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Abstract

This project investigated the performance of five different Java libraries (Thread,

FixedThreadPool, CachedThreadPool, ForkJoin and Skandium) for implementing D&C

algorithms as well as their ease of programming. Focusing on six different problems,

We implemented the sequential version and five different parallel versions of solutions

with the selected libraries for each of them. We experiment with the implementations by

tuning the granularity (the size of no-further-split cases) and collect data of performance

and ease of programming. A comparative analysis of the libraries has been conducted

based upon the experiment results. With the aid of quantitative metrics and additional

comments, a thorough evaluation of the five Java parallel libraries from aspects of

performance and ease of programming has been given on D&C algorithms. We have

concluded that there is a trade-off between performance and ease of programming. As

a result, in future work, we propose to develop skeletons which adjust the scheduling

of underlying threads automatically so that they can not only hide the complexity of

parallelism from users but also achieve the optimal performance.
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Chapter 1

Introduction

1.1 Motivation

Divide and Conquer, hence denoted D&C, is a classic algorithmic paradigm, which

divides a problem into sub-problems of smaller sizes recursively until finding base

cases, applying the same strategy to solve the sub-problems and combine their results to

obtain the final solution. It has been found an efficient problem-solving technique in a

variety of areas. For example, it is the basis of efficient sorting and searching algorithms,

which are the most commonly needed algorithms in programming [1]. Nevertheless,

with the size and complexity of problems growing exponentially, the need for faster and

more scalable algorithms becomes imperative.

One of the most efficient ways is to parallelize them. In recent decades, the de-

velopment of multi-core systems has led to the evolution of computing power, where

each core can work and process independently. Parallelism is a mechanism that splits

large computation into smaller partitions and process them simultaneously. Due to

the independence between sub-problems in D&C, it is natural to exploit parallelism

for D&C algorithms so that one can make the most of computational power. A great

number of research has been conducted on parallelized D&C algorithms, some of which

have been proved to decrease time consumption sharply comparing to their sequential

version [2].

However, it is more complex to implement parallel algorithms with regard to their

sequential versions. Specifically, besides implementing solution strategies for sub-

problems, programmers also need to create worker threads for tasks, execute them

correctly to avoid errors or deadlocks, and then to achieve a good balance of work to

the available cores. To help programmers take the benefits of parallelism in increasing

1



Chapter 1. Introduction 2

throughput and improving performance in software development, Java, as one of the

most popular programming languages, has provided pre-built libraries. They have

different abstraction levels and thus aid parallel programming in different ways[3, 4].

Considering the wide use of D&C algorithms, parallelizing them will be of great

significance, especially for practical applications with high throughput. We hope that

this project will provide a reference for the development of parallel D&C algorithms and

help programmers make better use of these libraries to fully utilize the computational

resources to optimize the performance of their programs.

1.2 Problem Statement

When implementing parallel D&C algorithms in Java, there are multiple parallel libraries

available for use. They have different abstraction levels, i.e., they vary in functions

and interfaces they provide, with which programmers can either create and manipulate

threads directly or manage threads with thread pool automatically. There are also

programming abstractions that hide the complexity of parallelism from users. In

addition, there are algorithmic skeletons that completely hide underlying parallelism

from users. For example, when programming with algorithmic skeletons, such as

Skandium [5, 6, 7], programmers only need to specify sequential code blocks for

splitting, merging and solving problems. These blocks will be invoked and parallelized

automatically. As a result, a lot of code can be omitted. Nevertheless, in contrast to

direct threading libraries, it also leads to less control on low-level parallelism execution

in the mean time.

Furthermore, these libraries are also distinguished by the work scheduling strategies

they adopt. Scheduling tasks in Java consist of two parts, which are work scheduling

(schedule tasks to virtual threads) and thread scheduling (schedule threads to be executed

by physical CPU cores). While thread scheduling strategies are determined by JVM,

work scheduling strategies can vary across libraries. For example, if a First-In-First-Out

pattern is applied to schedule waiting tasks, because of dependency between tasks in

D&C algorithms, deadlocks will occur. In this case, more virtual threads will be required,

which increases the cost for thread scheduling and may potentially consume more time.

Moreover, work scheduling strategies can affect the ease of tuning granularity (the

size of non-split tasks during execution). Specifically, with the decrease of granularity,

more tasks will be assigned to threads, which in the mean time increase the difficulty of

balancing workload for worker threads. As argued above, a balanced workload benefits



Chapter 1. Introduction 3

the performance a lot. To achieve the optimal performance, a lot of experiments will be

required for tuning the granularity.

To sum up, different libraries differ in the aspects of interfaces provided and work

scheduling strategies adopted, which can affect both the performance and ease of

programming. Therefore, it is important to evaluate how they aid the implementation of

parallel D&C algorithms in software development.

1.3 Aims and Objectives

This project aims to measure Java parallel libraries’ ability to aid the utilization of com-

putation resources (which is reflected by the performance) and the ease of programming

for D&C algorithms. Our research is based upon the hypothesis that Java parallelism

libraries with the different levels of abstraction provide a useful range of trade-offs

between performance and programmability, i.e., more abstract libraries may have a

compromise on performance, which make them suitable for different applications.

The objectives of this project are:

• Find a collection of specific problems that can be solved by D&C algorithms.

Make sure these problems have different depths of recursion, degrees of balance

and quantity of computation in base cases.

• For each problem, implement its sequential solution as the baseline. After that,

implement different versions of its parallel solution with each of the libraries we

aim to evaluate.

• Experiment with the solutions by tuning the granularity that can optimize the

performance and collect the results.

• Analyse their performance and evaluate the ease of programming.

• Discuss how features of the libraries aid the implementations of D&C algorithms,

which can be indicative for future work.

1.4 Achieved Result

In this project, we have implemented six versions of D&C solutions (including one

sequential version and five parallel versions with five different Java parallel libraries)
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to six classic problems. We successfully collected data of different versions about

performance by tuning the granularity (size of not further split cases) and ease of

programming. We have discussed these experiment results and given a thorough analysis

of the selected Java libraries from aspects of performance and ease of programming

with the aid of quantitative metrics and comments. It has been concluded that their

could be a trade-off between performance and ease of programming.

1.5 Dissertation Outline

This dissertation will be divided into six chapters. Chapter 2 will present the related

work about parallel libraries. Programming abstractions and algorithmic skeletons

designed for D&C algorithms, such as TBB, ForkJoin and Skandium will be introduced

as they are valuable for further evaluation. Methodology for experiments and evaluation

in the project will be described in Chapter 3, including the metrics for analysing the

performance and ease of programming. The results of experiments will be exhibited

in Chapter 4. Chapter 5 will discuss and analyse the results. Finally, Chapter 6 will

conclude the project and discuss future work for implementing D&C algorithms more

efficiently.



