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Abstract

Visual Question Generation (VQG) is a field at the crossroads of visual and language

learning, impacting broad domains like education, medicine, social media, and e-

commerce. Existing pre-trained models have excelled by fusing vision and language

embeddings. Yet, they predominantly focus on fact-based queries using image pairs,

disregarding human-like thinking that encompasses causal and temporal connections

in videos. Moreover, most pre-training methods demand substantial computational

resources. Leveraging relations between various pre-trained models in multi-modal

learning particularly in the domains of video remains an under-explored avenue.

This study addresses the research gap in generating inferential questions concerning

causal and temporal inference for video VQG. We introduce a novel framework that

employs vision-text matching pre-trained models to guide language models in recogniz-

ing event-entity relationships within videos. This facilitates the generation of pertinent

inferential questions involving causal and temporal inferences. Our approach’s efficacy

is demonstrated on NExT-QA, a dataset for causal and temporal inference in visual

question answering. Experimental results confirm the success of our method in leading

the pre-trained language model recognize the video content. We also present a series of

methodologies for abstracting causal and temporal relationships between events and

entities. Comprehensive analysis unveils the potential of our methods and point out the

directions for future exploration.
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Chapter 1

Introduction

1.1 Motivation

Visual Question Generation (VQG) has emerged as a significant research area in multi-

modal learning between vision and language since its inception in 2016 [34]. Its impact

spans various domains like education [69], social media [66], and human-computer

interaction [25]. An Example with VQG in e-commerce is shown in Figure 1.1. Cur-

rently, most questions in traditional question-answering datasets yield factoid answers1

[66]. These answers do not align with human thinking, as they are directly derived from

visual content. For instance, asking ”Was anyone injured in the crash?” after viewing

an image of a car accident is uninteresting and obvious. On the contrary, inferential

questions, particularly those related to causal inference and temporal inference, like

”Why do these drivers have accidents in the middle of intersections?” or ”What will

the police do after the crash?”, better reflect human thoughts as they provide valuable

insights that cannot be directly answered using visual content.

Despite the progress in VQG, no research has yet explored inference and reasoning

that align with human thinking. Moreover, unlike singular images, videos possess the

capability to depict relationships between events and entities. Therefore, our work

focuses on two classical reasoning: causal inference and temporal inference, aiming

to bridge this gap and introduce a new challenge in the field of video visual question

generation. Examples of causal and temporal questions are provided in Fig 1.2.

Meanwhile, the rapid rise and impressive capabilities of visual transformers [9]

have led to their widespread use in various multi-modal learning tasks that bridge the

1Factoid question answering: Questions directly inquire about visual facts based on the provided
visual information.
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Bad quality control. Bad seals on bags. 
Stale chip.

Lay’s Salt and Vinegar Flavored Potato 
Chip could rule the Chip World!

Vinegar Flavored Chip in a little bit 
sweet. But it tasted stale.

Project Review

Customer Review

Yes. I like vinegar flavored 
chip sweet, show me 
some.

Vinear flavored chip with the 
green bag one is little sweet, 
would you like some? 

Figure 1.1: Example of visual question generation in E-commerce. The system could

guide and recommend customers to their favourite products according to the image and

customer reviews.

gap between vision and text. Notably, methods of pre-training large vision transformer

models have been successfully applied in tasks such as image captioning [30], visual

question answering [18][43], and visual grounding [41]. However, it is essential to

acknowledge that these pre-training methods come with certain drawbacks. They are

computationally intensive and demand high-quality GPUs for training. For instance,

one of the pre-trained models [43] required a staggering 592 V100 GPUs and took 18

days to complete the training process.

Causal Question:
Why does the lady stick her tongue out under the rock after she holds her hands out? Want to taste the water dripping.

Temporal Question:
What did the lady do after trying to drink the water directly? Looked down at ground.

Video:

Figure 1.2: Examples for causal and temporal questions.

The potential of leveraging and guiding existing pre-trained models is often over-

looked, especially in generative tasks like question generation. Building upon the

inspiration from prior work [37], we aim to delve into the realm of generating inferen-

tial questions by harnessing the power of pre-trained vision-to-text matching models,

rather than pre-training a vision model from scratch. By capitalizing on the knowledge

already captured in the vision-to-text models, we can potentially expedite the question

generation process and enhance the quality of generated questions.

In this study, we will investigate the effectiveness of utilizing existing pre-trained

vision-text matching models and language models for the task of generating questions.

Specifically, we will focus on temporal and causal inference questions, which require
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a deeper understanding of visual context and reasoning capabilities. By exploring

this avenue, we aim to advance the field of visual question generation and shed light

on the practicality of employing pre-trained models in generative tasks, opening new

opportunities for more efficient and intelligent question-generation methods.

1.2 Problem Statement

Visual Question Generation (VQG) has emerged as a significant research area since

its inception in 2016 [38]. Its broad impact spans diverse domains, benefiting appli-

cations in children’s education [69], radiology medicine [49], social media [66], and

human-machine interaction [25]. Moreover, VQG plays a critical role in advancing

comprehensive multi-modal tasks that involve both vision and text, such as visual

question answering [32], visual storytelling [51], and visual dataset creation [15]. This

versatile technique has already been integrated into human daily life, facilitating office

language ability examinations such as Duolingo [23] and language practice applications

that utilize VQG to ask questions based on given images.

Despite these advancements, the current state of VQG tasks primarily revolves

around single image, lacking the capacity to infer causal and temporal relationships in

dynamic visual contexts. This limitation poses a critical challenge, as understanding

causality and temporal dynamics is essential for deeper comprehension and inference-

based questioning. The absence of temporal and causal inferential questions in video

VQG restricts the ability to reason about cause-effect relationships and temporal se-

quences within videos.

To unlock the potential of video-based VQG tasks and advance downstream appli-

cations, it is imperative to explore the incorporation of temporal and causal attributes.

By enabling machines to generate inferential questions that encompass causality and

temporal dynamics within videos, multi-modal fields can be revolutionized. Video VQG

tasks equipped with the exciting challenge of understanding dynamic visual contexts

will surpass the limitations imposed by static image-based question generation.

1.3 Aim and Objective

The objective of our project is to bridge the gap in visual question generation by

focusing on the critical aspects of temporal inference and causal inference. We frame

this challenge as an inferential question generation problem. Specifically, given a set of
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visual information V, which can include multiple images or a video, and auxiliary text

information T, representing possible answers, our aim is to explore how pre-trained

language models can be leveraged to generate meaningful questions Q that go beyond

simple factual inquiries.

To achieve this aim, our project has several specific objectives:

1. Generate inferential questions that surpass conventional factoid queries. Exist-

ing question-answering datasets predominantly consist of factoid questions that

directly inquire about visual facts. However, these queries often lack depth and

fail to capture the essence of causal and temporal relationships. Our objective

is to produce inferential questions that better align with human thinking and un-

derstanding, as humans naturally contemplate the reasons and inferences behind

visual events.

2. Explore the potential of utilizing pre-trained vision-text matching models and
language models in recognizing visual information, particularly in videos, for
generating questions focused on temporal and causal inference. Traditional

methods such as pre-training in the visual-to-text domain often rely on time-

consuming and expensive techniques, such as masked language models. By

harnessing the extensive textual knowledge already present in pre-trained lan-

guage models and vision-text matching models, we can guide them to generate

textual output based on additional visual information.

1.4 Contribution

The contribution of visual question generation related to temporal and causal inference

questions in this MSc dissertation can be outlined as follows:

1. Proposing a Novel Framework for Video Question Generation: The disserta-

tion introduces a pioneering framework that leverages vision embeddings from

pre-trained vision-text matching models. It guides pre-trained language models

to generate inferential questions related to video content.

2. Innovative Visual Encoder Comparison and Training Methods: The work

includes a comparison of various visual encoders, ranging from classical to

state-of-the-art. Moreover, a new training method is proposed specifically de-

signed for large pre-trained language models. The improvement demonstrates the

effectiveness of the proposed framework in video question generation tasks.
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3. Introduction of a Novel Grounding Metric: Acknowledging the limitations of

general evaluation metrics, the dissertation presents a novel grounding metric.

This metric aids in evaluating the extent to which the predicted questions are

aligned with the content of the video. This contribution improves the reliability

of the assessment process.

4. Exploration of Causal and Temporal Inference in Videos: The work delves

into several methods to capture causal and temporal inference within a video

context. The analysis offers valuable insights into how the proposed framework

can effectively address questions related to causality and temporal relationships

and provides a foundation for future research in the video VQG domain.

1.5 Thesis Outline

This section outlines the remainder of the dissertation:

1. Chapter 2 unfolds the related work and background knowledge about multi-

modal learning. It introduces the realm of visual question generation, pre-trained

models adept at matching vision to text and pure language pre-trained models.

2. Chapter 3 defines the task and relevant datasets of visual question generation.

Moreover, it presents a novel grounding metric specifically designed to assess the

relevance of generated questions with the content of the video.

3. Chapter 4 unveils the core methodology used in the study. The chapter details

the curation of model components. and further explores multi-modal fusion

techniques.

4. Chapter 5 highlights the execution of the proposed framework and presents an

analysis of the obtained results, offering an understanding of their impact on

visual question generation.

5. Chapter 6 concludes the outcomes of the study and discuss potential avenues for

future research. The dissertation contributes to the advancement of knowledge in

this domain and inspires further exploration and innovation in the future.



Chapter 2

Background and Related Work

This chapter provides the necessary background knowledge and reviews recent relevant

works that underpin this thesis. Section 2.1 presents an overview of existing research in

visual question generation and explores the concepts of temporal inference and causal

inference, Section 2.2 delves into recent advancements in pre-trained vision-to-text

matching models and language models, elucidating how these models can be effectively

utilized to replace conventional pre-training methods in multi-modal generative tasks.

2.1 Visual Question Generation

Visual question generation (VQG) is a field at the intersection of computer vision

and natural language processing, where machines are trained to generate meaningful

questions based on visual content. While VQG has witnessed significant progress, to

the best of our knowledge, no prior research has specifically focused on the challenges

of generating questions that involve causal and temporal inference in VQG tasks. This

represents a critical research gap, as inferential questions have the potential to unlock

deeper insights and understanding of visual content, going beyond mere factual queries.

Since the algorithms employed in VQG tasks are diverse and dispersed, to provide

a clear overview, we will summarize the tasks and their respective characteristics in

Table 2.1. We will divide this section into two main parts: the first part will focus on

existing VQG tasks, exploring various approaches and methodologies that have been

proposed in the literature. The second part will delve into causal and temporal inference,

specifically examining a related task known as video-based visual question answering

(VQA), which shares similarities with our objective of generating inferential questions

in the visual domain.

6



Chapter 2. Background and Related Work 7

Task Example Main Models Dataset Inference

Signle Image VQG
[56] Bert [8]&Transformer [54] VQA v2.0[1] Not

[22] CNN & LSTM [13] VQA [1] Not

Multiple Image VQG
[4] T5 [45] SQuAD [46] Not

[66] VL-Bart & VL-T5 [6] VIST [14] & MVQG [66] Not

Video VQG
[52]

Faster-RCNN [47]

& LSTM[13]
Anet-QA [67]& TVQA [26] Not

[11] Attention & Transformer [54] YouTube-Clips [5] Not

Open-end Video VQA [60] GRU [7] NExT-QA [60] Causal&Temporal

Multiple-choice

Video VQA

[60] GRU [7] NExT-QA [60] Causal&Temporal

[61] QGA [61]&GCN [21]
NExT-QA [60]

& MSVDQA[64]
Causal&Temporal

[62] Transformer [54]&GCN [21]
NExT-QA [60]

&Causal-VidQA [28]
Causal&Temporal

Table 2.1: Summary of current methodologies of different tasks. GRU: Gated Recurrent

Unit. QGA: Query-conditioned Graph Attention unit. GCN: Graph Convolution Network.

