
An Investigation into the Distillation of Code

Intelligence from Large Language Models

James Doran
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Cognitive Science

School of Informatics

University of Edinburgh

2023

Abstract

In the last few years, significant progress has been made in the field of code intelligence.

AI models exist that are able to write working code for a solving a given task, auto-

matically identify bugs and effectively document code. Unfortunately, these abilities

are only exhibited by giant, closed-source large language models (LLMs) which is a

barrier to the availability and development of these coding capabilities. Recent work

has demonstrated that an effective way to transfer abilities from these LLMs is to train

smaller models with synthetic data generated through the LLM’s public API.

This project explores the extension of this synthetic data generation procedure to

the coding domain, specifically the task of semantic code search. We implement and

evaluate three types of synthetic data generating strategies; generating bimodal data from

a unimodal source, generating hard examples to augment existing data and generating

a fully synthetic dataset from scratch. We show that all of these methods produce

synthetic datasets that result in a noticeable improvement in MRR on CodeXGLUE

adversarial code search task when added to a smaller real dataset. We find that all

synthetic data that is conditioned on real data results in better performance, with the

greatest improvement coming from the dataset composed of real code with synthesised

docstrings. We also find that the value of synthetic data is greatest when a large amount

of synthetic data is combined with a small amount of real data.

Finally, we present a collection of synthetic data analysis techniques and show a

connection to the empirical results. We make our analysis and synthetic data generation

code available on GitHub so that it can be used for further research.

i

https://github.com/jysdoran/

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(James Doran)

ii

Acknowledgements

I would like to acknowledge my Amazon supervisors, Prarit and Camille, for their

insightful guidance, my group members for their helpful discussions, and my girlfriend,

Daria, for housing and supporting me through the process.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Wider impact . 2

1.3 Goals . 3

1.4 Overview . 3

2 Background 4
2.1 Large language models . 4

2.2 Language models for code intelligence 5

2.3 Synthetic data generation . 5

2.3.1 Reasoning distillation . 6

2.4 Contrastive learning . 7

2.5 Similar concurrent work . 7

3 Methodology 9
3.1 Semantic code search . 9

3.1.1 Coding domain challenges 10

3.2 CodeSearchNet . 11

3.2.1 CodeXGLUE/CodeSearchNet-AdvTest 11

3.3 Evaluation metric . 12

3.4 Baseline . 13

3.5 Incorporating synthetic data . 13

3.5.1 Novel examples . 13

3.5.2 Data augmentation (hard positives) 14

3.5.3 Hard negatives . 15

3.5.4 Paired training . 15

3.6 Synthetic data generation . 16

iv

3.6.1 Prompting . 16

3.6.2 Semi-synthetic data . 17

3.6.3 Generative AI augmented data 17

3.6.4 Fully-synthetic data . 19

4 Implementation challenges 22
4.1 GPU memory . 22

4.1.1 Cross-GPU contrasting . 22

4.1.2 Gradient checkpointing . 23

4.2 Synthetic data . 23

4.2.1 Price . 23

4.2.2 Time . 23

4.2.3 Retrying . 23

4.2.4 Parsing . 24

4.2.5 Semi-synthetic overlap . 24

5 Analysis 25
5.1 Extrinsic evaluation: utility . 25

5.1.1 Novel examples . 25

5.1.2 Data augmentation . 28

5.2 Intrinsic evaluation: Fidelity . 29

5.2.1 Token statistics . 29

5.2.2 Embedding space analysis 32

5.3 Limitations . 34

5.3.1 D2C issues . 34

5.3.2 Dataset size . 35

5.3.3 Repeats . 35

5.3.4 Proxy task . 35

5.3.5 Python . 36

5.3.6 Hyperparameter tuning . 36

5.3.7 ChatGPT vs. true generative models 37

5.3.8 LLM pretraining dataset . 37

6 Conclusions 39
6.1 Future work . 39

v

A Figures 47
A.1 PCA . 47

B Examples 49
B.1 Model disagreement examples . 49

B.2 Universally easy examples . 52

B.3 Universally difficult examples . 55

C Taxonomy Sample 58

vi

Chapter 1

Introduction

1.1 Motivation

As of 2023, there is a big gap in the capabilities of AI systems owned by private

corporations and those that are available to the public and academia. Giant, successful

technology companies have vast financial, computational and intellectual resources

available to them which dwarf those available to individuals or smaller institutions.

On top of this, the field of natural language processing has been moving towards the

development of larger and larger models ever since its efficacy was demonstrated by

Raffel et al. and Brown et al.

One of the most notable capabilities that remains exclusive to privately-owned

large language models (LLMs) is the ability to generate and understand computer code.

Figure 1.1 highlights the full extent of the disparity showing that most open-source

models (all models right of Bard) have significantly worse performance than the five

closed-source systems, most obviously GPT-41.

Although the model parameters are not public, most of the closed-source LLMs

such as GPT-4 are released as APIs that can be used by the public for a modest price.

Given this form of access, these LLMs can be used to generate high-quality “synthetic”

training data that can be used to create smaller, specialised models. Recent work

(Stanford Alpaca, Eldan and Y. Li, etc.) has shown that this “knowledge distillation”

procedure is effective for transferring a variety of natural language capabilities. The

goal of this work is to investigate how it can be applied to code intelligence tasks to

bring the performance of open-source models closer to that of leading private LLMs.

1although GPT-4 is known to contain HumanEval in its pretraining dataset

1

Chapter 1. Introduction 2

Figure 1.1: Performance of various LLMs on HumanEval, a program synthesis task

where models are given a coding problem have to generate a program that passes test

cases. The top performers (excluding WizardCoder) are all closed-source LLMs. Figure

taken from Luo et al.

1.2 Wider impact

Apart from allowing more people to benefit from the advances in LLMs, research into

deep learning with synthetic data has wider implications.

In general, machine learning models with more parameters require more training

data to effectively generalise (Bishop). The size and scale of today’s LLMs mean that

they must be trained on trillions of words compiled from internet resources (Brown

et al.). Villalobos et al. suggest that the rate at which LLMs are increasing in data

requirements is exceeding the rate that the human race is producing new, especially high-

quality, language data. Their model predicts that within the next decade the availability

of high-quality language data for training larger LLMs will be limited by the speed at

which humanity produces it. Given the impending arrival of this language data crisis,

one answer could be to synthetically generate these language resources using LLMs,

and use it to recursively improve upon their own abilities (Mukherjee et al.).

In contrast to this, Shumailov et al. believe that this form of recursive training can

damage the performance and capabilities of generative models. They point out that

the the public availability of generative AIs will inevitably lead to public data sources

becoming inundated with synthetically generated data. This highlights another greater

need for research in synthetic data – now that it may be largely indistinguishable from

human-generated data it is likely to exist in all future data sources. This makes it even

more important to understand its impact on deep learning systems so that future negative

Chapter 1. Introduction 3

effects can be mitigated.

1.3 Goals

The overarching goal of this project is to document the efficacy of learning from LLM-

generated synthetic data for code intelligence tasks. This will be assessed by comparing

the performance of systems trained on synthetic data relative to system using real data.

We hypothesise that synthetic data will be able to produce systems of equivalent or

superior capability capability to those using only real data. Additionally, we hope to

describe analysis techniques that can be used to predict the efficacy of introducing

synthetic data to deep learning training datasets.

1.4 Overview

This document describes an investigation into applying LLM-generated synthetic data

to the code intelligence task of semantic code search. It is divided into the following

chapters:

• Chapter 2 reviews some of the connected scientific literature serving as the

inspiration and context for this work.

• Chapter 3 describes the structure of the experiments and synthetic data generation

processes while discussing the experimental design choices.

• Chapter 4 reports some of the challenges that were overcome to set up the

experiments.

• Chapter 5 reports and analyses the results of the experiments in three parts. Sec-

tion 5.1 discusses empirical performance, Section 5.2 analyses features intrinsic

to the synthetic datasets and Section 5.3 discusses some of the limitations of the

project.

• Chapter 6 concludes and discusses directions for future work.

Chapter 2

Background

This chapter features an overview of the scientific literature that underpins this project.

For further context, see the associated informatics project proposal document.

2.1 Large language models

A language model is statistical model of language that assigns probabilities to sequences,

generally text. The most accurate and useful language models around today are artificial

neural networks (ANNs) that are trained on a large corpus of textual data through deep

learning. ANN language models have been the cornerstone of contemporary NLP

techniques because they learn latent vector representations of language that have been

shown to improve NLP tasks that they are used for (e.g. question answering, intent

classification, etc.) (Mikolov et al.).

The ANN architecture used for language modelling can vary but almost all relevant

ones (as of 2023) use the Transformer architecture of Vaswani et al. The success of

Transformers can be largely attributed to their ability to take advantage of the massive

parallel computation capabilities of modern GPUs1. Devlin et al. showed that this

architecture could be used to train much larger language models on much larger corpora

– and that initialising a network with this model (BERT) improved performance on

almost every natural language benchmark. This pretrain-on-language-modelling/fine-

tune-on-task paradigm opened the door for even bigger language models because they

could be reused for many different tasks.

Today, technology companies create Transformer language models that have so

many parameters that the training process costs millions of dollars in computer power

1as well as the ability to model long distance dependencies

4

Chapter 2. Background 5

alone. These systems are known in the field2 as Large Language Models (LLMs) and

feature impressive emergent abilities. Most notably, they are able to perform tasks

based on a vague description where most machine learning systems require hundreds

of examples (Brown et al.). Most companies do not not release the full systems to

the public but make them accessible through a paid API (e.g Google’s PaLM2 and

OpenAI’s GPT-3.5/4).

2.2 Language models for code intelligence

Transformers have also been effectively applied to the adjacent domain of understanding

and generating programming languages (code intelligence). Inspired by the success of

Devlin et al., Feng et al. apply the same principle to learning a language model for code:

CodeBERT. They initialise the model from RoBERTa (a BERT-based language model

from Liu et al.) and train it to predict masked and replaced tokens in docstring-code

sequence pairs. In the same way as BERT, this develops rich internal representations that

transfer to downstream code intelligence tasks. Extensions of this work predominantly

involve additional pretraining tasks that incorporate special features of code. For

example, GraphCodeBERT (Guo et al.) includes a pretraining task where the model

must predict a data flow graph between the variables and UniXCoder (Guo et al.) is

pretrained on code that has been parsed into a flattened abstract syntax tree.

Coding abilities of these models seem to be closely linked with model size (M. Chen

et al.) and is considered one of the emergent abilities of scaling language models. As

of 2023, the systems with the best performance on coding tasks are all closed-source

LLMs3, none of which have been trained explicitly for code intelligence (in contrast to

previous efforts like CodeBERT).

2.3 Synthetic data generation

Synthetic data is data that has been created through some artificial process rather

than collected/sampled from the real data distribution. Traditionally this has been

used in the computer vision domain to create additional training examples featuring

flipped, rotated and re-scaled versions of real data. T. Chen et al. that combining these

“data augmentations” contributes significantly to the quality of learned representations.

2, creatively,
3OpenAI’s GPT-4 leads by a large margin

Chapter 2. Background 6

Analogous techniques exist for the natural language and coding domains but are less

widespread. For example, words can be replaced with synonyms and code identifiers

can be renamed without changing the overall meaning (Park et al.).

One of the more interesting ways to create synthetic data to use a generative model.

For example, GANs (Goodfellow et al.) feature a discriminator network that is trained

on the outputs of a data generator network. Another classic case is the process of

back-translation from Sennrich et al. which uses a language-A-to-B machine translation

model to generate language pairs from monolingual (language-A) data for training a

language-B-to-A translation model.

LLMs are now capable of producing text that is almost indistinguishable from (and

in some cases of a higher quality than) text created by humans (Cegin et al.). This has

inspired some work using text from these models as a substitute for human-generated

data and has shown promising results for several tasks. Stanford Alpaca is a language

model that has been trained to follow instructions using a synthetic dataset of problems

generated through the OpenAI GPT-3 API. Xu et al. also attempt to replicate a general

purpose language model but use a special instruction data generation process that uses

an LLM to produce progressively more complicated tasks to train the model to perform.

At this point in time it is one of the most powerful open-source language models which

demonstrates how effective training on LLM outputs can be.

2.3.1 Reasoning distillation

Reasoning (multi-step problem solving) is an ability of large language models that

is closely connected to code intelligence. Several works highlight the connection

between coding and reasoning abilities. For example Madaan et al. and Gao et al.

show that complex reasoning tasks benefit from being expressed as coding tasks for

language models that have been trained on code. Aside from this, strong performance on

reasoning benchmarks is only achieved by the largest of LLMs, much like performance

on coding tasks (OpenAI).

