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Abstract

This project is primarily concerned with applying deep learning techniques to the prob-

lem of indoor wifi localisation. The application of indoor Wi-Fi localisation typically

requires collecting accurate training dataset for the building of interest. However, this

can be expensive or infeasible in a commercial setting. An alternative would be to

collect the dataset through crowd-sourcing, which saves effort but will result in a noisy

dataset with inaccurate labels. In this project, we investigate various methods to reduce

the effect of noisy training dataset, including data augmentation, validation-guided

training, ensemble method, and self-supervised learning. We achieve a mean error of

1.93m on the test set, a 48% improvement compare to models directly trained on the

noisy dataset.
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Chapter 1

Introduction 1

There is a growing commercial demand in the modern society for indoor localisation

system, which offers numerous applications including indoor navigation, emergency

response, and targeted advertising. Traditional Global Positioning System (GPS) tech-

nologies struggle to provide accurate localisation in indoor environments due to signal

degradation caused by obstructions and multipath effects [1]. Consequently, various al-

ternative methods, including Wi-Fi-based localisation and Radio Frequency (RF) based

localisation [2], have emerged as potential solutions to overcome these limitations. In

particular, the use of Received Signal Strength (RSS) from Wi-Fi access points has

proven to be a promising approach for indoor localisation, due to the widespread adop-

tion of wireless LANs (WLANs) in almost every building. However, several challenges

need to be addressed to achieve the desired accuracy and robustness in localisation

performance.

To use RSS signals for localisation, there are usually two steps involved. First, one

needs to collect RSS signals at a set of known locations. The collected RSS signals at a

given location is known as the Wi-Fi fingerprint of that location. The collection step

establish the association between fingerprints and their corresponding spatial locations.

Then, at inference time, a location prediction is made for an unknown fingerprint

based on the collected fingerprints. One of the primary challenges in Wi-Fi-based

localisation is the collection of an accurate and comprehensive dataset, which is often

limited by time and resource constraints. Crowd-sourcing [3] has emerged as a potential

solution to this problem, allowing the collection of large amounts of data at a reduced

cost. However, the data collected through crowd-sourcing are often noisy, which can

significantly impact the performance of localisation algorithms.

1Note that some portions of this section may come from the IPP project.
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Chapter 1. Introduction 2

This dissertation aims to tackle the issue of using noisy and uncertain datasets in

indoor Wi-Fi localisation and make accurate predictions given only noisy dataset with

the help of deep learning techniques. We propose various methods to mitigate the

challenges associated with the use of crowd-sourced data, such as data augmentation

and validation-guided training. These approaches are designed to improve the reliability

and robustness of the localisation system, allowing it to better adapt to the inherent

uncertainties in RSS signals and the training data.

1.1 Problem Statement

Despite the significant advancements in indoor Wi-Fi localisation, there remains a

pressing need to address the uncertainties and inaccuracies associated with crowd-

sourced data. Crowd-sourced data are collected by people walking in the building with

their smartphone recording the Wi-Fi signals and IMU data. The location associated

with each fingerprint in the crowd-sourced data is generated algorithmically using the

IMU data collected along with the Wi-Fi fingerprints and the building floor plan to

construct a plausible route taken by the user. As can be imagined, the generated location

might differ by a large amount to the actual location due to inaccurate sensor readings

and errors from the prediction algorithm. Consequently, the Wi-Fi localisation system

based on such noisy dataset will naturally produce noisy predictions.

The current positioning system typically involves three components as illustrated in

fig. 1.1. The first component, which we call the Wi-Fi encoder, predicts a location, i.e.,

(xenc
t ,yenc

t ), given a Wi-Fi fingerprint. The second component uses IMU information

to estimate the number of steps taken by the user, the direction taken, etc. Ultimately,

this component estimates a location in its local reference frame, i.e., (∆xt ,∆yt). This

component will be called the IMU encoder. Finally, a filter is used to integrate the two

predictions from encoders, and the past trajectory of the user to produce a final estimate

of the current location (xt ,yt). This filter can be any traditional filter, such as particle

filters, or deep learning based filter.

Although the filter takes into account the information from both the IMU encoder

and the Wi-Fi encoder, if the Wi-Fi encoder produces very noisy predictions, it will

significantly affect the prediction of the filter, causing the final prediction to ‘drift’. The

challenge is thus to develop a more robust and reliable localisation system that can

handle the inherent noise and variability in crowd-sourced datasets.

For a Wi-Fi encoder, which will be the focus of this dissertation, the input is a Wi-Fi
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RSS signals Wi-Fi encoder

IMU signals IMU encoder

Filter (xt ,yt)

(xenc
t ,yenc

t )

(∆xt ,∆yt)

Figure 1.1: The components in an existing indoor localisation system.

fingerprint, which consists of a set of Access Point (AP) names and their corresponding

RSS signals received by a phone at a specific location at a specific time. The output is a

location prediction, which is a vector of (x,y) coordinates. The problem can thus be

formulated as a regression problem, where a mapping is learned from the fingerprint

feature space to the coordinate space, and thus various machine learning techniques can

be applied to solve this problem.