2.1.1 Exitsing Visual Question Generation Tasks and Techniques

The task of Visual Question Generation (VQG) was first introduced in 2016[38], aiming

to generate questions based on individual images. Since then, extensive research

has been conducted in this area, exploring techniques for both multiple-image VQG

and video VQG. Compared to single-image VQG, multiple-image VQG and video

VQG offer exciting prospects due to their potential to infer causality and temporal

relationships between events and entities, making them worthy areas of investigation.

As a result, this section will focus on the more promising research areas of multiple-

image VQG and video VQG.

Single and Multiple Image VQG. Single image VQG involves generating questions

about a single image, with recent studies exploring methods to produce specific types

of questions, such as grounding or implicit questions [56] and spatial or temporal

questions [22]. In contrast, multiple-image VQG is introduced by Chan et al. [4], and

subsequently, Yeh et al. further advanced this research by proposing a multiple-image

question generation dataset that includes summary information as the auxiliary text for

each image series in 2022 [66].

Video VQG. Video VQG aims to inquire user queries in natural language based

on videos, remaining relatively unexplored compared to image VQG. This is partly

due to the absence of specific VQG datasets, since existing visual question-answering

(VQA) datasets often provide short answers rather than complete sentences or para-

graphs, which limits their utility for training video VQG tasks [16][19]. Moreover, the
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spatio-temporal nature of videos introduces additional complexity, making a straight-

forward extension of image VQG techniques insufficient for optimal results in video

VQG. Currently, the models and application scenarios for video VQG lack standard

categorization, but two paradigms that have shown promise in generating meaningful

questions from video inputs are the encoder-decoder approach and attention networks

[52][11].

2.1.2 Deriving Video Question Generation from Inferential Video

Question Answering

Research on video VQG is still in its nascent stage and scattered, but there has been

significant progress in video VQA tasks, particularly focusing on multiple-choice and

open-end answers. However, open-end video VQA, which involves generating diverse

and complex answers, remains unexplored due to its challenging nature, while multi-

choice video VQA is often used to study inference-based QA beyond simple factoid

questions [60][58][28]. In this section, we introduce the multi-choice video VQA and

open-end video VQA and propose the transfer of inference algorithms.

Open-end Video VQA. Open-end video VQA can be categorized as classification,

generation, or regression, depending on the specific datasets. It is commonly defined as

a multi-class classification problem, where models classify video-question pairs into a

predefined global answer set [70]. Notably, the NExT-QA dataset focuses on open-end

video VQA tasks that involve causal and temporal inference [60].

Multiple-choice Video VQA. Multiple-choice video VQA presents several candi-

date answers for each question and requires selecting the correct one. Datasets focused

on inference fall into two types: normal video QA [60] and multi-model video QA [68],

where the latter of which involves resources beyond visual content. Multiple-choice

VQA tasks often follow an encoder-only paradigm, where the answer decoder acts as

a 1-way classifier to choose the correct answer. To achieve a comprehensive under-

standing of videos, graph architecture networks [21] have shown promise in inference

video VQA due to their ability for effective information interaction [70] [61] [62].

The most challenging aspect lies in designing sophisticated graph structures for video

representation.

In conclusion, while single-image VQG has received considerable attention, multiple-

image VQG and video VQG remain less explored, with limitations in short answer

generation and lack of standardized categories. Incorporating attributes like causal
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inference and temporal reasoning into question generation remains an unexplored area.

Existing multiple-image and video VQG techniques, along with inferential video VQA,

offer valuable insights and network motivation for inferential VQG tasks.

2.2 Multi-modal Generative Task with Pre-trained Mod-

els

2.2.1 Replace Learning from Scratch

With the rise in popularity and efficacy of pre-trained methods, researchers have increas-

ingly adopted large pre-trained models to bridge the gap between vision embeddings

and language embeddings in visual generative tasks, such as image captioning [30],

visual question answering [18], and visual grounding [41]. These pre-trained models

have shown remarkable performance by combining vision and language information

to generate accurate and meaningful outputs. However, the adoption of pre-trained

methods comes with the downside of high computational costs and time-consuming

training, often requiring hundreds of GPUs and weeks of training time [9], making it

unfeasible for many researchers with limited resources.

An alternative approach, utilizing vision-text matching pre-trained models [43][30]

[29], offers a promising solution. These models have demonstrated their capability to

bridge the gap between vision and language domains effectively. By leveraging the

knowledge learned in these vision-text matching models, it becomes possible to guide

language models in generating text outputs, thus significantly reducing the time and

computation required compared to traditional pre-trained methods. To the best of our

knowledge, no prior research has explored the potential of leveraging pre-trained vision

and language models to guide the generation of vision-based questions, specifically

those involving causal and temporal inference.

In this research, we aim to conduct this blank by utilizing pre-trained vision and

language models. Our proposed approach involves guiding the language model with the

vision embeddings derived from pre-trained vision or pre-trained vision-text matching

models. This guidance will enable the language model to comprehend the visual content

and generate textual outputs in the form of causal and temporal inferential questions.
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2.2.2 Pre-trained Language Model

In recent years, pre-trained language models have revolutionized the field of natural

language processing (NLP), showcasing remarkable performance across various tasks.

For question generation tasks, both encoder-decoder and decoder-only architectures

have been promising. Encoder-decoder models, like T5 [43], employ an initial encoding

phase to process input data and generate context-rich representations, followed by

a decoding phase to generate coherent and contextually relevant questions. On the

other hand, decoder-only models, exemplified by GPT-2[44], leverage autoregressive

generation, predicting each token based on previously generated ones, yielding fluent

and contextually coherent questions.

These pre-trained models have shown promise in question generation tasks, includ-

ing visual question generation[66][56]. However, their potential in capturing nuanced

causal and temporal inference aspects in visual questions remains an open question. As

suggested by the latest research in question generation task[66], we apply the encoder-

decoder structure and the T5 language model as our baseline in our experiments.

2.2.3 Pre-trained Model in Vision to Text

CLIP Key Point: 
1.Contrast Learning
2. Supervise Image by Text

BLIP Key Point: 
Supervised by Three Tasks 
Together: Image-Text 
Contrast, Image-Text 
Matching, Language Model 
Decoding

CLIP

BLIP

BLIP2

BLIP2 Key Point: 
Q-Former Text 
Transformation

Figure 2.1: Difference of Vision-Text Pre-trained Models

In recent years, the advancement and robustness of vision-text matching pre-trained

models have opened new avenues for research in utilizing their existing knowledge

to guide language models in generating text output. These models offer a promising

approach to significantly reduce the time and computation required compared to tradi-

tional pre-trained methods. Among these models, the CLIP model [43] stands out as a
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pioneer in leveraging cross-modal supervision to learn the matching knowledge between

text descriptions and images. Subsequently, the BLIP model and BLIP2 model present a

series of bootstrapping Language-Image pre-trained models. We briefly introduce their

difference in this section since we will apply all of them in the methodology chapter 4.

Their differences are also presented in Figure 2.1.

1. CLIP (Contrastive Language-Image Pre-training) [43]: CLIP learns to associate

images and their descriptive captions in a shared embedding space, It creates a

new cross-supervision method, utilizes the text embedding and image embedding

cos similarity and predicts their matching degree. By pre-training on large-

scale image-text datasets with 400 million image-text pairs and a simple linear

projection mapping, CLIP achieves impressive results in various visual-text

generative tasks, including image captioning, visual question answering, and

visual storytelling. This making it a strong candidate for enhancing question

generation in our context.

2. BLIP (Bootstrapping Language-Image Pre-training): BLIP [30] builds upon the

success of CLIP and introduces bootstrapping strategies to improve the quality of

the learned vision-text representations within their dataset. It leverages iterative

bootstrapping to enhance the alignment between images and their associated tex-

tual descriptions. In addition, they propose a multimodal mixture structure, which

could operate in three functionalities: unimodal encoder, image-grounded text

encoder and image-ground text decoder, unifying both pre-trained classification,

matching and generative tasks objectives. Both processes enhance the overall

performance of BLIP in generative tasks.

3. BLIP2 (Bootstrapping Language-Image Pre-training 2.0): BLIP2 [29] further

refines the bootstrapping approach introduced in BLIP. It effectively bridges the

gap between vision and language. In addition, they utilise modality matching

using a Q-Former pre-trained in two stages: the representation learning stage and

the generative learning stage. BLIP2 demonstrates significant improvements over

its predecessor and holds promise for boosting the quality of generated questions.

Our research endeavours to explore and compare the capabilities of these vision-text

matching pre-trained models, in capturing the causal and temporal relationships of

various events or objects within a video context. By investigating their performance in

generating questions related to causal and temporal inference, we aim to identify the

most suitable model for our specific research problem.



Chapter 3

Task Definition

In this chapter, We elaborate on the datasets we have utilized for our research and

provide detailed explanations of their specific task attributes in Section 3.1, along with

a formal definition of the VQG task. In Section 3.2, considering the limitations of

existing metrics in capturing the quality of predicted questions, especially concerning

their temporal and causal inference attributes, we propose a new evaluation perspective

to gain deeper insights and achieve a new grounding evaluation.

3.1 Dataset and Task

The rapid development of NLP datasets especially for QA tasks in the past few

years could be compared to Cambrian Explosion, with more than 80 new datasets

appearing[48]. However, focusing on the video question-answering task, most datasets

like MSRVTT-QA[65] and TGIF-QA[16] refer to factoid questions asking for counts,

binary decision, and behaviour 1, whose answers are directly derived from the visual

information. In contrast, our research focuses on a more intricate and challenging aspect

of video question generation, which revolves around temporal and causal inference

involving various events or objects within a video.

To address the lack of a dedicated dataset specifically tailored for visual question

generation that incorporates causal and temporal inference, we turn to existing datasets

designed for similar tasks, such as visual question answering (VQA). Among these, the

NExT-QA dataset [60] stands out as a highly suitable choice for our Visual Question

Generation (VQG) task. The NExT-QA dataset comprises both multiple-choice and

1Factoid question: The questions are directly asked about the visual fact according to the visual
information.

12
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open-ended questions, with a significant focus on causal and temporal inference, making

it well-aligned with our research objectives.

The NExT-QA dataset encompasses a diverse range of questions, with 48% of them

centred around causal inference, 29% on temporal inference, and the remaining 23%

on descriptive questions. Figure 3.1 provides illustrative examples from the NExT-QA

dataset, showcasing the types of questions and video content present in this dataset.

By leveraging NExT-QA as our baseline dataset, we aim to explore and enhance the

capabilities of generating visual questions with a focus on temporal and causal inference.

Causal Inference

Why How

-Why was the toddler in red crying at the
end of the video? Fell backwards.

-How did the lady help the toddler who foll 
at the end? Pick toddler up.

Toddler fall backwards

Questions

Temporal Inference

Predict the Previous/Next Understand the Present

-What was the lady doing before the toddler in red fell off the stone? 
Look after boy.
-How did the lady react after the toddler iu red fell down from stone? 
Ran to pick toddler up.
-What was the boy doing when the toddler fell backwards from the stone? 
Went onto stone.

Lady runs to toddler Toddler is crying Lady picks toddler up

Figure 3.1: Examples in NExT-QA benchmark.

Generally speaking, an inferential visual question generation dataset comprises text

format examples, each containing a question Q related to either temporal or causal

inference, a corresponding ground truth answer T, and a video format example V. In

order to simplify the task, we consider an input consisting of visual information V,

which can be in the form of multiple images or a video sequence, along with auxiliary

text information A representing the associated answers related to the visual content.

Given this input, the core objective is to conduct research on innovative approaches

to automatically generate a question Q that unveils the underlying causal inference or

temporal inference between various events depicted in the provided visual information.