Chapter 2

Related Work

This chapter will discuss the related work to our project. To be specific, we will

introduce the Java parallel libraries that we will evaluate in our project and thread

scheduling strategies in Java that will aid us to discuss experiment results. Moreover,

we will also mention parallel libraries designed for D&C algorithms in other languages.

2.1 Java parallel libraries

2.1.1 Thread

When Java was first introduced in mid-1990s, one of its standout features was built-in

support for multi-threaded programming, core of which was the ”Thread” class. Java

allows programmers to create multiple threads in a single program. To parallelize tasks,

a new thread can be created by instantiating a new ”Thread” object and overriding its

”run()” method, which is the code block to be executed.

The life-cycle of a ”Thread” includes several states: NEW, RUNNABLE, BLOCKED,

WAITING, TIMED WAITING and TERMINATED. ”Thread” class provides meth-

ods to manage and monitor these states, such as ”start()”, ”sleep()” and ”join()”. A

thread can be started from external by calling its start() method, which will invoke its

run() function, while join() is for waiting for its termination.

As the most basic execution unit of java parallel computing. ”Thread” provides

control over underlying parallelism. Specifically, each instance of Thread has a as-

signed priority which helps the scheduler to decide the order of thread execution. By

default, a thread’s priority equals the priority of the thread from which it is created.

Programmers can also query and change the priority of a thread through ”getPriority()”

5



Chapter 2. Related Work 6

and ”setPriority()” methods [8].

However, ”Thread” has several limitations. Firstly, the direct manipulation Thread
objects can be complex, especially when managing a large number of threads, including

the spawning, execution and killing of each thread. Secondly, writing and handling

multi-threading can be complex and error-prone. Improper coordinating can cause

issues such as deadlocks, race conditions and memory inconsistencies.

2.1.2 ThreadPoolExecutor

Besides single threads, Thread pool is also an important concurrency mechanism,

introduced as a part of ”java.util.concurrent” package in Java 5. Thread pool is a pool

of worker threads, enabling programmers to manage them as a whole. [3]

”java.util.concurrent” package also offers higher-level concurrency tools, one

of which is ”ThreadPoolExecutor” class. ”ThreadPoolExecutor” is a threading

framework that helps reduce the complications and inefficiencies of manual thread

managements. By facilitating thread pooling and task scheduling, it allows for better

resource utilization and simplifies concurrent programming, which is a compensation for

drawbacks of ”Thread” class. Specifically, the key difference between direct threading

and thread pooling is that there is no need to care about task scheduling. Programmers

can focus more on tasks that need to be executed, and thread pools will schedule them

automatically. Moreover, thread pools also control the lifecycle of threads inside them,

which help release the computation resources in a timely manner. Methods such as

”getPoolSize()”, ”getActiveCount()” and ”getCompletedTaskCount()” have provided

insights into the thread pool’s status.

To create a thread pool, programmers can use the constructor of ThreadPoolEx-
ecutor. There are various configurable parameters controlling behaviors of the thread

pool:

• Core pool size: Specifies the minimum number of threads in the pool. The pool

will keep threads alive no fewer than this value.

• Maximum pool size: Specifies the maximum number of alive threads in the pool.

• Keep-live time: Controls how long an idle thread can keep alive in the pool.

ThreadPoolExecutor will kill threads that have been idle for longer time than

this value to save resources.

• Work queue: Specifies the data structure containing tasks waiting to be executed.
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• Thread factory function: Specifies the function for creating new threads.

Moreover, the ”Executors” class provide interfaces for creating pre-configured

ThreadPoolExecutors. Programmers can use the factory functions in this class directly

without specifying the parameters in ThreadPoolExecutor, such as fixed thread pool

and cached thread pool [3, 9].

2.1.3 Fork and Join

Fork/Join is another Java’s parallel library, introduced in Java 7. It is a threading

framework designed with the idea of divide and conquer, by decomposing large tasks to

achieve fine-grained parallelism. As the name suggests, fork() splits a large task into

smaller ones, while join() gets the result of the execution of the smaller ones.

Figure 2.1: ForkJoin Framework

There are two primary components in the framework, which are ForkJoinPool
and ForkJoinTask. ForkJoinPool is an implementation of executor service (same as

ThreadPoolExecutor) and designed to work with ForkJoinTasks, including ”RecursiveTask”

(tasks that return a result) and ”RecursiveAction” (tasks that do not return a result).

Each task is represented with a corresponding object and gets executed automatically

by ForkJoinPool after started.

As a framework designed especially for fine-grained parallelism, Fork/Join frame-

work handles a vast number of small tasks particularly efficiently, which fits right in

with the characteristics of the D&C algorithm. This is because ForkJoinPool employs
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a work-stealing algorithm where idle threads ”steal” tasks queued up in other busy

threads, ensuring balanced workload and reduced thread contention [10, 11]. Another

strength of this framework is that it scales naturally with the number of available cores,

thus optimizing resource optimization [4]. However, the usage of this framework is

relatively limited since D&C might not be intuitive for all algorithms.

2.1.4 Algorithmic skeletons and Skandium

Algorithmic skeletons were first introduced by Cole in [5] in 1991. Originating from

the recognition that many parallel algorithms share common structures, skeletons are

designed as reusable patterns of parallel computation and communication. These

skeletons contain sequential code blocks, which are responsible for actual computations,

and encapsulate parallelism details. All programmers need to do is to implement the

code blocks and combine the skeletons, and they will be invoked and parallelized

automatically. To sum up, algorithmic skeletons abstract away the complexity of low-

level parallelism and offer a high-level view. Moreover, they can be combined to

implement different algorithms.

Several skeleton frameworks targeting at D&C algorithms have also been produced.

A typical example is Skandium, which was firstly introduced in [7]. Skandium firstly

defines four ”muscle” functions, including condition, split, execution and merge, which

are sequential code blocks programmers need to implement. These ”muscle” functions

can be combined to constitute different skeletons. For instance, in the structure of a

”DaC” skeleton, (1) condition specifies whether to split the problem, (2) split is invoked

to split the problem, (3) execution solves the base cases, (4) and merge merges results

from sub-tasks. Secondly, Skandium designs and implements nine skeletons. Different

skeletons consist of different ”muscle” functions. They can be also combined following

a pipeline model to solve various problems, as guided in [7].