1.2 Research Hypothesis and Objectives

The overarching aim of this project is to enhance the accuracy and reliability of in-

door Wi-Fi localisation systems by addressing the challenges associated with noisy

and uncertain crowd-sourced datasets. In this dissertation, various methods will be

experimented to attempt to increase the accuracy of the above mentioned system. In this

research, we will focus on improving the accuracy of the Wi-Fi encoder. We investigate

methods that allows training the Wi-Fi encoder on a noisy dataset with the ability to

generalise to a clean and unseen test dataset. We hypothesis that with the proposed

methods, the localisation system will be able to discover the underlying patterns in a

noisy dataset and make accurate predictions on the clean dataset.

1.3 Outline

In sec. 2, we overview the background of Wi-Fi localisation problem, and relevant

researches on utilising noisy datasets for deep learning. Then, we introduce our proposed

model and experimental details in sec. 3. The results of experiments are shown in sec. 4,

and are analysed in sec. 5, along with suggestions for future research.



Chapter 2

Background and Related Work 1

2.1 Wi-Fi Localisation

Wi-Fi localisation has emerged as a promising solution to the indoor localisation

problem, as it leverages the ubiquitous Wi-Fi networks in most modern buildings. Within

the domain of Wi-Fi localisation, different types of signals, such as Received Signal

Strength (RSS) and Channel State Information (CSI), have been studied intensively

over the past few decades [1], [4]. In particular, RSS-based localisation has been widely

adopted in the literature due to its simplicity and compatibility with the existing wireless

infrastructures without requiring extra hardware. Thus, this paper will primarily focus

on RSS-based localisation techniques.

Various techniques have been proposed to exploit the Received Signal Strength

(RSS) signals from Wi-Fi access points for localisation purposes, including fingerprint-

ing [5] and trilateration [6]. Wi-Fi fingerprinting, which is the focus of this dissertation,

has been particularly popular due to its simplicity. Fingerprinting techniques typically

involves two stages. The offline stage comprises the creation of a radio map of the

environment by collecting RSS readings at known locations. During the online phase,

the RSS readings at an unknown location is compared to the collected fingerprints, and

a prediction is made given the similarity of the fingerprints.

Although fingerprinting methods have been shown to achieve high localisation accu-

racy, they suffer from two main limitations. First, the offline phase is time-consuming

and labour-intensive. At each site, the RSS readings need to be collected at multiple

locations that cover the entire site, and at each location, multiple readings need to be

collected to account for the instability of RSS readings. The amount of time required to

1Note that some portions of this section might come from the IPP project.
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Chapter 2. Background and Related Work 5

collect the fingerprints can thus be prohibitive, especially for larger sites. In addition,

the method does not scale to large-scale deployments at multiple sites. The second

problem is the inherent instability of RSS readings, which can be affected by environ-

mental factors such as temperature, humidity, and the presence of people, which can

significantly affect the accuracy of the localisation system.

To address the first problem, crowd-sourcing has been proposed as a solution

to reduce the amount of time and effort required to collect fingerprints. In [7]–[9],

various approaches have been proposed to record user motion and collect fingerprints

simultaneously, and infer the locations associated with the fingerprints using complex

algorithms, thus eliminating the need for human intervention and site survey. However,

crowd-sourcing introduces a new problem: the locations associated with the fingerprints

can be highly inaccurate as the locations are inferred algorithmically, and thus may not

reflect the actual location of the user. This problem is further exacerbated by the fact

that the crowd-sourced data is often collected by users with different devices, which

may have different hardware specifications and thus produce different RSS readings.

2.2 Noisy Dataset

Note that a dataset collected with crowd-sourcing has two types of noises: the noise in

the RSS readings, i.e., fingerprint noise, and the noise in the location labels, i.e., label

noise. Various approaches have been proposed to address these two types of noises.

2.2.1 Fingerprint noise

Methods dealing with noise in RSS readings can be broadly classified into two cate-

gories, probabilistic approaches and deterministic approaches. Probabilistic approaches

make use of the probabilistic framework to handle the noise in the fingerprints, while

deterministic approaches use various deterministic methods to robustly extract features

from the fingerprints.

2.2.1.1 Probabilistic methods

Probabilistic methods typically model the probabilistic relationship between the RSS

readings and the locations. Consider a building with a total of P access points, the

fingerprint received at any given time can be represented as a P-dimensional vector
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x = [x1,x2, . . . ,xP]
⊤. Denote the coordinates in the building as c, we have

p(c | x) =
p(x | c) p(c)

p(x)
.

For a given fingerprint x,

p(c | x) ∝ p(x | c) p(c) .

If we assume that users are equally likely to be at any location in the building, the

equation can be further simplified to

p(c | x) ∝ p(x | c) .

Probabilistic modelling can thus be reduced to estimating the conditional probability

p(x | c). Typically, only a finite amount of coordinates are considered to reduce the

modelling complexity, i.e., c ∈ C = {c1,c2, . . . ,cC}, where C is the total number of

coordinates considered. The calculated probabilities for each locations are then used as

weights to compute the weighted average of the coordinates as the predicted location,

ĉ =
C

∑
i=1

p(x | ci)

∑
C
j=1 p

(
x | c j

)ci, (2.1)

which may not be in C . The weighted average does not really have a probabilistic

interpretation, but it is a common practice in the literature [5], [10].