Our work mainly focuses on (1) exploring the potential of leveraging a pre-trained

language model to recognize visual information (2) utilizing the frame difference and the

text guidance to recognize their temporal and causal relation and generate corresponding

questions. Details will be described in Chapter 4.
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3.2 Evaluation Metrics

3.2.1 General Evaluation Metrics in Question Generation

Evaluating visual question generation (VQG) systems is crucial to gauge their perfor-

mance. However, current VQG models mostly rely on standard language generation

metrics designed for machine translation assessment. These metrics mainly gauge

accuracy and similarity with reference translations, but overlook crucial aspects like

inference, logic, and consistency. Commonly used metrics include:

1. BLEU (Bilingual Evaluation Understudy)[40]: Measures similarity with high-

quality reference translations using n-gram matching, but misses overall syntax.

2. METEOR (Metric for Evaluation of Translation with Explicit Ordering)[2]: Sim-

ilar to BLEU, it considers stemming and synonymy, using unigram precision and

recall.

3. ROUGE (Recall-Oriented Understudy for Gisting Evaluation)[33]: ROUGE

compares overlapping units in summaries to human-written references.

4. BLEURT (Bilingual Evaluation Understudy for Rewarding Transformers)[50]:

BLEURT provides a human-like assessment by comparing generated text with

references.

5. CIDEr (Consensus-based Image Description Evaluation)[55]: CIDEr evaluates

image captions based on consensus among human annotations.

However, since VQG differs from machine translation, these metrics may not suit

VQG evaluation. Additionally, while some metrics like CIDEr can assess the quality of

ground-truth visually generated questions, they may not adequately measure inferential

and reasoning questions. To address this, we aim to develop new metrics specifically

focusing on inference and reasoning in VQG. These metrics will help to evaluate the

grounding quality of generated questions, particularly those involving causal inference

and temporal relationships, directly giving an insight into question quality and enhancing

the meaningful assessment of VQG systems.

3.2.2 Overlap Grounding Evaluation Metrics

The existing evaluation metrics fail to fully capture the quality of predicted questions,

especially concerning their temporal and causal inference attributes. To address this
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limitation, we propose a novel evaluation perspective that provides deeper insights into

the grounding quality of generated questions. Our approach involves analyzing the

overlap between words considering both precision and recall. We define the formula of

the grounding metrics as follows:

Precision Grounding = Nmatching overlap/Npredicted question tokens

Recall Grounding = Nmatching overlap/NGround Truth question tokens

F1− score Grounding =
2∗Precision Grounding∗Recall Grounding

Precision Grounding+Recall Grounding
,

(3.1)

Where Nmatchingoverlap counts matching overlaps between predicted and ground truth

questions. Npredicted question tokens and NGround Truth question tokens represent the respective

token counts.

Unlike traditional metrics, these grounding metrics directly illuminate how well

the predicted questions encapsulate visual content from videos. By gauging word

overlaps, we effectively gauge a model’s ability to comprehend visual information

and contextual cues, yielding an extra layer of question quality assessment. This

novel evaluation perspective enriches our grasp of visual question generation system

performance, especially in generating pertinent questions related to temporal and causal

inference.

To ensure the significance of information and exclude trivialities, we concentrate on

word overlap, particularly nouns and verbs. By eliminating stop words like prepositions

and conjunctions, we assess content-bearing words. We then measure word overlap

between predicted and ground-truth questions, considering the occurrence of the same

word multiple times in predictions without considering orders. These guard against bias

from word repetition in predictions. Illustrative examples are shown in Figure 3.2.

Video:

Predicted Question: （15 matching overlap）
“1": "how did the man keep his hair out of his face?",        
“2": "what did the girl do after the man touched her face?",        
“3": "where is this video taken?"

Ground Truth Question:
1: how did the girl keep her hair away from her face?
2: what did the girl do after she stood up at the beginning of 
the video?
3: where is this video taken?
Precision Grounding: Matching overlap / Predicted question token number = 15 / 25 = 0.6
Recall Grounding: Matching overlap / Reference question token number = 15 / 31 = 0.4839
F1 Score Grounding: (Precision x Recall) / (Precision + Recall) = 2 x (0.6 * 0.4839) / (0.6 + 0.4839) = 0.5357

Notice! We will delete the stop words when we apply the grounding metrics during our implementation! 

Figure 3.2: Examples in calculating grounding metrics
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Methodology

This chapter provides details of our proposed Visual Question Generation (VQG)

system, with a focus on temporal and causal inference. We introduce three baseline

models in Section 4.1 to establish a foundation. In Section 4.2 and 4.3, we outline the

selection process of core components for our VQG system, In Section 4.4, we illustrate

how we leverage visual information to guide the pre-trained language model. The

results and experiments, along with their analysis and discussions, will be presented in

Chapter 5.

4.1 Baseline Models

In our system, we establish baseline models for a fair comparison with the NExT-

QA datasets. We begin with the Heterogeneous Graph Attention (HGA) model [17],

which employs GRUs as encoders and decoders with cross attention between visual

and language information. Recognizing the power of transformer-based models [54]

in language generation, and the impressive results achieved by pre-trained language

models in question generation tasks[66][56], we introduce another transformer-based

model and a powerful pre-trained language model with text-only input as additional

baselines. We aim to facilitate a straightforward comparison of various visual encoders

and methods for guiding pre-trained models in generating inferential questions.

4.1.1 HGA Model

The HGA model is a prominent baseline in the NExT-QA dataset [60] for video multiple-

question answering and open-end question-answering, introduced by Jiang et al.[17].

16
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Since video shots exhibit more expressive motion compared to frame-level data, the

HGA model leverages both 3D motion vectors and 2D appearance vectors to capture the

richer motion expression ability of video shots compared to frame-level data. To align

with the dataset benchmark, the motion vectors are abstracted by ResNet[12] and the

appearance vectors are derived from ResNeXt-101[63]. Specifically, each single video

is divided into N equal length clips C = (C1, C2, ..., CN). Each clip Ci of length T = L/N

is represented by 2D appearance features Vi = {Vi, j|Vi, j ∈ R2048}T
j=1 at frame level and

3D motion features fi ∈ R2048 at clip level. Importantly, the parameters of ResNet and

ResNeXt-101 are frozen, which means it parameters will not be updated during training.

For text input, pre-trained GloVe word embeddings are used to encode the words into

embedding vectors. Both visual and language embeddings are encoded separately to

obtain contextual representations, which are then fused and aligned using a designed

cross-attention mechanism. A last decoder with GRUs fuses global representations of

visual and language embeddings to generate output texts or classify the correct answer.

4.1.2 Pre-trained Language Model with Text-only Input

Both encoder-decoder and decoder-only structures in pre-trained language models have

shown promise in question generation tasks, including visual question generation[66][56].

However, as suggested by the latest research in multiple area tasks between vision and

language, especially in visual question generation [66][6], encoder-decoder structures

perform better than decoder-only structures. Therefore, we apply one of the typical

and powerful encoder-decoder language models —T5 [43] into our experiments. We

set the text-only, with only auxiliary text as the model input as the baselines to inspect

if the performance of the pre-trained language model could be improved with vision

input afterwards. In other words, we would like to check if the language model could

recognize the vision content given a video.

4.2 Model Components Selection

To provide readers with a clear understanding of the framework employed, we draw

inspiration from the work of Zhong et al.[70] and define a common architecture for

VQG, comprising four essential components: a visual encoder, an auxiliary text encoder,

cross-model interaction, and an output question decoder, as depicted in Fig. 4.1. The

visual encoder plays a role in processing raw videos and extracting meaningful features.
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It is responsible for jointly capturing frame appearance and clip motion features. The

Visual 
Encoder

Text 
Encoder

Cross-model 
Interaction

Question 
Decoder

Ran to pick toddler up Text Information
(answer)

Video

Temporal: How 
did the lady react 
after the toddler 
in red fell off the 
stone?

Causal: Why was 
the toddler in red 
crying at the end 
of the video?

Visual Encoder

Language Model

Figure 4.1: Common Architecture Within Visual Question Generation

auxiliary text encoder handles the textual information related to the visual content.

Commonly used encoders include GloVe [42] and language model based embedding

such as BERT [8]. To enable effective interaction between visual and textual modalities,

sequential models like Transformer [54] can be employed to process the sequential

data of vision and language. Finally, the question decoder is responsible for generating

the output question based on the integrated visual and textual representations. To set

a broad baseline for the temporal and causal inferential visual question generation

task, we evaluate popular vision-text pre-trained models such as CLIP [43], BLIP [30],

and BLIP2 [29]. We also compare their performance with the appearance vectors and

motion vectors extracted from ResNet and ResNeXt-101, two widely used 2D and 3D

neural networks, respectively.

4.2.1 Video Encoder

In the field of visual question generation for temporal and causal inference, the NExT-

QA datasets have emerged as a crucial benchmark for the video multiple-choice

question-answering task. When it comes to encoding videos or frames for this task,

appearance vectors and motion vectors extracted by 2D and 3D convolutional neural

networks have been widely used and proven effective [61] [24] [36]. However, it is

essential to recognize that these approaches primarily cater to classification tasks, which

could not adapt generative tasks[66], such as question generation.

To address the limitations of the traditional 2D and 3D convolutional neural networks

and exploit the potential of generative models, we turn our attention to pre-trained

vision-text matching models. These models have shown exceptional performance in

generative tasks[9], making them promising candidates for enhancing the visual question
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generation process. Unlike single 2D or 3D convolutional networks, pre-trained vision-

text matching models explicitly consider the matching relationship between vision and

language, allowing for more contextually relevant and coherent question generation.

In this section, we present three types of pre-trained vision-text matching models and

conduct a comprehensive performance comparison with the 2D and 3D convolutional

neural networks. These pre-trained models leverage large-scale datasets to learn cross-

modal representations, enabling them to effectively bridge the gap between visual and

textual information. By incorporating pre-existing knowledge from diverse vision-text

sources, these models are poised to outperform traditional 2D and 3D approaches in the

context of visual question generation tasks. The three types of pre-trained vision-text

matching models we explore are CLIP[43], BLIP[30] and BLIP2[29], whose details are

described in Section 2.2.3. And the results of these experiments are presented in Section

5.3.1, where we analyze and discuss the strengths and weaknesses of each approach.

4.2.2 Language Model Size Selection

Even when utilizing a consistent model structure like an encoder-decoder, variations

in the number of model parameters can yield divergent performance outcomes within

the same category [45]. To comprehensively examine the influence of model size on

the nuanced task of recognizing relationships between events and entities in a video,

we employ two distinct sizes of the T5 model: T5 Small and T5 Large. To effectively

adapt these varied model sizes, we design two distinct tuning strategies (elaborated in

Section 4.3.2), drawing inspiration from the recommendations put forth by [35].

4.3 Multi-modal Fusion

Visual information and textual context are often complementary in nature. The visual

content provides rich details and cues that are not entirely present in the text, and

vice versa. By fusing these modalities, the resulting embedding space becomes more

comprehensive, allowing the language model to leverage a wider array of information

during the question-generation process. Consequently, this enhances the contextual

understanding of the model, leading to more accurate and relevant questions.

In the field of visual question generation, the seamless integration of information

from both visual and language modalities is of utmost importance. After selecting the

visual encoder and the language model for the visual question generation system, a
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fundamental challenge arises: the visual vectors derived from visual encoders and the

Visual 
Encoder

T5 Language 
Embedding

T5 
Language 

Model

Ran to pick toddler up

Text Information
(answer)

Video

Temporal: How did 
the lady react after 
the toddler in red 
fell off the stone?

Causal: Why was the 
toddler in red crying 
at the end of the 
video?MLP

Frozen

Trainable

Fusion

CLIP, BLIP, BLIP2, 
Appearance&Motion

Visual Encoder

Language Model

Figure 4.2: Our fusion framework Within visual question generation

text embeddings from language encoders exist in separate spaces. Therefore, the core

questions that demand attention are how to fuse or unify the multi-modal embedding

space between vision and language, and how to effectively guide the language model in

recognizing visual information and generating temporal and causal questions. The total

frame is presented in Figure 4.2. In Section 4.3.1, we introduce one of the direct but

powerful methods to connect vision and language spaces. In Section 4.3.2, we introduce

another method to finetune large-size language models effectively.

