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Abstract

Models are becoming more and more complex and less interpretable. They essen-

tially are black boxes to us. Explainable AI aims to make the models more interpretable,

thus increasing trust and making the models more transparent. Auction Gym [6] is

an online auction simulation environment that maximises the bidding agent’s utility.

The doubly robust bidding estimator estimates the bid value to place based on the

context. Various auction settings can be simulated in the auction gym. Auctions vary in

competitiveness, ranging from low participant numbers to high participant numbers in a

given round. There can be a varying number of features known to the bidding agent.

The more the number of features, the more complex the decision-making becomes for

the auction gym for placing an optimal bid value for the agent.

The aim is to make this complex bidding estimator more transparent using the ex-

plainable techniques in the literature. Techniques like Tree Surrogate Models (Decision

Trees and Random Forest) with SHAP and LIME on the doubly robust estimator explain

the complex auction gym bidding agent estimator for various auction settings.

It was observed that tree-based models, which are less complex and easy to interpret

by humans, were able to mimic the complex doubly robust estimator quite well for

settings of less competition and less number of contextual features. This could be

observed as they got a high R2 score for these settings. As the number of features

increased, the bidding pattern of the complex model became harder to mimic, which

could be reflected in their lower R2 scores.

Tree SHAP and LIME outcomes revealed that all the explainable methods showed

similarities in both 4-feature and 12-feature scenarios. They effectively identified feature

importance based on the magnitude of the linear ground truth weight vector, with only

slight variances in ranking features of close importance across methods. Interestingly,

if the weight sign of a feature changed, the explanation’s direction remained unchanged.

This suggests that the auction gym model is more intricate than a linear model.

It was also observed that the computation of feature importances for surrogate

tree-based models was much faster than the computation of the feature importances

by LIME on the auction gym model. Also, Fast Tree SHAP [19] applied on Random

Forest significantly improved the computation time of SHAP values compared to the

regular Tree SHAP.
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Chapter 1

Introduction

1.1 Motivation of the Project

Models are becoming more and more complex and harder to understand. They are

essentially black boxes to humans. They are not transparent and are difficult to trust. The

problem becomes more common in domains like medicine, where trust and transparency

are of utmost importance, as it can become a matter of life and death for a patient.

Explainable AI (XAI) aims to make the model more transparent and trustworthy by

explaining the reasoning behind the model’s output.

Most of the advertisements are held through an online auction mechanism. It is the

major source of income for companies like Google and Facebook. Also, the companies

who want to advertise must strategise techniques to win the right to advertise. It can

be essential to win an auction as it can increase their revenue. The problem is that

auction data is not readily available and is expensive to obtain. Olivier Jeunen et al. [6]

introduced an Auction gym Reinforcement Learning environment designed to generate

auction data through a simulation environment. They also introduced a novel Doubly

Robust estimator for bidding to maximise revenue for individual bidders. In an auction,

the bidder has the contextual features to work with. Based on this information, it decides

which advertisement it wants to display from its inventory of advertisements. After

that, the bidder has to decide the bid amount it wants to place based on the context

information and the advertisement it decided to show. The Doubly Robust bidding

estimator estimates the optimal bid. Thus, given contextual information, this tool helps

create a strategy and estimate the optimal bid amount to win an auction. However,

as a complex estimator, its decision-making process is essentially a black box to us.

Therefore, we aim to make this auction gym model more transparent by using the XAI

1



Chapter 1. Introduction 2

techniques in the literature.

1.2 Aims and Objectives

The primary aim of this thesis is to explain the Doubly Robust bidding estimator in

the Auction Gym environment. To achieve this, we employ techniques like surrogate

models, decision trees, and random forests to create interpretable approximations of the

complex auction gym model’s behaviour. Moreover, we use SHAP (SHapley Additive

exPlanations) to analyse feature importances obtained from the surrogate models. Addi-

tionally, we apply LIME (Local Interpretable Model-agnostic Explanations) as another

XAI technique to gain insights into the decision-making process of the Doubly Robust

estimator itself. Furthermore, we will analyse the impact of perturbing features on the

resulting bid and ensure the coherence of explanation methods with established ground

truth.

The specific objectives of this research are as follows:

1. Evaluate the performance of surrogate models across various auction settings,

considering factors such as the number of contextual features, number of agents,

and auction competitiveness.

2. Assess the similarity and alignment of feature importance of the explainable tech-

niques with the established ground truth. Additionally, evaluate the consistency of

these explanations in capturing the impact of feature perturbations on the Doubly

Robust bidding estimator’s decision-making process.

3. Assess the time taken by different XAI techniques for explaining the Doubly

Robust bidding agent.

1.3 Research Questions

These are the following research questions being addressed in the research.

1. How effectively do surrogate models, including decision trees and random forests,

approximate the complex behaviour of the Doubly Robust bidding estimator in

different auction settings?
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2. How similar are the feature importance insights from SHAP values of surrogate

models with LIME explanations? Furthermore, do they align with the established

ground truth?

3. How does the time taken for the various XAI techniques compare in explaining

the decision-making process of the Doubly Robust bidding estimator?

1.4 Structure

The paper is structured into multiple sections. Chapter 2 discusses the background

and literature review of explainable AI techniques and auction gym. In Chapter 3, the

methods of surrogate models and LIME for explanation are discussed in detail. In

Chapter 4, we present the results of the experiments for various auction gym settings

for the above techniques. Finally, in Chapter 5, we conclude our findings and provide

further work for the research.



Chapter 2

Background

In this chapter, we will first discuss the background of explainable AI (XAI) and the

techniques employed in the literature. Further, a background discussion about the

auctions and the auction gym environment will be done.

2.1 Introduction to Explainable AI

2.1.1 XAI Scope and Objectives

Models are becoming increasingly complex, and they are black boxes to us. To be

able to trust their decisions, we have to be able to interpret why they are arriving at

their decisions. Explainable AI is the field that focuses on interpreting complex models

like neural networks and Reinforcement Learning algorithms. Explainable AI (XAI)

aims to bridge the gap between the opacity of AI models and the need for human-

understandable explanations in various real-world applications, particularly in fields

like healthcare, banking, and autonomous systems. By revealing how AI models arrive

at their conclusions, XAI provides transparency and interpretability to AI systems. By

doing so it aims to give more information behind the model’s decisions. The XAIs

objectives mentioned by Gohel et al. [5] can be seen in Figure 2.1a.

XAI is very useful for interpretability and has been useful in many domains. There

is a wide scope of Explainable AI, as seen in Figure 2.1b. It is very crucial in the

healthcare domain where the models can significantly impact patient trust and safety.

Doctors will get a more informed analysis of why the machine learning model reached

a particular conclusion, thus being more transparent and which can be easily trusted.

Layer-wise relevance propagation was employed by Böhle et al. [3] to understand deep

4



Chapter 2. Background 5

(a) Objectives of XAI (b) Scope of XAI

Figure 2.1: XAI a tool to uncover black box models [5]

neural network judgments in MRI-based Alzheimer’s disease classification, revealing

insights into the important features utilized by the model for diagnosis.