Various approaches have been proposed to model this conditional probability. In

[11], the authors further assumed that the RSS readings are independent of each other,

and model the conditional probability as

p(x | c) =
P

∏
i=1

p(xi | c)

where p(xi | c) are modelled as Gaussian distributions. Similarly, in [10], the inde-

pendence is assumed and the conditional probabilities are modelled with Gaussian

processes.

Another branch of probabilistic methods attempt to model the latent representations

of the RSS readings with generative modelling techniques, and use the latent represen-

tations for later regression or classification tasks. In [12], a Variational AutoEncoder

(VAE) was used as a deep probabilistic model to learn the latent representations of the

RSS readings. This class of methods are not actively investigated in the literature, likely

due to the large amount of training data required to train a deep probabilistic model.

In summary, although probability provides a natural framework to model the noise in

the fingerprints, probabilistic approaches often make unrealistic assumptions about the
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data, such as independence between the RSS readings, and the distribution of the RSS

readings. In addition, probabilistic models often require more training data compared

to deterministic methods. On the upside, probabilistic models can provide uncertainty

estimates, which can be integrated into later stages of the localisation pipeline in fig. 1.1

to improve the localisation performance.

2.2.1.2 Deterministic methods

The most basic and most widely used deterministic method is the K-Nearest Neighbours

(KNN) algorithm [2]. KNN-based methods define a distance metric between the

fingerprints, and use the distances to find the K nearest neighbours of the test fingerprint.

The algorithm is somewhat noise tolerant by making predictions using the average

of the locations of the K nearest neighbours. The distances can also be used as a

weight to compute the weighted average of the locations of the K nearest neighbours,

resulting in a Weighted KNN (WKNN). KNN-based methods are simple and easy

to implement, but the performance is highly dependent on the distance metric and

the choice of K. In addition, the inference time scales linearly with the size of the

training dataset, which can be a problem for large datasets. Various attempts have been

made to improve the performance of KNN-based methods. Some researches focus

on improving upon the most commonly used distance metric, Euclidean distance, by

using other distance metrics such as cosine similarity [13] and Spearman distance[14].

Some other researches focus on improving the choice of K by using adaptive K [15].

Other researches attempt to reduce the inference time by classifying the fingerprint into

clusters before performing KNN [16].

Concurrently in [17], [18], the authors proposed to use a Stacked Denoising Au-

toEncoder (SDAE) to robustly extract features from the RSS readings. SDAE [19] is a

variant of AutoEncoder (AE), which is a neural network that learns to reconstruct its

input through a information bottleneck. The SDAEs are trained to reconstruct the input

from a corrupted version of the input, thus forcing the network to learn robust features

that are invariant to noise. In [17], a SDAE is trained for each reference location, and

the reconstruction error is converted between [0,1] to be interpreted as conditional

probability, and are used as weights to compute the weighted average as in eq. 2.1. Note

that although ‘conditional probability’ is used here, it is not a probabilistic method, as∫
p(x | c)dx ̸= 1.

However, as we need as many SDAEs as the number of reference locations, the com-
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putation cost can be prohibitive. In [18], the authors proposed to train a single SDAE

for feature extraction, and then use a linear layer with a softmax activation to predict

the probability of been at each reference location. As only one SDAE is needed for all

reference locations, the computation cost is significantly reduced. A similar approach

will be investigated in this project.

With the extracted robust feature, different models were used to make predictions.

In [20], the authors proposed to use a convolutional neural network (CNN) model to

learn the relationship between extracted features from RSS readings and the location. In

[21], [22], RNNs and RNN variants were used to process a time series of RSS readings.

Note that in all of the methods mentioned above, the RSS readings are processed

as a fix-size vector. To the best of our knowledge, there are no previous work consider

processing fingerprints in a sequential manner as in this project.

In summary, Wi-Fi localisation techniques, particularly those based on RSS signals,

have gained significant attention due to their simplicity and compatibility with existing

wireless infrastructures. Fingerprinting techniques, both deterministic and probabilistic,

have shown promising results in various applications. In particular, we will investigate

the use of deep learning techniques to extract robust features from the RSS readings,

and to process the RSS readings in a sequential manner, which have the potential of

giving robust prediction with limited amount of training data.

2.3 Noise in the labels

Another type of noise in a crowd-sourced dataset is label noise, which poses a significant

challenge to the training of machine learning models. In this section, we review the

literature on training with noisy labels. Although the majority of the literature on

this topic focuses on classification tasks, we can still draw insights from them for our

regression task.

Research on training with noisy labels can be broadly categorised into noise-tolerant

algorithms that enable the learning algorithm to be robust to the presence of noisy data,

and sample selection methods that attempt to identify the noisy samples and process

them differently.
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2.3.1 Noise-tolerant algorithms

We note that the KNN-based method mentioned in sec. 2.2.1 is inherently noise-tolerant,

as long as there are enough clean samples in the neighbourhood of the test sample. It is

an example of how simple algorithm can still be as effective as other complex methods.

A class of methods investigate the use of loss functions that are robust to the presence

of noisy data. In [23], the author investigate the use of Tukey’s biweight loss functions

to mitigate the impact of noisy data on model training. The loss function is designed to

be less sensitive to outliers and can lead to improved generalization performance in the

presence of noisy data.

Noise-tolerant learning algorithms, as reviewed by Frenay and Verleysen [24], are

designed to be robust to the presence of noisy data by explicitly modelling the noise

process or incorporating noise-aware techniques into the learning process. Exam-

ples of such algorithms include noise-tolerant support vector machines and denoising

autoencoders.

