use

their flag for governance purposes. As a result, a context-free model is required since a

rules-based flag that uses a dictionary to look up words or phrases need not depend on

words in close proximity. Hence, the implementation of the BERT model which is a

contextual model is not used here.
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Methodology

3.1 SAS Drug-harm dataset

The dataset used in this study contains 47k electronic patient records (ePRs) that

have been captured by SAS over full year 2022. As outlined by Figure 1.1, there are

two points in the patient’s journey with SAS that information regarding drug harm is

recorded; at point of call where a dispatch code is provided and at point of paramedic

diagnosis where a diagnostic code is added. In addition to these codes, there are other

fields of data that are provided within the dataset that are captured in table 3.1 below.

Cohort Call Number Date Time

Call despatch code Diagnostic code Call colour NFOD flag

Naloxone mentioned Heroin mentioned Additional comments Postcode

Receiving hospital

Table 3.1: Fields provided in SAS dataset. Definitions in table A.1

As advised by SAS clinicians and in line with previous applications of supervised

learning text classification tasks where clinical codes are used as class labels [19], the

golden truth of if a case is related to drug harm or not in this study is determined by the

diagnostic code 23 (see figure A.1). Drug harm & OD is used interchangeably.

3.1.1 Selecting final dataset for study

4.1% of all emergency callouts are related to drug harm. To construct the training and

test dataset for use in this study, two considerations were taken into account. Firstly,

14
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managing the dataset size with consideration to training time, and secondly, class

balance was prioritised to improve classifier performance [38, 18].

As discussed in section 2.3.2, undersampling techniques and oversampling tech-

niques perform better in different situations. Due to the practical limitations with

training time for fine-tuning BERT, the training dataset has been kept at a sample size

of 10k of the 47k cases. Given the constrained dataset size, with cases already being

removed from each cohort, the undersampling approach was deemed more suitable

and was selected. Specifically, 5k of OD-related cases (by diagnostic code) have been

randomly selected, proportionate to the distribution in cohorts 1 and 3, and 5k of not-OD

related cases randomly selected, proportionate to cohorts 2 and 4. Whilst there is a risk

for information loss from undersampling, the dataset is deemed suitably large (at this

stage) to give sufficient information for the model to effectively learn from the positive

and negative classes.

Description Original Training Test

Cohort 1 Dispatch: OD, Diagnostic: OD 9.5k 2.2k 270

Cohort 2 Dispatch: OD, Diagnostic: No OD 5.0k 50 110

Cohort 3 Dispatch: No OD, Diagnostic: OD 12.3k 2.8k 340

Cohort 4 Dispatch: No OD, Diagnostic: No OD 20.0k* 4.9k 14.0k

Table 3.2: SAS dataset cohort split. Training was rebalanced to 50:50 split: Cohort 1 & 3

= 5k, 2 & 4 = 5k. Test kept original cohort split. *from a subset of c.500k no-OD cases.

Model selection was performed using training set. The remaining data was used (to

ensure cohort 1 & 3 were large enough) as the test dataset with proportions matching

the original set. Note, that a limitation of the dataset provided was that cohort 4 was

only sampled from May & December due to current SAS infrastructure limitations.

Therefore an assumption was required that cases did not vary by condition across

months.

3.1.2 De-identifying the Dataset

The data was first anonymised before training to avoid potential bias and respect the

privacy of patients. Postcodes were condensed using regular expressions to retain area

and district information. Automatic anonymisation was chosen due to the impracticality
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of manually deidentifying free text in 10k ePRs. This was an accepted approach by

SAS and agreed in the Ethics Approval since the data used remained within the SAS

environment for this study. Garcı́a-Pablos et al. [34] showed that a general BERT-

based model performed well in de-identifying and did not require any domain-specific

engineering, as a result, BERT NER1 was used. BERT NER, fine-tuned cased model

on the CoNLL-2003 Named Entity Recognition dataset [60] - a commonly used public

dataset for named-entity-recognition, classified each token into one of 4 classes: person,

organisation, location, or other (see table A.3 for full breakdown).

Within the 10k rows of data, 5.9k names, 2.7k locations, and 14.8k organisations

were identified. Names were masked with “PERSON” rather than obfuscation in line

with findings from [36] (see section 2.3.1). For example, “Dr Smith” was replaced

to “Dr PERSON arranged a home visit”. Upon agreement with SAS, locations and

organisations were not masked given it was not personally identifiable information and

since the data remained within the secure SAS environment.

3.1.3 A note on the differences between SAS ePR dataset and

hospital ePRs

Here it is important to note, that whilst certain similarities exist between medical

notes captured in a clinical setting by healthcare professionals, and emergency notes

documented by paramedics, they generally serve different purposes and therefore have

different characteristics. Electronic patient records used in this study are designed

to specifically capture a comprehensive description of the event that paramedics are

attending. Unlike clinical notes, which encompass much broader patient histories,

emergency medical notes generally do not capture this. Moreover, emergency medical

reports are generally more formulaic and quantitative, with specific abbreviations to the

service, and designed to provide relevant and important information for handover to

nurses and doctors in Accident & Emergency departments. There is often less time to

write detailed documentation in these time-critical callouts as compared to in a clinical

setting [61]. These differences could pose additional challenges in classification due to

limited context. For example, a patient with a history of specific clinical events, such as

mental health related, could be a likely predictor of future overdose [62].

1https://huggingface.co/dslim/bert-base-NER
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3.2 Methods

This section introduces the two methods used to classify the ePRs; logistic regression

and BERT model (including variants).

3.2.1 Logistic Regression with L1 regularisation

The logistic regression model is used as a baseline for RQ1, for feature selection for

adding context for the BERT model, and for interpreting keywords to answer RQ2.

Pre-processing

Using the dataset with 10k ePRs, 90% were randomly selected for training. To answer

RQ2, the remaining 1k ePRs were used as the test set. The choice was made as the focus

was on interpretability, rather than model generalisation, hence the aim was to assess

the model’s ability to distinguish between drug-harm and non-drug harm cases without

being biased by class imbalance. However, for RQ1, the performance evaluation was

on the unbalanced test set to assess how well the model generalises to new data (table

3.2). The 9k training data was then further split into train and validation data by using

10-fold cross-validation to tune the L1 regularisation parameter, λ.

The free text was pre-processed, which included the removal of punctuation, chang-

ing all characters to lowercase, removal of stop words (such as a, the, and) but keeping

negation words (e.g. not), and reducing each word to their lemma (dictionary form)

[18, 5, 63]. Example of preprocessing: “Called to Patient who has reported has having

taken a overdose.” to “call patient report have take overdose”.

Feature extraction and weighting

To extract features from the text, the Bag Of Words (BoW) method [5], where the

number of times the features (e.g. words) have appeared in the corpus is counted, was

selected due to its simple implementation and ability to interpret after. This was in

line with the common approach in clinical text classification using machine learning

as explained in a systematic literature review by Mujtaba et al. [18]. Unigrams,

bigrams and trigrams [64, 65] were selected as features since it helps to understand both

individual words that are predictive but also areas where a combination of features is

more informative than the word on its own, e.g. is ”take overdose” more predictive than
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”take”. In several studies [66, 67, 68], using bigrams and trigrams is shown to drive an

uplift in performance than just using unigrams.