It is also useful in the field of finance, where understanding the rationale behind

model predictions is vital for risk assessment, fraud detection, investment decisions,

and understanding the stock market. Jean Jacques Ohana et al. [11] aims at enhancing

the interpretability of AI models used in financial markets, allowing market participants

and regulators to understand the decision-making processes of these models better and

gain insights into market behaviour.

It is also very important in the field of autonomous driving to gain trust in the

ability of driverless vehicles. Explainable AI approaches to aid in making autonomous

system decisions more transparent and understandable, fostering trust in the security of

their operation. Atakishiyev et al. [2] do a comprehensive overview of the explainable

techniques in the field of autonomous driving.

2.1.2 XAI Methods

There are many ways to interpret a black box model. Some of the techniques are model

dependent, like TreeSHAP for tree-based models used in [8], while others are model

agnostic like LIME [12], Kernal SHAP [7], and RKHS SHAP [4]. Model-dependent

techniques are specific to a particular model, while model-independent techniques

apply to any black-box model. Explainable AI (XAI) offers both local and global

interpretability. On a local level, it clarifies individual predictions by determining the

contribution of each feature to specific model output. On a global scale, it delivers

insights into feature importance across the entire dataset, highlighting the factors most

significantly influencing the model’s overall predictions. Figure 2.2 provides a pseudo
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ontology of XAI methods taxonomy mentioned by Amina Adadi et al. [1]

Figure 2.2: A pseudo ontology of XAI methods taxonomy [1]

SHAP (SHapley Additive exPlanations) is a prominent method for explaining the

predictions of complex machine learning models. Developed by Lundberg et al. [7],

SHAP is based on cooperative game theory and utilizes the Shapley value [13] concept

for fairly distributing each player’s contribution in a cooperative game.

In the context of Explainable AI (XAI), SHAP is employed to measure the contribu-

tion of each feature to a specific model prediction. It assigns SHAP values, which are

importance values, to individual features, indicating their impact on the model’s output.

These values represent a fair and consistent way to attribute the model’s prediction to

each feature, considering all possible feature combinations.

SHAP values offer both local and global interpretability. Locally, SHAP explains

the prediction of a particular instance by demonstrating how each feature contributes

to that specific prediction. Globally, SHAP values provide an understanding of fea-

ture importance across the entire dataset, highlighting the features that have the most

significant impact on the model’s overall predictions.

LIME, introduced by Ribeiro et al. [12], is a widely-used method for explaining

the predictions of complex machine learning models. LIME is designed to work

with any black-box model and generate local explanations for individual predictions.

It approximates the complex model with a simpler, interpretable model in the local

neighbourhood of a specific instance. By perturbing the input data, observing the

changes in the model’s predictions, and fitting a surrogate model that mimics the

behaviour of the original model locally, LIME provides insights into how the features
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contribute to the prediction for that particular instance.

Another way the complex model is explained is by using a less complex model,

also known as a surrogate model, which mimics the behaviour of the original complex

model. One such surrogate model used is trees. Sieusahai et al. [15] used trees as a

surrogate model to explain the reinforcement learning agents in the Atari domain.

Surrogate models, such as decision trees, are trained to approximate the predictions

of black-box models. By doing so it allows us to draw conclusions about the black-box

models by interpreting the surrogate models. These models can be easily interpreted by

visualizing the decision tree structure. We can gain insights into the decision-making

process and understand the factors contributing to the predictions. Decision trees are

widely used for feature importance analysis in linear and non-linear models, making

them suitable for global explanations in XAI. They provide insights into the behaviour

of the AI models and can be used for both global and local explanations.

Notably, recent research has actively explored the realm of explainable techniques

for neural networks. DeepLift [14] employs a technique that propagates differences

through the network to discern significant features. Similarly, integrated gradient tech-

niques [17] have been applied to unveil neural network workings. However, compared

to neural networks, the exploration of explainability within the context of RL models has

been relatively limited. Sieusahai et al. [15] use XAI techniques on Deep Reinforcement

Learning Agents in Atari games by employing surrogate models.

Speith et al. [16] mentioned the result-based approach proposed by McDermid et

al. [9]. The result-based approach can be seen in Figure 2.3. It presents a systematic

Figure 2.3: Result based approach proposed by [9] for XAI

classification of explainability methods centred on the outcomes they produce. This

classification helps users choose the right method that aligns with their application’s

specific requirements. The taxonomy consists of three main categories:

1. Feature Importance: This category emphasizes methods that demonstrate the
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impact of input features on model outputs, offering insights into the importance

of features.

2. Surrogate Models: These models approximate complex models with simpler,

interpretable versions. They help users understand complex models and can be

created using various techniques.

3. Examples: Explanations are provided through representative examples, showcas-

ing instances that lead to high or low-certainty predictions. This category delivers

intuitive insights into model behaviour.

The Result-Based Approach supports users in selecting appropriate explainability

methods based on their expertise and the desired level of explanation.

2.1.3 XAI Evaluation

There is a concern about evaluating the results of the explainable techniques. For a

surrogate model like decision trees, one can compute the accuracy score (for classifi-

cation task) or compute the R2 score (for regression task) and see the performance of

the model as done by Andreas Messala et al. [10]. In the case of SHAP and LIME,

one can give more importance to some of the features and check the variations of the

results. Ideally, a slight change in the less important feature should not affect the output

significantly, while changing the more important feature should affect the output by

a drastic amount. Another way of interpreting the outputs is that they are analysed

by human experts who confirm whether the results of explainability techniques make

sense.

Moreover, there is also concern about the speed of explainability techniques. It

can be very time-consuming to generate explanations for complex models compared to

simpler ones. There have been approaches to reduce the time taken for the explanations.

One such instance is using Fast Tree SHAP proposed by Yang et al. [19] to compute

Shapley values for tree-based models. Although the Fast Tree SHAP v1 proposed in the

paper and the original Tree SHAP have the same time complexity of O(MLT D2), the

Fast Tree SHAP v1 reduced the average running time by 25%. Figure 2.4 shows the

reduced time Fast Tree SHAP takes to generate SHAP values.
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Figure 2.4: [19] Showing effectiveness of Fast TreeSHAP

2.2 Auctions and Auction Gym

Auctions have been widely studied across various disciplines, such as economics, game

theory, and computer science. The study of auctions can be traced back to the seminal

work of Nobel laureate William Vickrey, who introduced the concept of a second-

price sealed-bid auction, also known as a Vickrey auction [18]. Since then, numerous

auction formats have been proposed and analysed, each with its unique strengths and

weaknesses.

Traditional auction theory focuses on theoretical models and analytical solutions

for optimal auction design. However, applying these theoretical models to real-world

scenarios can be challenging due to complex interactions between bidders, imperfect

information, and strategic behaviour. This gap between theoretical models and real-

world applications led to the development of simulation environments like Auction

Gym [6].

Auctions are crucial for resource allocation, pricing, and revenue generation in

various industries. However, applying AI techniques in auction environments presents

unique challenges due to the complexity of bidder strategies, allocation mechanisms,

and auction outcomes. Interpretable AI in auction scenarios can help understand and

explain the decision-making process behind bidding strategies and auction outcomes.