A subclass of methods in this category assume there is a small set of clean samples

available as validation set, and utilise this validation set to provide guidance for training.

One notable example is [25], which use the change in validation set performance after

training on a batch of data as a signal to assign weights to the samples in a batch. The

obtained weight is then used to reweigh the loss during training later. We call this

method validation-guided training, which will be referred to later on.

2.3.2 Sample selection methods

The majority of the sample selection methods used with deep learning models utilise the

memorisation effect [26] of neural networks, where the model learns the simple patterns

in the dataset (usually the clean labels) first, before overfitting to the noisy labels. The

idea is thus to use the losses of the model on the training set in the early stages to

separate clean and noisy labels. We review the research in this area in chronological

order.

In , an extra network (MentorNet) is trained, and select clean samples in the training

set for student network to learn from. This method however, is prone to the problem

of error accumulation. Some initial error in the Mentor network may cause the model

to select noisy samples, which in turn cause the Mentor network to learn more errors

and select more noisy samples. [27] addressed this problem by training two network

simultaneously and each model select samples for the other model to learn from. The
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error will thus flow between the network, and the two network will gradually correct

each other’s error. This method is called co-teaching. The DivideMix method proposed

in [28] further improve upon the co-teaching method by utilising the samples with noisy

labels. Similar to the co-teaching method, DivideMix train two networks in parallel,

and the loss of the networks on the training set is used to select samples for the other

network to learn from. The noisy samples however are not simply discarded, but are

treated as unlabelled samples. Semi-supervised learning techniques MixMatch [29]

are then used to generate pseudo-labels for the noisy samples, which are then used to

train the network. The DivideMix method achieved state-of-the-art performance on the

various datasets, and will be investigated in this project.

2.3.3 Self-supervised learning

Another way to deal with label noise is by removing the labels altogether. Instead of

training the model using labels as supervision signals, we can train the model with the

input data alone, and discover useful representations from the data. As no label is used

during the training process, the obtained representation of the model is thus free from

label noise. Although the label noise is not directly addressed, the obtained noise-free

representation can be very valuable. [30] showed that a pretrained model is much more

robust to label noise compared to a randomly initialised model.

Training model with only input data is known as self-supervised learning. The

idea is to design a pretext task on input data, such that a model trained to solve the

pretext task will learn useful representations of the data. Self-supervised learning can

be categorised into two types: contrastive learning and generative learning. Here we

briefly review families of methods in each category. For a more comprehensive review,

please refer to [31].

2.3.3.1 Contrastive learning

For contrastive learning, the pretext is a discriminative task, where the model is trained

to distinguish between positive and negative samples. In order for the model to solve

the pretext task, the representations of the positive samples are pulled closer together,

while the representations of the negative samples are pushed further apart, thus leading

to useful representations of the data.

The contrastive learning can be subdivided into instance-instance contrast and

instance-context contrast. In SimCLR [32], the positive samples are generated by
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applying two different data augmentation to the same data point, while the negative

samples are other data points in the same batch. The contrast is between instances of

data points, thus the name instance-instance contrast. For instance-context contrast,

the contrast is between a fragment of the data point and its context. In [33], the positive

samples are a patch of the image and a summary vector of the whole image, while the

negative samples are summary vectors of other images. By performing instance-context

contrast, the model maximise the mutual information between the patch of an image and

the whole image, thus learning useful representations. We will investigate the SimCLR

method in this project due to its simplicity.

2.3.3.2 Generative learning

Generative learning, on the other hand, train the model to generate or reconstruct the

input data.

Autoencoders (AEs) [34] learn to reconstruct the input through a information

bottleneck where the dimension of the representation at the bottleneck layer is smaller

then the input dimension. In order to faithfully reconstruct the input, the bottleneck layer

needs to contain as much information about the input as possible in a lower dimension,

thus forcing the model to learn a good representation of the input.

Denoising AutoEncoders (DAEs) are very similar to AEs, except that the input to

the model is corrupted by noise. The model is then trained to reconstruct the original

input. The learned representation is thus robust to noise. Note a special case of the DAE

is Masked Language Modelling (MLM) used by BERT [35], where some token in the

input sentence is replaced by a <mask> token, and the model is trained to predict the

masked tokens. We will investigate the DAE method in this project due to its ability to

handle both label noise and fingerprint noise.

For generative modelling, we directly model the probabilistic distribution of the

input data. The model is trained by maximising the likelihood of the data.

2.4 Data augmentation

Another prominent technique used in Wi-Fi localisation is data augmentation. As the

Wi-Fi localisation is bounded by the amount of fingerprints collected in off-line stage,

many attempts were made to generate more fingerprints from a smaller dataset in order

to reduce the effort required for site survey and increase the localisation accuracy. In
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[3], [36], the author proposed to use Gaussian Processes (GPs) to estimate fingerprints

at unknown locations. Although not explicitly designed to be used with a noisy dataset,

the probabilistic framework offered by Gaussian Process provides a robust framework

to counteract noise. The downside of the method is that a GP model needs to be trained

for each access point, which can be computationally expensive considering there are

in total 562 APs in one of our dataset. Other deep learning based methods were also

proposed to generate fingerprints, including [37], which use Generative Adversarial

Networks (GANs) to generate fingerprints, and [38] convert fingerprints into images

and use super-resolution techniques to generate more fingerprints. Although deep

learning based methods have potential to generate more fingerprints, they are often

computationally expensive and require a large amount of training data, which is not

available to us in the first place.