Figure 2.2: Skandium Skeletons
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2.2 Thread scheduling strategies

Thread scheduling strategy is the fundamental concept that determines the order in

which threads get executed. Strictly speaking, Java has no mechanism for schedul-

ing threads, because Java threads are backed by native threads, which are scheduled

by the operating system. In general, the thread scheduling strategy adopted by Java

multi-thread programs is Time-slicing (Round-Robin) Preemptive, priority-based
scheduling. (However, the exact scheduling behavior may depend on the implementa-

tion of Java virtual machine and underlying operating system.)

As mentioned above, each thread in Java is assigned a priority. The OS will choose

one thread at one time and give a fixed slice of time to execute based on their priorities.

A thread with higher priority will get more time slices to executed while lower-priority

threads get fewer. ”Preemptive” means when a thread with a higher priority becomes

runnable, a lower-priority thread will be preempted, i.e., interrupted. It is notable that

this strategy may lead to starvation for threads with lower priority.

2.3 Libraries in other Languages

Intel developed TBB (Threading Building Blocks), which is a C++ library and provides

parallel patterns such as f or, reduce, scan and pipeline. Although it is described as a

task-based threading library, TBB actually provides a low-level abstraction. Specifically,

TBB hides all functions to parallelize from users. When programming with TBB,

all users need to do is to use the template and specify the input and the splitting

threshold, i.e., the granularity. In the meantime, it enables users to have more control on

parallelism, such as combining other parallel libraries or accessing the scheduler [12].

In 2021, Millan et al. proposed a C++ skeleton library which is designed for D&C

algorithms. It is worthy to mention that this project puts more focus on those problems

with large degree of imbalance and depth of recursion. As a result, instead of basing

the skeletons on TBB scheduler, it implements its own scheduler with the strategy

”work stealing”. Moreover, to deal with problems which requires deep recursion, it

implements a new data structure to contain the tasks, basing on heap instead of stack, to

prevent they from crashing down. As shown by its evaluation, it achieves almost linear

speedup on the benchmark T 3XXL, which is a benchmark to traverse a deep and highly

unbalanced binomial tree, where the programming abstractions provided by TBB fail

with stack overflow [6, 13].



Chapter 3

Methodology

We aim to evaluate and analyse Java’s parallel libraries’ performance on Divide and

Conquer algorithms as well as their ease of programming. This will be based on

experiments with implementations of algorithms with different libraries. This chapter

will introduce specific algorithms used to evaluate the libraries and how we implement

the solutions with libraries we aim to evaluate in the project. Besides, metrics to evaluate

performance and ease of programming will also be stated.

3.1 Algorithms

We focus on a set of classic problems which can be solved with Divide and Conquer

algorithms. These problems vary from each other in the following aspects:

1. Total number of tasks.

2. Largest possible size of tasks. In D&C algorithms, the size of tasks mainly

depend on the quantity of computation to split and merge, which changes with

the recursion level in some cases, while not in others. This factor refers to the

largest size among all tasks, which is commonly the size of the root task.

3. Degree of imbalance of splits. This measures the imbalance between the size of

subtasks generated by the same tasks. The imbalance can accumulate when the

recursion goes deeper, which can cause a great difference between the sizes of

tasks on the same recursion level.

4. Difference between sizes of all tasks. Size of tasks may change with the recursion

level, polynomially in some cases while geometricly in others, e.g., FFT.

10
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These factors affect the scheduling of tasks and further affect the performance of

programs. As a result, selecting enough problems varing in these features can guarantee

a thorough analysis of performance of Java parallel libraries. Table 3.1 gives a summary

of algorithms in our project.

Problem Number of tasks Size of
largest
tasks

Degree of
imbalance
of splits

Difference
in size of
all tasks

Fibonacci 2n Small Low Low

N-Queens nn Medium Low Low

Quick Sort Unpredictable Large Large Large

0-1 Knapsack 2n (n is number of

items)

Small Medium Small

FFT n Large Very Low Large

Adaptive Quadrature Unpredictable Small Medium Very Low

Table 3.1: Summary of Problems

3.1.1 Fibonacci

Fibonacci problem is to calculate the n-th number in a Fibonacci sequence with divide

and conquer. It follows the formula:

F(n) = F(n−1)+F(n−2), n ≥ 2

which indicates that each task is split into two approximate subtasks and base cases

are F(0) and F(1). This indicates that the time difference consumed by synchronization

between subtasks. Moreover, the computation required to merge results is simple, which

means the size of each task is small, leading to the flexibility of scheduling. However,

the number of tasks in this problem explodes with the increase of n (almost 2n tasks)

[14].

3.1.2 N-Queens

N-Queens problem is to find all the solutions to a N-Queens problem, where n queens

are placed on an n× n chessboard, ensured that they cannot attack each other. The

algorithm fixes one queen and find the position of the next queen in residual board



Chapter 3. Methodology 12

Algorithm 1 Fibonacci Algorithm
function FIB(n)

if n ≤ 1 then
return n

end if
return fib(n-1)+fib(n-2)

end function

recursively. As a result, it searches through the state space of size nn. Since each task is

responsible for checking the validity of each position, both the number and size of tasks

are large, which challenges the program [15].

Algorithm 2 N-Queens Algorithm
function SOLVENQUEENS(board, col, n, solutions)

if col ≥ n then
solutions.append(board)

end if
for row from 1 to n do

if queen can be placed on (row, col) then
board[row][col] = 1

solveNQueens(board, col+, n, solutions)

board[row][col] = 0

end if
end for

end function

3.1.3 QuickSort

QuickSort algorithm is to sort an array of length n by partitioning it into two parts

recursively, smaller and larger than a pivot. Due to the randomness of the selection

of pivots, the sizes of two parts of the partitioned array may vary a lot, which causes

imbalance between subtasks. Meanwhile, partitioning an array with a pivot requires

O(2n) operations. In this case, improper scheduling of tasks can lead to a decrease in

performance [16].
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Algorithm 3 Quick Sort Algorithm
function QUICKSORT(array, left, right)

if le f t < right then
pivotIndex = partition(array, left, right)

quickSort(array, left, pivotIndex-1)

quickSort(array, pivotIndex+1, right)

end if
end function
function PARTITION(array, left, right)

pivot = array[right]

i = left - 1

for index from left to right do
if array[index]≥ pivot then

i++

swap array[i] and array[index]

end if
end for
swap array[i+1] and array[right]

return i+1

end function

3.1.4 0-1 Knapsack

In 0-1 Knapsack problem, given a knapsack with a capacity and a collection of items,

each of which has corresponding value and weight, we need to find the maximum value

that can be put in the knapsack without exceeding the capacity where each item can

be used up to one time. Each problem is split into two cases, i.e., for each item, either

including or excluding it. As including the current item will occupy part of capacity,

imbalance is naturally caused between two parts of recursion. Moreover, the number of

tasks can be up to 2n (where n is number of items) [17].