4.3.1 Concatenate Vision and Language

With the popularity and recognition of language models [45][27][3] and visual trans-

former [9][43], multi-modal interaction has been critical for the language model to

effectively recognize visual cues and context. Inspired by one of the latest methods

Clipcap [37], we propose a direct but powerful technique to connect vision and language

spaces effectively. By utilizing cutting-edge fusion techniques, we combine visual em-

beddings and language embeddings to create a unified embedding space. Specifically,

given auxiliary text input words w1
V ,w

2
V , ...,w

i
V for a video V , we process them by

language models and get a series of word embeddings t1
V , t

2
V , ..., t

i
V . Given a video V ,

we first divide the video V as separate frames x1
V ,x

2
V , ...,x

i
V . Next, after processing the

frames by visual encoders, we employ a light mapping network(multilayer perceptron),

denoted by F , to map the visual embedding to k embedding vectors:

p1
V , p2

V , ...p
k
V = F(visual encoder(x1

V , ...,x
i
V )). (4.1)
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where each vector pk
V has the same dimension as a word embedding of language models,

and the choice of visual encoder is detailed in Section 4.2.1 We then concatenate the

obtained visual embedding to the auxiliary input text embeddings:

ZV = p1
V , ..., pk

V , t
1
V , ..., t

i
V . (4.2)

During fine-tuning, we feed the language models with the prefix-text concatenation

{Zi}N
i=1, where N is the number of videos. Our training objective is to predict the

temporal and causal question tokens conditioned on the prefix in an auto-regressive

fashion. To this purpose, we train the mapping component F using the simple, yet

effective, cross-entropy loss:

L =
N

∑
i=1

ℓ

∑
j=1

log pθ(qi
j|ZV ,qi

1, ...q
i
j−1) (4.3)

, where N is the number of videos, ℓ is the length of the predicted questions, pθ is the

probability of ground-truth tokens. Details of training methods will be described in

Section 4.3.2

4.3.2 Two Stage Fine Tuning

The challenge of translating between representations of visual encoders and language

models during training poses a fundamental hurdle in multi-modal fusion for visual

question generation. Most research in multi-modal generative tasks focuses on unifying

the multi-modal embedding space during pre-training [57] [18] [41], often overlooking

the potential of leveraging and guiding existing pre-trained models to excel in generative

tasks. This section introduces a novel two-stage fine-tuning approach to train the visual

question generation system effectively, inspired by the works of [35].

Stage 1: Fine-tuning for Feature Alignment. In this initial stage of the two-

stage training process, we prioritize feature alignment between the visual encoder and

the language model. Drawing inspiration from the works of [31] and [37], which

accommodate pre-trained models to unfamiliar tasks through learning a prefix, we adopt

a similar approach. Instead of fine-tuning the entire model, we only train a parameter

mapping network F (as shown in Equation 4.1) to align the video features V with the

language model’s word embeddings. By focusing solely on optimizing the parameter of

mapping, we achieve a lightweight model while aligning the visual tokenizers.

Stage 2: Fine-tuning End-to-End. Once the training loss of Stage 1 has converged,

we proceed to Stage 2, which involves fine-tuning the visual question generation system
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end-to-end. Drawing insights from prior works [35][37], which suggest that fine-tuning

visual encoders does not significantly improve the resulting quality but introduces

complexity and cost, we opt to keep the visual encoder weights frozen. In this stage,

we continue to update both the pre-trained weights of the projection layer and the

language model. This approach efficiently optimizes the language model’s performance,

particularly for large-size models, in generating temporal and causal questions.

In summary, the two-stage fine-tuning approach addresses the core challenge of

multi-modal fusion by effectively aligning visual and textual information, and subse-

quently optimizing the language model’s performance for temporal and causal inference

during visual question generation.

4.4 Negative Causal and Temporal Inference Abstrac-

tion Methods

Upon amalgamating visual and linguistic data, the subsequent phase involves delving

into the realm of abstracting causal and temporal inferences from various events and

entities portrayed within a video. This section sheds light on a quartet of distinct

methodologies, each characterized by its inclination towards unraveling the intricate

tapestry of inferential connections that underlie the visual content.

4.4.1 Vision Projection Matrix Choice

Directly Concatenating frame embeddings 
into a MLP layer. Section 4.3.1

MLP

Prefix 
Embedding

Adding a specific MLP layer after each frame. 
Section 4.4.1

MLP

MLP

MLP

MLP

MLP

MLP

MLP

MLP

MLP

Prefix 
Embedding

Figure 4.3: MLP layer structure change compared with directly concatenating frame

embedding into a large MLP layer detailed in Section 4.3.1.

An initial and intuitively straightforward approach involves the development of

a meticulously detailed video projection matrix, surpassing the configuration delin-
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eated in Section 4.3.1. In contrast to the previous methodology that entailed a simple

concatenation of 16 frame vision embeddings into a Multi-Layered Perceptron (MLP)

projection, our endeavour here was to encapsulate the intricate nuances of each frame’s

characteristics. To achieve this, a distinct MLP layer with the same hidden layer of

the MLP layer described in Section 4.3.1 was crafted for every individual frame, and

subsequently augmented by an additional MLP tasked with projecting the 16 frame

embeddings onto a linguistic embedding with a prefix length of 5, shown in Figure 4.3.

4.4.2 Contradictory Frame Comparison

In the pursuit of unravelling the intricate causal and temporal relationships within a

video’s array of events and entities, an instinctive avenue to explore involves harnessing

the disparities between consecutive frames. This endeavour seeks to leverage frame dif-

ferences to guide the language model’s recognition of these variations and subsequently

express them through the generated questions. Our approach involves two distinct

strategies for frame comparison, both of which hinge on the CLIP vision encoder [43].

1. Global Frame Comparison: We abstract 16 frames at uniform intervals through-

out the video’s duration. These frames are transformed into vision embeddings

through the CLIP encoder. Pairwise combinations of frames are formed, with the

cosine similarity between their corresponding embeddings serving as a measure

of their similarity. Among these frame pairs, we pinpoint the duo exhibiting the

lowest cosine similarity as the most contradictory frames, capturing the divergent

aspects of the video. To encapsulate this contrast, an MLP layer after the visual

encoder is employed to project these two frames onto the language embedding.

2. Local Frame Comparison: Expanding on the global approach, our local contrast

methodology undertakes a more nuanced route. Once again, we select pairs of

frames and gauge their cosine similarity. But during training, the CLIP model

is invoked to determine the most relevant frame in relation to the given question

and answer since at training time we have all relevant inputs. Armed with these

contextual cues, we measure the cosine similarity between the identified relevant

frame and other frames in the pair. Subsequently, the frame displaying the lowest

cosine similarity with the contextually chosen frame is selected. Analogous to

the global contrast approach, an MLP layer imparts the selected frame pair onto

the language embedding.
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4.4.3 Contrastive Learning on Unifying Vision and Language Em-

bedding

In the pursuit of harnessing the nuanced interplay between frames within a video,

a seemingly direct and effective avenue is the application of contrasting learning

methods. This strategy seeks to amplify the contrast and divergence between various

elements by maximizing a lower bound of mutual information between pairs of variables.

In our experimental foray, we employed the infoNCE loss function [39], a widely

embraced paradigm for contrastive learning [59]. The core framework encompasses a

relevance function such as cosine similarity, represented as f (·, ·), where each positive

sample (x+,c) is linked with a set of k randomly chosen negative samples denoted as

(x−1 ,c),(x
−
2 ,c), ...,(x

−
k ,c). Then, the InfoNCE loss function Lk is formulated as follows:

Lk =− log(
e f (x+,c)

e f (x+,c)+∑
k
i=1 e f (x−i ,c)

) (4.4)

In our experimental domain, building upon the frame comparison methodology, we

derived positive samples from two distinct frame pairs:

1. The global contradictory frame pair assumes the role of positive embeddings.

To extract these, we executed a process akin to that elucidated in Section 4.4.2.

Subsequently, we designated the remaining frames, paired with the second frame

from the global contradictory set, as negative samples. In the InfoNCE loss

formula, x+ signifies the positive sample language embedding, while x−i denotes

the negative sample language embeddings. The variable c encapsulates the

embedding of the second frame within the global contradictory frame pair.

2. Analogous to the process delineated in Section 4.4.2, the local contradictory

frame pair was employed as the positive sample set. Correspondingly, the remain-

ing frames were paired with the second frame from the local contradictory set,

constituting the negative vision samples. Within the formula, x+ signifies the

positive sample language embedding, x−i represents the negative sample language

embeddings, and c encapsulates the embedding of the second frame from the

local contradictory pair.

The integration of the contrastive learning loss was interwoven with the pre-trained

language model loss. Formally, the total loss function was defined as:

LTotal = Llanguage model +Lk (4.5)
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4.4.4 Visual-Semantic Arithmetic Inferential Relation Abstraction

To harness the interplay of differences between frames within a video, a straightforward

approach involves subtracting frame embeddings—an intuitive representation of the

vector direction—thus capturing the inherent relationships between vectors. Recent

investigations [53, 10] have unveiled the intricate taxonomy held within the CLIP multi-

modal representation. Notably, their findings underscore the potential for uncovering

relationships by subtracting these representations, particularly among different images.

Inspired by this, we sought to adapt their CLIP loss function to augment the guidance for

our language model in recognizing relationships, notably causal and temporal, between

diverse frames.

Initially, we compute the relevance of frames for potential tokens at length i. Top K

token candidates are selected, while the remaining tokens are assigned zero potential

to enhance computational efficiency. These candidate sentences, denoted as sk
i =

(x1, ...,xi−1,xk
i ), correspond to the k-th candidate token and are matched against the

frame I. It is pertinent to highlight that the context tokens x1, ...,xi−1 are constant for

the current token xk
i . Subsequently, the frame potential of the k-th token is computed as:

Dk
i ∝ exp

(
Fcos(EText(sk

i ),E f rame(I))
τc

)
, (4.6)

Here, Fcos represents the cosine distance between CLIP’s embeddings of the text (EText)

and the frame (EImage). The hyperparameter τc > 0 is a temperature hyperparameter

that adjusts the sharpness of the target distribution. In our experiments, it was set

to 0.05. Notably, the frame embedding EImage emerges from subtracting the CLIP

image embeddings of two frames. Subsequently, the CLIP loss materializes as the

cross-entropy loss between the frame potential distribution and the target distribution of

the next token xi+1 derived from the language model:

LCLIP =CE(Di,xi+1). (4.7)

This loss fosters words that yield higher CLIP matching scores between images

and the generated sentences. In turn, it encourages the language model to discern the

relationships between frames, encompassing causal and temporal inferences. Formally,

the total loss function is defined as:

LTotal = Llanguage model +LCLIP (4.8)
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Experiment, Results and Analysis

This chapter presents the experimental design, outcomes, and analysis of our study

on visual question generation concerning temporal and causal inference questions. In

Section 5.1, we outline the experimental settings. Section 5.2 introduces the experi-

ment of the baseline models, which incorporates GRUs (Gated Recurrent Units) and

Language models with text-only input. Continuing in Section 5.3, we delve into our

experiments with multi-modal information direct concatenation. Within this section, we

undertake a comparative analysis of different video encoders and evaluate the effects

of employing various language model sizes. Next, in Section 5.4, we provide intricate

details concerning the inferential methods and the selection of frames within a video

input. Finally, Section 5.5 constitutes a discussion of the results acquired from our

experiments.

Through these meticulously designed experiments and thorough analysis, we aim to

advance the field of visual question generation, particularly in the domain of temporal

and causal inference questions.