Chapter 3

Programme and Methodology

We hereby detail the experimental setup and the methodology used in this project. We

first describe the dataset used in this project, followed by our proposed model. We then

describe the training process, and finally, the evaluation metrics used in this project.

3.1 Dataset

The Wi-Fi fingerprints are collected with a Huawei smartphone in various buildings on

campus1. The location associated with the fingerprints are computed with an in-house

algorithm from Huawei utilising the IMU data collected on the phone along with the

fingerprints. By aligning the estimated path with the building floor plan, we obtain our

noisy dataset called radio map. For our training, we randomly split the samples in the

radio map into 80%/20% split, which will be used as training set and validation set

respectively. Note that both our training set and validation set are noisy, which better

simulate the real world scenario in which we do not have access to high quality datasets.

To evaluate the performance of the trained algorithm, we need a noiseless dataset as

our test set. To construct the test set, we collect fingerprints in the same building, along

with a LiDar sensor. The location associated with the fingerprints are collected using

the LiDar sensor and constructed with SLAM algorithm, which is considered to be the

ground truth location. Note that the ground truth location is not used in training, and is

only used for evaluation.

Each sample in the dataset is composed of a dictionary of access point name and

signal strength, and the 2D coordinates associated with the sample, as illustrated in

tbl. 3.1.
1With permission.

13
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Table 3.1: An illustration of the dataset used in this project.

sample id Fingerprint Coordinates

1 {AP1: -50, AP5: -80,. . . , APK: -100} (3.2, 5.4)

2 {AP3: -30, AP4: -50,. . . , APN: -20} (4.2, 4.4)

. . .

We have in total four datasets, which we refer to as bayesf1, bayesf3, forumf0,

forumf1, corresponding to different floors in different buildings. As bayesf3 is the

closest to the real deployment environment, some of the experiments will focus exten-

sively on bayesf3 dataset.

3.2 Models

3.2.1 Transformer encoder

First, we propose a new method for processing Wi-Fi fingerprint data. Wi-Fi fingerprints

received by a phone is of the form of a dictionary of access point name and signal

strength

{AP1: -45, AP2: -50, . . . APL: -57},

which might have different number L of received APs at different times. Traditionally, a

fingerprint is converted to be a fix-sized vector which has the same number of elements

as the number of access points in a building. Motivated by [39], we consider transformer

[40] to be able to process dictionary typed data, and propose to use transformer to

process the fingerprints. First, we encode the AP name (more specifically, the mac

address of the AP) to be a fixed sized vector, and the RSS value is appended to the

vector. This gives a vector v for each element in the dictionary, and the dictionary is

converted to a sequence of vectors v1:L. The mac address can be encoded in multiple

ways, they can be seen as a discrete element and converted to a embedding, like in

NLP, or simply be converted to the bit-wise representation of the mac address. We will

mainly investigate bit-wise representation in this dissertation.

After the preprocessing, the fingerprints are in the sequential format suitable to

be processed by the transformer architecture [40]2. We use a transformer encoder to

2For the detail implementation of transformer architecture, please refer to the original paper.
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process the fingerprints, and denote the transformer encoder as f (·). The transformer

encoder produces a sequence of hidden states

h1:L = f (v1:L).

In order for the model to make a prediction, we need to aggregate the hidden states h1:L

into a single vector. Various methods are used throughout the project as the complexity

of the task increases. Here we list all the methods tested.

3.2.2 Pooling layer

The simplest method is to use a mean pooling layer to aggregate the hidden states. The

mean pooling layer perform element-wise mean on the hidden states

hpool =
1
L

L

∑
i=1

hi.

A slightly more complex method use attention pooling to aggregate the hidden states. A

single head attention pooling layer use a learned query vector q to compute the attention

weights over the hidden states, and then perform a weighted sum

hatt =
L

∑
i=1

αihi,

where the attention weights αi is computed as

αi =
exp
(
q⊤hi)

∑
L
j=1 exp

(
q⊤

j h j
) .

A multi-head attention pooling layer learns multiple query vectors q1, . . . ,qQ, and the

final output is the concatenation of Q single-head attention pooling layer’s output.

The most complex method is to use a transformer decoder to process the hidden

states and produce a fix-sized vector.

The Wi-Fi encoder as a whole is then composed of a transformer encoder to process

the fingerprints, with a pooling layer to aggregate the sequence, followed by a linear

layer that predict the coordinates ĉ = (xenc,yenc).

3.3 Training methods

We will start with training the encoder proposed in sec. 3.2.1 with standard deep learning

approach. Assuming a noisy training set
{(

v1:Li
i ,ci

)
,1 ≤ i ≤ N

}
, where v1:Li

i is a Wi-

Fi fingerprint preprocessed as described in sec. 3.2.1, ci = (xi,yi) is the geographical
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coordinates associated with the fingerprint. With the encoder model ĉ = Φ(v1:L,θ), we

train the model by minimising the mean error on the training set

θ
∗ = argmin

θ

1
N

N

∑
i=1

C(ci,Φ(v1:Li
i ))

where the loss function for a single sample is the distance between the predicted location

and label location

C(ci, ĉi) =

√
(xenc

i − xi)+(yenc
i − yi)

2. (3.1)

We use the AdamW optimiser proposed in [41] to train the model.