3.1.4.1 Fast Fourier Transformation

Fast Fourier Transformation algorithm is to compute the discrete Fourier transform

of a sequence of n signals, where each signal has a real and imaginary part. The
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Algorithm 4 Knapsack Algorithm
function KNAPSACK(values, weights, capacity, index)

if index < 0 or capacity = 0 then
return 0

end if
if weights[index]> capacity then

return knapsack(values, weights, capacity, index-1)

else
includeItem=values[index]+knapsack(values, weights, capacity-

weights[index], index-1)

excludeItem=knapsack(values, weights, capacity, index-1)

return Max(includeItem, excludeItem)

end if
end function

transformation follows the formula:

Xk = Σ
N−1
n=0 e−i2πkn/N ,k = 0, ...,N −1

As derived and proved in [?], the transformation for the sequence can be computed by

splitting it into odd-indexed and even-indexed part recursively and merge their results

by:

Xk = Ek + e−(2πi/N)kOk,k = 0, ...,N/2−1

Xk+N/2 = Ek − e−(2πi/N)kOk,k = 0, ...,N/2−1

This algorithm is a typical example where subtasks are well-balanced because the

sequences are always divided equally, making the size the tasks half as the recursion

goes deeper. It is notable that considering both splitting and merging sequences require

the traversal of them, sizes of tasks on different recursion levels can vary greatly, while

tasks on the same recursion level have approximately same size. The total number of

tasks is n [18, 19].

3.1.4.2 Adaptive Quadrature

Adaptive Quadrature algorithm is to calculate the area of the graph below a function.

The algorithm splits the current graph into two trapezoids, left and right, calculate and

sum their areas to approximate its area, repeat this process recursively, until the error is
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Algorithm 5 FFT Algorithm
function FFT(x)

if x.length = 1 then
return sequence

end if
odd = sequence of odd-indexed elements in x

even = sequence of even-indexed elements in x

oddResult = fft(odd)

evenResult = fft(even)

result = merge oddResult and evenResult with above formula

return result

end function

less than a threshold. Because of the irregularity of the graph, it is unpredictable when

the program terminates, leading to unpredictable number of tasks. However, the size of

tasks is relatively small in this problem, each containing a few addition operations [20].

Algorithm 6 AQ Algorithm
Epsilon = 0.001

function AQ(func, left, right, lrarea)

mid = (left + right)/2

fleft = func(left)

fright = func(right)

fmid = func(mid)

larea = (fleft + fmid) × (mid - left) / 2

rarea = (fright + fmid) × (right - mid) / 2

if Abs(larea + rarea - lrarea) > Epsilon then
larea = AQ(func, left, mid, larea)

rarea = AQ(func, mid, right, rarea)

end if
return larea+rarea

end function
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3.2 Implementations

This section will introduce the implementations of above algorithms in our project, with

libraries of abstraction level from lower to higher. For each of the above algorithms, all

following versions are implemented for further experiments.

1. Sequential: A sequential version is implemented as a baseline. Moreover, the

sequential solution is responsible for solving base cases in parallel versions, to

make further analysis fairer.

2. Threading: The lowest abstraction level, where we are required to thread tasks

directly. In this version, every task is represented with an object extending Thread
class. Each creation of a task is also a creation of a thread. Similarly, starting and

ending a task are direct operations on a thread. Because the result is encapsulated

in the Thread object, extra code is required to fetch results from tasks. Because

of direct threading, attention should be paid to synchronization among threads

to make sure the right results have been prepared. Moreover, we have to handle

exception in the execution of threads, such InterruptedException.

3. Thread pools: Instead of directly threading, thread pools are created to manage the

threads. We implement the solutions with the aid of pre-configured thread pools

provided in Executors class [9]. Specifically, we experiment with FixedThread-
pool and CachedThreadPool, which apply different configurations and thus

cause different resource consumption and ease of programming. In thread pools,

we submit tasks as lambda functions, which return CompletableFutures. We

use interfaces provided by CompletableFuture class to achieve synchronization

between tasks and fetch results [21, 22]. However, the two types of thread pools

differ in the following ways:

(a) FixedThreadPool: We create fixed thread pools to manage the threads, where

the number of active threads is always fixed. It is notable that if all tasks

are executed in the same fixed thread pool, because of dependency between

tasks, a deadlock can be caused (when number of blocked tasks exceeds the

number of threads). As a result, we create a new fixed thread pool in each

task to get its subtasks to be executed. Careful configuration is also needed

for fixed thread pool to make sure we prepare enough worker threads so that

we can not only prevent deadlocks but also make the most of parallelism.
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(b) CachedThreadPool: It is another version of thread pools. Unlike fixed thread

pool, cached thread pool does not specify the number of threads (thus there

is no need for configuration when creating). It ensures there is at least one

active thread in the pool and sets no upper limit on the number of threads.

When a new task come in, it firstly considers reusing an existing thread

that is available. If there are no such threads, it will create a new thread to

execute it. As a result, in this version of solution, we execute all tasks in a

single cached thread pool.

4. ForkJoin: ForkJoinPool is a programming abstraction library that is designed

for D&C algorithms. In this version, tasks are represented as objects extending

RecursiveAction or RecursiveTask, where RecursiveTask specifies the data

type of execution results. When invoking the ”start()” function of a task, we are

actually submitting it to the fork/join pool. After that, we can use the ”join()”
function to wait for the termination of the task and fetch results from them

computed by their ”run()” function in the meantime. Because fork/join pool

automatically scale its parallelism to the number of available processors, it is

simple to configure a fork/join pool.

5. Skandium: With the highest abstraction level, Skandium allows us to write se-

quential code to implement skeletons and achieve parallel computing. Specifically,

to use the D&C skeleton, we need to implement four ”muscle” functions, which

are (1) Condition to decide whether to split the task, (2) Split to specify how to

split the task into subtasks, (3) Execute to solve the base cases and (4) Merge

to merge results from subtasks. Each ”muscle” function corresponds to a class.

To create a D&C skeleton, we pass new instances of the ”muscle” functions into

the constructor of ”dac” skeleton. After that, we can invoke the skeleton in a

skandium pool.