By making AI-driven auction systems more transparent, stakeholders, including auction

participants, regulators, and market designers, can gain confidence in the mechanisms,

identify potential biases, and make informed decisions for optimizing the auction

process. This can improve the trust and accountability of AI systems and enable better

collaboration between humans and AI.

Auction gym [6] is an open-source online auction simulation environment created
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by Amazon. Offline auction data is not readily available due to the confidentiality of

the auction, and online data is costly and not feasible to obtain. Thus, it benefits the

research community, in general, to generate auction data via the reinforcement learning

simulation environment.

Auction Gym is a simulation platform that enables researchers to conduct experi-

ments and research in auction scenarios. It provides a controlled environment where

researchers can simulate and test various auction types, bidder strategies, and allocation

mechanisms. The platform allows researchers to define custom configurations, such

as the number of participants, items, and allocation rules, to create diverse auction

scenarios resembling real-world situations. Auction Gym enables systematic evaluation

of different bidding algorithms and allocators under controlled conditions, enabling

researchers to gather valuable insights into bidder behaviour and the impact of various

auction parameters. The platform has gained significance in the research community

due to its ability to bridge the gap between theoretical auction models and real-world

applications, fostering the development of more effective and transparent auction mech-

anisms.

The Auction Gym framework is designed to tackle two main problems: ad allocation

and bidding. In the ad allocation problem, the agent (bidder) selects the most suitable

advertisement from their inventory based on a given context of features. Once the

advertisement is chosen, the agent determines the bid amount to place, considering

the context features and the selected advertisement. There are various techniques used

by the agent to learn how to place the optimal bid. The paper has proposed the novel

Doubly Robust Estimator as a bidding technique which is shown to be effective.

XAI techniques have not been applied to the auction setting. In explaining the

Auction Gym environment, XAI techniques can be employed to explain the behaviour

of auction mechanisms, bidder strategies, and allocation decisions. By utilizing the XAI

techniques, researchers can better understand the factors influencing auction outcomes

and the impact of different features on the bidding process.

Applying XAI techniques to the Auction Gym context can help users understand

the rationale behind individual bidding decisions made by agents. This can lead to

identifying potential issues, such as model bias, robustness, and causality, and provide

valuable insights into the decision-making process in auction scenarios.



Chapter 3

Methodology

In this chapter, we provide the details of the methods employed in the project to explain

the auction gym model. It is divided into four different sections. In the first section,

discussion is done about the design choices. The other sections discuss how the data is

generated, the techniques used for explanation, and the evaluation techniques used in

the research.

3.1 Design Choices

The auction gym has various parameters that need to be set to run a particular auction

environment. We will explain the parameters below and the values we chose to run the

experiments.

The following are some of the parameters that need to be set for an auction environment:

1. num iter: The agents in the auction gym environment update their policy after

every iteration. Initially, the policy will not be optimal, and agents will try to

learn via multiple auction rounds in each iteration. For the experiments, we have

chosen the number of iterations as eight as the agents will be able to reach the

optimal policy. Increasing the number above increases the time of experiments

and has not been tried due to time constraints.

2. rounds per iter: This is the number of auction rounds held per iteration. This

number is varied in our experiments based on the number of participants in an

auction round and the number of context features considered in an auction round.

The higher the number of features and the higher the number of participants in an

auction round, we increase the number of auction rounds held per iteration.

11
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3. Embedding size: Embedding size signifies the number of context features that

are there in the environment, and observed embedding size is the number of

context features known to a bidder before deciding the advertisement to choose

from its inventory and the bid amount to place for the given auction setting. For

our experiments, we have considered the observed embedding size as 4, 8, 12, 16,

and 20 while the embedding size is one more than the observed embedding size,

i.e. 5, 9, 13, 17, and 21. The default features in the auction gym are normally

distributed. For the experiments where the number of observed features is 4,

8, and 12, all the features considered are normally distributed. However, for

observed features of 16 and 20, a mixed variety of features are considered. When

the number of observed features is 16, there is a total of 12 normally distributed

features with two uniformly distributed and two binary features. Of 20 observed

features, 12 are normally distributed features with four uniformly distributed and

four binary features.

4. Allocation: In the auction gym allocation can be of two types: First Price and

Second Price. Second Price auctions are easy to win by truthfully bidding [18]

and are not beneficial for the auctioneer. Thus, most of the auctions held are First

Price. Due to this, only First Price auctions are considered in our experiments.

The following are some of the parameters that need to be set for an agent in the

auction environment:

1. Allocator: There are two types of allocators in the auction gym environment:

OracleAllocator and PyTorchLogisticRegressionAllocator. The OracleAllocator

is an ideal allocator that has perfect knowledge of the bidder’s valuations for the

items. It knows the true underlying valuations of each bidder for all the items. It

is not useful for real-world scenarios. On the other hand, PyTorchLogisticRegres-

sionAllocator leverages observable context and historical data to estimate bidder

valuations, making it more applicable to real-world auction scenarios. Hence,

we chose to work with PyTorchLogisticRegressionAllocator for conducting our

experiments.

2. Bidder: Bidders in the AuctionGym environment can adopt four strategies:

TruthfulBidder, ValueLearningBidder, PolicyLearningBidder, and DoublyRo-

bustBidder. For our experiments, we chose the DoublyRobustBidder policy to

work with due to its potential robustness, optimality, and ability to combine value
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learning and policy learning methods. It has been proven an effective method in

the auction gym paper [6].

3. num copies and num items: Specifying the number of agent copies creates

multiple agents with the same configuration within the auction environment.

The ’number of items’ field indicates the quantity of ad catalogues in an agent’s

inventory. We selected an ad catalogue containing 12 advertisements for the

bidding agents for our experiments.

An example of the JSON file with the above-mentioned parameters can be seen in

Figure 3.1

Figure 3.1: JSON file having the configurable parameters for the auction gym

3.2 Data Collection from Auction Gym Model

The Doubly Robust bidding policy generates data from the auction gym reinforcement

simulation environment. The JSON configuration file for a particular setting is created,

and the model is first trained. After the model is trained for the set iterations in the

configuration file, the data is generated for each agent in the environment and stored

in the local machine. The features are the context available to the bidding agent. The
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number of features available to the bidding agent equals the observed embedding size.

The label is the bid value the agent bids given a particular context, which the doubly

robust estimator learns. Moreover, the trained model for each agent in the auction

environment is saved in the local machine, which can be used later for further analysis.

3.3 Techniques

3.3.1 Tree Surrogate Models (Decision Trees and Random Forest)

The first technique that we employ is tree-based models as surrogate models. For this

purpose, we use decision trees and random forests to mimic the complex Doubly Robust

bidding estimator in the Auction gym environment. Surrogate models try to mimic the

entire complex model and thus give a global explanation of the bidding mechanism.

50000 data points are sampled from the saved dataset obtained after training the auction

gym model for each experimental setting. The sample is done by taking random state as

18. These 50,000 data points are then split into training and test datasets by keeping 20%

of the data points in the test data. Grid Search is used to find the best hyperparameters

for the decision trees by varying some hyperparameters. Below are the parameters and

their values considered while doing a Grid Search CV to find the best decision tree.