5.1 Experiment Settings

We implement all experiments with the T5 language model and vision-text matching

models based on Huggingface1 and NExT-QA framework2. We use Adam[20] as our

optimizer and we set the learning rate as 0.0005. All experiments are based on PyTorch

2.0 and Python 3.10.

1https://github.com/huggingface
2https://github.com/doc-doc/NExT-QA

26
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5.2 Stage 0: Baseline Model Preparation

We evaluated our baseline models following the method outlined in Section 4.1, with

results summarized in Table 5.1. The HGA model [17], incorporating video input,

demonstrated superior grounding proficiency across the grounding metric, while the T5

model excelled in BLEU, METEOR, BLEURT, and CIDEr, indicating better question

quality.

model B RL M BL C Grounding

HGA[17] 0.1248 0.4128 0.3101 -1.1031 0.8271 0.3248

T5 Small
0.1269 0.3857 0.3276 -0.9986 0.8480 0.2957

Text Only

T5 Large
0.1239 0.3851 0.3237 -0.9808 0.8353 0.2987

Text Only

Table 5.1: Baseline Model Evaluation Performance. B is BLEU, RL is ROUGEL, M is

METEOR, BL is BLEURT, C is CIDEr, Grounding is the grounding metric

The HGA model’s lower question quality arises from two main factors. Firstly, it

tends to generate repetitive words like ”the,” affecting overall quality, as illustrated in

Figure 5.1’s red scope. Secondly, HGA questions are shorter and less fluent than T5

questions, further contributing to this disparity (Figure 5.1). Although HGA’s questions

have higher matching overlap, implying better vision recognition, they lack fluency

and length. Notably, the HGA model’s performance closely matches T5’s in BLEU,

METEOR, BLEURT, and CIDEr due to its elevated precision but comparatively lower

recall which is even lower than those of T5 especially in causal and temporal questions,

shown in the Appendix Table A.1. While it excels at recognizing video content due to its

video input, it generates fewer words than T5. Since the BLEU and BLEURT both have

a brevity penalty and METEOR and ROUGEL consider the recall evaluation metrics,

with higher precision, the evaluation performance of the HGA model still gets close

to that of the T5 model. However, since our grounding metric ignores stopwords and

considers relevant words to the vision content such as nouns and verbs, precision will

take an advantage in the evaluation compared to recall, thus the HGA model achieves

a significant improvement compared to the T5 model. In conclusion, HGA exhibits

higher precision and F1-score in the grounding metric but lower performance in BLEU,

METEOR, CIDEr, and recall in the grounding metric, especially in causal and temporal

questions. This leads us to choose T5 as the foundation for subsequent experiments.
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Video:

Ground Truth Question:
1:how did the girl react when she saw that the ball was running 
at the beginning?
2: why was the girl on the floor in the middle of the video?
3: why does the dog chase the ball?
4: why did the girl run down the slope?
5: why does the child run after the ball?
6: what did the dog do after the girl approached the adult and 
stood beside him?
7: where is this video taken?
8: what did the girl do after she fell on the ground?
9: what did the girl do after she finished playing with the ball at 
the end of the video?
10: what did the girl do to the dog when the dog stood beside 
the man?
11: what did the girl do after the dog took the ball away?
12: why does the child run down the slope after the ball rolls 
away from him?

HGA: 42 matching overlap
“1": "what did the boy do after the girl ran away",        
“2": "why did the girl in after the girl in the",        
“3": "why did the dog run towards the ball",        
“4": "why did the boy run to the ball after the ball",        
“5": "why did the boy run down the ball",        
“6": "what did the boy do after the ball ball",        
“7": "where is this video taken",        
“8": "what did the dog do after the the ball",        
“9": "what did the girl do after the the ball",        
"10": "what did the boy do after the dog ran away",        
“11": "what did the girl do after the dog ran away",        
"12": "what did the dog do after the ball ball"

T5-small text only:      27 matching overlap
“1": "what did the boy do after he walked away from the ball",        
“2": "why did the girl in pink hold onto the girl in pink when she is 
squatting down",        
“3": "why did the baby put his hand on the toy in the middle of the 
video",        
“4": "why did the man in black bend down at the start of the 
video",        
“5": "why did the man in black bend down at the start of the 
video",        
“6": "what does the man in black do after the man in black starts 
talking",        
“7": "where is this video taken",        
“8": "what did the boy do after he walked to the other side of the 
room",        
“9": "what does the girl do after the girl in pink starts dancing",        
"10": "what does the man do after the dog starts running",        
“11": "what does the dog do after the dog starts running",        
"12": "what does the man in black do after the man in black starts 
playing the drums"

Figure 5.1: Baseline Performance. Yellow scopes represent the matching overlap

compared with the ground truth questions. Red scopes represent the repetitive words.

5.3 Stage 1: Multi-modal Concatenation Experiment

5.3.1 Video Encoder Comparison

visual model B RL M BL C Grounding

None
0.1269 0.3857 0.3276 -0.9986 0.8480 0.2957

Text Only

App&Mot[12][63] 0.1348 0.3958 0.3353 -0.9586 0.8816 0.3092

CLIP[43] 0.1564 0.4216 0.3594 -0.8284 1.0366 0.3505

BLIP[30] 0.1562 0.4179 0.3584 -0.8504 1.0205 0.3425

BLIP2[29] 0.1583 0.4210 0.3599 -0.8422 1.0488 0.3455

BLIP2
0.1520 0.4135 0.3537 -0.8656 0.9960 0.3353

Q-form[29]

Table 5.2: Visual encoders performance with T5 small language model following Section

4.3.1 fusion method. App&Mot means 2D appearance vectors and 3D motion vectors

abstracted from convolution networks. B is BLEU, RL is ROUGEL, M is METEOR, BL is

BLEURT, C is CIDEr, Grounding is the grounding metric.

Following the methodology described in Section 4.2.1, we assess the performance

of different vision encoders, and the results are summarized in Table 5.2. Among the

evaluated encoders, the CLIP[43] and BLIP2[29] models stand out, exhibiting superior

performance compared to other vision encoders. The CLIP model outperforms all
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Video:

CLIP: （52 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what does the girl do after the man puts her back on the sofa?",        
“3": "where is this video taken?",        
“4": "how does the man hold the child s hand?",        
“5": "why did the man in red hold the girl s hand?",        
“6": "what does the man do after the girl sits on the sofa?",        
“7": "what did the girl do after looking at the man?",        
“8": "why did the girl bend down when she is standing?",        
“9": "why did the man point to the table at the end of the video?",        
"10": "what did the man do after he looked at the girl?",        
"11": "how did the man see the girl clearly?",        
“12": "why did the man laugh at the girl?",        
“13": "why did the man pull the girl s back?"

BLIP2: （48 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what does the girl do after the man touches her at the end?",        
“3": "where is this video taken?",        
“4": "how does the man in white hold the child s hand?",        
“5": "why did the man in white squat down in the middle of the video?",        
“6": "what does the man in white do after the girl sits down?",        
“7": "what does the girl do after looking at the man for a while at the 
end?",        
“8": "why did the girl put her leg on the table in the middle of the video?"         
“9": "why did the man in black stretch his hand out at the end of the 
video?",        
"10": "what did the man do after he looked at the girl?",        
"11": "how did the man in white ensured he can see the girl clearly?",        
“12": "why did the man laugh at the girl?",        
“13": "how did the man in black react when the girl s hands were pushed 
to him?"

Ground Truth Questions:
1: how did the girl keep her hair away from her face?
2: what did the girl do after she stood up at the beginning of 
the video?
3: where is this video taken?
4: what did the man gestured to the girl near the start of the 
video?
5: what did the girl do after the man pat the pillow?
6: why was the man looking left and right at the beginning of 
the video?
7: what did the girl do after she sat down?
8: why did the man touch the girl s leg when she sit beside 
him?
9: why did the man pat the pillow?
10: what did the man do after he adjusted the girl s leg?
11: how did the man see clearly?
12: why is the lady in green smiling?
13: why did the man lie backwards at the end of the video?

Figure 5.2: Visual encoder CLIP and BLIP2 performance. Yellow scopes represent

matching overlap with ground truth questions. Red scopes represent the more details

recognized by the BLIP model compared with the CLIP model.

other encoders in terms of ROUGEL, BLEURT, and grounding metrics, showcasing its

proficiency in recognizing visual content and facilitating pre-trained language model

guidance. Conversely, the BLIP2 model excels in BLEU, METEOR, and CIDEr,

indicating its ability to generate high-quality predicted questions.

Figure 5.2 provides a visual representation of the comparison between the question

generation systems using the CLIP and BLIP2 encoders. The system utilizing the BLIP2

encoder generates more detailed questions (indicated by the red scope) compared to

those derived from the CLIP encoder. However, the matching overlap between the

question generation system with the CLIP encoder and the ground truth questions

(shown in the yellow scope) is higher than that with the BLIP2 encoder. This suggests

that the CLIP encoder performs better in generating questions that closely match the

vision video and the ground truth questions.

Furthermore, it is noteworthy that the evaluation of the CLIP and BLIP2 models

reveals their specific strengths in different aspects. The BLIP2 model is particularly

adept at visual dialogue or answering tasks, while the CLIP model excels in visual

commonsense reasoning, as suggested by [43] and [29]. Taking into account the

trade-off between question quality, vision content recognition, and inference reasoning,

we have made the decision to employ the CLIP model as our image encoder for the
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subsequent experiments.

5.3.2 Language Model Size Comparison

model B RL M BL C Grounding

T5 Small
0.1564 0.4216 0.3594 -0.8284 1.0366 0.3505

One Stage

T5 Small
0.1559 0.4181 0.3594 -0.8409 1.002 0.3453

Two Stage

T5 Large
0.1459 0.4025 0.3459 -0.9046 0.9449 0.3249

One Stage

T5 Large
0.1572 0.4281 0.3634 -0.8000 1.0657 0.3573

Two Stage

Table 5.3: Difference Language Size Performance. T5 small has 60M parameters, with

total 135M parameters for a whole framework, T5 large has 770M parameters, with total

917M parameters for a whole framework. B is BLEU, RL is ROUGEL, M is METEOR, BL

is BLEURT, C is CIDEr, Grounding is the grounding metric.

This section investigates language model sizes for the T5 pre-trained model in

video question generation. Following the approach in Section 4.3.2, we evaluate T5’s

performance across various sizes, presenting results in Table 5.3. T5 large outperforms

T5 small as expected due to its larger parameter count, effectively storing a more

extensive repository of linguistic knowledge compared to T5 small[45].

A notable insight emerges through two-stage tuning. T5 large with two-stage tuning

improves over one-stage tuning, while T5 small falters. Our observations yield two

primary findings:

1. While the T5-small model demonstrates inferior overall performance with the

two-stage tuning compared to the one-stage method, the consistent application

of two-stage tuning notably enhances token-level matching overlap across word

types such as nouns and verbs. This improvement holds true regardless of the

T5 language model’s size, as detailed in Appendix A.2. This underscores the

enhanced visual content recognition ability of the T5 model through the two-stage

tuning methodology. As proposed by [35], we argue that this improvement can

be attributed to the initial stage’s weight initialization and warming-up of the

projection matrix. This process facilitates better alignment between the projection

matrix’s weights and the pre-trained language model’s weights, leading to more
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effective fine-tuning, as opposed to directly fine-tuning the projection matrix’s

weights.

2. T5 small with two-stage tuning generates more repetitive questions than one-

stage, contrasting T5 large where repetition decreases. An illustrative example is

presented in Appendix Figure A.3. Although the total performance of different

sizes of the T5 models is close, focusing on causal and temporal questions, we

find that the T5 large model has a higher performance with nearly 2%-3% than

that of the T5 small model on causal questions but achieves a close performance

on temporal questions, shown in Append Table A.3. This reveals the potential

of our tuning method in guiding the language model to recognize the causal

relationship between events and entities and a future direction could research how

to guide the temporal relationship.