3.3 Metrics of Performance

This section will introduce the metrics that we apply to measure the performance of

the programs. Generally, the performance of parallel algorithms mainly refers to the

execution time, which can be quantified through the following metrics:

1. Execution time: In each run, we firstly record the execution time. The execution

time equals the difference between the time of end and start of an execution, which
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are fetched through the interface ”System.nanoTime()”. This interface returns a

long integer representing the current value of time source in the running JVM, in

nanoseconds, thus providing a high precision and resolution in time estimation

[23]. Moreover, in order to avoid and eliminate the errors and oscillations that

could occur during execution, we repeat every execution for several times and

calculate an average value as the final execution time.

2. Speedup: Speedup reflects how parallel algorithms accelerate the resolving of

problems. Specifically, taking sequential solutions as the baseline, speedup

equals the time taken by the baseline divided by the execution time of parallel

versions. In our implementations, all base cases, i.e., no longer split cases, in

parallel solutions are solved by the corresponding sequential solution. As a result,

speedup is completely resulted from parallelism, ensuring the fairness of speedup.

Speedup =
Time cost by sequential version
Time cost by parallel version

3. Efficiency: Efficiency quantifies the ability of parallel programs to make use of

available computing resource. It is calculated by the following formula:

E f f iciency =
Speedup

Number o f Processors

However, CPUs today tend to support more hardware threads than physical cores

[24, 25]. For example, CPU of the computer used to conduct the experiments has

8 physical cores, while each core has 2 processors which task turn to access the

physical core. As a result, there are at most 8 processors working at the same time.

Although time can be saved by this pattern, we still set the number of processors

as 8 in our project. Moreover, as JVM does not have access to control underlying

hardware, we cannot limit the number of cores. Therefore, we only experiment

with 8 cores in our project.

To ensure the fairness of the data collected, we set a benchmark for each problem.

Benchmarks are sensible inputs for the corresponding problem, so that they are not only

solved correctly without causing memory overflow or taking too long time, but also able

to show the benefits of parallelism. For example, if the input size is too small, sequential

solution will take a little time, thus leading to a very low speedup. In the experiments,

we firstly execute the sequential solution to each problem on the benchmark and record

the execution time as the baseline. Secondly, we experiment with all parallel solutions

by tuning the granularity (size of no-further-split cases) and collect the data. Values
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of granularity cover the range where performance increases to peak and then drops,

depending on how much parallelism is applied.

Problem Benchmark (problem size)

Fibonacci 44-th fib number

N-Queens 15× 15 board

Quick Sort Array with 108 −1 integers

Knapsack 40 items in total and capacity is 75

Fast Fourier Transformation Sequence with 224signals

Adaptive Quadrature f (x) = (x−50)2

1000 +20, x ∈ [0, 1010 −1]

Table 3.2: Summary of Benchmark

3.4 Metrics of Ease of Programming

This section will introduce the metrics applied to measure the ease of programming

with different libraries. As base cases are solved by sequential solutions in our project,

the difference of ease of programming completely comes from the code required for

parallelism and synchronization.

1. SLOC: SLOC stands for ”Source Lines of Code”, which is a classic metric of

size of a program and used to estimate the effort required to develop it. This is

probably the most intuitive way to reflect the difficulty of programming. However,

a typical drawback of SLOC is that it is easily affected by personal programming

habits.

2. Halstead efforts: Maurice Halstead introduced a set of metrics introduced in

1977 to measure the complexity of a program. He treats software development

as an information processing activity and use principles from information theory

to derive the metrics. These metrics are based on the number of operators and

operands in a program, among which is Halstead effort, aiming to represent the

amount of mental effort for developing, understanding and maintaining a program

[26]. It can be calculated following the steps:

(a) Determine the number of distinct operators (n1) and distinct operands
(n2).



Chapter 3. Methodology 20

(b) Count the total number of operator occurrences (N1) and operand occur-
rences (N2)

(c) Calculate the program vocabulary n: n = n1 +n2 and program length N:

N = N1 +N2

(d) Calculate the Volume V: V = N × log2n and Difficulty D: D = (n1
2 )×

N2
n2

(e) Halstead E equals D×V

In our project, Halstead effort is calculated for every parallel program with a

self-written Java script. (As shown in Appendix A.1)

3. Comments: In addition to the above quantitative metrics, there are several issues

that we cannot describe with a specific numeric value in parallel programming.

As a result, we provide extra comments on complexity and pitfalls that can bother

programmers when implementing D&C algorithms with these libraries, such

synchronization issues.
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Experiment and Results

This chapter will introduce the conduct of our experiments, including the environment

where the experiments are performed and their design. After that, we will present

sample results of the experiments.

4.1 Experiment Environment

In our project, all experiments are performed on a single computer with 16 GB of

memory and one 2.30 GHz Intel Core i7-11800 CPU with 8 cores, each of which has 2

threads (processors). The Operating System is Windows 11 of version 22H2. When

running, programs are guaranteed to access all 8 cores. Source codes are interpreted

with Java JDK 20 (Oracle OpenJDK Version 20.0.1).

4.2 Experiment Settings

This section will introduce the design and settings of our experiments. First of all, to

prevent errors resulted from performance oscillations, we repeat every run five times in

the experiment. Secondly, in this section, we will discuss the granularity we experiment

with in our project, where granularity is the size of base cases. The setting of granularity

determines the degree of applying parallelism, thus affecting the performance sharply.

We try to experiment with a range of granularity as wide as possible so that the change

of performance can be clearly observed from the results. Results have shown that the

settings of granularity in our project have witnessed the performance raise to peak and

then decrease with the further increase of granularity. Lastly, when recording execution

time, we make sure all the time consumption we time in the experiment completely

21
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comes from the algorithm instead of the whole program, i.e., excluding the time for

loading benchmarks or outputting the results.

1. Fibonacci: The benchmark is to calculate the 44th Fibonacci number. The first

n Fibonacci numbers are calculated with sequential solution when n is less than

granularity. Our range of granularity is from 23 to 39, and step is 2, where the

performance peaks around 31.

2. N-Queens: The benchmark is to solve n-queens problem on a 15×15 chessboard.

When the number of unoccupied columns is less than granularity, the placement

of queens will be found by sequential solution on the residual boards. The range

of granularity is from 10 to 14 and step is 1. The performance of all libraries

peaks around 12.

3. Quick Sort: The benchmark is to sort an array of length 108 − 1. When the

length of the array in a subtask is less than the granularity, it will be sorted

with sequential quick sort. Settings of granularity in this problem includes

25,50,125,250,500,1000,1500,2000,2500,3000,3500,4000(×104), where per-

formance peaks around 50×104.