• max depth: None, 5, 10, 15, 20

• min samples split: 2, 5, 10

• min samples leaf: 1, 2, 3, 4, 5

Also, cross-validation of 5 is taken while doing GridSearchCV to find the best

decision tree. If the max depth of the tree is not restricted, it overfits by giving a very

high train accuracy score while performing very poorly on the test and unseen data.

Random Forest is an ensemble of decision trees and thus can have better accuracy

than decision trees for the same experimental setting. However, the random forests can

be more complex, reducing the model’s interpretability. Visualisation of the decisions

by a decision tree will be more easily interpretable by humans.

3.3.2 Tree SHAP and Fast Tree SHAP on Tree Surrogate Models

For the tree surrogate models of Decision Trees and Random Forest Tree SHAP is

used to compute the feature importance of the contextual features. 200 data points are
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selected from the test dataset, and the mean absolute SHAP value is computed for each

and every feature to provide a global interpretation based on the 200 data points. Fast

Tree SHAP is also used to compute the SHAP values for the Random Forest Model, as

they are more complex and time-consuming to explain.

3.3.3 LIME

The other technique which has been used for explaining the auction gym model is LIME.

For implementation, the LIME library in Python is used. LIME is an agnostic model

that can be applied to any model (decision trees, neural networks, RL agents, etc.). It

provides an explanation that is locally accurate and situated in the neighbourhood of the

observation or example that is being described. The process generates 5000 samples for

the feature vector as a default setting, following a normal distribution. Subsequently, it

acquires the target variable for these 5000 samples using the prediction model that is

the focus of the explanation. After obtaining the surrogate dataset, it weighs each row

according to how close they are to the original sample/observation. It then uses feature

selection techniques to find the most important features. In our experiments, LIME is

used on the doubly robust bidding estimator of the auction gym model itself by taking

200 sample data points like those employed for decision trees and random forests. The

mean absolute LIME feature importances for these data points are then computed for

different experimental settings.

3.4 Evaluation

3.4.1 Accuracy Metric

As the task of predicting the bid the agent places given a context is a regression task,

the R2 score is a good metric to evaluate the performance of the surrogate models.

Therefore, decision trees and random forest regressors are evaluated by using the R2

score. This is performed on 50,000 data points for various experimental settings. The

performance of decision trees and random is checked and compared by changing the

number of features and the number of participating agents in an auction round. R2 score

is also checked by increasing the number of agents in the environment and keeping the

number of participants in an auction round constant for a varying number of context

features. The performance is also checked for multiple agents in a multi-agent auction
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environment to evaluate the consistency of the performance of the tree-based models

across agents.

3.4.2 Feature Importance Evaluation

The feature importance is seen using Shapley values for surrogate models decision

trees and random forests. Python’s shap library is used to compute the Shapley values.

Similarly, LIME is used to see the feature importances for 200 data points directly on the

doubly robust bidding agent of the auction gym environment. To achieve this, Python’s

lime library finds the feature importances. For all the methods, the mean absolute of

the feature importances is computed for the 200 data points for particular experimental

settings and compared. To have a deeper understanding of the feature’s importance, a

graphical visualisation and beeswarm plot is also used to compare the results by the

three methods. A beeswarm plot effectively displays an information-dense summary of

how the top features in a dataset impact the model’s output.

Further, the explanation results are checked to see if they are consistent with the

established ground truth. This is done by multiplying the input features with a known

ground truth weight and observing if the explanation methods produced what was

expected. Furthermore, each feature is perturbed individually, and the resulting mean

absolute change in the output is observed as an outcome of altering each feature. Ideally,

a more important feature in the explanation should induce a greater change in the output

compared to a less significant feature. If they align then it would further reinforce the

reliability of the explainability methods. Finally, some local explanations are observed

with the help of LIME to see if the explanations are consistent with the explanations

provided by the 200 data points.

3.4.3 Time Evaluation

Explanations can take a long time if the model is complex. Thus, the explanation is

evaluated by computing the time taken by the explanation methods used: Tree SHAP

on Decision Trees, Tree SHAP on Random Forest, Fast Tree SHAP on Random Forest

and LIME on the Doubly Robust bidding agent. Time taken to compute Shapley values

on the surrogate models of decision trees and random forest and time taken to compute

LIME explanation on the auction gym model is observed. To compare the time taken

between the three, 200 data points are considered, and features are varied as 4, 8, 12,

16, and 20. The effect of time taken to compute the explanation is observed with



Chapter 3. Methodology 17

the increase of features. Moreover, the effect of time on increasing the data points is

observed. Python’s time library calculates the time taken in seconds for the explanation

methods.



Chapter 4

Experimental Results

In this chapter, we provide the details of the results obtained in this project. It is divided

into three different sections. In the first section, a discussion is done about the R2

scores obtained by the surrogate models under different auction settings. In the second

section, the feature importance of different techniques is discussed and compared with

the expected ground truth. In the third section of experimental results, time taken by

various explainability techniques is analysed and discussed.

4.1 R2 Score Decision Trees and Random Forest

In this section, we discuss the experimental results obtained from using decision trees

and random forests as surrogate models to explain the behaviour of the Doubly Robust

auction gym RL model. The experiments for fitting the surrogate models were conducted

using a large dataset of 50,000 data points, considering various experimental auction

settings to assess the performance and interpretability of tree-based models.

Firstly, the impact on the R2 score by varying the number of agents in the auction

environment while keeping the number of participants per auction round constant as

two was analysed. It was observed that the R2 test score for a particular number of

contextual features remains very close even when the number of agents increases in the

environment. This is seen for both decision trees and random forests and can be seen in

Table 4.1.

It can also be observed from the table that the surrogate models become less effective

in mimicking the auction gym model when the number of features increases. However,

they remain consistent when the number of agents in the environment increases for a

fixed contextual feature.

18
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num features
num agents

4 6 8 10 12

4 0.937 0.873 0.917 0.934 0.940

8 0.593 0.593 0.629 0.657 0.654

12 0.382 0.317 0.355 0.349 0.383

16 0.320 0.310 0.324 0.323 0.395

20 0.278 0.227 0.270 0.307 0.324

(a) Test accuracy (R2 score) for decision

trees

num features
num agents

4 6 8 10 12

4 0.959 0.912 0.961 0.971 0.979

8 0.810 0.807 0.823 0.838 0.835

12 0.634 0.584 0.626 0.614 0.669

16 0.546 0.553 0.543 0.537 0.632

20 0.523 0.501 0.483 0.533 0.563

(b) Test accuracy (R2 score) for random

forest

Table 4.1: Test accuracy for number of participants per round as 2 and varying number

of agents in the environment

Next, we conducted experiments by varying the number of participants per round

(competition) while keeping the number of agents constant at 12. Additionally, the

number of features in the auction gym environment varied between 4, 8, 12, 16, and

20. The results indicated that tree-based models performed well for experiments when

the number of features was less. As the number of features increased from 4 to 12, the

performance of tree-based models reduced, but there was not much difference when

the features increased to 16 and 20. This is because the features added were uniformly

distributed and binary, which did not affect the R2 score drastically. Generally, the

tree-based models found it more difficult to mimic the doubly robust bidding estimator

with the increased number of features. However, Random Forests had a much better

R2 score in settings where the number of features was more compared to decision

trees. This trend can be seen in Figure 4.1 shows the decrease of test R2 score with the

increase in the number of features for both decision trees and random forests where the

number of participants in an auction round is 4.