Drawing upon the insights proposed by [35] and [45], we argue that the second observa-

tion in repetitive questions is largely due to the disparity in model parameters between

T5 small and T5 large. The limited parameter capacity of T5 small constrains its ability

to memorize and learn the nuances of generating diverse questions while accommo-

dating similar video frame inputs and answers. In contrast, the expanded parameter

space of T5 large enables a deeper comprehension of inputs, greater generalization

capabilities, and subsequently, a reduction in the generation of redundant and repetitive

questions.

5.4 Stage 2: Causal and Temporal Inference Abstraction

In the forthcoming section, we present the outcomes of our diverse methods employed

to abstract the causal and temporal relationships embedded within the events and entities

within a video, with the ultimate aim of generating inferential questions. Despite the

absence of the desired performance outcomes, our analysis serves as a valuable explo-

ration, offering glimpses into the intricate interplay of causal and temporal dynamics

within video content.

5.4.1 Vision Projection Matrix Comparison

Employing the methodology elucidated in Section 4.4.1, this section delves into the

assessment of various projection matrix techniques. The culmination of our efforts is

distilled in Table 5.4.
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model B RL M BL C Grounding

Video MLP 0.1564 0.4216 0.3594 -0.8284 1.0366 0.3505

Video 16to5
0.1549 0.4170 0.3574 -0.9323 0.9722 0.3415

MLP

Table 5.4: Vision Projection Matrix Performance. Both experiments are conducted with

CLIP image encoder and T5 small pre-trained language model. Video MLP means the

vision embedding would be processed by a MLP layer and video 16to5 MLP means we

add 16 fine-grained MLP for the frames of the video input. B is BLEU, RL is ROUGEL,

M is METEOR, BL is BLEURT, C is CIDEr, Grounding is the grounding metric

Video:

Video MLP: （52 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what does the girl do after the man puts her back on the 
sofa?",        “3": "where is this video taken?",        
“4": "how does the man hold the child s hand?",        
“5": "why did the man in red hold the girl s hand?",        
“6": "what does the man do after the girl sits on the sofa?",        
“7": "what did the girl do after looking at the man?",        
“8": "why did the girl bend down when she is standing?",        
“9": "why did the man point to the table at the end of the video?",        
"10": "what did the man do after he looked at the girl?",        
"11": "how did the man see the girl clearly?",        
“12": "why did the man laugh at the girl?",        
“13": "why did the man pull the girl s back?"

Video 16to5 MLP: （43 matching overlap）
 9": "what is the man wearing on his head",        
"1": "what does the man do after the girl puts her hand on the 
man s face",        
"10": "where is this happening",        
"0": "how does the man use body language to express what he 
wants to say",        
"6": "why did the man in black hold the girl s hand",        
"4": "what does the man do after the girl sits down",        
"8": "what does the man do after the girl turns to the left",        
"3": "why did the man in black bend down at the end of the 
video",        "2": "why did the man point to the sofa after the girl 
walked away",        "12": "what does the man do after the girl 
turns to the left",        
"11": "how did the man ensure he can see clearly",        
"7": "why did the man laugh when the girl is talking",        
"5": "why did the man move his arms backwards in the middle of 
the video"

Ground Truth Questions:
1: how did the girl keep her hair away from her face?
2: what did the girl do after she stood up at the beginning of 
the video?
3: where is this video taken?
4: what did the man gestured to the girl near the start of the 
video?
5: what did the girl do after the man pat the pillow?
6: why was the man looking left and right at the beginning of 
the video?
7: what did the girl do after she sat down?
8: why did the man touch the girl s leg when she sit beside 
him?
9: why did the man pat the pillow?
10: what did the man do after he adjusted the girl s leg?
11: how did the man see clearly?
12: why is the lady in green smiling?
13: why did the man lie backwards at the end of the video?

Figure 5.3: Vision Projection Matrix Performance. Yellow scopes represent matching

overlap with ground truth questions.

Contrary to our initial expectations, a noteworthy trend emerged from our results.

Specifically, the methods involving the direct concatenation of vision embeddings from

the CLIP image encoder to the language embedding’s prefix outperformed those that em-

ployed the addition of MLP layers to each frame before concatenating with the language

embedding, including grounding metrics on causal and temporal questions(Appendix

Table A.4). A concrete instance illustrating this divergence is portrayed in Figure 5.3,

where a significant discrepancy in the number of matching overlaps between the ”Video

16to5 MLP” method and the ”Video MLP” method is evident.

This finding carries an implication: the blind proliferation of MLP layers, even when

applied to individual frames, fails to capture the fine-grained details and inferential
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relationships of visual content. Consequently, this approach falls short in guiding the

language model to generate inferential questions that accurately reflect the subtle causal

and temporal relationships embedded within the video.

5.4.2 Frame Comparison Based on CLIP

model B RL M BL C Grounding

All 16 frames(Video MLP) 0.1564 0.4216 0.3594 -0.8284 1.0366 0.3505

Two frames(Random Select) 0.0796 0.3128 0.2173 -1.2445 0.2520 0.2082

Two frames
0.1538 0.4165 0.3578 -0.8422 1.007 0.3417

(Global Frame Comparison)

Two frames
0.1315 0.3946 0.3316 -0.9386 0.8576 0.3095

(Local Frame Comparison)

Two frames(Fixed Selection)
0.1526 0.4161 0.3549 -0.8679 0.9745 0.3407

Frame 1&16

Table 5.5: Frame Comparison Performance. ”Video MLP” means the vision embedding

would be processed by a MLP layer; ”Random Select” means we randomly select two

frames embedding within a video as the vision input. B is BLEU, RL is ROUGEL, M is

METEOR, BL is BLEURT, C is CIDEr, Grounding is the grounding metric.

In this section, we apply the approach detailed in Section 4.4.2 to assess two distinct

methods of frame comparison. The summarized outcomes are presented in Table 5.5,

yielding several noteworthy findings:

1. The global frame comparison method, while slightly behind direct vision embed-

ding concatenation as a language prefix, outperforms the baseline, especially for

causal and temporal questions with a substantial 20% boost in temporal ques-

tions. It demonstrates competitive performance in causal questions and over 1.5%

higher temporal performance in grounding metrics compared to direct vision

concatenation (Appendix Table A.6).These findings underscore the efficacy of

the global frame comparison method in abstracting causal and temporal rela-

tionships within input videos, effectively guiding the T5 language model toward

generating insightful inferential questions. Importantly, the global frame method,

with only 73M parameters, surpasses the direct concatenation approach (135M),

still maintaining competitive performance. Notably, the global frame method

also displays proficiency in recognizing verbs and pronouns in comparison to the

direct concatenation techniques. For specific examples and instances of matching
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Videos:

Video MLP: （39 matching overlap）
 “1": "why did the man in black hold onto the man in red s hand when 
he walks?",        
“2": "what did the man in black do after he pointed at the grass at the 
start?",        
“3": "why did the man in black look at the man in black after he stops 
walking?",        
"4": "why did the man in black bend down at the start?",        
“5": "why did the man in black hold the stick in his hand?",        
“6": "why did the man in black point to the man in black when he is 
talking?",        
“7": "why did the man in black bend down at the start?",        
“8": "how does the man in black look while talking?",        
“9": "why is the man in black holding the stick?",        
“10": "why did the man in black walk towards the man in green after 
he finished talking?",        
“11": "why did the man in black move backwards after he has finished 
talking?"

Global Frame Comparison: （42 matching overlap）
 “1": "why did the man in black hold onto the man in black s hand when 
he walks ?",        
“2": "how did the man in black show that he wants to cut the glass?",        
“3": "why did the man in black look at the man in black when he walks 
to the man in black ?",        
"4": "why did the man in black bend down at the start ?",        
“5": "why did the man in black put his hand on the glass in the middle 
of the video?",        
“6": "why did the man in black point to the man in black when he is 
speaking?",        
“7": "what did the man in black do after he walked to the man in black 
?",        
“8": "how does the man in black look while talking ?",        
“9": "why did the man in black hold onto the bottle when he walks?",        
“10": "why did the man in black walk back to the man in black after he 
finished talking?",        
“11": "why did the man in black change his position after` he sat down"

Ground Truth Questions:
1: why is the man in green holding onto the shoe as the 
man in white is cutting it?
2: what does the man in white do after holding the shoe 
stably?
3: why did the man in green point his hand at the man in 
white while he is talking?
4: why did the man in white pick up a knife after changing 
place with the man in green?
5: why does the man in green hold a shoes in his hand at 
the start?
6: what does the man in white do after cutting the shoes 
for a while?
7: why did the man in green hold up the shoe as he is 
speaking?
8: how do the men appear while cutting the shoes?
9: why are the men looking down at the shoe while the 
man in white is cutting it?
10: why did the man in white stand beside the man in 
green while he is speaking?
11: why did the man in white move behind after the man 
in green put down the shoe on the table?

Figure 5.4: Frame Comparison Performance. Yellow scopes represent matching overlap

with ground truth questions. Red scopes represent more details recognized by the frame

comparison method compared with the Video MLP method.

overlaps across different categories, please refer to Appendix A.5, along with an

illustrative example showcased in Figure 5.4.

2. In contrast, the local frame comparison method yields inferior results compared to

its global counterpart across all evaluation metrics. Aligning these findings with

the performance of random selection, we argue that maintaining a consistent
relationship between input frames during both training and inference phases
is pivotal for enabling the language model to effectively deduce relationships
between events and entities within videos. The method of random selection

introduces the highest level of inconsistency between training and inference due

to its reliance on random frame selection throughout both phases. Additionally,

an examination of CLIP frame selection based on questions and answers reveals

certain limitations. While instances of accurate frame selection aligned with

questions and answers are observed, inherent challenges persist: (1) Descriptive

questions such as ”Where is this video happening?” often fail to pinpoint a

specific frame, leading to varied frame selections by the CLIP model for identical

questions. (2) Given that some videos within the NExT-QA dataset [60] last 1

to 2 minutes, with only 16 available frames for video input, the CLIP model

tends to select frames with similar content regardless of chronological time order
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if the event described in the question has not been captured by the 16 frames.

Detailed examples highlighting these challenges are provided in Appendix Figure

A.1. These issues exacerbate inconsistencies and disorderliness in input frames

between training and inference, resulting in comparatively poorer performance

compared to the global frame comparison method. Significantly, the global

frame method introduces the least inconsistency, consistently measuring cosine

similarity and selecting the least similar frame pair for language model input.

These inherent contradictions effectively mitigate the degree of disparate frame

relationships.

3. To further corroborate our argument, we conduct an additional experiment where

the initial and final frames are consistently selected as the video input for the

language model, as outlined in the fifth row of Table 5.5. Remarkably, the

performance of this fixed selection method, while slightly distinct, consistently

trails behind that of the global frame selection across all evaluation metrics

except causal grounding metrics. This observation lends additional support to our

argument, reinforcing the validity of our premise. Moreover, it opens a promising

avenue for future exploration — seeking methods that closely emulate consistent

relationships to enhance frame-based techniques.

5.4.3 Contrastive Learning Based on Frame Comparison

model B RL M BL C Grounding

Global Frame
0.1538 0.4165 0.3578 -0.8422 1.007 0.3417

Comparison baseline

Global Frame
0.1555 0.4164 0.3601 -0.8767 1.010 0.3383

Comparison Contrast

Local Frame
0.1531 0.4165 0.3555 -0.9456 1.001 0.3426

Comparison Contrast

Table 5.6: Contrasting Learning Performance Based on Global Frame Comparison. B

is BLEU, RL is ROUGEL, M is METEOR, BL is BLEURT, C is CIDEr, Grounding is the

grounding metric.

This section employs the approaches from Section 4.4.3 to evaluate two contrasting

learning methods, both rooted in global frame comparisons as discussed in Section

4.4.2. Our analysis, in the context of the global frame comparison baseline outlined in
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Section 5.4.2, is summarized in Table 5.6.