Term Frequency-Inverse Document Frequency (TF-IDF) [7] transformation was

then applied creating an N x M matrix X , where N = number of ePRs and M = number

of n-grams, for defining the feature weighting. TF-IDF calculates the frequency of

words within the document (term frequency) and then how rare a word is in the entire

corpus (inverse document frequency), and is defined as:

T F-IDF(n,m) = t fn,m · log
(

N
d fm

)
(3.1)

where t fn,m is term frequency of n-gram m in ePR document n, d fm is number of ePRs

that have n-gram m, and N is total number of ePRs in set.

The benefit of this is that rarer words that are often found in a group of similar

documents will be given a higher TF-IDF score, and common words that are found in

all documents will then be given a lower score. This is useful to address RQ2 to identify

specific keywords that are more indicative of drug harm.

Training and evaluating

A logistic regression model was then applied using an L1 Lasso regulariser (reasons

highlighted below). The objective when fitting the logistic regression model is to

minimise the corresponding loss function (to get predictions close to the true value).

The loss function for logistic regression with an L1 regulariser [69] is defined as:

min

(
∑

(x,y)∈S
(−ylog(ypred)− (1− y)log(1− ypred))+λ

N

∑
i=1

||βi||1

)
(3.2)

Where (x,y) ∈ S represents the x values and y labels in training data, y is the true label,

and ypred is the probability between [0,1], calculated by ypred = 1

1+e−∑
N
i=1 βixi

. The L1

regulariser λ∑
N
i=1 ||βi||1 adds the absolute value of the coefficient weights to the loss

function, penalising large coefficients, and hence is used to shrink many regression

coefficients to zero. This promotes sparsity [70, 71] and helps to understand which

features are most significant. The choice of λ was determined by conducting a grid

search of different values and selecting λ corresponding to the highest 10-fold cross-

validation F1-score. Then using the optimal λ regulariser, the model is trained on the

training set, coefficient interpreted and performance evaluated on the test set.
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3.2.2 BERT model and variants

As discussed in section 2.5, several variants of BERT have been developed and demon-

strate excellent results in different scenarios. Having established a baseline using logistic

regression for RQ1, the study now tests whether applying these models in this context

sees similar generalisation as observed in other general and clinical scenarios [14, 28].

Since this study is the first application of BERT on ePR that contains emergency medical

data, due to the additional challenges outlined in section 3.1.3, this study has tested

general domain BERT models; BERT, DistilBERT, RoBERTa, and a domain-specific

model BioBERT. This investigation provides empirical evidence into how these models,

commonly used on hospital ePRs, adapt to emergency text.

BERT approach

There are two approaches to using the BERT model for a classification task.

1. Fine-tuning: A final fully connected linear layer is added on top of the BERT

architecture. The [CLS] contextualised vector is mapped to the labels in the SAS

drug-harm dataset by tuning all of the parameters end-to-end.

2. Feature-based: Freezing the pre-trained BERT model parameters, the model

first converts the sentences into contextualised vectors. The corresponding vector

representing [CLS] token is then taken from the last few hidden layers of the

model and then used in a further classifier model, along with other features [72].

Whilst performance is broadly similar, Devlin et al. [16] demonstrated that the

fine-tuning approach produces better results on average, for example on a NER task,

the fine-tuning approach had an uplift in the F1 score of 0.3% as compared to the best

feature-based approach. This is also supported by findings by Peters et al. [73] that

showed an 0.5% accuracy uplift on a sentiment analysis task on the SST-2 dataset [53].

As a result, the fine-tuning approach was selected for this study.

BERT implementation

The implementation for each variant is similar, so the implementation of BERT is

discussed here. Free text is initially transformed before using BERT. Each ePR text

document is tokenised and converted into a numerical vector through the summing of

three embedding layers; token, position, and segment embedding. Token embedding

uses WordPiece embeddings [74] which breaks words into tokens using a vocabulary of
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around 30k words. Two special types of tokens are also added; [CLS], which goes at

the beginning of the sequence of text and is critical in classification tasks to help BERT

understand the overall context of the document, and [SEP], which goes at the end of each

sentence to indicate when a segment has finished. Tokens are then mapped to unique

IDs based on the vocabulary. WordPiece handles out-of-vocabulary words well by

breaking them down into subwords. The segment embedding and position embedding

are used to indicate the segment, i.e. which sentence it is in (in a classification task is

always segment 1), and position (what number the word is) for each token.

BERT’s input length can go up to 512 tokens. However, most ePR documents (figure

3.1) are under 256 tokens - there are 11% ePR documents that are longer than 256

tokens (10% of drug-harm ePRs and 13% of non-drug-harm). Due to the self-attention

mechanism in BERT, where there is a weight attached between each word and every

other word in the sequence of text, computational time grows disproportionately (per

layer O(dn2) where d is vector dimension and n is token length) with the length of the

free text [16]. Therefore to balance the trade-off between training time and potential

loss of context, the max length was set at 256 tokens.

Figure 3.1: Token length of ePRs in dataset

Any ePRs longer than 256 tokens are truncated from the right, as from manual

inspection, paramedics typically start by writing the most critical information. For ePRs

below 256 tokens, [PAD] tokens appended from the right, which can be thought of as

empty tokens, to ensure all vectors are the same length. An attention mask is then used

to identify padding tokens (0) vs real tokens (1). See example in appendix B.1.

The input layer is then passed through the BERT model (details in section 2.4), and

the outputs are contextualised vector representations of each token. For classification,

only the [CLS] token contextual representation is used, which can be thought of as the

contextualised summary of the whole ePR document. A fully connected linear layer is
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attached to the model which maps the [768,1] vector representation of [CLS] to [2,1]

logits (drug-harm or no drug-harm). A softmax function then converts the logits into

probabilities using:

so f tmax(xi) =
exi

Σ2
k=1exk

(3.3)

All of the parameters are tuned end-to-end against the training labels via backprop-

agation with AdamW optimiser [75], minimising cross-entropy loss (equation 3.4).

The implementation of the tokeniser and model was in Python, using the HuggingFace

Transformers Library 2.

3.3 Additional feature selection

To use fine-tuning end-to-end, features that provide the most information gain were first

identified and then appended as free text, e.g. “location: Edinburgh”. Feature selection

was required so unnecessary noise was not added and given the token length constraint.

With no ’one size fits all’ approach for feature selection [70], an ensemble approach to

feature selection was taken (wrapper method and embedded method). An aggregation

of multiple selection approaches was used as it has been shown to increase the stability

of final model performance results [76].

3.3.1 Wrapper method

Figure 3.2: Wrapper method [77]

Using backward selection, the process starts off with the full feature set and it-
eratively removes the least important features which is determined from a classifier

algorithm (in the wrapper box) until a fixed number of features is reached, yielding

the optimal feature subset. To overcome the time-intensive nature of fine-tuning BERT

with feature combinations, a faster random forest tree algorithm was used as a proxy

classifier, inspired by Manca et al. [3], who, using a random forest, achieved high

classification performance on a similar SAS dataset.