3.3.1 Details of validation-guided training

In later section, we investigate the validation-guided training proposed in [25] to mitigate

the impact of noisy training samples. The validation-guided training assumes a small

clean and unbiased validation set
{(

vv1:Li
i ,v ci

)
,1 ≤ i ≤ M

}
in addition to the noisy

training set (M ≪ N). For a loss function C(ci, ĉi), we aim to learn a weight wi for each

sample, such that minimising the reweighed loss

θ
∗(w) = argmin

θ

N

∑
i=1

wiC(ci,Φ(v1:Li
i ,θ)),

gives the best validation set performance

w∗ = arg min
w,w≥0

1
M

M

∑
i=1

C(vci,Φ(vv1:Li
i ,θ∗ (w)))

Finding the optimal w∗ requires a nested two level optimisation, which is very expensive

when the inner loop is optimising a neural network. Thus, we approximate wi for every

sample in a batch at each training step through online approximation. For a mini-batch

sampled from training set
{(

v1:Li
i ,ci

)
,1 ≤ i ≤ n

}
, we could find the optimal εt that

minimise the validation loss

ε
∗
t = argmin

ε

1
M

M

∑
i=1

C(vc,Φ(vv1:Li
i ,θ∗t+1(ε))).

However, this is still too computationally expensive. We thus approximate ε∗t by

sampling a mini-batch of size m from the validation set and taking a single gradient

descent step on validation loss with respect to εt

ui,t =− η
∂

∂εi,t

1
m

m

∑
j=1

C(vc,Φ(vv1:Li
i ,θ∗t+1(ε)))

∣∣∣∣∣
εi,t=0

.
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The gradient is then rectified and standardised to give the weight approximation at step

t wi,t

w̃i,t = max(ui,t ,0)

wi,t =
w̃i,t(

∑ j w̃ j,t
)
+δ
(
∑ j w̃ j,t

) .
The loss is then recalculated based on the obtained estimation wi,t , and model parameters

are updated based on the reweighed loss.

The reviewed method is general enough to be used as a plug-and-play method that

can be added to any gradient based method. In our case, although we do not have a clean

validation set, we found that with the validation-guided training, the noisy validation

set is able to provide some regularisation in addition to other regular regularisation

techniques.

3.3.2 Self-supervised learning

We also investigate the self-supervised learning as reviewed in sec. 2.3.3 to mitigate

the impact of noisy labels. More specifically, we experiment with both reconstruction

method and contrastive method.

For reconstruction method, we train the model with the denoisning autoencoder

approach where noises are injected into the input Wi-Fi fingerprint v1:L. We randomly

dropout some of the Wi-Fi APs in the input fingerprint and add Gaussian noise to the

RSS readings, similar to the data augmentation we used. A problem with the proposed

model is that as the fingerprints are of variable length, it would be challenging to recon-

struct the sequence directly. Thus, instead of reconstructing whole sequence, we train

the model to reconstruct a fix-size vector of RSS readings, with the dimension equals the

total number of APs in the buildings, similar to how most Wi-Fi fingerprinting methods

work represent the Wi-Fi fingerprint. The loss function is then the mean squared error

between target and reconstructed vector. Moreover, to create an information bottleneck,

the hidden states h1:L produced by the transformer are summarised into a fix-sized

vector with various methods proposed in sec. 3.2.2. To reconstruct the RSS vectors, a

MLP is used to map the summarised hidden states to the target RSS vector.

For contrastive method, we train the model using the SimCLR approach. For a batch

of B fingerprints {vi,1 ≤ i ≤ B} (we dropped the sequence length for simplicity), we

produce two views of the same data by applying different dropout and different variance

of Gaussian noise, and obtain 2B samples. We thus have 2B classification task, where
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the model needs to predict the positive pair for each sample. If we denote the model

with transformer encoder and the pooling layer as g(·), the loss can then be given as

L =− 1
2B

2B

∑
i=1

log

(
eg(vi)

T g(v+)

eg(vi)T g(v+)+∑
2B−2
k=1 eg(vi)T g(vk)

)
.

where v+ is the positive pair of vi, i.e., the different view of the same fingerprint, and

vk are the negative samples, i.e., other fingerprints in the batch.

3.4 Evaluation

The Wi-Fi encoder will be evaluated individually on the ground truth dataset collected,

as detailed in sec. 3.1. The encoder will be evaluated based on its predictive ability

which can be simply calculated as the average prediction error on the ground truth

dataset (mean error), same as the objective for training in eq. 3.1.

To evaluate the representation obtained through self-supervised learning, we train

a linear regressor on top of the pretrained model and evaluate its mean error on the

validation and test set. Similarly, we also use the representation obtained from the

pretrained model to train a k-nearest neighbours regressor and evaluate its mean error

on the validation and test set.



Chapter 4

Experiments

4.1 Initial prototyping

We first evaluate the model proposed in sec. 3.2.1 on smaller datasets to verify its

feasibility. The proposed model is composed of a transformer encoder layer, a mean

pooling layer, and a linear layer that map the hidden states to (x,y) coordinates. We

use as baselines a multi-layer perceptron(MLP) and a weighted k-nearest neighbours.