This has inspired research that attempts to replicate the reasoning abilities of LLMs

in smaller models. Shridhar et al. and Magister et al. show that training models on chain-

of-thought generations from large models somewhat successfully transfers reasoning

abilities. Zelikman et al. use a language model’s own chain-of-thought generations4 as

more training examples for itself.

4those that result in the correct final answer

Chapter 2. Background 7

2.4 Contrastive learning

This project makes use of a contrastive learning objective to learn a joint embedding

space of natural language and code. The techniques used in this project are largely

founded upon the in-batch contrastive loss used in works such as Karpukhin et al.

and T. Chen et al. Essentially, the representations are learnt through a cross-entropy

classification loss where each representation must have the maximum dot product with

its respective pair while minimising its dot product with others in the batch. This is

apparent from the standard formulation of the in-batch negative contrastive loss:

L =
1
|B| ∑

x∈B
−log

exp(f (x)⊤ f (x+))
∑x′∈B exp(f (x)⊤ f (x′))

, (2.1)

where f is the encoder network, B is a batch of examples and x+ is a positive example

corresponding to x.

Quite a few papers use contrastive learning to learn code representations either for

semantic code search or for code clone detection. In the original CodeBERT paper, Feng

et al. learn representations using this contrastive learning configuration. Neelakantan

et al. also do so and achieve state-of-the-art results by using a very large batch-size and

proprietary base model. X. Li et al. uses the same loss function but combine it with

a variety of strategies that insert more challenging examples into each batch during

training and demonstrate very good performance on various semantic code search

benchmarks.

Finally, Schick and Schütze provides a framework for generating and filtering

synthetic data. They demonstrate results on a sentence representation learning task

which shows that it is feasible to contrastively learn effective representations using

synthetic data.

2.5 Similar concurrent work

Contemporaneously to this project (both uploaded in June 2023), other authors have

attempted to distill code intelligence from LLMs in a similar manner.

Luo et al. use the techniques learned from WizardLM (briefly discussed in sec-

tion 2.3) to generate a synthetic dataset with a technique that mutates existing coding

tasks into more complicated ones using an LLM.

Gunasekar et al. observe that most code in model training datasets has limited

educational value. They use GPT-4 to generate a high-quality synthetic dataset of code

Chapter 2. Background 8

(textbook style code and exercises) that is more suitable for learning from. This process

yields a model that is not only superior to competing open-source models of code but is

also a tenth of their size.

Both models are at the very top of the open-source leaderboard for the HumanEval

code generation benchmark suggesting that this method of improving open-source

models is a very effective one. They both share the underlying principle of this work;

training on the outputs of superior models of code. However, this project focuses on

applying it to the code search domain rather than program synthesis.

Chapter 3

Methodology

The primary goal of this work is to investigate the extent to which the code intelligence of

large, black-box language models can be distilled through training on their generations.

To do this we have to demonstrate that using synthetic data from these models confers a

measurable performance on code intelligence tasks.

3.1 Semantic code search

The main code intelligence task that this project focuses on is the task of semantic code

search (also called natural language code search). The goal of a semantic code search

system is to allow users to find code that they are looking for given only the meaning of

the code, described in natural language. Software developers frequently need to find a

particular piece of code within a very large collection; this could range from searching

the internet for an implementation of an algorithm to searching an unfamiliar codebase

for a particular component

The standard strategy for textual informational retrieval over large datasets is to use

substring and sparse vector comparison algorithms (listed as “traditional” baselines in

Craswell et al.). However, in most situations, it is unreasonable to expect the users of

these systems to know the exact sequence of characters that they are looking for. For

example, when looking for an algorithm implementation they may only know the name

and purpose of the algorithm rather than the exact variable and function names.

Systems that understand and operate over an extensive corpus of documents have

been receiving greater attention recently. Despite the numerous achievements of modern

LLMs, they have a finite1 amount of knowledge available to them. The generations

1but vast

9

Chapter 3. Methodology 10

they produce are limited to text seen in their one-off pretraining process as well as what

can be included in their fixed-length context window. Due to the quadratic scaling

of the attention mechanism (Vaswani et al.) that these models use, training a model

with a wide enough context to fit an entire internet-scale search database would be

impossible2. Many systems today (e.g. Lu et al., Lewis et al.) combine the natural

language abilities of LLMs and the scalability of semantic search systems under the

paradigm of retrieval-augmented generation (RAG). Thus, semantic search serves as a

valuable complement to the contemporary advancements in LLM capabilities.

The task benefits from a strong understanding of both code and natural language,

yet Neelakantan et al. show that it does not require a prohibitively large base-model.

This combination of semantic depth and convenient model-sizes is why we choose it

for this synthetic data investigation.

3.1.1 Coding domain challenges

It is tempting to suggest that the task of semantic code search is subsumed and therefore

solved by the natural language semantic search systems such as those submitted to

TREC (Craswell et al.). Indeed, the architectures of high-performing semantic code

search systems are largely the same as natural language ones, but the coding domain

brings a number of special challenges.

Programming languages differ from natural language in some ways that make the

search task harder. According to Husain et al., there is much less overlap between the

natural language queries and the code documents which causes traditional text retrieval

systems to struggle. X. Li et al. suggest that code tends to have a large imbalance

between its high and low frequency tokens3 which B. Li et al. show negatively impacts

the representations learnt by a transformer model.

Finally, a large driver of the improvement of neural natural language search systems

was the release of the vast datasets such as MS MARCO (Bajaj et al.). Until 2019,

resources of this scale were not available for the task.
2Sun et al. show how many of the techniques that allow for larger context windows produce models

that still struggle with long-context tasks
3i.e. it is dominated by keywords and characters like “if” and “;”

Chapter 3. Methodology 11

3.2 CodeSearchNet

CodeSearchNet (CSN) is a corpus and benchmark for semantic code search released by

Husain et al. in 2019. It consists of 2.3 million function-docstring pairs and 4.1 million

unlabeled functions across six coding languages4. The data was collected by GitHub

and sourced from public, permissively-licensed repositories hosted on their site. The

creators also provide a testing set which consists of 99 natural language queries from

Bing searches and annotations for the 10 most relevant queries. It is a very popular

source of data for pretraining language models for code intelligence, even in 2023

(Guo et al., Wang et al.). In April 2023, the CodeSearchNet challenge was officially

concluded to encourage the use of newer benchmarks.

3.2.1 CodeXGLUE/CodeSearchNet-AdvTest

CodeXGLUE (Lu et al.) is a suite of code intelligence benchmarks that covers var-

ious tasks including code generation, clone detection, defect detection and natural

language code search. CodeXGLUE features three different semantic code search tasks:

CodeSearchNet-WebQueryTest, CoSQA and CodeSearchNet-AdvTest. The first two

are focused on a binary task of identifying whether a code snippet is relevant to a natural

language search query and are not used in this work. For this project, the experiments

and evaluations will be conducted on the CodeSearchNet-AdvTest Python dataset (CSN-

Adv). The training data they provide consists of 251,820 docstring-function examples

which are filtered for quality5 from the original CodeSearchNet corpus. The more

significant difference from the CSN challenge is the testing set. In the CodeSearchNet

testing task, systems must rank 1000 functions according to 99 real search queries.

CSN-Adv instead tests on a task that is more similar to the training task: they use a

dataset of 19,210 docstring-function pairs where each example must be ranked against

all 19,210 other examples. In addition to this, all identifiers6 in the functions have

been replaced with generic labels. Conceptually, renaming these identifiers should not

affect the semantics of the underlying function and helps to assess the generalisation

performance of the model.

The result of both of these changes is that CSN-Adv is a significantly more chal-

lenging benchmark. Lu et al. report that the Python performance of CodeBERT (Feng

4Go, Java, JavaScript, PHP, Python, Ruby
5They remove non-English, long and ill-formed functions
6e.g. function, parameter and variable names

Chapter 3. Methodology 12

et al.) drops from an MRR (see section 3.3) of 0.8685 on CodeSearchNet to only

0.2719 on CSN-Adv. This makes it more suitable for the comparison of contemporary,

high-performance systems.

Unfortunately, the CSN-Adv testing set no longer contains natural code search

queries and is thus no longer an direct assessment of the performance on semantic

code search. Instead assesses a more contrived task of searching for a function based

on its docstring. The other CodeXGLUE search tasks, CoSQA and CodeSearchNet-

WebQueryTest, are designed for this purpose but are significantly smaller because

manually annotating natural retrieval data is very labour intensive. We do not consider

this an issue because the focus of this project is on applying LLM synthetic data to code

intelligence in general for which the CSN-Adv dataset is equivalent for, despite being a

departure from the standard application of semantic code search.

3.3 Evaluation metric

Semantic code search is generally evaluated using standard information retrieval metrics.

The one that is generally reported for the CSN-Adv test dataset is mean reciprocal rank

(MRR). The equation to calculate this over ranking dataset D is

MRRD =
1
|D| ∑

x∈D

1
rankx

, (3.1)

where rankx is the rank of the first relevant entry to query x. From the construction

of the metric it is clear that it ranges from 1 when every query ranks a relevant entry

first to 1
|D| when the only relevant entry is always the last possible rank7. In practice, if

rankx is greater than some number (100 for CSN-Adv) a score of zero is assigned to

that query as if rankx = ∞.

The main flaws with MRR are that it only takes into account the topmost relevant

example and only supports a binary definition of relevance. The CSN-Adv dataset

only features a single relevant entry for each query (the function that the docstring was

taken from) so these restrictions are not an issue but the original CodeSearchNet task

uses normalised discounted cumulative gain because it has graded relevance labels and

multiple relevant entries.

The experiments on CSN-Adv in this project will be evaluated using MRR because

it is the standard for the benchmark and will allow the results to be comparable with

7although inverting the score could produce a very effective ranker

Chapter 3. Methodology 13

other systems. It is also a simple, interpretable metric that corresponds well with the

goal of the task.

3.4 Baseline

The standard strategy to create semantic code search systems is to perform a vector

similarity comparison (dot product, cosine distance or euclidean distance) between an

embedding of the query and the embeddings of every entry (dense retrieval). This trans-

forms the task into learning a model that projects code and natural language input into

joint embedding space. The most successful embedding models are large transformers

that have been pretrained on modelling code and/or natural language (Devlin et al.)

which are then adapted to produce vector representations through contrastive learning.

Karpukhin et al. demonstrates the effectiveness of this architecture on a natural language

question answering task.

In this work we use the CodeBERT model as a base for learning both the natural

language and code embedding models. The model is then further trained on the CSN-

Adv dataset using a contrastive loss function (see section 2.4) to minimise the dot

product between the function and docstring vectors. This is the configuration tested

with the original release of the CSN-Adv which has since been surpassed by more

capable systems of a similar architecture (Guo et al., Guo et al., X. Li et al.). As the

main focus of the project is on manipulating the data distribution we elect to conduct

all experiments with this simple set-up.

3.5 Incorporating synthetic data

Given that some form of synthetic data is available, there is a number of ways that that

it can be introduced to the baseline system described in section 3.4. Each of these will

be the subject of experimentation using LLM-generated synthetic data.

3.5.1 Novel examples

The most obvious way to include synthetic data DS is to use it to supplement your

available data D;

Dsupp = D ∪DS. (3.2)

Chapter 3. Methodology 14

Theoretically, Dsupp can provide a lower variance estimate of P(D), the true (future)

data distribution, as long as the synthetic data is sampled from a similar distribution

(relatively unbiased). For example, if the synthetic data is drawn from the same

distribution as the training data it will essentially create a larger training set that

will reduce the noise in the model estimates. Alternatively, if the synthetic data is

systematically biased away from the distribution of the real data, the model learnt on

the dataset will feature a systematic error in its predictions of real data. In practice

it is hard to analytically quantify 1) the bias of synthetic data, 2) the variability of

complicated models and 3) their exact trade-off so we must assess the value of the novel

data empirically.

This technique is especially relevant if the original dataset is very small, where the

synthetic data can act as a regulariser and provide examples in lower density, unsampled

regions of the data distribution. In some situations it may be possible to generate

synthetic data such that it better represents future data than D , e.g. generating synthetic

data that is free of biases present in historical data (Jordon et al.).