2https://huggingface.co/docs/transformers/index
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A challenge with the wrapper method is that, while the Random Forest model can

capture feature interactions, the backward selection may still overlook combinations

of features that collectively contribute to improved performance. This could lead to a

sub-optimal set of features. For example, removing the ’day of the week’ while keeping

’hour’ could significantly reduce the importance of ’hour’, even though in the context

of, for example, Friday, 2am is highly informative. This reinforces the value of taking

the ensemble approach.

3.3.2 Embedding method

As discussed in section 3.2.1, using the L1 Lasso regression is an effective method

to shrink many regression coefficients to zero and promote sparsity [70, 71], driving

feature selection. The size of the regulariser λ was carefully selected, where the stronger

the regulariser, the more coefficients would be forced to zero. A target number of

features was set at 18, and then the value of λ was amended through trial and error

until this target was achieved. Furthermore, k-fold validation (see section 3.4.3) was

employed, where k = 10 to ensure stability and confidence in the results.

3.4 Evaluation metrics

3.4.1 Loss function

To evaluate the different hyperparameter combinations, the aim was to minimise cross-

entropy loss [78], defined by:

Ĥ(P,Q) =−Σ
N
i=1 pi · log(qi) (3.4)

Where P is the probability distribution of predictions, and Q is the distribution of the true

labels. Ĥ quantifies the similarity between P and Q. A higher value of Ĥ indicates greater

dissimilarity between the predictions and true labels, signifying poorer predictions. This

is a commonly used loss function in BERT fine-tuning tasks [16, 79, 80].

3.4.2 Classification metrics

A confusion matrix (table 3.3) compares the model predictions and true labels into a

grid. For model selection, loss and metrics in table 3.4 are reported. The model with

the lowest loss and higher F1 score on the balanced validation dataset was selected.
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True positive class True negative class

Predicted positive class True positive (TP) False positive (FP)

Predicted negative class False negative (FN) True negative (TN)

Table 3.3: Confusion matrix table for binary classification [81]

Metric Formula Intuitive Description

Accuracy T P+T N
T P+T N+FP+FN % of predictions that are correct

Precision T P
T P+FP % of positive predictions that are correct

Recall / Sensitivity T P
T P+FN % of actual positives, that are predicted positive

Specificity T N
T N+FP % of actual negatives, that are predicted negative

F1 Score 2∗ Precision·Recall
Precision+Recall

Harmonic mean of recall and precision.

Single metric that balances their trade-off

Table 3.4: Evaluation metrics, calculated using table 3.3

Then to evaluate the final model on the test set, along with the previously mentioned

metrics, ROC curves (comparing specificity and sensitivity) and precision-recall curves

are visualised, and corresponding areas under curves are reported (AUC-ROC and

AUC-PR) with values near 1 being better. This comprehensive suite of metrics gives

a robust assessment of discrimination and generalisation abilities and is the common

approach in imbalanced dataset [43]. Additionally, training time is commented on for

practicality, ensuring a balance between predictive performance and computational

efficiency for implementation in SAS’ dynamic test-and-learn research environment.

3.4.3 K-fold validation

To ensure robustness and stability in the evaluation metrics for model selection, a

k-fold validation technique [82] was employed. This approach involves partitioning

the data into k equal parts. (k-1) partitions were used for training the model and then

the performance was validated on the remaining (unseen) partition. This procedure

is repeated k times, with a different partition of data serving as the validation set

for each iteration. The final evaluation measures (see section 3.4.2) are obtained on

the validation set by computing an average of the performance measures over the k

iterations. Consequently, all parts of the data have been used for training and validation.
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Results and discussion

4.1 Current State within SAS

4.1.1 Human-classification

The dispatch code (from call handler) forms the human classification baseline. Two

observations are made, firstly 56% of drug harm-related cases are initially coded as

not-drug harm initially (see recall), potentially indicating difficulty in identifying drug

harm due to initial call descriptions, changing conditions, or data noise. Secondly, the

significant class imbalance, with only 4.1% cases being related to drug harm, results in

misleadingly high accuracy and specificity metrics, and reinforces the importance of

investigating the range of metrics such as F1 score, precision and recall.

Accuracy Precision Recall Specificity F1 Score

96.8% 65.5% 43.6% 99.0% 52.3%

Table 4.1: Performance measures of human classification approach; using dispatch code

4.1.2 Rules based approach

The dataset provided also contains the NFOD flag, described in section 1.2. This flag

is currently SAS’ best approach to inferring if a patient record is related to drug harm.

Since the dataset used does not contain the full set of non drug harm cases, it is only

possible to infer the recall. Of the 21k drug harm related calls in 2022, the NFOD flag

only successfully identified 22.8% of the cases suggesting much more complexity than

identifying a few common causes/treatments for drug harm in the free text.

24
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4.2 Baseline model

As seen in the previous section, there is a big opportunity to use more advanced

techniques to improve how SAS identifies cases related to drug harm.

4.2.1 Free-text exploration

Visually investigating the n-gram can help understand patterns within the text data.

Figures 4.1, A.6 show commonality amongst the most frequent words, such as ‘pt

states’ and ‘pt lying’. Differences are also evident in the bigram and trigrams, such as

‘pt taken’ and ‘taken overdose’. This reinforces the value of TF-IDF transformation

method (section 3.2.1) to weigh the common n-grams across the two classes less.

Figure 4.1: Top 10 bigrams, split by drug-harm related or not

Immediately, ‘mental health’ recurs frequently in drug harm ePRs raising a potential

concern when classifying. Where patients have multiple presenting conditions, the code

is subjectively given to the primary reason for the emergency. In the SAS system, there

is another code for the diagnosis code for mental health (see figure A.1) that can cause

noise when trying to learn between only drug-harm and non-drug harm. This will be

investigated during evaluation to understand if some of these other presenting factors

are causing false positives although there are suggestions of drug-harm.

4.2.2 Logistic regression model

In the sklearn1 application of logistic regression, the inverse λ value is input, hence

the smaller the value, the stronger the regulariser. Through a grid search of values

1https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
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between 0.001 and 100 (base 10 log intervals) and then further grid search between

1 and 10, λ = 4 returned the highest 10-fold cross-validation F1 score. This λ choice

promoted sparsity, reducing the number of features by 99.9% (675k features), down

to 466 predictive features for the final model. Results using the balanced test set

below indicate a good ability to discriminate between the two classes and therefore

interpretation will be expected to be insightful.

Accuracy Precision Recall Specificity F1 Score

91.5% 92.5% 91.5% 91.5% 91.8%

Table 4.2: Evaluation measures of logistic regression on test data, using TF-IDF weight-

ing and unigrams, bigrams and trigrams features, and then L1 regularised with λ = 4

4.2.3 Interpreting the logistic regression model

As discussed in section 3.2.1, interpreting the coefficients of the logistic regression will

help identify what keywords or small phrases are highly predictive of an ePR being

related to drug-harm or not, answering RQ2.

The sign of the coefficient indicates if the feature positively or negatively contributes

to the probability of the prediction. E.g. using the features list in table 4.3, the presence

of words such as ‘overdose’, ‘od’, and ‘take’ increases the probability that the ePR is

related to drug harm, and words such as ‘onset’ and ‘ple’ reduces the probability that

the ePR is related to drug-harm. The magnitude signifies the importance of the feature,

where for example the presence of ’overdose’ in the text increases the probability more

than the bigram ’take approx’, whilst both still contributing positively.