Figure 4.1: Performance of Surrogate Models for num participants as four and number

of agents as 12
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Additionally, the trend of the increase in the number of participants in an auction

round was observed. It was seen that there was a slight decrease in the R2 score as the

competitiveness of the auction increased. This trend was true for both decision trees

and random forests. The tree-based models had better R2 scores when the number of

participants per auction round was 2 in comparison to when the number of participants

per auction round was 6 for features 4, 8, 12, and 16. However, for the context feature

of 20, the R2 score was higher when the number of participants was 6 in comparison

to 2 participants per auction round. The apparent slight increase in R2 scores may be

because of the already low R2 score. Hence, further research with a significant increase

in the number of participants would help understand the effect on R2 scores with an

increase in the number of participants per round for a high feature setting. The findings

of the R2 score for these various settings can be seen in Table 4.2 for test data. Table

4.3 shows the training R2 scores of the tree-based models.

num participants
num features

4 8 12 16 20

2 0.940 0.654 0.383 0.395 0.324

3 0.859 0.662 0.337 0.309 0.380

4 0.859 0.569 0.347 0.393 0.420

5 0.723 0.590 0.368 0.404 0.397

6 0.780 0.554 0.363 0.345 0.436

(a) Test accuracy (R2 score) for decision

trees

num participants
num features

4 8 12 16 20

2 0.979 0.835 0.669 0.632 0.563

3 0.912 0.840 0.599 0.535 0.613

4 0.911 0.768 0.639 0.618 0.645

5 0.796 0.783 0.630 0.605 0.600

6 0.853 0.758 0.608 0.553 0.673

(b) Test accuracy (R2 score) for random

forest

Table 4.2: Test accuracy for varying features and number of participants in an auction

round

num participants
num features

4 8 12 16 20

2 0.995 0.913 0.519 0.524 0.456

3 0.951 0.904 0.468 0.448 0.501

4 0.954 0.834 0.489 0.537 0.609

5 0.865 0.840 0.504 0.541 0.535

6 0.913 0.813 0.515 0.516 0.613

(a) Train accuracy (R2 score) for decision

trees

num participants
num features

4 8 12 16 20

2 0.997 0.976 0.952 0.949 0.939

3 0.988 0.977 0.944 0.935 0.945

4 0.988 0.967 0.949 0.945 0.950

5 0.971 0.969 0.947 0.944 0.944

6 0.980 0.966 0.945 0.938 0.954

(b) Train accuracy (R2 score) for random

forest

Table 4.3: Train accuracy for varying features and number of participants in an auction

round

Furthermore, the R2 score was analysed across multiple bidding agents to check

the consistency of the surrogate models in the multi-agent reinforcement auction gym
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setting. This was done for the setting of 12 agents in the environment. The number

of participants in the auction gym environment was kept as 4, and it was analysed for

features as 4, 8, 12, 16, and 20. It was found that the performance of both decision trees

and random forest remained consistent across all agents for a fixed number of features,

which can be seen in Table 4.4.

num features
agent id

0 1 2 3 4 5 6 7 8 9 10 11

4 0.911 0.964 0.909 0.932 0.973 0.948 0.919 0.976 0.861 0.879 0.877 0.889

8 0.768 0.804 0.757 0.700 0.819 0.789 0.800 0.821 0.832 0.839 0.783 0.818

12 0.639 0.554 0.639 0.666 0.581 0.624 0.617 0.677 0.639 0.549 0.601 0.619

16 0.618 0.512 0.602 0.658 0.665 0.564 0.602 0.584 0.646 0.472 0.598 0.615

20 0.645 0.579 0.488 0.657 0.467 0.566 0.599 0.598 0.452 0.614 0.547 0.521

(a) Test accuracy for random forest for different agents and different features

num features
agent id

0 1 2 3 4 5 6 7 8 9 10 11

4 0.859 0.931 0.872 0.894 0.946 0.912 0.867 0.935 0.798 0.819 0.815 0.832

8 0.569 0.609 0.539 0.502 0.621 0.600 0.576 0.637 0.638 0.707 0.601 0.635

12 0.347 0.327 0.409 0.402 0.282 0.380 0.373 0.420 0.406 0.291 0.350 0.366

16 0.393 0.276 0.331 0.380 0.435 0.329 0.345 0.323 0.450 0.254 0.354 0.374

20 0.420 0.375 0.265 0.473 0.233 0.336 0.315 0.386 0.221 0.381 0.330 0.279

(b) Test accuracy for decision trees for different agents and different features

Table 4.4: Test accuracy for different agents and different features

Additionally, the correlation between features using 4 and 12 contextual features was

examined to determine if it contributed to the decrease in the accuracy of the tree-based

models. It was observed that the features showed no significant correlation, as evident

from the heatmap of the correlation matrix in Appendix A. Figure A.1 illustrates the

correlation between features when using four contextual features, while Figure A.2

displays the correlation between features when using 12 contextual features.

4.2 Feature Importances Surrogate Models and LIME

The feature importances were taken for all feature settings of 4, 8, 12, 16, and 20. The

findings for contextual features 4 and 12 with the number of participants in an auction

round as four are shown and compared in the report. This is because when the features

were 4, the surrogate models had a high test R2 score of 0.86 for decision trees and 0.91
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for random forest for the above setting. On the other hand, when the features are 12,

the surrogate models start showing a lower R2 score, which is quite similar to when the

features are 16 and 20. Decision trees have a test R2 score of 0.35, and random forest

has a test R2 score of 0.64 when the features are 12 for the number of participants in an

auction round as 4. Therefore, findings of contextual features of 4 and 12 are considered

for visual purposes.

4.2.1 Feature Importance Analysis for Four Features

Firstly, four features are considered with all normally distributed features N(0,1) and

ground truth weight vector as [1,1,1,1]. For this setting, it is seen that the mean absolute

SHAP values on Decision Trees and Random Forest are very close to each other and

are also quite close to the mean absolute LIME values for all four features. The mean

absolute values for the three methods in this scenario can be seen in Table 4.5.

Feature 1 Feature 2 Feature 3 Feature 4

Decision Trees 0.0628 0.0716 0.1034 0.0504

Random Forest 0.0623 0.0708 0.1046 0.0501

LIME 0.0814 0.0905 0.1332 0.0745

Table 4.5: Mean Absolute Values of Feature Importance for Four Features

This suggests that the three methods give similar explanations for the four feature

setting. Also, the feature importances can be seen graphically in Figure 4.2.

Next, a beeswarm plot is visualised to see the effect of features on the output bid.

For the case of 4 features, one can see the beeswarm plot for the three methods in Figure

4.3.

It can be seen from the figure that all three methods convey the same thing for this

particular experimental setting. The third context feature is the most important to make

the decision.