Out of our expectations, both global frame contrast and local frame contrast methods

outperform the baseline in specific metrics, yet their overall performance remains

closely comparable, differing by less than 0.01, except for BLEURT. This prompts us to

question their utility. We delve deeper, inspecting causal and temporal question outputs,

and calculating overlap across distinct word categories. More details are shown in

Appendix Table A.7 and Appendix Table A.8, with an example in Appendix Figure A.4.

Despite the marginal disparity in overall performance between the baseline and the two

contrasting learning methods, a closer inspection reveals that contrasting learning can

facilitate the language model’s ability to discern nuanced details within the video, such

as characters, colours, verbs, and tense, as illustrated within Appendix Figure A.4’s red

scope. The local contrast method also improves temporal question grounding metrics

by 1-2% over the global frame comparison baseline. These discoveries underscore

the potential of applying contrastive learning to bridge the gap between the visual and

language embedding spaces. It augments the language model’s capacity to comprehend

video content and subsequently generate inferential questions especially temporal

relationships.

Exploring the rationale behind the observed similarity in performance between

contrasting learning and the baseline, a perspective shared by [59] and [45], we posit

the following considerations: (1) The negative sample pool in our methods is relatively

limited, constraining the model’s ability to discern mutual information between positive

and negative samples. Given the video’s continuous nature, some nearly abstracted

frames exhibit visual similarity, further complicating the model’s differentiation process.

(2) The parameters of the T5 small model are inherently constrained, limiting its capacity

to encompass the entirety of knowledge necessary for recognizing all video events and

entities, as well as grasping the subtleties distinguishing positive and negative samples

during contrastive learning.

5.4.4 Visual-Semantic Arithmetic Inferential Relation

The summarized findings are outlined in Table 5.7. We observe that the performance of

the visual-semantic arithmetic method closely resembles that of the baseline approach,

directly concatenating vision embeddings. This suggests that supplementing the visual-

semantic arithmetic with CLIP loss may not yield significant improvements.

To further validate the potential of the visual-semantic arithmetic method, we com-
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model B RL M BL C Grounding

Video MLP 0.1564 0.4216 0.3594 -0.8284 1.0366 0.3505

CLIPloss
0.1568 0.4184 0.3602 -0.8295 1.0359 0.3460

top word 100

Table 5.7: Visual-semantic arithmetic inferential performance. Video MLP represents the

direct vision concatenation method. CLIPloss represents the visual-semantic arithmetic

method. B is BLEU, RL is ROUGEL, M is METEOR, BL is BLEURT, C is CIDEr,

Grounding is the grounding metric.

pare the questions generated by the two frame selection techniques and scrutinize

whether their disparities are accurately portrayed in the generated questions. Specific

examples of successes and shortcomings are presented in Appendix Figure A.2. Addi-

tionally, we examine the generated questions in causal and temporal types and compare

their matching overlap levels with the baseline. Performance details of causal and

temporal questions are shown in the Appendix Table A.9 and a concrete instance is illus-

trated in Figure 5.5. It is found that the visual-semantic arithmetic method outperforms

temporal questions with a 1-2% increase compared with the direct vision concatenation.

It’s apparent that the visual-semantic arithmetic method exhibits a higher degree of

matching overlap compared to the baseline. Notably, the method adeptly recognizes

time adverbs (e.g., “when”), underscoring its potential to discern temporal details and

providing support for the increase of its performance on temporal questions.

Drawing insights from the examples presented in the Appendix Figure A.2, the

method’s effectiveness, and the CLIP model’s subtraction semantic attribute as sug-

gested by [53] in alignment with [43], we argue that the multi-model concatenation

methods may fall short in enabling the language model to comprehensively discern the

complete spectrum of visual relationships among the most contrasting frame pair within

a video.

5.5 Discussion

In this thesis, we introduce an inferential framework for generating causal and temporal

questions based on videos and auxiliary text. The Stage 1 experiments highlight the

efficacy of our visual concatenation technique in enhancing performance compared

to the baseline HGA [17] and the T5 model [45] using text-only input. In Stage 2,
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Videos:

VideoMLP Baseline: （44 matching overlap）
“1": "where is this place?",        
“2": "how does the girl react after the horse jumps up?",        
“3": "what does the girl do after the man approaches her at the end?",        
“4": "how does the girl react after the horse jumps up?",        
“5": "how does the dog show affection towards the girl?",        
“6": "how does the girl react after the horse jumps up?",        
“7": "why did the girl start jumping when the horse approached her?",        
“8": "why did the girl put her hand on the horse after the horse jumps 
up?",        
“9": "why did the girl run towards the horse after the horse jumped 
up?",        
“10": "how does the man ensure the girl does not fall?",        
“11": "what animal is shown in the video?",        
“12": "what does the girl do after the man starts to approach her at 
the start?"

Visual-semantic Arithmetic Method: （51 matching overlap）
"1": "where is this video taken?",        
“2": "how does the girl react when the man is playing with her?",        
“3": "what did the girl do after the man walked away?",        
“4": "how does the girl react when the man is playing with her?",        
“5": "what does the girl do after the horse approaches her at the 
end?",        
“6": "how does the girl react when the man is playing with her?",        
“7": "why did the girl start jumping when the horse is near her?",        
“8": "why did the girl put her hand on her face when the horse 
approached her?",        
“9": "why did the girl bend down at the end of the video?",        
“10": "how does the man support the girl as she stands on the 
horse?",        
“11": "what is the animal shown in the video?",        
“12": "what does the girl do after the man puts her down?"

Ground Truth Questions:
1: where is the man and the girl?
2: how does the man react when the horse plays with the girl?
3: what does the girl do after patting the horse?
4: how does the girl in pink react when the horse licks her?
5: what does the horse do after the girl pats it in the middle of 
the video?
6: how does the girl react when the horse turns towards her 
the first time?
7: does the girl seem more scared or excited to play with the 
horse?
8: what does the horse do after it turns back to the girl the 
second time?
9: why does the girl move her head away from the horse at the 
end of the video?
10; what does the man do when the horse plays with the girl?
11: what is the animal show in the video?
12: what does the girl do after tucking her hair behind her ear?

Figure 5.5: Visual-semantic arithmetic method performance. Yellow scopes represent

matching overlaps with ground truth questions. Red scopes represent more details

recognized by the visual-semantic arithmetic method.

although our causal and temporal inference methods do not surpass the Stage 1 baseline,

they lay the groundwork for future research avenues while showcasing their potential.

The Vision Projection Matrix Comparison underscores that an excessive prolifer-

ation of MLP layers fails to capture the subtle nuances within input visual content.

The Frame Comparison analysis emphasizes the critical role of establishing consistent

relationships between input frames during both training and inference. This consistency

is vital for enabling the language model to adeptly infer relationships among events and

entities within videos. Our exploration of the Contrastive Learning method illuminates

the limitations tied to the number of negative sample pools and language model size.

Promising research avenues could involve expanding negative samples by random frame

selection from other videos and considering more parameter-rich models like the T5

large model. Lastly, the Visual-Semantic Arithmetic method underscores a promis-

ing research direction - guiding pre-trained language models to recognize arithmetic

relationships, such as subtraction and addition, among diverse frames.

In summary, our research contributes a framework to video question generation,

particularly about causal and temporal inference. While some methods exhibited com-

parable performance to baselines, they unveil intriguing avenues for future exploration.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis addresses the research gap in aligning machine-generated visual questions

with human cognitive processes, specifically in the domain of video visual question

generation (VQG). Instead of focusing on simple factual queries, our study delves

into generating inferential questions that involve causal and temporal inference. While

prevailing pre-trained model methods have demonstrated excellence, they come with

high computational demands, and the potential of leveraging relationships among

diverse pre-trained models in multi-modal learning remains untapped. To bridge these

gaps, we propose an innovative framework that employs vision-text matching pre-

trained models to facilitate pre-trained language models in identifying event-entity

relationships within videos and generating inferential questions.

Our video VQG framework comprises four key components: visual encoder, text

encoder, cross-modal interaction, and question decoder. To establish a robust perfor-

mance for our framework, we conduct a comparison of four distinct visual encoders

and two sizes of pre-trained language models, coupled with a specific training approach.

Recognizing the limitations of existing evaluation metrics in the VQG realm, we in-

troduce a grounding metric to provide direct insights into the language model’s ability

to comprehend visual content, thereby enhancing evaluation. Moreover, we propose a

direct and potent method for integrating vision and language information. Lastly, we

present four diverse techniques, encompassing projection layer design, frame compari-

son, contrastive learning, and visual-semantic arithmetic. These methods enhance the

abstraction of causal and temporal relationships within videos, guiding the language

model towards superior inferential question generation.
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Our experimental results underscore the efficacy of our proposed video VQG frame-

work. Notably, a substantial enhancement of approximately 3-5% across all evaluation

metrics, achieved through the utilization of visual encoders with text-only inputs, under-

scores the effectiveness of our framework in promoting visual content recognition by

the language model. We undertake an array of experiments to compare visual encoders

and language model sizes, pinpointing the most effective configurations for subsequent

inferential experiments. Furthermore, while our advanced abstraction methods for

causal and temporal relationships yield comparable outcomes to direct concatenation of

vision and language embeddings, they provide referential research in MLP layer design.

Additionally, our experiment results suggest promising directions for future exploration,

including ensuring consistency in frame selection, augmenting negative samples for

contrastive learning, and guiding pre-trained language models to recognize arithmetic

relationships within image pairs.

6.2 Future Work

While our innovative framework successfully generates inferential questions related to

causal and temporal inference, our experiments and analyses illuminate avenues for

future advancement. Firstly, our frame comparison analysis underscores the importance

of consistent relationships between input frames during both training and inference.

Investigating methods to enhance frame consistency holds promise.

Secondly, our study of the contrastive learning method highlights limitations tied to

the number of negative samples and the size of the language model. Future research

could consider augmenting the pool of negative samples by substituting question-

unrelated frames with frames from different videos, thus enhancing diversity. Addition-

ally, increasing the language model size, such as transitioning from advanced T5-small

to T5-3B, holds potential, as larger language models exhibit stronger capabilities in

comprehending frame distinctions.

Finally, the visual-semantic arithmetic method paves the way for a promising

research avenue. Given that the vision-text matching pre-trained model can grasp frame

differences through embedding subtraction and addition, while the pre-trained language

model cannot, a subsequent exploration could focus on conveying frame differences

from vision-text matching pre-trained models to pre-trained language models. This

research direction aims to guide pre-trained language models in recognizing arithmetic

relationships among diverse frames.
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Appendix A

First appendix

A.1 Analyse Appendix

model C G precision C G recall C G F1-score T G precision T G recall T G F1-score

HGA[17] 0.3378 0.2357 0.2776 0.4126 0.2763 0.3310

T5 Small
0.2527 0.2541 0.2534 0.3096 0.2943 0.3018

Text Only

T5 Large
0.2736 0.2650 0.2692 0.2998 0.2786 0.2888

Text Only

Table A.1: Baseline Model Evaluation Performance in Causal and Temporal Inference.

C G represents the causal grounding metric. T G represents the Temporal causal

grounding metric.
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model NN WRB VBZ VBD VB JJ VBG WP PRP

T5 Small
4199 2692 1121 1154 713 504 248 1038 220

One Stage

T5 Small
4287 2640 1268 1184 643 533 228 1091 221

Two Stage

T5 Large
3927 2664 1429 947 719 467 227 1048 187

One Stage

T5 Large
4478 2655 1379 1078 777 517 277 1024 207

Two Stage

Table A.2: Number of matching overlaps for various word types based on Spacy about

the difference language model sizes. NN means noun, singular or mass, WRB means

wh-adverb, VBZ means verb, 3rd person singular present, VBD means verb, past tense,

VB means verb, base form, JJ means adjective, VBG means verb, gerund or present

participle, WP means wh-pronoun, personal, PRP means pronoun, personal.

model C G precision C G recall C G F1-score T G precision T G recall T G F1-score

T5 Small
0.3096 0.3078 0.3087 0.3625 0.3357 0.3486

two stage

T5 large
0.3333 0.3115 0.3221 0.3767 0.3374 0.3560

two stage

Table A.3: Evaluation performance of different sizes of T5 models with the two-stage

tuning method in causal and temporal inference. C G represents the causal grounding

metric. T G represents the Temporal causal grounding metric.

model C G precision C G recall C G F1-score T G precision T G recall T G F1-score

Video MLP 0.3204 0.3072 0.3137 0.3695 0.3331 0.3503

Video 16to5
0.3028 0.3014 0.3021 0.3589 0.3316 0.3447

MLP

Table A.4: Vision Projection Matrix Evaluation Performance in Causal and Temporal

Inference. C G represents the causal grounding metric. T G represents the Temporal

causal grounding metric.