One special case of this strategy is when D = /0 and Dsupp =DS, i.e. when collecting

real data is impossible or prohibitively expensive. In this situation, any ability to perform

the desired task can be considered valuable.

3.5.2 Data augmentation (hard positives)

The field of computer vision has a long history of working with synthetic data through

a procedure known as “data augmentation” (Lecun et al.). This involves creating a

synthetic dataset Daug using an augmentation procedure f : X → XN that creates N new

examples from each example which are then added to the dataset as in section 3.5.1.

In computer vision, this augmentation procedure usually involves image transforma-

tions that preserve the semantics of the image (e.g. f (x)= {x,greyscale(x), f lip(x),rotate(x)}.

These are used are positive pairs for contrastive learning and allows the models trained

on Daug to be more robust to those forms of non-semantic variance. T. Chen et al.

show that including these augmentations confers benefits to the learned representations,

especially if multiple augmentations are composed (i.e. fi · f j ∈ f).

There is some work in the field of code representation learning that applies similar

techniques to code. Bui et al., Jain et al. and Park et al. all generate positive pairs

by performing semantic-preserving code transformations such as renaming identifiers,

reordering statements and performing manually defined substitutions (some based on

Chapter 3. Methodology 15

compiler tricks). Each method is shown to improve downstream performance on code

search and/or code clone detection task.

Not every domain features convenient semantics-preserving transformations like

this. Natural language understanding, an integral part of semantic code search, has

not seen significant benefits from augmentations such as synonym substitutions and

sentence rewriting. Nikolenko suggest that this is due to a difference from computer

vision where the field is able to benefit from the field of computer graphics. Despite

this, Huang et al. show that performing simple augmentations on code search queries

such as switching two words or deleting unimportant ones provides a marginal benefit.

The main experiments of this project include using the latest developments in the

generative modelling of text and code to enhance this augmentation process. Proprietary

LLMs have near-human zero-shot performance on many natural language and code-

related tasks which opens up a wide space of possible augmentations (OpenAI).

3.5.3 Hard negatives

T. Chen et al. and Neelakantan et al. both highlight a well documented phenomenon;

representations produced by contrastive learning improve with batch size. Although

it is not fully understood, it is proposed that a greater number of negative samples

in a batch increases the chance that in contains “hard-negative” examples. These are

examples that have superficially similar encodings which force the model to learn a

richer representation to distinguish them; the inverse challenge of the “hard-positive”

examples produced by the data augmentation in section 3.5.2.

Scaling the batch size is limited by the memory available on one’s hardware so it can

be difficult to realise these benefits. An alternative approach by Xiong et al. suggests

that constructing batches that contain these hard negatives improves text representations

and X. Li et al. show that this transfers to the semantic code search task.

The final way that we employ synthetic data is with a novel approach that proposes

to synthetically generate hard-negative examples. Theoretically the inclusion of these

examples would create a more challenging contrastive task that could encourage richer

representations.

3.5.4 Paired training

The standard contrastive loss described in section 2.4 assumes only one positive pair per

batch. With the data augmentation strategies described in section 3.5.2 and section 3.5.3

Chapter 3. Methodology 16

it may be necessary to reformulate the task to support multiple positives per batch.

To allow for this we create a real-synthetic “paired” data loader which creates

batches that feature both real examples and their respective augmentations. This alone

is sufficient for the hard-negative condition8 because the system will have to distinguish

between all of the examples in the batch which is guaranteed to include the adversarially-

generated hard-negative. For the hard-positive case, we pose the task as a linear mixture

four contrastive objectives; where the original loss only contrasted real docstring-code

(Ld,c) representations, the new loss contrasts every combination between real examples

(d,c) and their augmented equivalents (d′,c′):

Laug =
1
4
(Ld,c +Ld,c′ +Ld′,c +Ld′,c′). (3.3)

3.6 Synthetic data generation

The LLM used for all the data generation procedures is OpenAI’s gpt-3.5-turbo,

the model that ChatGPT is built on. This model was chosen because it is available,

affordable and known to have a reasonable coding and language skills. Ideally ex-

periments would be repeated with data from GPT-4 as it is known to possess greatly

improved coding abilities (OpenAI) but comes at a significantly greater cost. The

data are generated by calling the OpenAI API through a Python script built with the

LangChain package. For every synthetic data generation strategy we describe below

we generate 12,800 examples which are all9 conditioned on the same set of 12,800

examples from the real training data.

3.6.1 Prompting

All the data generation calls use a system prompt that begins with:

“You are a helpful python programming assistant.”

which serves to provide a framework to model the responses it creates. Each system

also ends with:

“Do not reply with any text other than this {data type}.”

where {data type} is replaced with the desired output type (e.g. function/docstring).

This is to simplify the task of parsing the response and to reduce costs incurred by

superfluous explanations that are characteristic of ChatGPT.
8examples generated in this way can actually be included in the training set directly with no adjustment
9except for the taxonomically generated dataset which is independent of the original data

Chapter 3. Methodology 17

Each prompt used in this project has been created through informal experimentation

with ChatGPT until the correct behaviour is exhibited. The science of prompting is still

young and inexact and is not the focus of this project.

3.6.2 Semi-synthetic data

The first synthetic data generation strategy involves generating synthetic data based on

examples from the original training data. To do this we take select one of the modalities

(docstring or code) and generate the other modality using the LLM. The prompts to

generate a docstring from code (C2D) and code from a docstring (D2C), respectively,

are as follows:

“I will provide a python function and you should write a succinct docstring
for that python function.”

“I will provide a docstring and you should write a python function that has
that docstring.”

This procedure creates an idealised form of synthetic data that we term “semi-synthetic

data” which side-steps some of the challenges associated with synthetic data generation.

By conditioning on real data, we regularise the distribution of the synthetic data to

be close to the real distribution. It is also a challenge to maintain the diversity of

synthetic data (Eldan and Y. Li) and the real training data provides a necessary source

of randomness.

Figure 3.1 features an example of a function generated by both strategies as well as

the seed example (fig. 3.1a) that they were generated from. The examples show how

the docstring is preserved in the D2C setting and the code is for the C2D setting.

3.6.3 Generative AI augmented data

Inspired by how data augmentation is performed in computer vision (see section 3.5.2),

we propose an analogous strategy that produces the augmented examples with an LLM.

This is very similar to the semi-synthetic procedure discussed in section 3.6.2 but instead

of providing only one modality, the model has access to the full example. Theoretically

data generated this way will produce example pairs that encode subtle semantically-

invariant code and language transformations that have been learnt through the LLMs

extensive training process.

The augmentation operations that we perform are centred around generating two

kinds of valuable examples: hard-positives (H+) and hard-negatives (H−). Hard-

Chapter 3. Methodology 18

def rev_c(read):

"""return reverse completment of read"""

rc = []

rc_nucs = {’A’:’T’, ’T’:’A’, ’G’:’C’, ’C’:’G’, ’N’:’N’}

for base in read:

rc.extend(rc_nucs[base.upper()])

return rc[::-1]

(a) Seed example
def rev_c(read):

"""This function takes a DNA sequence string as input and returns the reverse

complement of the sequence. The reverse complement is obtained by replacing each

nucleotide with its complement (A with T, T with A, G with C, C with G) and

reversing the resulting sequence. The function uses a dictionary to map each

nucleotide to its complement."""

rc = []

rc_nucs = {’A’:’T’, ’T’:’A’, ’G’:’C’, ’C’:’G’, ’N’:’N’}

for base in read:

rc.extend(rc_nucs[base.upper()])

return rc[::-1]

(b) C2D semi-synthetic
def reverse_complement(read):

"""return reverse completment of read"""

complement_dict = {’A’: ’T’, ’T’: ’A’, ’C’: ’G’, ’G’: ’C’}

reverse_complement = ’’

for base in read:

reverse_complement = complement_dict[base] + reverse_complement

return reverse_complement

(c) D2C semi-synthetic

Figure 3.1: Example generations using the semi-synthetic data generation strategies

Chapter 3. Methodology 19

positive examples are examples that have different surface features but share underlying

semantics and hard-negative examples are the inverse. The inclusion of H+ examples is

similar to the classical image augmentation approach – it encourages the representations

to be robust to semantically invariant transformations. As discussed in section 3.5.3, H−
examples encourage the representations to be sensitive to subtle semantic differences.

The prompts used to generate H+ and H− examples, respectively, are below:

“I will provide a python function and you should heavily refactor it (renam-
ing variables, reordering statements, etc.) into a very different looking but
semantically identical python function with a new docstring.”

“I will provide a python function and you should write a superficially similar
but semantically very different python function and docstring.”

The hard-positive augmentation approach is closely related to the manually defined

program transformations of Bui et al. but with certain advantages (e.g. realistic trans-

formations and identifier renaming). Generally hard-negative examples are harder to

systematically generate although Allamanis et al. and Ding et al. augment code with

bug-inducing transformations as hard-negatives.

Figure 3.2 shows an example of the functions produced by these prompts. The hard-

positive example in fig. 3.2c demonstrates the LLM’s ability to intelligently rename

variables and reword docstrings. In fig. 3.2b, the LLM is able to produce a similarly-

themed function that serves a different purpose.

3.6.4 Fully-synthetic data

In this section we describe the techniques that we use to generate a fully-synthetic

dataset that is independent of any existing data. It may not always be possible to acquire

an effective seed dataset for semi-synthetic data generation. In these situations, being

able to generate an entire dataset from scratch using only an LLM API would enable

the, otherwise impractical, distillation of niche coding abilities.

3.6.4.1 TinyStories and Phi-1

Eldan and Y. Li documents the use of fully synthetic data to train a small, specialised

language model. The main problem that they overcome is the lack of diversity in the

generated LLM outputs. They do this by enforcing diversity on the generated outputs by

prompting the model to generate a story that includes a certain word from a manually

assembled list of words and well as including a particular narrative structure element

Chapter 3. Methodology 20

def rev_c(read):

"""return reverse completment of read"""

rc = []

rc_nucs = {’A’:’T’, ’T’:’A’, ’G’:’C’, ’C’:’G’, ’N’:’N’}

for base in read:

rc.extend(rc_nucs[base.upper()])

return rc[::-1]

(a) Original example
def get_complement(sequence):

"""Return the complement of a DNA sequence.

Args:

sequence (str): A DNA sequence.

Returns:

complement_sequence (str): The complement of the input DNA sequence.

Raises:

ValueError: If the input sequence contains invalid characters.

Examples:

>>> get_complement(’ATCG’)

’TAGC’

>>> get_complement(’GCAT’)

’CGTA’"""

complement_sequence = ""

complement_dict = {’A’: ’T’, ’T’: ’A’, ’G’: ’C’, ’C’: ’G’}

for base in sequence:

if base in complement_dict:

complement_sequence += complement_dict[base]

else:

raise ValueError(f"Invalid character: {base}")

return complement_sequence

(b) Hard-negative augmented
def reverse_complement(read):

"""Returns the reverse complement of the given DNA sequence.

Args:

read (str): The DNA sequence to be reverse complemented.

Returns:

str: The reverse complement of the given DNA sequence."""

complement = {’A’: ’T’, ’T’: ’A’, ’G’: ’C’, ’C’: ’G’, ’N’: ’N’}

reverse_complement = []

for base in read:

reverse_complement.extend(complement[base.upper()])

return reverse_complement[::-1]

(c) Hard-positive augmented

Figure 3.2: Example generations using the LLM data augmentation strategies

Chapter 3. Methodology 21

(e.g. a plot twist). Gunasekar et al. apply the same principle to generate a dataset

resembling a coding textbook and coding exercises.

3.6.4.2 Taxonomical generation

The approach discussed in section 3.6.4.1 still requires a manually-assembled list of

topics/vocabulary. We propose to use an LLM to generate this as well in an approach

we call “taxonomical generation”. The procedure is fairly straightforward; starting with

a root concept, we exploit the LLMs understanding of a “sub-concept” to produce a

list of topics that can be reasonable considered to be contained within that topic, this

process is repeated to recursively generate finer and finer topics. The prompt template

used at each stage is as follows:

“{description}
Generate a list of {k} subconcepts of ‘{concept}’ and a short description
of how each relates to {concept}. Format each list entry as: x. Subconcept:
Description.”

The description of the current concept (as it related to its parent) is included to

disambiguate between topics with similar names and to encourage the generated subcon-

cepts to also fall within the boundaries of the parent concept. A sample of the taxonomy

generated in this way can be found in fig. C.1.