For MLP model, we choose hidden state size so that the total number of parameters

of the model roughly matches that of the proposed model. All the training processes

are terminated if no performance increase is observed on validation set for 30 epochs,

i.e., early stopping with patience set to 30. The model with the best validation set

performance is selected and evaluated on the test set. All experiments are repeated five

times if not specified otherwise. The performances are shown in tbl. 4.1.

Table 4.1: The performance of different models on the four datasets. The number is the

mean error in meters, and the number after ± is the standard mean error. For MLP and

transformer, the train, validation, and test set performance are shown in the first, second,

and third row respectively. For WKNN, the test set performance is shown.

Method bayesf1 bayesf3 forumf0 forumf1

MLP 1.89 ± 0.16

3.49 ± 0.05

4.28 ± 0.09

2.18 ± 0.22

4.09 ± 0.03

6.08 ± 0.17

2.87 ± 0.24

4.70 ± 0.03

6.09 ± 0.17

2.87 ± 0.24

4.70 ± 0.07

8.31 ± 0.22

19
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Method bayesf1 bayesf3 forumf0 forumf1

Transformer 1.90 ± 0.04

2.60 ± 0.03

2.54 ± 0.10

2.38 ± 0.04

3.43 ± 0.09

3.70 ± 0.14

2.55 ± 0.22

3.20 ± 0.06

5.97 ± 0.12

2.16 ± 0.17

3.17 ± 0.04

2.84 ± 0.04

WKNN 3.97 4.67 8.59 4.74

As can be seen in tbl. 4.1, the new architecture has the best test set performances

across all datasets, while having slightly worse training set performance on several

datasets. This shows that converting the Wi-Fi RSSI signals to a sequential format better

captures the properties of the data, and prevents the model from quickly overfitting

to the noise in the data. What is remarkable with the proposed architecture is that

sometimes the test set performance is better than the validation set performance! We

believe this is due to the fact that the model successfully learned a good mapping

between the Wi-Fi fingerprints and its location without being affected by the noise in

the dataset. Thus, it is unable to further reduce its loss on the noisy dataset, whilst

having a decent performance on the clean test set.

4.2 Scaling up performances

4.2.1 Attention Pooling

With the initial demonstration, we move on to scale up the performance of the model.

First, we experiment with replacing the mean pooling layer with attention pooling layer

with different number of attention heads. As shown in fig. 4.1, adding attention heads

does not consistently increasing the performance on all datasets. This is likely due to

the fact that some datasets are more noisy than others, and the attention pooling layer is

more sensitive to the noise. Thus, on a simple dataset, too many attention heads will

cause the model to quickly overfit to the noise.

4.2.2 Data augmentation

Due to the noisy nature of the Wi-Fi RSSI signals, the fingerprints received at the exact

same location might be significantly different, i.e., some signals might be missing and

some signal strength might be different from the training set samples. To simulate this,

we propose to apply data augmentation at training time to better prepare the model
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Figure 4.1: The performance of the model with different number of attention heads in the

pooling layer on four datasets.

for a different test time distribution. The applied data augmentation includes random

dropout of Wi-Fi signals,and addition of Gaussian noises to the RSSI values. To find the

best combination of the hyperparameters, we conducted a through hyperparameter grid

search, and obtain the graph fig. 4.2 demonstrating the best hyperparameter settings.

As illustrated in fig. 4.2, we found that with a 2 layer model under 0.8 dropout rate

and 0.1 Gaussian noise, we obtained the best model performance with a mean error of

2.17±0.06 on bayesf3 dataset.

Future options for data augmentation include mixing Wi-Fi signals from fingerprints

that are geographically close to the fingerprints, which might closer simulate the test

environment.

4.3 Validation-guided training

It seems that at this point we cannot achieve better performance with traditional deep

learning techniques alone, and move on to investigate methods that explicitly deal with

the noisy in the dataset.

We first note the high correlation between the test set performance and validation
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Figure 4.2: Model performance with different number of layers under different level of

dropout and noise.

set performance, illustrated in fig. 4.3.

As can be observed, the validation set performance of the model is highly indicative

of its performance on the clean test set, despite the fact that the validation set came

from the same noisy distribution as the training set. We hypothesis that this is due to the

noise in the validation set is slightly different from that of the training set, thus a model

overfits to the noise on the training set will have a lower performance on the validation

set, and consequently, test set.

Based on this observation, we consider using validation set performance as extra

signals for training, using method proposed in [25], as reviewed in sec. 2.3. With

the same hyperparameters setting discovered in sec. 4.2.2, we compare the model

performance with and without guidance from validation set, illustrated in fig. 4.4. As

validation-guided training takes longer to train, we increase the patience and compare

the two methods.

In the top figure in fig. 4.4, we select the model with the best validation set perfor-

mance. At first, it would appear that validation guidance does not consistently improve

the model performance, and the improvement is somewhat negligible. However, when

comparing the best model obtained via two methods by selecting the model with the
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Figure 4.3: The learning curve of a model trained. We can observe the high correlation

between the model performance on the validation set and test set.

highest test set performance as in the bottom figure in fig. 4.4, it can be observed that

the validation-guided training consistently obtained better model when the number of

training epoch increases. The exact reason for the phenomenon is analysed in sec. 5.2.