In a beeswarm plot, the higher value of SHAP/LIME favours a higher bid, while the

lower LIME/SHAP value points to the direction of a lower bid. However, the influence

of Feature 3 on bids is not straightforward, as its lower values occasionally align with

higher bids and vice versa. In contrast, certain features exhibit more distinct bid impact

patterns. Notably, all three methods consistently rank Feature 2 as the second most

important, followed by Features 1 and 4. Importantly, the conclusions drawn from these

methods are in harmony: elevated Feature 2 values, lower Feature 1 values, and higher
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(a) Decision tree feature importances (b) Random Forest Feature Importances

(c) LIME feature importances

Figure 4.2: Feature importances for 4 features and 4 participants per auction round

Feature 4 values consistently correlate with higher bidding outcomes.

Next, the input features, drawn from a standard normal distribution N(0,1), are

multiplied by a ground truth weight vector of [1, 1, 3, 0]. This weight assignment

magnifies the significance of Feature 3 threefold while rendering Feature 4’s weight

as 0, effectively making it inconsequential. The expectation here is twofold: Feature 3

should emerge as the most influential, while Feature 4’s impact should be negligible.

Subsequently, the model is trained, and explanations are generated using all three

methods.

The observations are encapsulated in the beeswarm plot depicted in Figure 4.4.

Strikingly, all three explanation methods effectively capture this ground truth. The

results corroborate the expectation: Feature 3 indeed emerges as the paramount con-

tributor, significantly influencing bid values, while Feature 4 exhibits no discernible

impact. Although the comparative importance of the remaining two features falls short

of Feature 3, their relative significance to each other remains relatively consistent.

Further, to investigate the impact of sign changes, a ground truth weight vector,

[-1, -2, 3, 0], was introduced. The hypothesis posited that reversing the sign of a

feature’s weight would trigger a corresponding reversal in its influence on the outcome

if the model followed a linear relation. For instance, if a high value of a feature

initially corresponded to high bid predictions with positive weights, it is expected that,

with negative weights, lower values of the feature would now align with higher bid

predictions. However, the observed results deviated from this anticipation. For instance,
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(a) Decision tree beeswarm plot (b) Random Forest beeswarm plot

(c) LIME beeswarm plot

Figure 4.3: Beeswarm plot for 4 features with ground truth weight vector [1,1,1,1]

(a) Decision tree beeswarm plot (b) Random Forest beeswarm plot

(c) LIME beeswarm plot

Figure 4.4: Beeswarm plot for 4 features with ground truth weight vector [1,1,3,0]

in Figure 4.4, Feature 1 carried a positive weight of 1, while Figure 4.5 bore a negative

weight of 1. Astonishingly, the interpretation persisted unchanged: lower values of

Feature 1 still correlated with higher bids. This phenomenon can be ascribed to the

intricate dynamics of the auction environment. In contrast to the simplicity of a linear

model, the intricate interplay of auction dynamics appears to mitigate the expected

impact of sign changes.

A perturbation of the features with the ground truth weight vector of [1,1,3,0] was

also performed on the whole test data set to see the reliability of the explainable methods.

Each feature was perturbed one by one by scaling it by two and observed how it changed

the output bid by computing the mean absolute change in the output bid. It can be seen
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(a) Decision tree beeswarm plot (b) Random Forest beeswarm plot

(c) LIME beeswarm plot

Figure 4.5: Beeswarm plot for 4 features with ground truth weight vector [-1,-2,3,0]

from Figure 4.6 that the change in the output bid is the maximum when Feature 3 (most

important) is perturbed, while Feature 4 does not cause much change in the output. This

is in line with what the explainable methods convey.

Figure 4.6: Effect in Output bid by perturbing for 4 features

4.2.2 Feature Importance Analysis for Twelve Features

A further experiment was conducted with higher features of 12. Similarly to the

four feature setting, first, a ground truth weight vector of [1,1,1,1,1,1,1,1,1,1,1,1] was

considered, and the results of the three explainable methods were compared. It can be

observed in Table 4.6 that for some features, the random forest has a mean absolute

SHAP value closer to LIME than decision trees.

For example, for Feature 4, the absolute mean value for LIME is 0.0448, while for
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Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10 Feature 11 Feature 12

Decision Trees 0.0537 0.0233 0.0168 0.0170 0.0179 0.0016 0.0141 0.0153 0.0486 0.0593 0.0289 0.0164

Random Forest 0.0536 0.0295 0.0220 0.0272 0.0211 0.0056 0.0183 0.0233 0.0478 0.0584 0.0361 0.0223

LIME 0.0750 0.0372 0.0340 0.0448 0.0261 0.0154 0.0278 0.0369 0.0666 0.0770 0.0490 0.0371

Table 4.6: Mean Absolute Values of Feature Importance for Twelve Features

random forest, it is 0.0272, and for decision trees, it is 0.0179. Decision trees are further

off in the mean absolute feature importance values with LIME than random forests.

This can be attributed to the lower R2 scores of decision trees compared to random

forests for higher feature settings. The feature importance of the three methods can be

seen in Figure 4.7

(a) Decision tree feature importances (b) Random Forest Feature Importances

(c) LIME feature importances

Figure 4.7: Feature importances for 12 features and 4 participants per auction round

From the feature importance Figure, it can be seen, that the top four important

features are the same in all three methods, even though surrogate models have a lower

R2 score. Thereafter, there are some differences. The decision tree classifies Feature 5

as more important than Random Forest and LIME. This, however, is not significant as

the features are very close in importance. The overall trend is similarly captured by all

three methods, as can be seen in the beeswarm plot in Figure 4.8. For example, all three
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convey that a higher value of Feature 10 corresponds to bidding a higher bid value.

(a) Decision tree beeswarm plot (b) Random Forest beeswarm plot

(c) LIME beeswarm plot

Figure 4.8: Beeswarm plot for 12 features with ground truth weight vector

[1,1,1,1,1,1,1,1,1,1,1,1]

Subsequently, a ground truth weight vector of [1, 1, 1, 1, 1, 0, 1, 1, 4, 1, -3, 1]

was employed. The underlying hypothesis was twofold: Feature 6, given its near-zero

weight, should bear minimal importance, while Feature 9, with the highest weight of 4,

should emerge as a key predictor of bid values. Moreover, due to its weight magnitude

of 3 and negative coefficient, Feature 11 is anticipated to gain importance and reverse its

outcome prediction in the case of linearity. The outcomes of the explanation methods

are portrayed in Figure 4.9.

Remarkably, the magnitudes of feature importance in the results of all three explain-

able methods align with the anticipated ground truth. Notably, Feature 6’s negligible

weight corresponds to its minimal impact. Conversely, Feature 9’s weight manifests its

significance in bid prediction. In addition, the expected influence of Feature 11’s nega-

tive weight magnitude is observed. However, an interesting observation arises: despite

the negative weight, Feature 11’s outcome prediction remains unaltered compared to its

weight being 1. This phenomenon is illustrated in Figure 4.8. This result aligned with

the results observed for the four feature setting and suggests the non-linearity of the

auction gym model.