This approach could very easily be conducted with different hierarchical categorisa-

tion structures. For example one could generate a meronomy of industrial applications

of coding (e.g. aviation software > flight computers, flight recorders, in-flight entertain-

ment systems).

Once a taxonomy is available, the concepts in its leaf nodes are used to generate

functions that can be used as examples for the contrastive learning task using the

following prompt:

Concept: {description}
Generate the code and docstring for {k} short python
functions that effectively demonstrate the concept of {concept}.
Each list item should be in the following format:
x. Function:

Relation to the concept of {concept}:
Docstring:
Code:

In this setting we generate a list of k examples within the same query to theoretically

allow the LLM to avoid generating duplicates. We use this technique to generate

10×10×16 leaf concepts for which we generate 8 functions for a total 12,800 examples

to match our other datasets.

Chapter 4

Implementation challenges

This chapter documents some of the technical challenges that were overcome in the

process of experimentation.

4.1 GPU memory

As detailed in section 3.5.3, contrastive learning is sensitive to the batch size used

during training. In the process of replicating the results from CodeXGLUE paper, it

became apparent that the 12GB of memory on the GPUs1 we have access to would only

support a batch size of 8 – far lower than the recommended batch size of 32. To remedy

this we attempt a series of optimisations.

4.1.1 Cross-GPU contrasting

The training script provided by the CodeXGLUE supported the use of multiple GPUs but

treated each of these batches as independent, essentially performing multiple iterations

of the same batch size rather than simulating a larger batch. To remedy this, we modify

the script to calculate the contrastive loss after collecting embeddings across all GPUs,

to more closely the behaviour of a large batch size.

T. Chen et al. warn against a pitfall of this type of training when batch normalisation

is used. Positive pairs are calculated on the same device which creates a dependence

between them and could provide an avenue for the model to cheat on the disambiguation

task. For this reason and because we observe slow wall clock times in experiments, we

do not use this training strategy for our main performance evaluation experiments.

1Nvidia GeForce RTX 2080 Ti

22

Chapter 4. Implementation challenges 23

4.1.2 Gradient checkpointing

Gradient checkpointing is procedure proposed by T. Chen et al. that reduces the memory

requirements of a machine learning model during training. When using stochastic

gradient descent, the gradient of the parameters with respect to the output must be

stored for each example in the batch. Instead, gradient checkpointing discards most of

these gradient values generated during the forward pass, storing only a subset at key

points which it used to recalculate the gradients for the backwards pass. The result

is that the training procedure requires significantly less memory at the cost of extra

forward computation. In the case of our experiments, it allowed a 4- to 8-fold increase

in batch size and is used in all of them.

4.2 Synthetic data

4.2.1 Price

Generating 12,800 semi-synthetic examples using the strategy described in section 3.6.2

cost approximately $4.70 USD for both C2D and D2C. This is a fairly low price,

especially compared to the cost of creating this amount of data by paying expert

human coders. That said, it is not so low that it would be reasonable to generate

200,000 examples to match the original CSN-Adv training set (> $70) so we restrict our

investigation to this quantity of data. The cost of using GPT-4 for this process would

also increase the cost per example 10-fold.

4.2.2 Time

Generating 12,800 examples with sequential calls to the API took a surprising amount

of time – approximately 12 hours or 1000 examples per hour. This could have been sped

up by maintaining a collection of simultaneous requests but was not deemed necessary

for this project.

4.2.3 Retrying

Due to the stochastic nature of generative modelling, the responses produced by the

LLM are not always well-formed. In addition, the request to the API would occasionally

time out and fail to produce a result. This necessitated error catching infrastructure that

identifies failed examples and attempts to regenerate them.

Chapter 4. Implementation challenges 24

The main source of failure was the inclusion of very long docstrings that caused

the model to exceed a specified token limit. When re-generating these examples, the

docstrings are truncated to the first few lines which conventionally contains a summary

of the function.

4.2.4 Parsing

The CSN-Adv training script expects the training data to feature a tokenised version of

the code and docstring. It was a challenge finding the script that the original dataset

had been tokenised with in order to process the synthetic data in a consistent way. The

correct version and python grammar of Github’s Tree-sitter are the versions specified in

the original CodeSearchNet repository which we verify by re-tokenising the original

dataset.

The data generation strategy described in section 3.6.4.2 encourages the LLM

to return data as a list where each list item features several different components

(description, relation to super concept, etc.). The textual response from the model is

parsed with regular expressions to separate the list items and components from each

other.

4.2.5 Semi-synthetic overlap

In the semi-synthetic regime, some of the examples are generated based on counterparts

in the real training dataset. These examples are not mutually independent and including

both in the same dataset introduces a confounding factor into the experiments that

may have unexpected consequences. It also corresponds to using a smaller and less

diverse corpus because one of the modalities in each example will be necessarily be

repeated. In order to compare results against the size/diversity of equivalent number of

real examples, we make modifications to the training script to ensure that seed examples

for the semi-synthetic data do not overlap with any included real examples.

One criticism of this approach is that it means that external unimodal data is required

to generate the synthetic data, reducing the applicability of the semi-synthetic strategy.

This is a fair criticism but it is fairly realistic to have access to an additional unimodal

corpus because, in general, it is much cheaper to collect than aligned data – for example,

CodeSearchNet features one million bimodal docstring-function Python examples but

an additional 4 million unimodal function examples. We ablate the necessity of this

process in section 5.1.1.3

Chapter 5

Analysis

We assess the synthetic data we generate with respect to two attributes: utility and

fidelity (Jordon et al.). These are closely related to the concepts of extrinsic and intrinsic

evaluation, respectively.

5.1 Extrinsic evaluation: utility

The utility of a synthetic dataset is determined by the extent it can be used to solve a

task. In our case, we evaluate its efficacy as training data for learning a joint embedding

model of functions and their docstrings for the code search task.

5.1.1 Novel examples

We begin by treating the synthetic data as novel examples as described in section 3.5.1

and use it to supplement real data in various ratios. Figure 5.1 shows the results of

experiments using data from three synthetic data generation strategies: D2C/C2D semi-

synthetic data and fully synthetic data created with taxonomical generation. All of

the heatmaps exhibit vertical gradation corresponding to the expected improvement in

performance as the amount of real data increases. There also seems to be a general

improvement in performance as the amount of synthetic data increases, most noticeably

in fig. 5.1b, but the effect dwindles as the volume of real data overwhelms it. In

almost every configuration, adding synthetic data strictly improves the performance of

the system with a minimal risk of producing a model that is worse than the baseline,

especially when the quantity of synthetic data exceeds the quantity of real data.

25

Chapter 5. Analysis 26

(a) D2C: Docstring to code (b) C2D: Code to docstring (c) Taxonomical generation

Figure 5.1: Heatmaps showing how MRR (see section 3.3) changes with respect to

the number of real examples and synthetic examples for each data generation strategy.

MRR is calculated on the CSN-Adv adversarial test set

5.1.1.1 Unusual effects of synthetic data in comparison to real data

We observe that adding synthetic data has different effects to adding an equivalent

quantity of real data which suggests that the synthetic data generation process is not a

perfect model of the true data distribution.

A one notable feature of the results is that the runs that do not include real training

data (the top row of each heatmap) fail to improve much from additional synthetic

data. Regardless of the generation process, the difference between using 800 and

12,800 synthetic examples is less than 0.04 MRR – significantly less than the 0.07

improvement observed from an equivalent increase in real training data. This suggests

that the synthetic data is lacking in some aspect of real data which we explore in

section 5.2.2.3.

Interestingly, the benefit of including additional synthetic data seems to be somewhat

orthogonal to the benefit of including additional real data. Every strategy exhibits a

roughly fixed benefit to MRR from including 12,800 additional synthetic examples until

it is matched by the quantity of real data.

5.1.1.2 Comparison of novel data generation strategies

The performance of systems trained with semi-synthetic data (fig. 5.1a and fig. 5.1a)

seems to be superior to that of systems trained with fully synthetic, taxonomically-

Chapter 5. Analysis 27

generated data (fig. 5.1c). This is an expected result given that it is regularised to follow

a real data distribution instead of having to generate examples from scratch.

C2D semi-synthetic data also seems to have marginally better performance than

D2D although this is largely due to the high performance in experiments with 800 real

examples. We attribute the behaviour to an anomaly that would vanish given the scope

for repeated experiments. That said, it may also be an indication that modelling exclu-

sively C2D semi-synthetic data serves a conflicting objective to modelling both C2D

data and real data combined. This strategy also displays unusually good performance

when mixed 50/50 with real data, sometimes beating systems trained with the same

amount of real data. When the amount of real data, this suggests that replacing half of

it with LLM synthesised data may provide more value to the system than simply using

the real data directly.

5.1.1.3 Dataset overlap ablation

In section 4.2.5, we discuss the choice to separate the semi-synthetic seed data from

the real data used during training. We investigate the importance of this by performing

ablation experiments where the real data used in training fully overlaps with the seed

data used to generate the examples – the results are shown in fig. 5.2. C2D (left) exhibits

the expected decline in performance from having access to fewer real code examples.

The D2C case features anomalously good performance that we attribute to peculiarities

of the D2C dataset that we discuss in section 5.2.1 (some of the examples erroneously

feature modified docstrings). Overall it appears as though using overlapping data in

a data augmentation approach still improves performance to a minor degree but we

expect seeding with unimodal data to be a better strategy.

Figure 5.2: Graph showing the relationship between MRR on the CSN-Adv test set split

by whether an overlapping portion of the dataset was used to generate examples.

Chapter 5. Analysis 28

5.1.2 Data augmentation

We also perform experiments to evaluate the effect of LLM-based data augmentation

strategies (both hard-positives and hard-negatives). As each augmented example is

generated from a corresponding real example, we restrict our analysis to datasets that

feature an equal number of synthetic and real training examples. Figure 5.3a shows that

all of the data augmentation procedures seem to improve upon a baseline without data

augmentation, in most cases even outperforming real datasets of equivalent size. This

is a strong indicator of the value of this procedure and reflects findings in the image

domain literature on the value of data augmentation for contrastive learning (T. Chen

et al.).

(a) Augmentations vs. baseline (b) H+ paired training ablation

Figure 5.3: Graph showing the relationship between MRR on the CSN-Adv test set for

each data augmentation strategy. Each x value indicates the number of real examples

and synthetic examples for 2x overall (apart from the baseline strategy that only features

x real examples)

5.1.2.1 Ablation of paired training

The orange and green lines in fig. 5.3a show that the paired training that includes

hard-negative synthetic examples in each batch performs similarly or worse than simply

adding augmented hard-negatives to the dataset (like the experiments in section 5.1.1).

This could mean that the main performance improvement of including these hard-

negative augmentations comes from them beinghigh quality additional examples rather

than directly serving as a hard-negatives for specific examples.

Hard-positive examples must be treated differently. Including positive examples in

the same way as novel examples would sometimes result in batches where positive pairs

are erroneously sampled as in-batch negatives. However, this can also occasionally

Chapter 5. Analysis 29

occur in real datasets so we experiment with this way of including hard-positives anyway.

Figure 5.3b shows the unexpected result that this form of augmentation is competitive

with the paired training and also surpasses the baseline.

We propose several explanations for the good performance of this configuration.

Firstly, the augmentations generated by gpt-3.5-turbo may not be hard-positives and

instead may consist of examples that are semantically distinct from the data that they

augment. Alternatively, the diversity from the augmentation might be outweighing the

negative impact of occasionally sampling positive pairs. Finally, each component of

loss function that we propose in section 3.5.4 must only distinguish between batches of

examples that are half the size of those used in regular training. Due to the known sensi-

tivity to batch size of contrastive learning (discussed in section 3.5.2), the paired training

only having to distinguish between smaller batches may be hurting its performance.

5.2 Intrinsic evaluation: Fidelity

Another way that synthetic data can be evaluated is on its fidelity – how well it matches

the distribution of real data. Like many intrinsic evaluation methods, it is only as

valuable as its ability to predict the utility of the synthetic data. Indeed, if the synthetic

data is of a higher quality than the real data is, it may improve the performance of the

system while necessarily diverging from the distribution of the training data.

5.2.1 Token statistics

A basic way to examine evaluate differences in sequence data is to compare token

statistics between the corpora. To begin we plot a histogram of the length of examples

in each corpus, split by data type (fig. 5.4).