Unsurprisingly, words such as ‘overdose’ and ‘od’ are the most important predictive

features of the model. The current SAS flag looks at 4 words in the free text: ‘Naloxone’,

‘Narcan’, ‘Heroin’, and ‘Methadone’ which ranked 4th, 5th, 57th and 51st. Verb words

such as ‘take’, ‘take approx’ and ‘ingest’ are also highly predictive in the model and

hence important additions. Within the negative features, some significant features were

interesting to see. For example, ‘seizure’ ranking highly was unexpected since it is

a common overdose symptom. Possible reasons include the differences in seizure

prevalence between the drug harm and non drug harm classes or also could suggest that

if a seizure is seen, whilst this could be due to an overdose, it is instead coded as a code

12 (see figure A.1) - again indicating challenges in the use of single coding for ePRs.
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Positive features Negative features

Rank Feature Coefficient Feature Coefficient

1 overdose 80.1 onset -22.9

2 od 50.4 ple -19.8

3 take 44.2 pain -18.5

4 naloxone 38.5 wheeze -14.0

5 narcan 30.6 seizure -13.9

6 tablet 26.6 right -13.5

7 cocaine 25.3 blood -13.5

8 stimulus 24.5 episode -12.7

9 bottle 23.8 air -12.6

10 mg 22.7 day -11.8

11 take approx 27.6 sob -11.1

Table 4.3: Extract of feature importance list using coefficients from logistic regression

Moreover, some words in isolation (e.g. ‘tablet’, ‘take’, ’bottle’) do not make

intuitive sense for being highly predictive. For example, ‘take’ in isolation is not

directly solely linked to drug-harm, this suggests that context words that link ‘take’ to

drug harm are likely to be more distant, beyond a trigram feature. This reinforces the

advantage of applying transformer models which can capture context of long sentences,

due to the self-attention mechanism.

Application

These insights can be used in multiple ways. In situations where high classifier per-

formance is required, then implementing a logistic regression flag, or as seen later, a

BERT model, can enhance patient identification to deliver proactive support through,

for example, drug-reduction programs. However, when explainability is a necessity,

e.g. for governance purposes, an enhanced rule-based NFOD flag is instead required.

Positive words from this study can complement the existing set of four words currently

used. However, as discussed in section 2.6, these features are correlated with drug harm

no causal, hence enhancement decisions must be supplemented with expert guidance

from clinicians. For example, as discussed earlier, simply adding the word ‘take’ or

creating rules to remove features such as ‘seizure’ and ‘episode’ might not suffice and
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lead to an increase in FP and FNs.

4.3 Deep learning classifier model

Sections 4.1 highlighted the opportunity and 4.2.2 demonstrated improvements in

drug-harm identification. A baseline logistic regression model demonstrated strong

performance with a 10-fold cross validation F1 score of 91.8% on a balanced dataset.

Insights into the output, however, suggested that additional performance uplift can

obtained by gaining a deeper understanding of the full text files. This section lays out

the implementation of BERT through three incremental experiments, initially tuning

the hyper-parameters of the language model using only free-text and binary labels to

indicate drug-harm, and then testing text-preprocessing techniques to address challenges

faced on ePRs captured in an emergency setting.

4.3.1 Experiment 1 - Fine-tuning model with different hyper-parameters

Yinhan et al. [49] showed that hyperparameter selection has a significant impact on the

performance of the language models. Therefore, hyperparameter optimisation (HPO) is

critical to the build of any language model, and more broadly deep learning models.

The objective for HPO is to minimise the objective function [83];

x∗ = argmin
x∈X

f (x) (4.1)

where f (x) is the cross-entropy loss, x∗ is the optimal combination of hyperparameters

and X is the search space of hyperparameters. Given the fast training times of fine-

tuning large language models using GPUs, the general recommended approach to

HPO for BERT models is to take a grid search approach (systematically going through

each combination of hyperparameters) for hyperparameter selection [16]. The three

hyperparameters that are recommended [16] to be fine-tuned along with the suggested

ranges are:

Batch size: 16, 32, 64; Learning rate: 5e-5, 3e-5, 2e-5; Number of epochs: 2, 3, 4

Keeping batch size at 16 due to memory constraints, this gives 9 combinations of

hyperparameters for each of the four models [16, 49, 52, 25], totalling 36 combinations.

However, due to computing limitations (NHS laptop with Intel(R) Core(TM) i5-8365U

CPU and no GPU acceleration), completing an exhaustive search across the 36 com-

binations, as suggested by Devlin et.al. [16] is infeasible. For example, fine-tuning
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RoBERTa model using batch size 16, learning rate 3e-5 and number of epochs 4 took

38 hours (with 4-fold validation).

Whilst different approaches to HPO on large language models given these constraints

have not been explored in previous literature, generally, taking a Bayesian optimisation

[84] approach in other machine learning and deep learning tasks have been shown

to reach near-optimal solutions in fewer iterations [83] than grid search. Bayesian

optimisation [85] learns from past attempts and uses them as additional information

when deciding the next combination of hyperparameters to try. Tree-structured Parzen

approach (TPE) [86] is a non-standard form of Bayesian optimisation. At a high level,

the conditional probability of the hyperparameter combination, given the loss, denoted

as p(x|y) is modelled (x is hyperparameter combination, y is loss). Two separate

probability densities are constructed using observations, one for ’good’ and one for

’bad’ (good determined by a threshold). Then the ratio is taken of the ‘good’ and ‘bad’

probabilities distributions to determine the hyperparameter combination that has the

next highest likelihood of achieving the lowest loss. See Appendix B.2 for a more

detailed breakdown and visual representation of how TPE works.

Eggensperger et al. (2013) showed that the Tree-structured Parzen approach per-

forms well on discrete low-dimensional sets where it was able to utilise the recom-

mended hyperparameter choices by experts [84]. Whilst this study’s setting involves

high dimensional set with BERT models (768 dimensions), inspiration is drawn from

the success of using TPE in low dimensional scenarios. The hyperparameter selection

choice is guided by using expert-defined options as listed above. For the implementa-

tion of this HPO algorithm, Optuna [87] is used, which is an automated optimisation

framework. Optuna’s framework allows for an simple implementation of HPO, with a

range of search strategy choices, of which TPE is the selected search method.

5 combination choices using Optuna were run for each model choice and the

performance of best hyperparameter combination is reported below.

This experiment had expected to see different hyperparameter combinations to be

optimal for the different models due to their slightly different architecture, different

ways that they were pre-trained, and the pre-training weights. Interestingly, it was

observed that the learning rate of 3e-05 and epochs of 2 is the best combination (by

cross-entropy loss) for each model.

Learning rate 3e-05 best allows the model to converge on this dataset. Bringing this to

life, when using BERT with epoch=2, varying learning rates to 2e-05, 3e-05, and 5e-05

saw F1-scores of 93.0%, 93.7% and 92.8% respectively.
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Metric DistilBERT BERT RoBERTa BioBERT

Loss 0.182 0.174 0.193 0.181

Accuracy 93.1% 93.5% 92.5% 93.2%

Precision 92.4% 91.8% 90.0% 91.8%

Recall 94.0% 95.7% 95.7% 95.2%

Specificity 94.1% 95.2% 95.1% 94.5%

F1 score 93.2% 93.7% 92.8% 93.5%

Table 4.4: Best hyper-parameter combinations were learning rate: 3e-05, epochs: 2 for

all models following 5 iterations for each mode, using 4-fold validation.