4. Knapsack: We need to consider 40 items to put into a knapsack of capacity 75.

As the solution to a knapsack problem with n items is derived from a sub-problem

on the first n-1 items, the granularity in this problems specifies that when the

number of items in a sub-problem is less than the granularity, this sub-problem

will be solved with the sequential solution. Granularity from 26 to 36 has been

experimented, where step is 1. All libraries achieve the best performance around

29.

5. Fast Fourier Transformation: We try to calculate Fourier transformation on a

sequence with 224 signals, and a subtask processes sequence having less signals

than granularity with sequential solution. We experiment with granularity of 29

to 223 (multiplying by 2) and results show that when granularity is approximately

219, libraries achieve the best performance.

6. Adaptive Quadrature: We aim to calculate the area of graph under (x−50)2

1000 +20

where domain is [0,1010]. We try to approximate the area of each part of the

graph and when the error is less than the granularity, we continue the calculate

the area with sequential AQ algorithm. The granularity ranges from 108 to 1019

(multiplying by 10), and performance peaks when granularity is around 1010.
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4.3 Experiment Results

In this section, we will present sample results of our experiments. We will firstly

draw a table to present the performance of baseline, i.e., the sequential solution, in the

benchmark of each problem. Secondly, for each problem, we will post a line graph

summarizing the performance of each library with the change of granularity. Besides,

for each problem, we will include a table showing their speedup and efficiency at (1)

the lowest granularity, (2) the best granularity and (3) the highest granularity. Moreover,

to aid the analysis of ease of programming, we will attach a table showing values of

SLOC and Halstead effort of different solutions in each problem.

To make it easier to mention them, we refer to Threading, FixedThreadPool and

CachedThreadPool as thread solutions while we call ForkJoin and Skandium as

abstraction solutions.

4.3.1 Performance of baseline

This table shows the execution time of the sequential solution in each problem, calcu-

lated from 5 repeated attempts. All further calculation of speedup and efficiency of

parallel solutions will be based on this.

Problem Execution time(s)

Fibonacci 2.36

N-Queens 32.31

Quick Sort 9.73

0-1 Knapsack 33.64

FFT 13.38

Adaptive Quadrature 2.47

Table 4.1: Performance of baseline

4.3.2 Fibonacci

Figure 4.1 shows the speedup of different parallel solutions to the benchmark of Fi-

bonacci with different values of granularity. It can be observed that performance of

thread solutions improves when granularity increases from 23 to 33 while abstraction

solutions achieve a high speedup all along. The further increase of granularity causes
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less application of parallelism, thus leading a decrease of performance. It can be con-

cluded from the graph that thread solutions achieve a better peak performance while

abstraction solutions perform well on a wider range of granularity. Table 4.1.1 has

shown the values of speedup and efficiency with granularity 23, 33 and 39.

Figure 4.1: Summary of performance in Fibonacci

Table 4.2 shows the values of SLOC and Halstead effort of solutions to Fibonacci.

The values are calculated based on the code to both implement and invoke the solutions.

It is notable that the solution with Skandium includes the implementations of four

muscle functions in four different classes.
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Solution SLOC Halstead effort

Threading 29 11497.56

FixedThreadPool 10 12939.91

CachedThreadPool 10 8131.61

ForkJoin 16 14805.35

Skandium 24 15729.38

Table 4.2: SLOC and Halstead effort of solutions to fib

4.3.3 N-Queens

Figure 4.2 is the line graph summarizing the performance of solutions to N-Queens. It

is worth mentioning that there is a lack of data when granularity is less than 10. This

is because it takes too long for thread solutions to be executed. However, abstraction

solutions can still achieve ideal performance, which reveals that abstractions ease the

tuning when programming. When granularity is increased by 1, number of tasks created

is decreased by n (the size of the chessboard, which is 15 here) times, leading the

performance of thread solutions to increase sharply and peak when granularity is around

13. Table 4.2.1 has shown the values of speedup and efficiency when granularity is 10,

13 and 14.

Figure 4.2: Summary of performance in N-Queens

Table 4.3 shows the values of metrics measuring the ease of implementations of

solutions to N-Queens problem. In Skandium solution, besides four muscle functions,
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we design an auxiliary class to describe the progress of solution and pass parameters,

which is not required in other solutions.

Solution SLOC Halstead effort

Threading 52 138115.75

FixedThreadPool 37 140709.37

CachedThreadPool 37 129964.47

ForkJoin 46 147650.98

Skandium 60 202505.74

Table 4.3: SLOC and Halstead effort of solutions to N-Queens

4.3.4 Quick sort

Figure 4.3 is the summary of solutions’ performance in Quick Sort. Three thread

solutions no longer share similar performance as in previous cases. Specifically, direct

threading achieves much better performance than thread pools. Thread pools perform

best when granularity is around 1.25× 106 while others peak when granularity is

between 5× 105 to 15× 105. Table 4.3.1 presents the speedup and efficiency when

granularity is 2.5×12.55, 5×105 and 400×105.

Table 4.4 shows the values of SLOC and Halstead effort of solutions to quick sort.

As data passed between muscle functions in Skandium should be encapsulated in a

single object to conform to the interfaces, we have an auxiliary class, which increase

the quantity of source code.
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Figure 4.3: Summary of performance in Quick sort

Solution SLOC Halstead effort

Threading 38 11497.56

FixedThreadPool 26 12939.91

CachedThreadPool 27 8131.61

ForkJoin 34 14805.35

Skandium 48 94990.91

Table 4.4: SLOC and Halstead effort of solutions to Quick sort

4.3.5 Knapsack

Figure 4.5 presents the summary of performance of solutions to knapsack problem. It

shows a clear trend that performance improves with the increase of granularity within

26 to 29 and starts to decrease after that. In this problem, the highest speedup is over 9,
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which exceeds the number of physical cores in CPU, which is because every core has

two processors. Table 4.4.1 demonstrates the concrete values of speedup and efficiency

with granularity 26, 29 and 36.