From this it is immediately clear that the distributions of the semi-synthetic data

are very different from the baseline. The docstrings generated by the C2D strategy are

notably longer than those in real data. From looking at examples in the data such as

fig. 3.1b, gpt-3.5-turbo seems to produce very verbose descriptions of all the parts

of the function, even describing the objects and the control flow of the code. While this

makes for unrealistic docstrings, having this type of description could be beneficial for

a model learning the relationship between natural language and code. The functions

generated by the D2C and taxonomical strategies are unusually short which could make

it hard to generalise to longer test examples, explaining some of the worse performance

Chapter 5. Analysis 30

of these two systems.

Finally, the fact that the distributions in the data augmentation cases match so

effectively suggest that the model understands that it is not supposed to modify the

examples much; this shows that it is usually capable of copying the form and structure

of examples that it is provided. This suggests that our prompting generations might be

improved if we provided some full examples in the generation prompt for the LLM to

base its outputs on.

5.2.1.1 Common tokens

We also investigate the most common tokens of each dataset – the top ten code1

tokens for each dataset are shown in table 5.1. Both augmented approaches show good

agreement with the real data which suggests the process successfully maintains the

structure of most examples. The D2C and Taxonomical strategies seem to generate

many fewer class methods (missing ‘self’ keyword) than are present in real data which

would also affect downstream performance on this common type of function.

Most worryingly, we investigate the prevalence of “pass” token generations in the

D2C semi-synthetic data and find that many correspond to function stubs where the

LLM has only produced a function signature. We discuss this in section 5.3.1.

Baseline C2D D2C H- H+ Taxonomical

(102487 (102487 (21245) 84324) 98464 (32371

) 102487) 102487) 21245 (84320 (98463) 32369

. 94435 . 94435 : 19504 . 74135 . 91593 : 26879

, 74499 , 74499 def 12987 , 61241 , 72564 , 14814

= 65095 = 65095 , 12124 = 53001 = 66590 def 13195

: 57264 : 57264 = 7766 : 50140 : 56901 = 12579

self 35139 self 35139 pass 5763 self 29969 self 33908 return 11789

[27542 [27542 . 5591 [22293 [26381 [9798

] 27542] 27542 return 4223] 22293] 26381] 9798

if 19209 if 19209] 2831 if 15789 if 18796 . 8654

Table 5.1: Top ten most common code tokens and counts for each dataset

1we have also looked at the most common docstring tokens but it is much less interpretable/interesting

Chapter 5. Analysis 31

Figure 5.4: Histogram of code and docstring token lengths for each data generation

strategy. Token lengths above 200 are hidden.

Chapter 5. Analysis 32

5.2.2 Embedding space analysis

Comparing basic statistics for the datasets only provides a crude estimate of close they

are to the true distribution. In order to facilitate a more in-depth analysis, we take

OpenAI’s general purpose embedding model, text-embedding-ada-002, as ground

truth representations for our data. This model is extremely affordable at $0.0001 per

thousand tokens; embedding 8×12,800 examples cost less than $5 in total. One caveat

to using an embedding model from OpenAI is that it is possible that the embedding

model was initialised from a similar language model to gpt-3.5-turbo. This might

cause it overrate the diversity of generations from gpt-3.5-turbo if they have a similar

understanding of the breadth of language/code.

5.2.2.1 Quality check

To ensure that the text-embedding-ada-002 produces high-quality representations

for code search data, we evaluate its performance on the CSN-Adv semantic code

search task. The model achieves an MRR of 0.445, significantly higher than our best

CodeBERT model trained for this task.

5.2.2.2 Corpus distance metrics

While embedding spaces encode a notion of similarity between individual examples,

it is not trivial to compare distances between collections of embeddings. Kour et al.

evaluate a number of different corpus distance metrics and release a framework for

easily computing them. The mathematical details of the different metrics are not the

focus of this work so we merely provide a brief overview and direct the reader to the

aforementioned evaluation paper. Classifier distance is the accuracy of a linear classifier

trained to distinguish the corpora. Fréchet inception distance (FID) is originally from

the field of computer vision but has been extended to mean the 2D Wasserstein distance

between Gaussian distributions fit on the embedded corpora. Precision, recall, density

and coverage estimate a manifold using the nearest neighbours of each example and

then measure whether individual points lie inside it2.

Figure 5.5 shows the ordering of the datasets that all the metrics largely agree upon.

The distances from the training dataset are greatest for taxonomically generated data

followed by semi-synthetic and then data augmentation approaches. This reflects our

empirical observations in section 5.1 that the semi-synthetic data has greater utility. The

2sample level distances like this can be used for rejection sampling of synthetic data (Alaa et al.)

Chapter 5. Analysis 33

graph also highlights an unexpected discrepancy between the D2C docstring dataset

and the baseline. This means that the docstrings featured in that dataset are not exactly

identical to those in the baseline (see section 5.3.1 for discussion).

Figure 5.5: Plot of corpus distance metrics from the real training dataset showing most

metrics agree upon an ordering that predicts the efficacy of that dataset generation

strategy.

5.2.2.3 PCA Visualisation

To visualise the distribution of each synthetic dataset we perform principle component

analysis (PCA) on the vectors of the original training set. PCA solves for a hyperplane

that, when the data points are projected onto it, minimises a sum of squares reconstruc-

tion error. We learn this projection on the training set in the hopes that the dimensions

will represent the principal components of the true data distribution. We choose a two

dimensional projection for clear visualisation.

The results of this can be seen in fig. 5.6. This graph provides compelling evidence

for the relative performances of each synthetic dataset. The fully synthetic data appears

to occupy a tighter cluster than the semi-synthetic data does which itself occupies a

tighter cluster than the original training dataset. A tighter clustering could imply that

the dataset lacks diversity, translating to representations that neglect the full breadth

of the domain. Interestingly, the natural language cluster for the C2D synthetic data

appears relatively diffuse which provides an explanation for its superior performance on

the code search task. It also appears to be closer to the embeddings of code, reflecting

the tendency of gpt-3.5-turbo to over-articulate the exact behaviour of the function

(such as describing that the code uses a dictionary in fig. 3.1b). Extensive graphs from

this PCA process are included in Figure A.1.

Chapter 5. Analysis 34

Figure 5.6: Different synthetic datasets embedded with text-embedding-ada-002 and

transformed using a PCA projection fit on the real training dataset

5.3 Limitations

In this section we review some of the limitations of the experiments conducted in this

project.

5.3.1 D2C issues

Through our analysis, we uncover a couple of issues with our D2C generation process.

Namely, there are a large number of functions generated that feature only a single

“pass” token. This behaviour should be fairly easy to work around by detecting and

re-sampling these examples however we observe that it occurs disproportionately often

with complicated requests. This means that it may be triggered by the model having a

high uncertainty about how to generate the requested function and may occur less with

a more powerful LLM. Another issue is that we trust the LLM to perfectly copy the

docstring it is provided into the function body. However, we notice that it frequently

modifies the docstring to elaborate or correct spelling mistakes. This can also be

resolved with a simple filtering step or using a regular expression to modify the function

to include the original docstring.

Chapter 5. Analysis 35

These issues mean that our reported D2C results underestimate its potential. The

proposed fixes are relatively simple but rerunning the generation and experiments

is outside the temporal and financial scope of this project. That said, given all the

complications and challenges of getting LLMs to generate diverse code, we believe that

without a more powerful LLM it would be more effective to pursue C2D generation or

data augmentation approaches.

5.3.2 Dataset size

Given the cost of generating extremely large synthetic datasets, we only conduct

experiments with a small number of examples. In addition, we show that the benefit

of including synthetic data is limited to when there is some real data available but

significantly less than the amount of synthetic data available. We also expect synthetic

datasets generated by LLMs to have diminishing value (relative to real datasets) as they

include more and more examples but we leave this investigation to future, well-resourced

research. These factors restrict the direct relevance of this work to low-resourced coding

tasks.

5.3.3 Repeats

We do not perform a frequentist hypothesis testing analysis on our findings because

resource constraints make it impractical to perform many repeats of the same experiment.

Instead, we opt to explore a wider variety of strategies as well as perform ablation

experiments. We perform repeats assessing the performance of the baseline which allow

us to claim that the performance of each individual training run is significantly above

the baseline but we cannot make a claim about the procedure helping on average. Given

that almost every synthetically augmented run performs significantly better than the

baseline we believe it is fair to claim that it is a helpful procedure.

5.3.4 Proxy task

We conduct experiments exclusively on the CSN-Adv in the hopes that the findings

will translate to other domains. The most obvious domain to apply these techniques

to is naturalistic code search tasks such as CoSQA (Huang et al.). Compared to the

docstring-function pairs in CodeSearchNet, it is hard to collect real user code queries

which makes the techniques for adapting monolingual code data even more relevant.

Chapter 5. Analysis 36

The techniques presented in this project do not target code search specifically so we

would expect them to transfer to other code intelligence tasks. However this cannot be

said with confidence before they are tested empirically.

5.3.5 Python

Another limitation on the scope of this project is that we only work with Python

code. Python is one of the most popular programming languages in the world and

gpt-3.5-turbo is likely to have encountered a disproportionate amount of Python

code in its pretraining process. Zhou et al. suggest that the pretraining process is

where these models learn almost all of their knowledge; having a greater exposure

during pretraining is very likely to translate to better understanding and generation

capabilities. In addition, the CodeBERT model that is used for contrastive learning

has been explicitly pretrained on six languages, including over one million Python

functions.

From these two factors, it is clear that the procedures described in this project have

an advantage when using Python data. As such, it is not clear that the findings will

transfer to less popular languages that teacher and student models are less familiar

with. As seen in section 5.3.2, the value of this technique is greatest when bimodal

training data is limited – a situation heavily associated with less popular languages.

If the success of this process is dependent on the popularity of the language during

pretraining, this significantly reduces its applicability.

5.3.6 Hyperparameter tuning

In the interest of practicality, we largely neglect the tuning of hyperparameters. Training

is conducted with the baseline hyperparameters selected by the CodeXGLUE team for

the task. A consequence of this is that the results reported on the downstream task

may be specific to this set of hyperparameters. Alternatively, the benefits of including

synthetic data may not hold on fully tuned systems.

5.3.6.1 Early stopping with learning rate decay

Since their invention by Vaswani et al., it is standard practice to train transformers with

a decaying learning rate schedule and a linear warm up. The issue with this is that it

requires an estimate of the total length of the training – something that is unavailable

Chapter 5. Analysis 37

when unpredictable experiments are being done for the first time and terminated with

early stopping. As such we leave these parameters untouched for our experiments but it

is likely that it would be more optimal to reduce the warm up and decay period. This is

a special case of the hyperparameter issue described above that would be solved with

proper tuning.

5.3.7 ChatGPT vs. true generative models

Although gpt-3.5-turbo was originally trained with a language modelling objective,

it is then fine-tuned to follow instructions as well as to be aligned to human preferences

with RLHF. Both of these procedures manipulate its underlying model of language

to make it easier to use but in the process the model becomes less representative of

the full diversity of the distribution (i.e. it disproportionately produces high quality

outputs when the real world contains many low quality ones) (Bai et al.). For coding

tasks where the model needs to produce a piece of code that solves a problem, being

restricted to producing a single (high quality) style of code can be an advantage (as seen

in Gunasekar et al.). However, with a task such as representation learning for retrieving

real code examples, the examples generated by the model will tend to lie in a limited

region of the future data distribution. Sampling synthetic data from a purely generative

model might be a way to improve the diversity of the data.

5.3.8 LLM pretraining dataset

The LLMs trained by OpenAI are so large that training them requires vast amounts of

data. Gathering that scale of data must be done with automated processes that cannot

be fully supervised. Models like gpt-3.5-turbo and GPT-4 are trained on so much

data that it is fairly likely that they have seen the train and test set of CSN-Adv during

their pre-training process. If the training set was seen, the semi-synthetic generation

strategies could be unrealistically close to the true data. If the test set was seen, some of

the synthetic data that was generated could include features of the test set that would

give it an unfair advantage. Realistically, this is likely to be a minor effect but we

perform a basic check through all the generated datasets and find no exact3 copies of

any of the test set examples.

Finally, the pretraining dataset is likely to feature undesirable instances of bias and

harmful behaviour. While the RLHF tuning process aims to remove most of this, there

3we do not check for noisy copies that could still confound the results

Chapter 5. Analysis 38

is no guarantee that it can be totally eradicated. Training on the outputs of an LLM is

liable to reproduce any biases that it has developed which can propagate them further

into the world.