Epochs Across each model, increasing

epochs to greater than 2 saw training loss

fall, however validation loss increased - sug-

gesting overfitting

BERT is the best-performing model with lowest loss and higher F1 score. Distil-

BERT achieved similar performance to BERT (F1 ∆ = -0.5%), with higher precision

and approximately half the training time (10hrs vs 19hrs). Surprisingly, whilst recall

was high, RoBERTa did not perform as well overall. This was an unexpected finding,

but could be due to the hyperparameter choices that were tested and that there is no

guarantee to find an optimal solution faster than by taking an exhaustive grid search

approach, or alternatively the RoBERTa model experienced more overfitting and does

not generalise as well to the unseen clinical text-domain. With only hyperparameter

tuning, BioBERT did not perform in line with other literature findings where when com-

paring BERT and BioBERT in [26] BioBERT generalises better on ePRs, suggesting

that the additional nuances in this data called out in section 3.1.3 does cause the model

to struggle to generalise as well.

4.3.2 Experiment 2 - Domain-specific pre-processing and model

As expected, particularly due to the time-critical nature of emergency callouts, the

free text in the study’s ePRs sees the use of many acronyms and abbreviations (AA).

This experiment explores the impact that providing more context words through the
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expansion of AA has on model performance.

The total number of AA within the free-text in the dataset was initially quantified

using The Medical Abbreviation and Acronym Meta-Inventory [44] which contains over

100k clinical abbreviations. Conducting a dictionary lookup, 120k words out of a total

of 1m words in training were identified to be AA in the free text. Whilst this dataset has

several expansions for each AA, as seen in section 2.3.3, automated approaches exist

using word vector similarities, but expert knowledge for expansion remains to perform

best and is a feasible approach in a relatively small dataset. Therefore, a bespoke dataset

was collated for this experiment with one expansion for each AA.

This bespoke dataset was collated using a number of sources [88, 89, 90] and 45

additional AA with >50 instances identified during the initial AA sizing task. Any

words that could have a high probability of being a word itself (such as ’so’), or having

conflicting expansions were removed. The resulting dataset was formed of 395 AA,

with the expansions validated by a clinician. This data is also shared with SAS for other

text related tasks. Using this dataset, 94k words (out of 1m) are identified as AA (9%),

which are 80% of all AA identified. With the aim to provide BERT with more context

words, having an uplift of 9% was deemed suitable and promising at this stage.

Abbreviation Count Abbreviation Count Abbreviation Count

PT 45,944 GP 2,492 PTS 1,071

T 5,586 APPROX 2,491 SOB 1,031

O/A 5,576 ECG 1,785 BP 1,000

O/E 4,527 Hx 1,758 OD 915

GCS 2,716 C/O 1,226 A&E 808

Table 4.5: Top 15 acronyms identified in training and test dataset, before anonymisation

The model choices for this experiment were selected to best answer RQ1 addressing

multiple angles. BioBERT was tested to see if the full form of specific words such as

’DCA’ to ’double crewed ambulance’ allows it to learn better. BERT was selected as the

best-performing general domain model, and DistilBERT was selected to continue to

evaluate performance and training time trade off. The original ePR text was run against

the bespoke AA database and then anonymised. 4-fold validation results presented here.

Across all of the models, the precision had increased and significantly for BERT and

BioBERT. This suggests that the use of full forms helps the model make fewer incorrect

false positive predictions. For BERT and BioBERT, this was offset by a decrease
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DistilBERT BERT BioBERT

Base with A/E Base with A/E Base with A/E

Loss: 0.182 0.186 0.174 0.185 0.181 0.173

Accuracy: 93.1% 93.2% 93.5% 92.2% 93.2% 93.4%

Precision: 92.4% 92.5% 91.8% 94.7% 91.8% 92.8%

Recall: 94.0% 94.4% 95.7% 89.8% 95.2% 94.4%

Specificity: 94.1% 94.2% 95.2% 89.9% 94.5% 94.0%

F1 score: 93.2% 93.4% 93.7% 92.2% 93.5% 93.6%

Table 4.6: Exp 2 results; using acronym expansion (A/E) compared to Exp 1 (Base)

in recall. While expanding the abbreviations helps to improve the predictions on the

minority class, the model is missing more positive cases. This could be because attention

is now being paid more on specific words, and therefore is less able to generalise to

alternate words that describe the same thing (e.g. seizure and convulsions). Broadly,

DistilBERT sees no improvement compared with experiment 1 performance.

Overall, the expansions had limited F1 performance uplift (BioBERT and Distil-

BERT). Table 4.5 suggests this could be attributed to the AAs identified. By only

picking the AA with only one high-probability expansion results in many generic words

(>50%) such as PT (patient), O/A (on arrival) and only a few that are distinctly linked

to drug harm or not e.g. OD (overdose) and SOB (shortness of breath). This could

suggest the dataset approach used was too cautious and hence the expansions are not

providing enough distinct information to help predictions. Whilst the word similarity

approach is less accurate, it could see overall improvement. Nonetheless, as there were

marginal improvements, this additional step was used in the final model build.

4.3.3 Experiment 3 - Adding additional features into the free-text

This experiment tests the hypothesis that providing additional information relevant to the

emergency callout, such as time and severity indicators, can enhance the ability of the

model to learn context, consequently leading to better predictions (refer to section 3.1

for a list of all features available in dataset). This experiment is particularly important

given the lack of specific information such as patient history that is usually used in

clinical text classification tasks (see section 3.1.3). To prevent adding unnecessary noise

to BERT, and enabling learning from critical context whilst constrained by each ePR
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document length of 256 tokens, this experiment starts with feature selection.

Preprocessing of the dataset was required for the features to be able to be used by

the models. The categorical features (area, day of the week, and call colour)

are converted into a set of binary features using one-hot encoding, and time is

broken into hours and minutes. Whilst time is continuous, due to the cyclical

nature (e.g. 23hrs is closer to 00hrs than 10hrs), was also one-hot encoded into 8

binary ’hour’ features (e.g. 0-3hrs, 3-6hrs) and 6 ’minute’ features for minutes

(e.g. 0-10, 10-20). Post pre-processing, 45 features were available. Note month

was removed due to limitation called out in section 3.1.1, but date was used to

create ’day of week feature’.

Backward selection (implemented via the sklearn library) selected 18 of the most

important features using random forest (RF) models with default settings as the hyper-

parameters and with evaluation criterion as the F1 score across 5-folds.

Embedded method The strength of the regulariser λ drives sparsity. Therefore the

value of λ was selected to identify the 18 most important features. Through a grid

search of values between 0.01 and 1 for λ, the value of 0.022 achieved this. (Figure B.4

shows impact of regulariser on feature numbers)

The aggregation method was the union of the two approaches, resulting in 25

identified features, i.e. if either or both selection approaches identified the feature as

important, then it was kept.