Similarly, like in the scenario involving four features, the context of 12 features
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(a) Decision tree beeswarm plot (b) Random Forest beeswarm plot

(c) LIME beeswarm plot

Figure 4.9: Beeswarm plot for 12 features with ground truth weight vector [1,1,1,1,1,0,1,

1,4,1,-3,1]

was subjected to perturbation. Each feature underwent scaling individually by a factor

of 2, and the subsequent effect on the output bid was monitored. This evaluation was

conducted by calculating the mean absolute change in the output bid value. The results

of this analysis are presented visually in Figure 4.10.

The bar plot depicted in Figure 4.10 distinctly illustrates that through perturbing

features and evaluating the entire test dataset, the top features highlighted by the

explainable methods align with the fact that it caused more change in the output bid.

Figure 4.10: Effect in Output bid by perturbing for 12 features
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Furthermore, the plot reinforces the anticipated result: Feature 6 is the least influential,

aligning with the explainable methods.

Intriguingly, while there exists a slight variation in the ordering of features within

the mid-range of importance as indicated by the explainable methods, the significance

of this reordering is diminished due to its proximity among the features in terms of

importance.

4.2.3 Statistical Test for Feature Importance across Explainable

Methods

A statistical t-distribution test was conducted to ascertain whether the feature impor-

tances yielded by different explainable methods were statistically discernible across all

features for two specific scenarios: one involving four features and the other involving

12 features with a ground truth weight vector as 1 for all features. The examination

encompassed a dataset of 200 samples.

The results revealed that, for both scenarios, the feature importances derived from

all methods were statistically indistinguishable. In other words, no significant statistical

differences were observed among the feature importances obtained through various

methods. This outcome was the same across all features and methods studied.

Specifically, the p-values associated with comparing feature importances were

consistently greater than the predetermined significance threshold of 0.05. This suggests

that the observed similarities in feature importance were not likely to have occurred due

to chance. For a detailed breakdown of the p-values corresponding to feature importance

across different methods, please refer to Appendix B.

4.2.4 Local Analysis with LIME

A local analysis with LIME of two data points for four features with ground truth weight

vector of [1,-2,3,0] was analysed to see if the results remain consistent as conveyed by

the mean absolute feature importance value from the 200 points. The first local data

point is when the actual bid is low. LIME’s decision on why it reached the conclusion of

the bid value for this instance can be seen in Figure 4.11. It can be seen that Feature 3 is

the most important in making the decision because of its high value, which corresponds

to a lower bid. This can be related to the explanation provided by the 200 points in the

beeswarm plot of LIME in Figure 4.5. The other three also remain consistent as per the

beeswarm plot, i.e. a lower value of Feature 2 shifts the decision to make a lower bid, a
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higher value of Feature 1 favours a lower bid, and Feature 4 does not affect the output

at all.

Figure 4.11: LIME explanation for low bid value

The second example is when the actual bid value is high. The explanation of this

instance by LIME can be seen in Figure 4.12. For this instance, Feature 2 and Feature 1

Figure 4.12: LIME explanation for high bid value

correspond to bidding a higher value, which is consistent with the beeswarm plot 4.5.

However, Feature 3 favours a lower bid and is not the most important in deciding the

bid value. For this instance, Feature 2 seems the most important in making this decision,

which is slightly different from the mean feature importance of the four features where

Feature 2 is the second most important. This is seen in the LIME explanation, where

Feature 2 impacts the output more than Feature 3.

LIME provides a reason why the model reached a particular decision, which makes

the model transparent. The trend seems consistent with the overall trend, with slight

differences in the feature importance order for specific local instances. Thus, the

explainability techniques help improve the interpretability of the doubly robust bidding

estimator of the auction gym environment for online auctions.

4.3 Time Evaluation

Explaining the behaviour of complex models, such as neural networks and reinforcement

learning agents, can be time-consuming. In contrast, less complex models like decision

trees are generally faster to explain due to their simple and interpretable nature.



Chapter 4. Experimental Results 31

Experiments were conducted to evaluate the time taken to compute Shapley values

on decision trees and random forests. Also, evaluation was performed on the time taken

to compute the LIME feature importance on the auction gym doubly robust bidding

agent. The goal was to compare the time taken to generate explanations for 200 data

points for varying contextual features. It can be seen in Figure 4.13a the time taken

to provide explanations by the different explainable methods with the increase of the

number of features. As expected, LIME, performed on the complex Auction Gym

RL agent itself, is significantly slower than decision trees as surrogate models. The

complexity of the RL agent contributes to the additional computational overhead of

LIME. On the other hand, decision trees offer much faster explanation times, making

them more efficient for interpretability tasks. However, the decision trees suffer from

poor performance as their R2 scores are less when the contextual features are high.

(a) Time taken for number of participants as 4 (b) Time taken for 4 features

Figure 4.13: Time Analysis for various Explainable Methods

An experiment was also performed to see the effect of explanation time on increasing

the number of data points. Data points of 200, 400, and 600 were considered. From

4.13b, it can be seen that all explanation time of all the explainable methods increased

linearly with the increase in the number of data points to explain.

To improve the accuracy of the surrogate model, random forest was experimented

as a more sophisticated alternative to decision trees. Random forest typically yields

better accuracy by ensembling multiple decision trees. However, the improved accuracy

comes at the cost of increased computation time, as seen in Figure 4.13. The tradeoff

between accuracy and explainability becomes apparent, where the random forest’s

higher accuracy is accompanied by slower explanation times. Decision trees provide a

quick and interpretable solution but may not precisely mimic the original RL agent’s

behaviour in complex scenarios. On the other hand, random forest may offer better

accuracy but at the expense of longer explanation times.
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However, Fast Tree SHAP [19] applied on Random Forest increased its explanation

speed significantly, as seen from the 4.13. It can be seen from Table 4.7 that the time

of explanation for decision trees remains more or less the same with the increase of

features. The time of explanation for Random Forest increases with the increase in

the number of features. Fast Tree SHAP provides an alternative and faster way to

provide explanations than regular Tree SHAP. For 20 features, Tree SHAP takes 233.9

seconds to compute the Shapley values for Random Forest, while Fast Tree SHAP is

able to compute that in only 18.15 seconds. Also, the time to explain by LIME remains

constant with the increase in the features. This is because LIME approximates a simpler

model in the local region to explain a complex model. Thus, it does not significantly

increase the time of explanation with a slight increase in the features. However, a very

high number of features will start increasing the explanation time of Tree SHAP on

decision trees and LIME on the doubly robust bidding estimator.

Technique
num features

4 8 12 16 20

Decision Trees (Tree SHAP) 0.12 0.14 0.04 0.03 0.03

Random Forest (Tree SHAP) 56.77 117.65 195.28 210.01 233.90

Random Forest (Fast Tree SHAP) 5.84 10.04 15.42 16.68 18.15

LIME 319.54 316.52 319.46 322.87 314.34

Table 4.7: Time taken (seconds) for an explanation for 4 participants per auction round

Overall, it can be seen that surrogate models can provide a faster and more inter-

pretable explanation for low features and less competitive auction settings. They can

provide a global explanation of a high number of data points at a much faster pace than

LIME.
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Conclusions

In this chapter, we will summarise the findings of our research on the explainability

techniques in the study for explaining the behaviour of the doubly robust bidding

agent in the auction gym environment. It will also be followed by a discussion on the

limitations and the future work planned to be done.