Chapter 6

Conclusions

Through this investigation we find that using LLMs to generate synthetic data for

training smaller models of code has significant potential. We propose and evaluate

several synthetic data generation strategies and find that our synthetic data augmentation

approaches produce data that can be more effective for learning representations than

real data.

These data generation strategies correspond to situations with varying availability

of existing data. In the case where unimodal data is available we demonstrate the

value of semi-synthetic data, especially generating docstrings from code. When only a

small bimodal dataset is available we demonstrate data augmentation approaches that

maximise its value. For situations where no source of data is available we demonstrate

how to use an LLM to generate a dataset entirely from scratch to create a system with

modest performance.

Finally, we show a variety of ways to analyse the data generated through these

processes which we hope can be used to further refine the prompts, hyperparameters

and LLMs that affect the quality of the synthetic data.

6.1 Future work

One of the most direct extensions to this work would be to experiment with few-shot

approaches. Including a few examples sampled from the real dataset might allow the

LLM to more accurately reflect the style and distribution of real data (as it does in the

data augmentation strategies).

A valuable direction for future work is exploring different ways to filter the generated

dataset for quality. This is usually an important part of a synthetic data generation

39

Chapter 6. Conclusions 40

process that can provide a training signal capable of improving a model beyond the

abilities of the data generating model (Schick and Schütze). For example, Zelikman

et al. filter synthetically generated reasoning chains-of-thought by whether they produce

a correct answer. The coding domain is especially suitable for these filtering procedures

because code can be run and there is a large literature on analysing abstract syntax trees

from the compiler field. Haluptzok et al. explore an idea like this where they recursively

train a program synthesis model to generate programming puzzles and solutions that

can be verified by running the code.

Another direction that we believe is promising is synthetically generating dataset

during the training process. Humans do not learn everything in a single extended

training process with no guidance – generally, teachers attempt to help students by

identifying weaknesses and flaws in the student’s understanding throughout the learning

process. Having powerful general purpose AI systems that are available to provide

feedback at any time is a significant advantage compared to supervision from humans.

This means that it may be feasible to design training examples for a student model that

are specialised for its current failings. This is connected to both active learning and

human-in-the-loop training systems and we believe that today’s LLMs make these ideas

possible.

Works Cited

Alaa, Ahmed M, et al. “How Faithful Is Your Synthetic Data? Sample-level Metrics for

Evaluating and Auditing Generative Models”.

Allamanis, Miltiadis, et al. “Self-Supervised Bug Detection and Repair”. Advances in

Neural Information Processing Systems. Curran Associates, 2021, pp. 27865–76,

proceedings.neurips.cc/paper/2021/hash/ea96efc03b9a050d895110db8c4af057-

Abstract.html. Accessed 14 Aug. 2023.

Bai, Yuntao, et al. “Training a Helpful and Harmless Assistant with Reinforcement

Learning from Human Feedback”, 12 Apr. 2022, arxiv.org/abs/2204.05862v1.

Accessed 15 Aug. 2023.

Bajaj, Payal, et al. “MS MARCO: A Human Generated MAchine Reading COmprehen-

sion Dataset”. arXiv, 31 Oct. 2018, arxiv.org/abs/1611.09268. Accessed 11 Aug.

2023.

Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer, 2006.

Information Science and Statistics.

Brown, Tom B., et al. “Language Models Are Few-Shot Learners”. arXiv, arxiv.org/abs/

2005.14165, 22 July 2020, https://doi.org/10.48550/arXiv.2005.14165.

Bui, Nghi D. Q., et al. “Self-Supervised Contrastive Learning for Code Retrieval and

Summarization via Semantic-Preserving Transformations”. Proceedings of the 44th

International ACM SIGIR Conference on Research and Development in Information

Retrieval. SIGIR ’21, Association for Computing Machinery, 11 July 2021, pp. 511–

21, https://doi.org/10.1145/3404835.3462840.

Cegin, Jan, et al. “ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Clas-

sification: Higher Diversity and Comparable Model Robustness”. arXiv, 22 May

2023, arxiv.org/abs/2305.12947. Accessed 22 Aug. 2023.

Chen, Mark, et al. “Evaluating Large Language Models Trained on Code”. arXiv,

arxiv.org/abs/2107.03374, 14 July 2021, https://doi.org/10.48550/arXiv.2107.03374.

41

http://proceedings.neurips.cc/paper/2021/hash/ea96efc03b9a050d895110db8c4af057-Abstract.html
http://proceedings.neurips.cc/paper/2021/hash/ea96efc03b9a050d895110db8c4af057-Abstract.html
http://arxiv.org/abs/2204.05862v1
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1145/3404835.3462840
http://arxiv.org/abs/2305.12947
http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2107.03374

WORKS CITED 42

Chen, Tianqi, et al. “Training Deep Nets with Sublinear Memory Cost”. arXiv, 22 Apr.

2016, arxiv.org/abs/1604.06174. Accessed 14 Aug. 2023.

Chen, Ting, et al. “A Simple Framework for Contrastive Learning of Visual Represen-

tations”. Proceedings of the 37th International Conference on Machine Learning.

Proc. of International Conference on Machine Learning, PMLR, 21 Nov. 2020,

pp. 1597–607, proceedings.mlr.press/v119/chen20j.html. Accessed 13 Aug. 2023.

Craswell, Nick, et al. “OVERVIEW OF THE TREC 2019 DEEP LEARNING TRACK”.

Craswell, Nick, et al. “OVERVIEW OF THE TREC 2022 DEEP LEARNING TRACK”.

Devlin, Jacob, et al. “BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding”. arXiv, arxiv . org / abs / 1810 . 04805, 24 May 2019,

https://doi.org/10.48550/arXiv.1810.04805.

Ding, Yangruibo, et al. “Contrastive Learning for Source Code with Structural and

Functional Properties”. 6 Oct. 2021. openreview.net / forum?id=7KgeqhkbZab.

Accessed 14 Aug. 2023.

Eldan, Ronen, and Yuanzhi Li. “TinyStories: How Small Can Language Models Be

and Still Speak Coherent English?” arXiv, 24 May 2023, arxiv.org/abs/2305.07759.

Accessed 28 May 2023.

Feng, Zhangyin, et al. “CodeBERT: A Pre-Trained Model for Programming and Natural

Languages”. arXiv, 18 Sept. 2020, arxiv.org/abs/2002.08155. Accessed 22 Mar.

2023.

Gao, Luyu, et al. “PAL: Program-aided Language Models”. arXiv, arxiv.org/abs/2211.

10435, 27 Jan. 2023, https://doi.org/10.48550/arXiv.2211.10435.

Goodfellow, Ian, et al. “Generative Adversarial Nets”. Advances in Neural Information

Processing Systems. Curran Associates, 2014, proceedings.neurips.cc/paper files/

paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html. Accessed

14 Aug. 2023.

Gunasekar, Suriya, et al. “Textbooks Are All You Need”. arXiv, 20 June 2023, arxiv.

org/abs/2306.11644. Accessed 26 June 2023.

Guo, Daya, et al. “GraphCodeBERT: Pre-training Code Representations with Data

Flow”. arXiv, arxiv.org/abs/2009.08366, 13 Sept. 2021, https://doi.org/10.48550/

arXiv.2009.08366.

Guo, Daya, et al. “UniXcoder: Unified Cross-Modal Pre-training for Code Representa-

tion”. Proceedings of the 60th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Proc. of ACL 2022, Association for Computa-

http://arxiv.org/abs/1604.06174
http://proceedings.mlr.press/v119/chen20j.html
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.1810.04805
http://openreview.net/forum?id=7KgeqhkbZab
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
https://doi.org/10.48550/arXiv.2211.10435
http://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
http://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
http://arxiv.org/abs/2306.11644
http://arxiv.org/abs/2306.11644
http://arxiv.org/abs/2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366

WORKS CITED 43

tional Linguistics, May 2022, pp. 7212–25, https://doi.org/10.18653/v1/2022.acl-

long.499.

Haluptzok, Patrick, et al. “Language Models Can Teach Themselves to Program Better”.

arXiv, arxiv.org/abs/2207.14502, 12 Apr. 2023, https://doi.org/10.48550/arXiv.2207.

14502.

Huang, Junjie, et al. “CoSQA: 20,000+ Web Queries for Code Search and Question

Answering”. Proceedings of the 59th Annual Meeting of the Association for Com-

putational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers). Proc. of ACL-IJCNLP 2021, Asso-

ciation for Computational Linguistics, Aug. 2021, pp. 5690–700, https://doi.org/10.

18653/v1/2021.acl-long.442.

Husain, Hamel, et al. “CodeSearchNet Challenge: Evaluating the State of Semantic

Code Search”. arXiv, arxiv.org/abs/1909.09436, 8 June 2020, https://doi.org/10.

48550/arXiv.1909.09436.

Jain, Paras, et al. “Contrastive Code Representation Learning”. Proceedings of the

2021 Conference on Empirical Methods in Natural Language Processing. Proc. of

EMNLP 2021, Association for Computational Linguistics, Nov. 2021, pp. 5954–71,

https://doi.org/10.18653/v1/2021.emnlp-main.482.

Jordon, James, et al. “Synthetic Data – What, Why and How?” arXiv, arxiv.org/abs/

2205.03257, 6 May 2022, https://doi.org/10.48550/arXiv.2205.03257.

Karpukhin, Vladimir, et al. “Dense Passage Retrieval for Open-Domain Question

Answering”. arXiv, arxiv.org/abs/2004.04906, 30 Sept. 2020, https://doi.org/10.

48550/arXiv.2004.04906.

Kour, George, et al. “Measuring the Measuring Tools: An Automatic Evaluation of

Semantic Metrics for Text Corpora”. Proceedings of the 2nd Workshop on Natural

Language Generation, Evaluation, and Metrics (GEM). Proc. of GEM 2022, Asso-

ciation for Computational Linguistics, Dec. 2022, pp. 405–16, https://doi.org/10.

18653/v1/2022.gem-1.35.

Lecun, Y., et al. “Gradient-Based Learning Applied to Document Recognition”. Pro-

ceedings of the IEEE, vol. 86, no. 11, Nov. 1998, pp. 2278–324. https://doi.org/10.

1109/5.726791.

Lewis, Patrick, et al. “Retrieval-Augmented Generation for Knowledge-Intensive NLP

Tasks”. Advances in Neural Information Processing Systems. Curran Associates,

2020, pp. 9459–74, proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-

Abstract.html. Accessed 12 Aug. 2023.

https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
http://arxiv.org/abs/2207.14502
https://doi.org/10.48550/arXiv.2207.14502
https://doi.org/10.48550/arXiv.2207.14502
https://doi.org/10.18653/v1/2021.acl-long.442
https://doi.org/10.18653/v1/2021.acl-long.442
http://arxiv.org/abs/1909.09436
https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.18653/v1/2021.emnlp-main.482
http://arxiv.org/abs/2205.03257
http://arxiv.org/abs/2205.03257
https://doi.org/10.48550/arXiv.2205.03257
http://arxiv.org/abs/2004.04906
https://doi.org/10.48550/arXiv.2004.04906
https://doi.org/10.48550/arXiv.2004.04906
https://doi.org/10.18653/v1/2022.gem-1.35
https://doi.org/10.18653/v1/2022.gem-1.35
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
http://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html

WORKS CITED 44

Li, Bohan, et al. “On the Sentence Embeddings from Pre-trained Language Models”.

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP). Proc. of EMNLP 2020, Association for Computational Linguis-

tics, Nov. 2020, pp. 9119–30, https://doi.org/10.18653/v1/2020.emnlp-main.733.

Li, Xiaonan, et al. “CodeRetriever: A Large Scale Contrastive Pre-Training Method for

Code Search”. Proceedings of the 2022 Conference on Empirical Methods in Natu-

ral Language Processing. Proc. of EMNLP 2022, Association for Computational

Linguistics, Dec. 2022, pp. 2898–910, aclanthology.org/2022.emnlp-main.187.

Accessed 23 June 2023.

Liu, Yinhan, et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”.

arXiv, 26 July 2019, arxiv.org/abs/1907.11692. Accessed 6 May 2023.

Lu, Shuai, et al. “CodeXGLUE: A Machine Learning Benchmark Dataset for Code

Understanding and Generation”. arXiv, arxiv.org/abs/2102.04664, 16 Mar. 2021,

https://doi.org/10.48550/arXiv.2102.04664.

Lu, Shuai, et al. “ReACC: A Retrieval-Augmented Code Completion Framework”.