Features identified Features not identified

day of week: Fri, Sat, Sun day of week: Mon, Tue, Wed, Thu

area: EH, PA, KA, ML, AB, FK, G, KY, KW, TD area: DD, DG, HS, IV, PH, ZE

hour group: 0-18, 21-24 hour group: 18-21

minute group: 10-30 minute group: 0-10, 30-60

call colour: Red, Green, Yellow, Amber, Unknown call colour: Lime, Purple, No colour

Table 4.7: Final feature selection summary. Area codes expansion in table A.4.

In line with expectations, Friday to Sunday were identified as important days.

Several areas were ranked importantly, however, some areas where drug harm is known

to be more prevalent such as Dundee were not identified. Here expert judgement from

SAS was applied and was therefore included. For hours, 7 out of the 8 features were
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identified as important. For ease of implementation, all hours were included. Within

call colour, since ’unknown’ does not give us any true information on the severity of

case for the model to learn from, this feature is manually excluded.

Adding these features caused a shift in the distribution of tokens, with now 16.8%

documents exceeding 256 tokens. To avoid any additional information loss, for this

experiment, the size of the input vector was increased to 285 tokens, noting the extra

training time required, to bring the percentages of cases being truncated back down

to 11.0% so that the same context used in experiment 1 and 2 are still retained here

(impact of word length on prediction in Appendix B.2).

To conclude, the features from the first column in table 4.7 are included, except

Dundee is added and unknown call colour is removed. As an example, ”Friday, 23:22,

call colour urgency: amber, Location: Edinburgh” appends to the beginning.

Results

With the features appended as free-text to the ePR document and abbreviations expanded,

the results are reported below with 4-fold validation.

DistilBERT BERT BioBERT

Base A/E A/F Base A/E A/F Base A/E A/F

Loss 0.182 0.186 0.185 0.174 0.185 0.179 0.181 0.173 0.157

Accuracy 93.1% 93.2% 93.1% 93.5% 92.2% 93.3% 93.2% 93.4% 94.2%

Precision 92.4% 92.5% 90.3% 91.8% 94.7% 93.5% 91.8% 92.8% 93.7%

Recall 94.0% 94.4% 96.4% 95.7% 89.8% 93.2% 95.2% 94.4% 94.2%

Specificity 94.1% 94.2% 89.9% 95.2% 89.9% 93.2% 94.5% 94.0% 93.5%

F1 score 93.2% 93.4% 93.2% 93.7% 92.2% 93.3% 93.5% 93.6% 94.0%

Table 4.8: Comparison of impact of only acronym expansion (A/E) from experiment 2 and

A/E with additional features (A/F) for experiment 3 added as free-text on each model.

Compared to Exp 2, the introduction of additional features benefited both BERT

and BioBERT to distinguish between the two classes better as seen by an increase in F1

score of 1.1 perc points and 0.4 perc points respectively. Neither experiment saw a big

impact in overall performance for DistilBERT. Both experiments have shown benefits

in precision for BioBERT with a slightly more cautious model, as seen by a decrease in

recall.
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4.4 Evaluation of final model

In a practical setting, achieving RQ1 will mean fewer patients who need help (recall)

are missed, without driving an increase in ineffective use of resources (precision) by

reaching out to the wrong patients. BioBERT was selected for final evaluation due to

achieving the highest F1 score of 94.0%.

Accuracy Precision Recall Specificity F1 Score

NFOD flag 96.4% 64.9% 22.8% 99.5% 33.8%

Logistic regression 89.6% 25.9% 84.2% 89.8% 39.7%

BioBERT fine-tuned 95.1% 44.3% 80.7% 95.7% 57.2%

Table 4.9: Final evaluation on imbalanced test dataset. Benchmark using penalised

logistic regression and NFOD flag.

While the model demonstrated strong performance on a balanced dataset (table 4.8),

the performance differed significantly when applied to the imbalanced test data. The

NFOD flag achieves the highest precision (64.9%) but sees a very low recall (22.8%),

meaning many patients are missed. It also had the highest accuracy which was driven

due to high specificity (predicting the negative case). Applying logistic regression (LR)

sees an improvement in recall (84.2%), however precision is significantly impacted

(25.9%), meaning whilst more patients are identified, many non-drug harm patients are

also being incorrectly identified which would lead to increased inefficient use of SAS

resources. BioBERT, balancing the trade-off between precision and recall well, saw a

higher F1 score (+23.4 percentage points higher than NFOD), capturing more patients

whilst limiting wasteful outreach. Since the data used has a significant imbalance,

analysing ROC and PR curves are important. BioBERT outperforms LR and NFOD flag

with a higher ROC AUC (0.967) showing a very strong ability to discriminate between

the two classes (a score of 1 signals perfect classifier). Moreover, BioBERT also has the

highest AUC-PR value of 0.701, demonstrating a better overall precision-recall balance

(vs 0.454 for NFOD flag).

With an improvement in F1 score of +23.4%, BioBERT has shown real improvement

in classifier performance than the current rules-based NFOD flag. In real terms, the

recall increasing to 80.7% means that if the same performance is applied to full year

2022 data, of the 21.8k drug-harm patients identified through diagnostic code, the

NFOD flag identifies 5.0k patients whereas the BioBERT identifies 17.5k patients,
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meaning 12.6k fewer patients are missed.

Figure 4.2: ROC curve for BioBERT model, Logistic regression and NFOD flag, with

ROC AUC values of 0.967, 0.946 and 0.612 respectively. Precision/Recall curves with

AUC-PR values of 0.701, 0.581 and 0.454 respectively.

Investigating table 4.10 to understand performance drop suggests precision and

recall fall is primarily driven due to cohorts 2 and 3 (see table 3.2). Whilst the choice

to have a balance of cohorts 2 and 4 that was representative of the population was

deliberate to avoid bias being brought into the training due to dispatch code (only

diagnostic code was used as golden truth), weighting cohorts 2 and 3 more heavily in

training as proxies for the more ‘complex’ could have helped the model understand

intricacies better.

Cohort TP TN FP FN

1 83.7% 16.3%

2 61.6% 38.4%

3 77.7% 22.3%

4 96.0% 4.0%

Table 4.10: Confusion matrix for each cohort

To understand this further, all of the cohort 2 FP cases were manually reviewed and

re-coded, revealing 71.1% should have been labeled as drug-harm related. Examples

seen include phrases such as “took an overdose of diazepam” and “patient vomited since

taking overdose”. The issues arise since the current system only allows paramedics
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to assign one code to each ePR, even when multiple presenting conditions exist. For

example, of the cohort 2 FP cases, 34.0% were coded as mental health and 26.3% as

’other presenting complaint’. Similarly, inspecting the cohort 4 cases with >90% drug

harm probability showed drug harm instances, such as “took unknown amounts of

diazepam, sertraline”. Therefore, before conclusions are drawn on the true performance

of the model, further work is required to correctly label a test sample of cases on if this

is drug harm related or not.

Nonetheless, this study builds on the foundations laid by Manca et al. [3] well. This

study navigated two additional challenges, namely greater imbalance (4.3% minority

class vs 27% in Manca et al. study) which can impact performance outcomes. Moreover,

compared to a more narrow definition of alcohol harm, this study faced additional

complexity of identification as there are unfortunately many ways by which drug harm

can manifest, including illicit drugs, prescriptions, and over-the-counter medication.