5.1 Findings

The thesis researched the exploration of Explainable AI (XAI) techniques in the context

of auction using the Auction gym simulation environment. The project aimed to

interpret the novel Doubly Robust estimator bidding strategy proposed in the auction

gym [6]. The aim was to provide a more interpretable understanding of the complex

online bidding process and to increase trust in the decision-making process of the doubly

robust bidding agent across various auction scenarios.

To achieve this, various experiments were conducted by varying the number of

features and the number of participants in an auction round to explain the doubly robust

estimator. Techniques of surrogate models of decision trees and random forests were

employed to mimic the doubly robust bidding agent to provide a global explanation

of the bidding agent. Additionally, TreeSHAP was used on the surrogate models to

evaluate the feature importances for 200 data points. Meanwhile, LIME was used on

the complex doubly robust estimator to find the feature importances for these 200 data

points.

The feature importance of the explanation methods of Tree SHAP on surrogate tree

models and LIME on the auction gym doubly robust estimator were compared with each

other to see if they were similar in their explanations. Moreover, the feature importance
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obtained by the various explainability methods was checked for consistency with the

established ground truth. Furthermore, the time taken by the various explanation

methods was examined.

5.1.1 Tree Surrogate Models

Random forests and decision trees were observed to emulate the auction gym model

closely, achieving high R2 scores, particularly with fewer features and less competitive

environments. However, introducing more features complicated the bidding behaviour

of the doubly robust bidding estimator, making it challenging for tree-based surrogate

models to replicate, thus lowering R2 scores. Notably, with a limited number of

contextual features, R2 scores decreased as auction participants increased. Yet, as the

quantity of these features expanded, this decline became less pronounced, with R2

scores even seeing slight improvements with more participants.

Tree-based models exhibited consistent performances across various agents for

identical auction setups in multi-agent bidding settings. An in-depth R2 score compari-

son across diverse configurations highlighted that the model’s performance remained

largely unaffected by an increase in the number of agents, given that other factors stayed

consistent.

5.1.2 Explanation by TreeSHAP and LIME

In our analysis involving auction settings with both 4 and 12 features, the explanations

provided by Tree SHAP for decision trees and random forests exhibited similarities to

those from LIME. However, the behaviour of the auction gym model proved challenging

to capture accurately due to its inherent complexity and non-linearity. While all three

explanation techniques accurately captured variations in the magnitude of a feature’s

ground truth, they faced limitations in reflecting changes in the direction of the bid

outcome when the sign of a feature’s ground truth vector was altered. This observation

underscores the unique intricacies of the auction gym model, where a simple reversal

of a feature’s sign might not be sufficient to influence the bid’s outcome direction

predictably.
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5.1.3 Speed of Explainabilty

In our studies, Tree SHAP demonstrated notable efficiency when explaining decision

trees and random forests. Specifically, explanations for decision trees were computed in

a mere 0.12 seconds, while random forests required a longer 56.77 seconds. In contrast,

LIME took significantly longer—319.54 seconds—to explain the auction gym model

with just four features.

It was observed that the explanation time for random forests using Tree SHAP

increased with the addition of more contextual features. Yet, decision trees maintained

their rapid computation speed regardless of the number of contextual features introduced,

although their R2 score was lower than random forests. However, using Fast Tree SHAP

[19] significantly improved the computing of feature importance for Random Forest

from 56.77 seconds to just 5.84 seconds for the four feature setting.

Interestingly, the computation time for LIME remained consistent as the number of

features increased. This consistency can be attributed to LIME’s reliance on simpler

models, such as linear regression, to approximate local regions. However, it is worth

noting that a substantial feature increase might lead to prolonged explanation times.

Additionally, across all the explanation techniques, a linear relationship was identified

between the number of data points and the time taken for explanations: as data points

increased, so did the computation time.

5.1.4 Comparative Analysis

In conclusion, given the impressive R2 scores achieved by tree-based models in emulat-

ing the Auction Gym’s doubly robust estimator and their rapid explanation capabilities

for scenarios with fewer competitors and contextual features, these models are valuable

techniques for explanation. However, as the environment’s complexity escalates, deci-

sion trees face challenges in accurately mirroring the model, reflected in diminished R2

scores.

Tree SHAP and LIME can also capture the feature importance following the magni-

tude of the linear ground truth weight vector. However, the effect of change in sign in

ground truth vector for a feature was ineffective in changing the direction of bid outcome

for that feature. This suggests that the behaviour of the auction gym is intricate and

more complex than a linear model. The surrogate models explanation by Tree SHAP

outpaces LIME in speed. While Random Forest’s explanation time via Tree SHAP

escalates with more features, introducing Fast Tree drastically reduces this duration.
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5.2 Limitations

The experiments have been run for a maximum of 20 features and a maximum number

of participants in an auction round of 6. Also, a fixed advertisement inventory of 12

has been considered in the experiments. Companies may have higher advertisements to

show in real-world online auctions. The experiments are not on real-world data and on

simulation data of the auction gym. Grid Search is not performed on random forests

due to its time complexity, and there may be a slightly more optimal tree for scenarios

with a higher number of contextual features.

5.3 Future Work

For our further work, we would like to consider working with a higher number of

observed features and also working with a varied number of advertisements in the

inventory of the bidding agents in the auction gym environment. Further, we would like

to work with a higher number of data points for an explanation for LIME and Shapley

values to find a more global interpretation of the feature importances. Additionally, we

would like to establish different ground truths like quadratic and see if the explainable

methods can capture that pattern, giving more insights into the auction gym model. In

addition to this, we would consider the performance of the explainability of surrogate

models on the Second Price Auction and the Oracle Allocator for complex settings and

compare it with the results of the First Price Auction.
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Appendix A

Correlation Matrix for Contextual

Features

Figure A.1: Correlation Matrix for 4 context features for agent 0 with number of partici-

pants in an auction as 4
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Figure A.2: Correlation Matrix for 12 context features for agent 0 with number of partici-

pants in an auction as 4



Appendix B

Statistical Significance t-distribution

test between Feature Importances

The significance value for the t-distribution test is set as α = 0.05.

Methods
Feature Importances

Feature 1 Feature 2 Feature 3 Feature 4

Decision Trees & Random Forest 0.995 0.968 0.913 0.904

Decision Trees & LIME 0.762 0.894 0.704 0.884

Random Forest & LIME 0.757 0.924 0.626 0.804

Table B.1: Statistical Test p-values for 4 features between different methods (200 sam-

ples)

Methods
Feature Importances

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10 Feature 11 Feature 12

Decision Trees & Random Forest 0.935 0.883 0.661 0.775 0.924 0.640 0.485 0.896 0.946 0.882 0.858 0.636

Decision Trees & LIME 0.687 0.806 0.945 0.934 0.431 0.998 0.162 0.460 0.845 0.882 0.936 0.572

Random Forest & LIME 0.741 0.925 0.798 0.909 0.418 0.836 0.450 0.559 0.795 0.985 0.822 0.843

Table B.2: Statistical Test p-values for 12 features between different methods (200

samples)
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