Proceedings of the 60th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Proc. of ACL 2022, Association for Computa-

tional Linguistics, May 2022, pp. 6227–40, https://doi.org/10.18653/v1/2022.acl-

long.431.

Luo, Ziyang, et al. “WizardCoder: Empowering Code Large Language Models with

Evol-Instruct”. arXiv, 14 June 2023, arxiv.org/abs/2306.08568. Accessed 14 July

2023.

Madaan, Aman, et al. “Language Models of Code Are Few-Shot Commonsense Learn-

ers”. Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-

guage Processing. Proc. of EMNLP 2022, Association for Computational Linguis-

tics, Dec. 2022, pp. 1384–403, https://doi.org/10.18653/v1/2022.emnlp-main.90.

Magister, Lucie Charlotte, et al. “Teaching Small Language Models to Reason”. arXiv,

19 Dec. 2022, arxiv.org/abs/2212.08410. Accessed 16 Apr. 2023.

Mikolov, Tomas, et al. “Efficient Estimation of Word Representations in Vector Space”.

arXiv, arxiv.org/abs/1301.3781, 6 Sept. 2013, https://doi.org/10.48550/arXiv.1301.

3781.

Mukherjee, Subhabrata, et al. “Orca: Progressive Learning from Complex Explanation

Traces of GPT-4”. arXiv, arxiv.org/abs/2306.02707, 5 June 2023, https://doi.org/10.

48550/arXiv.2306.02707.

https://doi.org/10.18653/v1/2020.emnlp-main.733
http://aclanthology.org/2022.emnlp-main.187
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2102.04664
https://doi.org/10.48550/arXiv.2102.04664
https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2022.acl-long.431
http://arxiv.org/abs/2306.08568
https://doi.org/10.18653/v1/2022.emnlp-main.90
http://arxiv.org/abs/2212.08410
http://arxiv.org/abs/1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
http://arxiv.org/abs/2306.02707
https://doi.org/10.48550/arXiv.2306.02707
https://doi.org/10.48550/arXiv.2306.02707

WORKS CITED 45

Neelakantan, Arvind, et al. “Text and Code Embeddings by Contrastive Pre-Training”.

arXiv, 24 Jan. 2022, arxiv.org/abs/2201.10005. Accessed 13 Apr. 2023.

Nikolenko, Sergey I. Synthetic Data for Deep Learning. Vol. 174, Springer Interna-

tional Publishing, 2021, https://doi.org/10.1007/978-3-030-75178-4. Springer

Optimization and Its Applications.

OpenAI. “GPT-4 Technical Report”. arXiv, arxiv.org/abs/2303.08774, 27 Mar. 2023,

https://doi.org/10.48550/arXiv.2303.08774.

Park, Shinwoo, et al. “Contrastive Learning with Keyword-based Data Augmentation for

Code Search and Code Question Answering”. Proceedings of the 17th Conference

of the European Chapter of the Association for Computational Linguistics. Proc. of

EACL 2023, Association for Computational Linguistics, May 2023, pp. 3609–19,

aclanthology.org/2023.eacl-main.262. Accessed 10 June 2023.

Raffel, Colin, et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-

Text Transformer”. arXiv, arxiv.org/abs/1910.10683, 28 July 2020, https://doi.org/10.

48550/arXiv.1910.10683.

Schick, Timo, and Hinrich Schütze. “Generating Datasets with Pretrained Language

Models”. Proceedings of the 2021 Conference on Empirical Methods in Natu-

ral Language Processing. Proc. of EMNLP 2021, Association for Computational

Linguistics, Nov. 2021, pp. 6943–51, https://doi.org/10.18653/v1/2021.emnlp-

main.555.

Sennrich, Rico, et al. “Improving Neural Machine Translation Models with Monolingual

Data”. Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Proc. of ACL 2016, Association for Computa-

tional Linguistics, Aug. 2016, pp. 86–96, https://doi.org/10.18653/v1/P16-1009.

Shridhar, Kumar, et al. “Distilling Multi-Step Reasoning Capabilities of Large Language

Models into Smaller Models via Semantic Decompositions”. arXiv, 30 Nov. 2022,

arxiv.org/abs/2212.00193. Accessed 17 Apr. 2023.

Shumailov, Ilia, et al. “The Curse of Recursion: Training on Generated Data Makes

Models Forget”. arXiv, arxiv.org/abs/2305.17493, 31 May 2023, https://doi.org/10.

48550/arXiv.2305.17493.

Stanford Alpaca: An Instruction-following LLaMA Model. 10 Mar. 2023, 12 Apr. 2023,

github.com/tatsu-lab/stanford alpaca. Accessed 12 Apr. 2023.

Sun, Simeng, et al. “Do Long-Range Language Models Actually Use Long-Range

Context?” Proceedings of the 2021 Conference on Empirical Methods in Natural

http://arxiv.org/abs/2201.10005
https://doi.org/10.1007/978-3-030-75178-4
http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://aclanthology.org/2023.eacl-main.262
http://arxiv.org/abs/1910.10683
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/P16-1009
http://arxiv.org/abs/2212.00193
http://arxiv.org/abs/2305.17493
https://doi.org/10.48550/arXiv.2305.17493
https://doi.org/10.48550/arXiv.2305.17493
http://github.com/tatsu-lab/stanford_alpaca

WORKS CITED 46

Language Processing. Proc. of EMNLP 2021, Association for Computational Lin-

guistics, Nov. 2021, pp. 807–22, https://doi.org/10.18653/v1/2021.emnlp-main.62.

Vaswani, Ashish, et al. “Attention Is All You Need”. 12 June 2017. https://doi.org/10.

48550/arXiv.1706.03762.

Villalobos, Pablo, et al. “Will We Run out of Data? An Analysis of the Limits of Scaling

Datasets in Machine Learning”. arXiv, 25 Oct. 2022, arxiv.org/abs/2211.04325.

Accessed 13 Aug. 2023.

Wang, Yue, et al. “CodeT5+: Open Code Large Language Models for Code Understand-

ing and Generation”. arXiv, 13 May 2023, arxiv.org/abs/2305.07922. Accessed

18 May 2023.

Xiong, Lee, et al. “Approximate Nearest Neighbor Negative Contrastive Learning for

Dense Text Retrieval”. arXiv, 20 Oct. 2020, arxiv.org/abs/2007.00808. Accessed

13 July 2023.

Xu, Can, et al. “WizardLM: Empowering Large Language Models to Follow Complex

Instructions”. arXiv, arxiv.org/abs/2304.12244, 10 June 2023, https://doi.org/10.

48550/arXiv.2304.12244.

Zelikman, Eric, et al. “STaR: Bootstrapping Reasoning With Reasoning”. arXiv, 20 May

2022, arxiv.org/abs/2203.14465. Accessed 16 Apr. 2023.

Zhou, Chunting, et al. “LIMA: Less Is More for Alignment”. arXiv, arxiv.org/abs/2305.

11206, 18 May 2023, https://doi.org/10.48550/arXiv.2305.11206.

https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/2211.04325
http://arxiv.org/abs/2305.07922
http://arxiv.org/abs/2007.00808
http://arxiv.org/abs/2304.12244
https://doi.org/10.48550/arXiv.2304.12244
https://doi.org/10.48550/arXiv.2304.12244
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2305.11206
https://doi.org/10.48550/arXiv.2305.11206

Appendix A

Figures

A.1 PCA

47

Appendix A. Figures 48

Figure A.1: PCA projections of augmentations as well as datasets in code/docstring

exclusive principal components

Appendix B

Examples

B.1 Model disagreement examples

======== 182

def Func(arg_0: arg_1, arg_2: arg_1, **arg_3) -> Callable[[arg_6[arg_1], arg_8, arg_8], pd.DataFrame]:

"""Build a function that handles downloading tabular data and parsing it into a pandas DataFrame.

:param data_url: The URL of the data

:param data_path: The path where the data should get stored

:param kwargs: Any other arguments to pass to :func:‘pandas.read_csv‘

"""

arg_4 = make_downloader(arg_0, arg_2)

def get_df(arg_5: arg_6[arg_1] = None, arg_7: arg_8 = True, arg_9: arg_8 = False) -> pd.DataFrame:

"""Get the data as a pandas DataFrame.

:param url: The URL (or file path) to download.

:param cache: If true, the data is downloaded to the file system, else it is loaded from the internet

:param force_download: If true, overwrites a previously cached file

"""

if arg_5 is None and arg_7:

arg_5 = arg_4(arg_9=arg_9)

return pd.read_csv(

arg_5 or arg_0,

**arg_3

)

return get_df

49

Appendix B. Examples 50

======== 260

def Func(arg_0):

"""Represent this dependency as a dict. For json compatibility."""

return dict(

dependencies=list(arg_0),

all=arg_0.all,

success=arg_0.success,

failure=arg_0.failure

)

======== 8785

def Func(arg_0, arg_1=False, arg_2=True,

arg_3=False, arg_4=None, arg_5=1, arg_6=’./’,

arg_7=arg_8,

arg_9=2**19, arg_10=’times’, arg_11=True):

"""Simulate Brownian motion trajectories and emission rates.

This method performs the Brownian motion simulation using the current

set of parameters. Before running this method you can check the

disk-space requirements using :method:‘print_sizes‘.

Results are stored to disk in HDF5 format and are accessible in

in ‘self.emission‘, ‘self.emission_tot‘ and ‘self.position‘ as

pytables arrays.

Arguments:

save_pos (bool): if True, save the particles 3D trajectories

total_emission (bool): if True, store only the total emission array

containing the sum of emission of all the particles.

rs (RandomState object): random state object used as random number

generator. If None, use a random state initialized from seed.

seed (uint): when ‘rs‘ is None, ‘seed‘ is used to initialize the

random state, otherwise is ignored.

wrap_func (function): the function used to apply the boundary

condition (use :func:‘wrap_periodic‘ or :func:‘wrap_mirror‘).

path (string): a folder where simulation data is saved.

verbose (bool): if False, prints no output.

"""

if arg_4 is None:

arg_4 = np.random.RandomState(arg_5=arg_5)

arg_0.open_store_traj(arg_9=arg_9, arg_10=arg_10,

arg_3=arg_3, arg_6=arg_6)

Save current random state for reproducibility

Appendix B. Examples 51

arg_0.traj_group._v_attrs[’init_random_state’] = arg_4.get_state()

arg_14 = arg_0.emission_tot if arg_2 else arg_0.emission

print(’- Start trajectories simulation - %s’ % ctime(), flush=True)

if arg_11:

print(’[PID %d] Diffusion time:’ % os.getpid(), end=’’)

arg_15 = 0

arg_16 = arg_0.emission.chunkshape[1]

arg_17 = arg_16 * arg_0.t_step

arg_18 = arg_0.particles.positions

arg_19 = 0

for arg_20 in iter_chunksize(arg_0.n_samples, arg_16):

if arg_11:

arg_21 = int(arg_17 * (arg_15 + 1))

if arg_21 > arg_19:

print(’ %ds’ % arg_21, end=’’, flush=True)

arg_19 = arg_21

arg_22, arg_23 = arg_0._sim_trajectories(arg_20, arg_18, arg_4,

arg_2=arg_2,

arg_1=arg_1, arg_3=arg_3,

arg_7=arg_7)

Append em to the permanent storage

if total_emission, data is just a linear array

otherwise is a 2-D array (self.num_particles, c_size)

arg_14.append(arg_23)

if arg_1:

arg_0.position.append(np.vstack(arg_22).astype(’float32’))

arg_15 += 1

arg_0.store.h5file.flush()

Save current random state

arg_0.traj_group._v_attrs[’last_random_state’] = arg_4.get_state()

arg_0.store.h5file.flush()

print(’\n- End trajectories simulation - %s’ % ctime(), flush=True)

======== 3300

def Func(arg_0):

"""Properly format arXiv IDs."""

if arg_0 and "/" not in arg_0 and "arXiv" not in arg_0:

Appendix B. Examples 52

return "arXiv:%s" % (arg_0,)

elif arg_0 and ’.’ not in arg_0 and arg_0.lower().startswith(’arxiv:’):

return arg_0[6:] # strip away arxiv: for old identifiers

else:

return arg_0

======== 8100

def Func(arg_0, arg_1):

"""

Retrieve various metadata associated with a URL, as seen by Skype.

Args:

url (str): address to ping for info

Returns:

dict: metadata for the website queried

"""

return arg_0.conn("GET", SkypeConnection.API_URL, params={"url": arg_1},

auth=SkypeConnection.Auth.Authorize).json()

B.2 Universally easy examples

def Func(arg_0, arg_1=True, arg_2=False):

"""

Remove all bounding boxes that are fully or partially outside of the image.