This is evident by seeing the recall for the NFOD flag at 22.8%, compared to 38.0%

for the alcohol flag. Despite the increased complexity, and without any expert manual

feature engineering, this study saw a recall uplift of +0.579 in line with their uplift of

+0.562 from the alcohol flag up to 0.942. However, it is noted that the specificity for

this study dropped by -0.038 where they maintained specificity in line with their alcohol

flag. This could be due to differences in class imbalance but further investigation is

required.

To summarise, the study’s findings demonstrate the potential of using deep learning

approaches like BioBERT to significantly enhance capabilities on this type of data. Even

with the additional complexities of identifying drug harm in comparison to previous

literature on alcohol harm [3] or opioid misuse [29], the model saw real improvements

in performance achieving AUC-PR +0.247 higher than the NFOD flag. A key positive

finding is that using diagnosis codes to allow the model to learn relationships between

the words forms an effective classifier (despite some additional noise due to incorrect

labels), and manual inspection has shown that the model has correctly identified several

cases of drug-harm in ePRs that were previously not known to SAS. This gives the

service another powerful tool to identify the right patients that historically were missed.
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Conclusions

5.1 Main results

This study has demonstrated that there are patterns within the free text that enable

the classification of ePRs related to drug harm. Specifically, this project navigated

the challenge of no access to in-hospital clinical information to get a holistic view of

the patient, which distinguishes it from prior BERT-based studies on in-hospital ePRs.

Notably, it also extends past prior work on alcohol harm using ML on a similar dataset

within SAS by demonstrating the first application of BERT in this context.

RQ1: Investigating text classifier performance

In practice, the service benefits from improved recall as fewer patients impacted by drug

harm are missed, and improved precision as there is lower waste of resources in reaching

out to the incorrect patients, therefore the aim was to optimise the F1 score. Two model

architectures were implemented to improve on the NFOD flag’s performance.

Baseline model: A penalised L1 logistic regression with TF-IDF weighted unigram,

bigram and trigrams achieved an F1 score of 39.7%. The recall was at 84.2% however

precision performed poorly at 25.9%. Performing well on a balanced set, interpretation

of features suggested predictive relationships between words went beyond trigram

distances reinforcing the need for a model that is able to learn context from longer

sequences. Therefore, the BERT model was investigated.

BERT model choice: Various models were tested to understand their performance

on emergency text: general domain models, (BERT and RoBERTa), domain-specific

BioBERT, and a more compact DistilBERT model which trains in half the time. Differ-

ent experiments were used to test the impact of abbreviation expansion and additional

38
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feature use in the absence of other clinical information. Interestingly, BERT generalised

best without additional preprocessing, while DistilBERT exhibited stable F1 scores

across each experiment. It was found that abbreviation expansion did not see any

significant benefit across any of the models, likely because the expanded words were

not discriminatory across the classes. Adding additional features did seem to have a

strong benefit for BioBERT showing providing additional relevant medical context does

see it learn better.

Best model selection: The optimal model was BioBERT with abbreviations

expanded and additional features such as time, location and call urgency added as free

text. This achieved an F1 score on the unseen dataset of 57.2% (uplift of 23.4% from

NFOD flag). Model performance did suffer on imbalanced data (validation F1 score

on balanced set saw F1 score of 94.0%). Upon further investigation, data quality was

noticed to be an issue in cases where there could be multiple presenting conditions

(such as overdose and mental health). For a robust evaluation of true performance,

further work is required to move from the current diagnostic code as golden source to a

manually created dataset. Nonetheless, this classifier has learned effectively from the

diagnostic code labelling (with additional noise where labels are incorrect) which has

also identified ePRs related to drug harm that were previously not known to SAS.

RQ2: Interpreting keywords that are predictive of drug harm cases

The use of the penalised L1 logistic regression model was so direct context-free words

are phrases can be identified to directly improve the current NFOD flag, ensuring

explainability given governance requirements in reporting figures externally. Using

the penalised L1 logistic regression, the number of features used were reduced by

99.9% down to 466 features which achieved a F1 score of 91.8% on a balanced test

set, showing ability to discriminate between the classes. These features consisted of

unigrams, bigrams and trigrams. The four words currently used in the NFOD flags are

”Naloxone”, ”Narcan”, ”Heroin”, and ”Methadone”, which rank 4th, 5th, 57th and 51st.

This suggests that there are a greater set of words and phrases that can be included to

enhance the NFOD flag and improve recall. Simple implementations could include

words such as od, overdose, cocaine. Some words may be challenging to introduce in

a rules based approach, given the dependency on other words, such as ’take’, ’tablet’,

however for these words bigrams and trigrams could be more useful such as ’take

approx’, ’over 40 tablets’. Given the co-dependencies of the words, an expert overlay is

required to ensure noise is not being added into the flag.
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Limitations

The two main limitations of this study were due to hardware constraints and data quality.

Without access to GPUs, training times were significantly slower, limiting the ability

to fully search through all hyperparameter to find the optimal combinations. This

constraint led to the use of TPE which has shown promise in literature, however could

have impacted the poorer performance of RoBERTa. The second limitation was related

to the coding of the golden truth, i.e. the diagnostic code. In the absence of being able

to add multiple codes to an ePR, paramedics are required to assign a code depending

on what the most presenting condition is, bringing inconsistencies with how the ePRs

are coded. A refinement of the golden standard coding is essential to gain a better

understanding of the classification model’s true performance.

5.2 Future work

This section outlines the key impactful avenues that can be extended from this research.

Investigating multi-label classification The current system assumes mutual exclu-

sivity among conditions due to the single diagnostic code constraint per case.

Investigations into false positives revealed cases with multiple co-occurring con-

ditions (e.g. mental health and overdose), suggesting this assumption might be

too strong. Exploring multi-label classification, where each ePR has multiple

codes attached, could uncover a much more comprehensive understanding of

patients’ conditions, surfacing conditions that may be currently understated.

Hyperparameter optimisation BERT model’s performance is heavily impacted by

hyperparameter choice. Exploring the impact of optimisation techniques on

language models could guide similar hardware-constrained studies involving

large language models. An interesting area to explore would be to understand the

number of iterations usually required for TPE algorithm (used in experiment 1)

to reach near-optimal performance compared to an exhaustive grid search.

BERT interpretability This study investigated interpretability on a context free model

for purposes of guiding direct improvements into SAS’ rules-based NFOD flag.

As BioBERT enhanced performance, exploring interpretability could offer quali-

tative insights into additional contextual nuances to what the patient is facing at

times of emergency that can help the service tailor responses.
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Appendix A

SAS Dataset Explained

A.1 Definitions

Figure A.1: Scottish Ambulance Service Diagnostic codes
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Field Description

Cohort

Integer between 1 and 4, describing dispatch and diagnostic code.