Figure 4.4: Summary of performance in Knapsack

Table 4.6 illustrates the values of metrics measuring ease of programming in Knap-

sack problem. Similarly, Skandium solution include the implementations of four

muscle functions as well as an auxiliary class to encapsulate data. However, in con-

trast to previous cases, the Halstead effort of Threading solution exceeds the value of

FixedThreadPool solution. This is because we consider two separate situations, i.e.,

including or excluding the current item, when splitting a problem. Threading requires

us to handle the exception of execution in two branches separately, which increases the

complexity of programming.
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Solution SLOC Halstead effort

Threading 33 36334.72

FixedThreadPool 17 31441.49

CachedThreadPool 15 27996.07

ForkJoin 25 26604.87

Skandium 46 70763.33

Table 4.5: SLOC and Halstead effort of solutions to Knapsack

4.3.6 Fast Fourier Transformation

Figure 4.6 is a summary of performance of solutions to FFT. Although the general

pattern of change in performance is similar to previous problems, the speedup achieved

in this case is not nearly as high as in other problems. This is because for each task

created during execution, we create a copy of large array of signals, which can saturate

the memory bandwidth and lead to contention and slowing down the computation. We

will show concrete speedup and efficiency for granularity 29, 219 and 223. Moreover, In

Table 4.6 are the values of SLOC and Halstead effort of solutions to FFT.

Figure 4.5: Summary of performance in FFT
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Solution SLOC Halstead effort

Threading 37 54077.29

FixedThreadPool 24 57784.84

CachedThreadPool 24 55850.48

ForkJoin 30 51144.19

Skandium 48 101715.36

Table 4.6: SLOC and Halstead effort of solutions to FFT

4.3.7 Adaptive Quadrature

Figure 4.6 summarizes the performance of libraries in Adaptive quadrature. It can be

clearly observed from the graph that the line is greatly similar to that in Fibonacci,

which is because the degree of split and quantity of computation are similar in these

problems. Performance improves when granularity increases from 108 to 1013, and

decreases then because of less parallelism. Table 4.6.1 shows speedup and efficiency of

solutions when granularity is 108, 1013 and 1019.

Values of SLOC and Halstead effort of solutions to Adaptive Quadrature are pre-

sented in Table 4.7. It can be observed the Halstead efforts of Threading and ForkJoin

increase and both become higher than thread pool solutions. It is because we pass in six

parameters in each task in this problem, which requires twice as much code to declare

and assign variables in them as they follow the object-oriented programming pattern.
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Figure 4.6: Summary of performance in AQ

Solution SLOC Halstead effort

Threading 36 37233.06

FixedThreadPool 15 28262.36

CachedThreadPool 15 26812.56

ForkJoin 30 33155.60

Skandium 42 94488.77

Table 4.7: SLOC and Halstead effort of solutions to Adaptive quadrature



Chapter 5

Discussion and Analysis

This chapter will discuss the experiment results presented in Chapter 4. Based on this, a

thorough analysis will be given on the five Java libraries we selected from the aspects

of performance and ease of programming. For convenience, solutions are also classified

as thread solutions(including Threading, FixedThreadPool and CachedThreadPool)
and abstraction solutions (including ForkJoin and Skandium) as discussed in Section

4.3.

5.1 Performance

In overall, five libraries can contribute a ideal speedup when their performance peaks,

achieving efficiency around 1 which means they are making the most of 8 physical core

(FFT is an exception because each task maintains a copy of array of signals, which

leads to contention and slows down the computation). Although their peak performance

varies, it can be observed from the results that thread solutions achieve a slightly higher

speedup in most cases at the optimal granularity. However, in contrast to our research

hypothesis, among thread solutions, CachedThreadPool seems to perform better than

others while Skandium is ahead of ForkJoin. Neither of these is in the order of the

degree of abstraction.

To understand why this happen, we will focus on how these libraries schedule tasks

to threads. For a specific benchmark, the number of threads created by each of the five

solutions is different. Specifically, among thread solutions, FixedThreadPool solution

always creates the most threads as in each task, we maintain a thread pool with its

size equal to the number of its possible branches (subtasks). Meanwhile, Threading

solution creates a thread only when a subtask is actually forked. For example, in

32
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N-Queens problem, we always maintain a thread pool with n threads (n is the size of

chessboard) in a task while we only create a new thread when we find a position to

place the queen in the current task in Threading solution. Moreover, CachedThreadPool

may create threads even fewer than the number of tasks because it will firstly consider

reusing a previous thread when a new task is submitted. To summarize, the number of

threads created in each solution conforms to the following formula: FixedThreadPool ≥
Threading = Number of tasks ≥ CachedThreadPool. As Java is adopting a Time-Slicing

scheduling strategy, which loops around and assigns a time slice to each thread no

matter whether it is blocked or idle, fewer threads can save the time wasted on executing

blocked and idle threads. Moreover, maintaining a new thread pool in every task require

extra computation resources, which can slow down the execution in FixedThreadPool

solution. Regarding to abstraction solutions, their specially designed working queue

ensures subtasks to be executed first so that deadlocks can be avoided. Therefore,

successful execution is guaranteed with a few threads in abstraction solutions (which by

default is the number of available processors).

Furthermore, this also explains why abstraction solutions have a stable performance

over a wider range of granularity. It is clear from the results that thread solutions and

abstraction solutions follow two completely different changing patterns with the change

of granularity. Specifically, thread solutions achieve their peak performance around the

optimal granularity while abstraction solutions tolerate a much smaller granularity. A

smaller granularity leads to more threads in thread solutions, making it much harder to

schedule them. Nevertheless, in abstraction solutions, it will only cause more tasks to

be executed in the same number of threads. With work-stealing strategy balancing the

workload, abstraction solutions can still achieve a high speedup with a small granularity.

When the granularity exceeds the optimal value, any further increase makes the solutions

approach the sequential solution, naturally slowing down the execution.

Although thread solutions have been proved to perform well, it is notable that they

provide interfaces to control underlying parallelism, which means programmers can

trade ease of programming up for a better performance. For example, in our project,

we experimented with setPriority() in thread solutions, to set the priority of threads so

that subtasks can be executed in prior to their parents, which improves the performance

slightly. Programmers are able the suspend those blocked threads and awake them from

their children threads, while it requires them to pass more parameters and care more

about synchronization issues.

To sum up, among thread solutions, CachedThreadPool performs better than others
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while Skandium is better than ForkJoin in abstractions, which is different from the order

of abstraction level. Comparing thread solutions and abstraction solutions, it can be

concluded that thread solutions perform slightly better than abstraction solutions at the

optimal granularity, while abstraction solutions perform stably over a wider range of

granularity. However, it is notable that we can further improve the performance with

thread solutions by trading off ease of programming.

5.2 Ease of Programming

We collected two metrics to evaluate the ease of programming. The values of SLOC is

consistent across all problems that Skandium needs the most lines of source code and

Threading requires the second most. FixedThreadPool and CachedThreadPool need

similar number of lines of code, which specifically differ at the shutdown of thread

pools. When counting the number of lines, we have excluded the lines that do not have

any operations to eliminate the effect of personal programming habits.