Parameters

fully : bool, optional

Whether to remove bounding boxes that are fully outside of the image.

partly : bool, optional

Whether to remove bounding boxes that are partially outside of the image.

Returns

imgaug.BoundingBoxesOnImage

Reduced set of bounding boxes, with those that were fully/partially outside of

the image removed.

"""

arg_3 = [bb for bb in arg_0.bounding_boxes

Appendix B. Examples 53

if not bb.is_out_of_image(arg_0.shape, arg_1=arg_1, arg_2=arg_2)]

return BoundingBoxesOnImage(arg_3, shape=arg_0.shape)

========

def Func(arg_0):

’’’

Func - Copy this model, and return that copy.

The copied model will have all the same data, but will have a fresh instance of the FIELDS array and all members,

and the INDEXED_FIELDS array.

This is useful for converting, like changing field types or whatever, where you can load from one model and save into the other.

@return <IndexedRedisModel> - A copy class of this model class with a unique name.

’’’

arg_1 = _modelCopyMap[arg_0]

_modelCopyMap[arg_0] += 1

arg_2 = type(arg_0.__name__ + ’_Copy’ + str(arg_1), arg_0.__bases__, copy.deepcopy(dict(arg_0.__dict__)))

arg_2.FIELDS = [field.copy() for field in arg_0.FIELDS]

arg_2.INDEXED_FIELDS = [str(idxField) for idxField in arg_0.INDEXED_FIELDS] # Make sure they didn’t do INDEXED_FIELDS = FIELDS or something wacky,

so do a comprehension of str on these to make sure we only get names

arg_2.validateModel()

return arg_2

========

def Func(arg_0):

"""

Uses the ‘‘msgconvert‘‘ Perl utility to convert an Outlook MS file to

standard RFC 822 format

Args:

msg_bytes (bytes): the content of the .msg file

Returns:

A RFC 822 string

"""

if not is_outlook_msg(arg_0):

raise ValueError("The supplied bytes are not an Outlook MSG file")

arg_1 = os.getcwd()

Appendix B. Examples 54

arg_2 = tempfile.mkdtemp()

os.chdir(arg_2)

with open("sample.msg", "wb") as msg_file:

msg_file.write(arg_0)

try:

subprocess.check_call(["msgconvert", "sample.msg"],

stdout=null_file, stderr=null_file)

arg_3 = "sample.eml"

with open(arg_3, "rb") as eml_file:

arg_4 = eml_file.read()

except FileNotFoundError:

raise EmailParserError(

"Failed to convert Outlook MSG: msgconvert utility not found")

finally:

os.chdir(arg_1)

shutil.rmtree(arg_2)

return arg_4

========

def Func(arg_0, arg_1, arg_2, arg_3, arg_4, arg_5, arg_6):

"""

Convert reduce_sum layer.

Args:

params: dictionary with layer parameters

w_name: name prefix in state_dict

scope_name: pytorch scope name

inputs: pytorch node inputs

layers: dictionary with keras tensors

weights: pytorch state_dict

names: use short names for keras layers

"""

print(’Converting reduce_sum ...’)

arg_7 = arg_0[’keepdims’] > 0

arg_8 = arg_0[’axes’]

def target_layer(arg_9, arg_7=arg_7, arg_8=arg_8):

import keras.backend as K

return K.sum(arg_9, arg_7=arg_7, arg_8=arg_8)

arg_10 = keras.layers.Lambda(target_layer)

Appendix B. Examples 55

arg_4[arg_2] = arg_10(arg_4[arg_3[0]])

========

def Func(arg_0):

"""Generator for the LIST OVERVIEW.FMT

See list_overview_fmt() for more information.

Yields:

An element in the list returned by list_overview_fmt().

"""

arg_1, arg_2 = arg_0.command("LIST OVERVIEW.FMT")

if arg_1 != 215:

raise NNTPReplyError(arg_1, arg_2)

for arg_3 in arg_0.info_gen(arg_1, arg_2):

try:

arg_4, arg_5 = arg_3.rstrip().split(":")

except ValueError:

raise NNTPDataError("Invalid LIST OVERVIEW.FMT")

if arg_5 and not arg_4:

arg_4, arg_5 = arg_5, arg_4

if arg_5 and arg_5 != "full":

raise NNTPDataError("Invalid LIST OVERVIEW.FMT")

yield (arg_4, arg_5 == "full")

B.3 Universally difficult examples

========

def Func(arg_0, arg_1, arg_2, arg_3=35, arg_4=35, arg_5=0, arg_6=0):

"""

Rectangle Funces for all the colors in the list.

"""

for arg_7 in arg_0:

arg_7.Func(arg_1, arg_2, arg_3, arg_4, arg_6)

arg_2 += arg_4 + arg_5

========

def Func(arg_0):

"""return the connection Func for this object’s sockets."""

return (arg_0.identity, arg_0.url, arg_0.pub_url, arg_0.location)

========

def Func(arg_0, arg_1, arg_2):

Appendix B. Examples 56

"""

Interpolate passage times for shape points.

Parameters

shape_distances: list

list of cumulative distances along the shape

shape_breaks: list

list of shape_breaks

stop_times: list

list of stop_times

Returns

shape_times: list of ints (seconds) / numpy array

interpolated shape passage times

The values of stop times before the first shape-break are given the first

stopping time, and the any shape points after the last break point are

given the value of the last shape point.

"""

arg_3 = np.zeros(len(arg_0))

arg_3[:arg_1[0]] = arg_2[0]

for arg_4 in range(len(arg_1)-1):

arg_5 = arg_1[arg_4]

arg_6 = arg_2[arg_4]

arg_7 = arg_1[arg_4+1]

arg_8 = arg_2[arg_4+1]

if arg_5 == arg_7:

arg_3[arg_5] = arg_2[arg_4]

else:

arg_9 = arg_0[arg_5:arg_7+1]

arg_10 = ((np.array(arg_9)-float(arg_9[0])) /

float(arg_9[-1] - arg_9[0]))

arg_11 = (1.-arg_10)*arg_6+arg_10*arg_8

arg_3[arg_5:arg_7] = arg_11[:-1]

deal final ones separately:

arg_3[arg_1[-1]:] = arg_2[-1]

return list(arg_3)

========

def Func(arg_0, arg_1, arg_2):

"""Extracts the selected time frame as a new object.

Appendix B. Examples 57

:param int start: Start time.

:param int end: End time.

:returns: class:‘pympi.Elan.Eaf‘ object containing the Funced frame.

"""

from copy import deepcopy

arg_3 = deepcopy(arg_0)

for arg_4 in arg_3.get_tier_names():

for arg_5, arg_6, arg_7 in arg_3.get_annotation_data_for_tier(arg_4):

if arg_5 > arg_2 or arg_6 < arg_1:

arg_3.remove_annotation(arg_4, (arg_1-arg_2)//2, False)

arg_3.clean_time_slots()

return arg_3

========

def Func(arg_0, arg_1, arg_2=-1):

"""Pack rdd with a specific collection constructor."""

arg_3 = 0

arg_4 = []

for arg_5 in arg_0:

if (arg_2 > 0) and (arg_3 >= arg_2):

yield _pack_accumulated(arg_4, arg_1)

arg_4 = []

arg_3 = 0

arg_4.append(arg_5)

arg_3 += 1

if arg_3 > 0:

yield _pack_accumulated(arg_4, arg_1)

Appendix C

Taxonomy Sample

58

Appendix C. Taxonomy Sample 59

Coding

Variables

Data types

Integer

String

Boolean

Floating-point

Array

Character

Double

Long

Byte

Short

Object

Enum

Null

Struct

Pointer

Void

Variable declaration

Name assignment

Data type specification

Scope definition

Memory allocation

Initialization

Visibility

Lifetime

Constant declaration

Declaration order

Variable naming conventions

Type inference

Declaration modifiers

Multiple declarations

Forward declaration

External declaration

Declaration visibility modifiers

Variable scope

Global Scope

Local Scope

Function Scope

Block Scope

Nested Scope

Lexical Scope

Enclosing Scope

Shadowing

Scope Chain

Global Variable

Local Variable

Parameter Scope

Module Scope

Closure Scope

Dynamic Scope

Block-Level Function Scope

Variable naming conventions

Camel case

Pascal case

Snake case

Hungarian notation

Avoiding reserved keywords

Using meaningful names

Avoiding ambiguous names

Avoiding excessive abbreviation

Avoiding numbers at the beginning of names

Using plural for collections

Using singular for single items

Avoiding excessive length

Consistency within a project

Following language-specific conventions

Avoiding unnecessary abbreviations

Avoiding reserved characters

Control Flow

If-else statements

Conditional statement

Boolean expression

If statement

Else statement

Else if statement

Nesting

Short-circuit evaluation

Ternary operator

Multiple if statements

Default case

Equality operator

Logical operators

Comparison operators

Negation operator

Scope

Flow control

Loops

Iteration

Control flow

Conditional statements

Loop variable

Infinite loops

For loop

While loop

Do-while loop

Loop control statements

Nested loops

Loop initialization

Loop increment/decrement

Loop termination condition

Loop efficiency

Loop indexing

Loop patterns

Switch statements

Case

Default

Break

Fall-through

Expression

Nested switch

Multiple cases

Value comparison

Enumerations

Strings

Flow control

Efficiency

Error handling

Constant expressions

Limited data types

Code organization

Nested control flow

Nested if-else statements

Nested for loops

Nested while loops

Nested do-while loops

Nested switch-case statements

Nested try-catch blocks

Nested if-else if-else statements

Nested for-each loops

Nested repeat-until loops

Nested break statements

Nested continue statements

Nested control flow within functions

Nested control flow within classes or objects

Nested control flow within recursion

Nested control flow with parallel processing

Nested control flow in event-driven programming

Functions

Abstraction

Encapsulation

Modularity

Polymorphism

Inheritance

Interface

Abstract Class

Generic Programming

Dependency Injection

Data Abstraction

Procedural Abstraction

Opaque Data Types

Data Hiding

Parametric Polymorphism

Design Patterns

Abstraction Layers

Delegation

Modularity

Abstraction

Encapsulation

Separation of Concerns

Loose Coupling

High Cohesion

Reusability

Scalability

Testability

Maintainability

Extensibility

Readability

Collaboration

Version Control

Debugging

Portability

Documentation

Parameters

Default parameters

Named parameters

Positional parameters

Variable-length parameters

Keyword parameters

Multiple parameters

Type annotations

Parameter passing by value

Parameter passing by reference

Named parameter unpacking

Tuple unpacking

Parameter validation

Parameter scoping

Parameter overloading

Parameter order

Parameter passing between functions

Recursion

Base case

Recursive case

Divide and conquer

Tree recursion

Mutual recursion

Tail recursion

Indirect recursion

Backtracking

Memoization

Fractal generation

Permutations and combinations

Tower of Hanoi

Fibonacci sequence

Depth-first search

Quick sort

Maze solving

Figure C.1: Sample of taxonomy generated by recursive LLM calls

	Introduction
	Motivation
	Wider impact
	Goals
	Overview

	Background
	Large language models
	Language models for code intelligence
	Synthetic data generation
	Reasoning distillation

	Contrastive learning
	Similar concurrent work

	Methodology
	Semantic code search
	Coding domain challenges

	CodeSearchNet
	CodeXGLUE/CodeSearchNet-AdvTest

	Evaluation metric
	Baseline
	Incorporating synthetic data
	Novel examples
	Data augmentation (hard positives)
	Hard negatives
	Paired training

	Synthetic data generation
	Prompting
	Semi-synthetic data
	Generative AI augmented data
	Fully-synthetic data

	Implementation challenges
	GPU memory
	Cross-GPU contrasting
	Gradient checkpointing

	Synthetic data
	Price
	Time
	Retrying
	Parsing
	Semi-synthetic overlap

	Analysis
	Extrinsic evaluation: utility
	Novel examples
	Data augmentation

	Intrinsic evaluation: Fidelity
	Token statistics
	Embedding space analysis

	Limitations
	D2C issues
	Dataset size
	Repeats
	Proxy task
	Python
	Hyperparameter tuning
	ChatGPT vs. true generative models
	LLM pretraining dataset

	Conclusions
	Future work

	Figures
	PCA

	Examples
	Model disagreement examples
	Universally easy examples
	Universally difficult examples

	Taxonomy Sample