Cohort 1 - dispatch OD, diagnostic OD, Cohort 2 - dispatch OD, diagnostic NoOD,

Cohort 3 - dispatch No OD, diagnostic OD, Cohort 4 - dispatch No OD, diagnostic No OD

Call number unique identifier of call

Date The date the call started

Time The time the call started

Call despatch code Code assigned by call-handler at point of receiving emergency call. Full list of codes in figure A.1

Diagnostic code Code assigned by paramedic who attends to patient at the scene. Full list of codes in figure A

Call colour Urgency of call (which dictates response times). In order; green (least severe), yellow, amber, red, purple (most severe)

NFOD flag

This flag identifies drug harm if the paramedic has checked a box signalling: ‘naloxone was given’,

or the ‘substance affecting condition’ is ‘opioids’ or ‘street benzodiazepine’, or if any of the four

following words are present in the free-text; ’Naloxone’, ’Methadone’, ’Narcan’ and ’Heroin’

Naloxone mentioned This flag identifies if the words ‘naloxone’ or ‘narcan’ are identified in the free text

Heroin mentioned This flag identifies if the words ‘heroin’ or ‘methadone’ are identified in the free text

Additional comments The free text captured by paramedics when they attend patient at the scene

Postcode The postcode for ambulance callout

Receiving Hospital The name of the hospital that the patient is taken to

Table A.1: Description of all fields in SAS dataset

A.2 Deep dive into Cohort 2 and 3

Figure A.2: Sankey diagram of 12.3k cohort 3 cases representing split of initial diagnosis

that were then categorised as overdose in diagnostic code
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Figure A.3: Sankey diagram of Cohort 2 representing split of initially diagnosed over-

doses that were then re-categorised to another diagnostic code

A.3 Free text characteristics

Drug harm ePR No drug harm ePR Delta

Mean number of words 108 117 -9

Median number of words 99 108 -9

Mean text character length 618 668 -50

Median text character length 566 622 -56

Mean number of unique words 82 88 -6

Median number of unique words 79 85 -6

Mean number of duplicated words 25 29 -3

Median number of duplicated words 19 23 -4

Table A.2: Descriptive characteristics of free text in SAS ePR

Tables and graph below show drug harm ePRs have slightly lower number of word,

unique words and duplicated words, with spread of data also lower. Given the size of

the delta, this should not be an issue.
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Figure A.4: Spread of ePR character length by ePR. No major difference, no drug harm

has larger range.

Figure A.5: Spread of ePR word count length by ePR. No major difference, no drug

harm has larger range.
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A.4 Trigram frequent counts

Figure A.6: Top 10 Trigrams, split by drug-harm related or not

A.5 NER categories1

Abbreviation Description

O Outside of a named entity

B-MIS Beginning of a miscellaneous entity

I-MIS Right after another miscellaneous entity

B-PER Beginning of a person’s name

I-PER Right after another person’s name

B-ORG Beginning of an organization

I-ORG Right after another organization

B-LOC Beginning of a location

I-LOC Right after another location

Table A.3: Full list of NER categories1

1https://huggingface.co/dslim/bert-base-NER
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A.6 Area codes

Postcode area Area covered

AB Aberdeen

DD Dundee

DG Dumfries and Galloway

EH Edinburgh

FK Falkirk and Stirling

G Glasgow

HS Outer Hebrides

IV Inverness

KA Kilmarnock

KW Kirkwall

KY Kirkcaldy

ML Motherwell

PA Paisley

PH Perth

TD Galashiels

ZE Lerwick

Table A.4: Scotland areas, by area code
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Supplementary information on

experiments

B.1 BERT implementation example

B.1.1 The BERT architecture for classification

Figure B.1: BERT architecture, adapted from [16]

58
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B.1.2 Creating the input layer

For example, ”Patient given 400mcg naloxone. Confirmed use of opioids” will be

processed as follows:

Tokenized:
[CLS], ’patient’, ’given’, ’400’, ’##m’, ’##c’, ’##g’, ’na’, ’##lo’, ’##xon’, ’##e’,

’.’, ’confirmed’, ’use’, ’of’, ’op’, ’##io’, ’##ids’, [SEP]

Token embedding using WordPiece vocabulary:
[101, 5776, 2445, 4278, 12458, 2290, 6583, 4135, 22500, 2063, 1012, 4484, 2224, 1997,

6728, 3695, 9821, 102, 0, 0, ..., 0]

Attention mask:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, ..., 0]

B.2 Experiment 1 - Tree-parzen Structured estimation

Figure B.2: Visualisation of Tree-structure Parzen Estimator by Watanabe [91].

Left: Green dashed line is the threshold between good and bad results. Black dashed

line is the cross-entropy loss function, blue and red dots are observations. Right top:

kernel density estimators using blue and red observations. Right bottom: acquisition

function, taking a ratio of the good group and bad group (from right top), to help determine

the next most promising choice (green star).

TPE takes the following steps:
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1. p(x|y) is modelled, where y is the cross-entropy loss and x is the selected hyper-

parameter combination. Intuitively, this is used to predict the hyperparameter

combination, given a loss value.

2. Two probability densities are then created using kernel density estimators [92],

where p(x|D(l)) uses our ’good’ observations (i.e. loss values less than the

threshold yγ) and p(x|D(g)) uses our ’bad’ observations (i.e. loss values that are

higher/worse than yγ)

p(x|y,D) =

p(x|D(l)) if y < yγ

p(x|D(g)) if y ≥ yγ

(B.1)

3. The acquisition function then uses p(x|D(l))

p(x|D(g))
to determine which combination of

hyperparameters is most promising to choose for the next iteration. This is

because a good ’x’ will have a high p(x|D(l)) and a low p(x|D(g)), making the

fraction larger.
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B.3 Experiment 2 - Abbreviations

Abbreviation Count Abbreviation Count Abbreviation Count

PT 45944 ED 643 mg 199

T 5586 NSR 633 MH 194

O/A 5576 OE 623 HxPC 188

O/E 4527 LOC 535 PRF 186

GCS 2716 HR 489 ST 174

GP 2492 SpO2 446 NEB 156

APPROX 2491 HPC 423 NPA 135

ECG 1785 IM 382 MI 132

Hx 1758 o/d 373 min 131

C/O 1226 PRU 355 CA 120

PTS 1071 M 349 TIA 116

SOB 1031 PMHx 330 CVA 110

BP 1000 F 323 AE 109

OD 915 PMH 317 PE 101

A&E 808 COPD 315 C-SPINE 100

YOM 740 CPR 299 NKDA 95

OA 738 Tx 266 PC 83

YOF 732 AF 266 SORT 75

RR 680 g 240 MED 74

IV 648 YO 215 kg 71

Table B.1: Top 60 acronyms identified in training and test dataset, before anonymisation
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Figure B.3: Frequency count of abbreviations - visually looks like it is following Zipf law

B.4 Experiment 3 - Additional features

Figure B.4: Impact of regulariser on sparsity. Can see that it is highly sensitive, hence

careful tuning is required.
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B.5 Evaluation of final performance

Performance split by ePR length

ePR length (words) FN FP TN TP Number of cases

1-50 0.80% 11.90% 83.80% 3.50% 1200

51-100 0.30% 5.00% 89.70% 4.90% 3887

101-150 0.30% 3.80% 92.20% 3.70% 4738

151-200 0.10% 3.50% 93.40% 3.00% 2865

201-250 0.20% 3.70% 93.30% 2.80% 1276

251-300 0.20% 3.60% 93.60% 2.70% 450

301-350 0.60% 94.80% 4.60% 174

351-400 6.90% 86.10% 6.90% 72

401-450 100.00% 4

Table B.2: Confusion matrix split by ePR length. There does not seem to be a material

impact on performance for ePRs that have been truncated. There, however, is worse

performance for shorter length ePRs.