However, SLOC is not consistent with Halstead effort, which focus more on the

number of operators and operands. As the code for checking granularity, solving base

cases and merging results are the same across all solutions for the same problem, the

difference of Halstead effort mainly reflects the difference of synchronization and

submitting new tasks. It can be seen from the results that FixedThreadPool always has

a higher value for Halstead effort than CachedThreadPool as it requires more code to

create new thread pools and shut it down. Threading tends to have a lower value than

FixedThreadPool in most cases, whereas there are exceptions in Knapsack and Adaptive

Quadrature. It is because Threading needs extra code to handle InterruptedException

under two conditions separately in Knapsack, while the large number of parameters in

Adaptive Quadrature affect the computation of Halstead effort according to the formula

(as discussed in Secion 4.3.5 and Section 4.3.7).

The exception in Adaptive Quadrature reflect the drawbacks of the metric, because

repetition of simple code does not essentially increase programming complexity. Actu-

ally, we cannot represent all difficulties with quantitative metric in parallel computing.

Taking synchronization for an example, although synchronization can be achieved with

a single interface ”join()” in Threading and ForkJoin, Threading needs extra code for

handling exception of being interrupted while in ForkJoin ”join()” returns the result of

execution automatically. However, in thread pools, synchronization is achieved in a

different way, i.e., with the aid of ”CompletableFuture” class, which provides interfaces



Chapter 5. Discussion and Analysis 35

to monitor the status of execution and fetch results. Moreover, Threading, thread pools

and ForkJoin are adopting completely different programming patterns. Specifically,

thread pools adopt functional programming while Threading and ForkJoin use object

oriented programming, which causes a clearer structure and makes it easier to maintain

the code. As a result, to start new tasks, methods of newly created objects can be

invoked directly, whereas in thread pools programmers have to submit them as lambda

functions. Given these features, it is not fair to determine which is easier to program

with, but there are factors to consider about when programming such as the familiarity

with lambda functions.

In the meantime, Skandium provide a completely different way for parallel program-

ming, i.e., skeletons. In our project, the only involved skeleton is the DaC skeleton,

which requires the implementation of four muscle functions. We only need simple

sequential code to implement muscle functions. To invoke them, we can build the

skeleton by passing in new instances of muscle functions. The muscle functions are

invoked following a pipeline model and result of each function is streamed to the

next one automatically. The execution of functions is parallelized by the skeleton.

As a consequence, there is no need for users to know about utilization in Java about

parallelism or synchronization. Everything programmers need to do is to follow a

sequential programming pattern, input the problem and the result will be produced

when implementing parallel D&C algorithms. It can be concluded that Skandium is the

easiest way for a non-parallel programmer to implement parallel D&C algorithms.

5.3 Summary

When programming, the key idea is to achieve a balance between performance and ease

of programming. As argued above, abstraction solutions, i.e., ForkJoin and Skandium,

provides a stable speedup over a wide range of granularity, which not only ensures an

ideal performance close to that of thread solutions, but also saves the effort for tuning

granularity. However, if programmers aim to achieve better performance, utilizing

interfaces provided by thread solutions is inevitable to control underlying parallelism

and coordinate the schedule of threads manually. Hence, there is a trade-off between

ease of programming and performance.



Chapter 6

Conclusions and Future Works

This chapter will conclude what we have done as well as our findings in the project.

Based on this, we will further discuss future work for implementing parallel D&C

algorithms in Java.

6.1 Conclusions

In this project, we evaluated five different Java parallel libraries over Divide and

Conquer algorithms from the aspects of performance and ease of programming. Listed

in ascending order of abstraction level, we focused on Threading, FixedThreadPool,

CachedThreadPool (which three are called thread solutions), ForkJoin and Skandium

(which two are called abstraction solutions). We implemented D&C solutions to six

classic problems, including Fibonacci, N-Queens, Quick Sort, Knapsack, Fast Fourier

Transformation and Adaptive Quadrature, each with five parallel versions of solutions

as well as a sequential one as the baseline. By tuning the granularity (the size of not

further split cases) in each problem, we experimented with the implementations and

collected data about performance and ease of programming. According to the results,

we have concluded that thread solutions aid a slightly higher speedup while abstraction

solutions achieve an ideal performance over a wider range of granularity. Regarding

to ease of programming, abstraction solutions eliminate the complexity of underlying

parallelism. Specifically, there is no need to schedule tasks to threads manually or care

about synchronization, which benefits non-parallel programmers greatly. Moreover,

they save a lot of effort in tuning granularity. However, to pursue better performance,

it is necessary for programmers to trade off between the ease of programming and

intervening thread scheduling and execution through interfaces provided by thread
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solutions.

In our project, there are several issues where we could make improvement. Firstly,

as argued in Section 5.2, the two metrics of ease of programming do not comprehen-

sively describe the complexity in parallel programming, while the comments are not

exactly objective, which has limited our evaluation to some extent. As a result, a more

comprehensive quantitative metric along with some comments might aid our evaluation

on ease of programming. Secondly, the hardware environment have limited our experi-

ment, including the memory space and the number of cores in CPU. For example, the

performance of solutions to FFT is greatly limited to the size of the running memory,

which led to a low efficiency. With a larger memory and a CPU with more cores, we are

likely to be able to achieve more realistic performance of the libraries in more diverse

environments in our project.

6.2 Future works

In the future, there are several areas for further investigation in. Specifically, there are

several exceptions in the results of our experiments, which are not consistent with our

theoretical expectations and analysis. For example, in contrast to other cases where

thread solutions’ performance are approximately the same, thread pools achieved much

lower speedup in Quick Sort than direct threading. Further experiments need to be

conducted to study the execution of underlying parallelism, which may help to explain

the phenomenon and provide reference for programming with thread pools in the future.

Furthermore, our project has found skeletons powerful tools for programming

parallel D&C algorithms. However, there is a gap of peak performance between

skeletons and thread solutions. As a result, future work could be done to fill the gap on

performance, to produce a new library of skeletons which not only hide the complexity

of parallelism from users and ease the tuning of granularity, but also manipulate the

scheduling of threads so that they can achieve equal or even better performance than

thread solutions.
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Appendix A

First appendix

A.1 First section

Here is the script for calculating the Halstead effort. The code for our project has be

uploaded to: https://github.com/isoland818/Parallel Patterns

Figure A.1: Script for calculating Halstead effort
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