Appendix A. First appendix 52

model NN WRB VBD VBZ VB JJ VBG WP PRP

Video
4199 2692 1121 1154 713 504 248 1038 220

MLP

Global Frame
4166 2571 981 1489 776 503 345 1131 247

Comparison

Table A.5: Number of matching overlaps for various word types based on Spacy about

the frame comparison methods. NN means noun, singular or mass, WRB means wh-

adverb, VBZ means verb, 3rd person singular present, VBD means verb, past tense,

VB means verb, base form, JJ means adjective, VBG means verb, gerund or present

participle, WP means wh-pronoun, personal, PRP means pronoun, personal.

model C G precision C G recall C G F1-score T G precision T G recall T G F1-score

Video MLP 0.3204 0.3072 0.3137 0.3695 0.3331 0.3503

Random Select 0.3121 0.2340 0.2674 0.2191 0.1375 0.1689

Global Frame
0.3089 0.3074 0.3081 0.3817 0.3509 0.3656

Comparison

Table A.6: Global Frame Comparison Performance in Causal and Temporal Inference.

C G represents the causal grounding metric. T G represents the Temporal causal

grounding metric.

model NN WRB VBD VBZ VB JJ VBG WP PRP

Global Frame
4166 2571 981 1489 776 503 345 1131 247

Comparison

Global Frame
4222 2553 1157 1332 592 558 224 1155 233

Comparison Contrast

Local Frame
4196 2588 1122 1310 823 530 225 1136 244

Comparison Contrast

Table A.7: Number of matching overlap for various word types based on Spacy about the

frame contrasting methods. NN means noun, singular or mass, WRB means wh-adverb,

VBZ means verb, 3rd person singular present, VBD means verb, past tense, VB means

verb, base form, JJ means adjective, VBG means verb, gerund or present participle, WP

means wh-pronoun, personal, PRP means pronoun, personal.
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model C G precision C G recall C G F1-score T G precision T G recall T G F1-score

Global Frame
0.3089 0.3074 0.3081 0.3817 0.3509 0.3656

Comparison

Global Frame
0.3138 0.2960 0.3046 0.3562 0.3383 0.3470

Comparison Contrast

Local Frame
0.3010 0.2939 0.2974 0.3972 0.3599 0.3776

Comparison Contrast

Table A.8: Contrasting Learning Methods Evaluation Performance in Causal and Tempo-

ral Inference. C G represents the causal grounding metric. T G represents the Temporal

causal grounding metric.

model C G precision C G recall C G F1-score T G precision T G recall T G F1-score

Video MLP 0.3204 0.3072 0.3137 0.3695 0.3331 0.3503

CLIPloss
0.3107 0.3061 0.3084 0.3828 0.3433 0.3620

top word 100

Table A.9: Visual-semantic Arithmetic Evaluation Performance in Causal and Temporal

Inference. C G represents the causal grounding metric. T G represents the Temporal

causal grounding metric.

Video:

Question: where is this video happening?
Answer: Kitchen.
CLIP Selection: frame 3

Question: what does the boy do after immersing the sponge for 
a while at the start?
Answer: Open the tap.
CLIP Selection: frame 6. 

(Actually it happens 
between frame 1 and 
2. The CLIP model
fails to select since no 
frame capture the 
event of the question)

Negative Examples:

Positive Examples:
Question: what does the boy do after the man takes his hands 
out from the water in the middle?
Answer: Put the man’s other hand in.
Frame: 13.

Figure A.1: CLIP Selection Performance
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Positive Sample:
Global Frame Selection:

Subtraction

Ground Truth Question:
why did the lady put her hand closer to the baby s mouth?

Video MLP Baseline Predicted Question:
why is the woman holding the spoon?

Visual-semantic Arithmetic Method Predicted Question:
why is the lady holding on to a pair of ice cream on her hands?

Negative Sample:
Global Frame Selection:

Subtraction

Ice cream is the main difference! 

Carrot is the main difference! 

Ground Truth Question:
why does the girl lean forwards while the adult picks up the 
carrot near the beginning?

Video MLP Baseline Predicted Question:
why did the girl in pink look at the girl in pink when she tries to 
cut the hammer?

Visual-semantic Arithmetic Method Predicted Question:
why did the girl in pink look at the girl in pink when she is 
preparing to spin the balloon?

Figure A.2: The effectiveness of the Visual-semantic arithmetic method: check if the

language model could recognize the difference between two frames.
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Video:

T5 small one-stage: （52 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what does the girl do after the man puts her back on the 
sofa?",       
“3": "where is this video taken?",        
“4": "how does the man hold the child s hand?",        
“5": "why did the man in red hold the girl s hand?",        
“6": "what does the man do after the girl sits on the sofa?",        
“7": "what did the girl do after looking at the man?",        
“8": "why did the girl bend down when she is standing?",        
“9": "why did the man point to the table at the end of the 
video?",        
"10": "what did the man do after he looked at the girl?",        
"11": "how did the man see the girl clearly?",        
“12": "why did the man laugh at the girl?",        
“13": "why did the man pull the girl s back?"

T5 small two-stage: （56 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what does the girl do after the man puts her on the sofa?",        
“3": "where is this video taken?",        
“4": "how did the girl hold the baby s hand?",        
“5": "why did the man in black hold the girl s hand?",        
“6": "what did the girl do after she sat down on the sofa?",        
“7": "what did the girl do after she sat down on the sofa?",        
“8": "why did the girl put her leg on the sofa after she sat down?",        
“9": "why did the man in black point to the girl s hand when she is 
sitting on the sofa?",        
"10": "what did the man do after he sat down on the sofa?",        
"11": "how did the man ensured he can see clearly?",        
“12": "why did the man laugh when the girl is talking?",        
“13": "why did the man in black hold the girl s hand?"
T5 Large two-stage: （58 matching overlap）
“1": "how did the man keep his hair out of his face?",        
“2": "what did the girl do after the man touched her face?",        
“3": "where is this video taken?",        
“4": "how did the man hold the girl s hand?",        
“5": "why did the man in black touch the girl s face?",       
“6": "what did the man do after the girl sat down?",        
“7": "what did the girl do after the man touched her face?",        
“8": "why did the man in black touch the girl s leg after the girl sat 
down?",        
“9": "why did the man in green point to the girl s seat at the end 
of the video?",        
"10": "what did the man do after the girl sat down?",        
"11": "how did the man ensure he can see clearly?",        
“12": "why did the man laugh when the girl is talking?",        
“13": "why did the man in black move his head backwards in the 
middle of the video?"

T5 Large one-stage: （44 matching overlap）
“1": "how did the girl kept her hair out of her face?",        
“2": "what did the girl do after she touched the man s hair?",        
“3": "where is this video taken?",        
“4": "how did the girl in white dress touched the cake at the 
start of the video?“,        
“5": "why did the lady in white move the girl s hands?",        
“6": "what does the girl do after standing for a while at the 
end?",       
“7": "what does the girl do after looking at her right in the 
middle?",        
“8": "why does the girl in pink stop her spinning after a while?",        
“9": "why did the lady in white point at the table at the end of 
the video?",        
"10": "what does the boy do after looking at the lady for a while 
at the end?",        
"11": "how did the lady see her surrounding clearly?",        
“12": "why did the man in black smiled after the girl lied on the 
table?",        
“13": "why does the man in black move backwards in the 
middle of the video?"

Ground Truth Questions:
1: how did the girl keep her hair away from her face?
2: what did the girl do after she stood up at the beginning of the 
video?
3: where is this video taken?
4: what did the man gestured to the girl near the start of the 
video?
5: what did the girl do after the man pat the pillow?
6: why was the man looking left and right at the beginning of the 
video?
7: what did the girl do after she sat down?
8: why did the man touch the girl s leg when she sit beside him?
9: why did the man pat the pillow?
10: what did the man do after he adjusted the girl s leg?
11: how did the man see clearly?
12: why is the lady in green smiling?
13: why did the man lie backwards at the end of the video?

Figure A.3: language Size Performance. Yellow scopes represent matching overlap with

ground truth questions. Red words represent repetitive questions.
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Videos:

Global Frame Baseline: （ 40 matching overlap）
“1": "what does the man in blue do after the man in blue points at him 
at the start?",        
“2": "what does the man in blue do after he finishes talking?",        
“3": "what did the man in blue do after he walked away from the man 
in blue?",        
“4": "why did the man in blue walk away after he walked away?",        
“5": "why did the man in blue move his hand towards the lady in blue 
at the end of the video?",        
“6": "what did the man in black do after he finished talking?",        
“7": "what did the man in black do after the man in grey walked away 
at the end of the video?",        
“8": "why did the man in blue walk towards the man in blue?",        
“9": "why did the man in black move his hands as he speaks?",        
“10": "what did the man in blue do after he pointed at the man in 
blue?"

Local Frame Contrast Learning: （47  matching overlap）
 “1": "what does the man in black do after the man in black starts 
speaking?",        
“2": "what did the man in black do after he took the photo?",        
“3": "what does the man in black do as the man in black was talking?",        
“4": "why did the man in black walk away after he talked to the man in 
black?",        
“5": "why did the man in black move his hand towards the lady in 
black?",        
“6": "what did the man in black do after he finished singing?",        
“7": "what did the man in black do after the man in grey walked 
away?",    
“8": "why did the man in black walk towards the man in black?",        
“9": "why did the man in black move his hands as he speaks?",        
“10": "what did the man in black do after he walked to the man in 
black?"

Global Frame Contrast Learning: （ 58 matching overlap）
 “1": "what does the lady in black do after the man in black points at 
her at the start?",        
“2": "how did the man in black react when the man in black was 
talking?",        
“3": "what did the man in black do as the man in white was talking?",        
“4": "why did the man in black walk away after he finished talking?",        
“5": "why did the man in black move his hands away from the lady in 
white?",        
“6": "what did the man in black do after he finished speaking?",        
“7": "what did the man in black do after the man in grey walked 
away?",        
“8": "why did the man in black walk towards the man in black?",        
“9": "why did the man in black raise his hands in the air at the end of 
the video?",        
“10": "what did the lady in black do after she turned to face the man 
in black?" 

Ground Truth Questions:
1: what did the lady in black do after the man next to her gave 
her a microphone?
2: how did the lady in black reacted when the man in black beside 
her passed her the microphone?
3: what is the man with white tag on shirt do while man in stripes 
speaking?
4: why did the man in black with tied up hair turned backwards 
after he received the microphone?
5: what is the lady in black doing with her hands as she spoke into 
the microphone at the end of the video?
6: what did the man in grey do after he finished his speech?
7: what did the man in black in front of the man in grey do before 
the man in grey passed him the microphone?
8: why did the man in black with tied up hair walked towards the 
man in grey in the middle of the video?
9: why is the lady in black moving her hands at the end of video?
10: why did the lady in black face the man in black beside her 
before she started talking into the microphone?

Figure A.4: Contrast Learning Performance. Yellow scopes represent matching overlap

with ground truth questions. Red scopes represent more details recognized by the frame

contrasting methods compared to the global frame comparison method.
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