Although we know that validation guidance allow us to train longer and obtain

better models along the training process, we still face the problem of how to select the

best model. If we simply select the best performing model on the validation set, we will

get the result as the top figure in fig. 4.4, which doesn’t consistently demonstrate the

advantage that validation-guided training provides. This motivates us to find a better

way to select models. Another observation obtained from fig. 5.2 is that due to the shape

of the contour, we might be able to obtain better performance by selecting the top-k

models with the best validation performance, instead of only selecting top-1 model.

Although this still does not give the best model, we might be able to further decrease

the error on the test set.
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Figure 4.4: Comparison of the test set performance of the model trained with and without

guidance from the validation set. The figure on top select the best performing model on

the validation set, while in the bottom figure, we select the model with the best test set

performance, which is not typically available.
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4.3.1 Top-k models

One problem that existed throughout the project is to select the best model along

the training process. Although the validation performance is indicative of its test

set performance, the model with the best validation set performance isn’t necessarily

the model with the best test set performance, as illustrated in fig. 4.3. One possible

solution is to select the top-k performing model on the validation set, and predict with k

models. We thus compare the performance of the top-k model selected from the training

trajectory obtained with and without validation guidance, illustrated in fig. 4.5.

Figure 4.5: The top-k performance of models trained with validation guidance and without

after different number of epochs.

We observe that a appropriately selected training epochs along with validation-

guided training gives the best test set performance, with a mean error of 2.064±0.027.

4.3.2 Ensemble

It is natural to think that if we can select the top-k models along one training trajectory,

we can also select models across multiple training trajectories and form an ensemble.

We provide a comparison between normally trained models and validation guided

models, illustrated in fig. 4.6.
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Figure 4.6: The ensemble performance of models trained with validation guidance and

without after different number of epochs.

With the ensemble method, we are able to obtain a mean error of 1.93 (note this is

not repeated 5 times due to the time constraint).

It is also observed that the validation-guided training works better with the ensemble

method, as the ensemble of validation guided models consistently outperforms the

ensemble of normally trained models, contrary to selecting models from a single

trajectory as in fig. 4.5. This might be because the validation guided training allows

us to train longer, and the resulting models are more diverse. The exact reason of this

phenomenon is left for future work.

4.4 Self-supervised learning1

We start with the SimCLR method, using dropout rate randomly sampled between

0 and 0.8, and noise between 0 and 0.1. Initially, we consider the SimCLR method

under this setting should work better than the denoising objective, as the denoising

objective only requires to recognise a partially corrupted fingerprint as the original

1Research in this direction does not yet yield notable result due to time constraint. However, partial
results are still provided to facilitate future research.
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fingerprint, while the SimCLR objective needs to recognise two differently corrupted

fingerprints (when the two views of the same fingerprint are both highly corrupted) as

the same, in addition to the denoising objective (where one view is slightly corrupted

and the other one strongly corrupted). However, we observe that as the SimCLR loss

decreases, the test set performance of the linear regressor remains stable, while the

KNN regressor’s performance significantly deteriorates, as illustrated in fig. 4.7. This

shows that SimCLR loss is not a good objective for fingerprint representation learning,

and we thus abandon this direction. Some preliminary explanation are given in sec. 5.4.

Figure 4.7: The representation quality decreases as we train with the SimCLR loss.

We then move on to train the model with denoising objective, and we observe

that the model is able to learn better representation compare to the SimCLR objective.

Again we perform the hyperparameter grid search, and display the results in fig. 4.8.

We observe that the best model is able to achieve a mean error of 2.31±0.02, which is

worse than the regression model trained.

Finally, we provide a comparison between all the models above with their cumulative

distribution functions of errors on bayesf3 dataset in fig. 4.9.
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Figure 4.8: The representation quality increases as the dropout increases.

Figure 4.9: The cdf of errors of all the models investigated above. We display the cdf of

a randomly selected model among the 5 repeated experiments.
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Analysis

5.1 Training process

In order to understand how the model is able to train on a such a extremely noisy dataset

and achieve good performance on the clean dataset, we start by visualising the output

of the model on the training data and test data respectively, in fig. 5.1.

As can be seen in top left figure in fig. 5.1, the model is able to converge to a path

within the noisy training set that is close to the ground truth. We hypothesis that this is

due to the strong regularisation (0.8 dropout rate) we applied. Wi-Fi fingerprints that

are geographically close to each other share a subset of the fingerprint fragments that

are similar to each other. The dropout we applied to the Wi-Fi fingerprint will thus

generate training samples where the input are those fragments that are similar to each

other, while the output can varies due to both the noisy in the labels and the dropout.

To minimise the loss, the model will thus output the mean of the noisy labels, sort of

similar to implicitly performing k-nearest neighbour on the training set, and thus find a

‘path’ that is close to the ground truth.

However, in hindsight, the 0.8 dropout rate is perhaps a bit too strong that the model

loses some precision and always make predictions that are on the ‘path’. A possible

future research direction is to combine a lower dropout rate with other regularisation

techniques, such as weight decay, to achieve better performance. Another potential

direction would be to perform dropout in more complex ways. For example, we might

better control the learned model via dropout annealing, i.e., gradually reduce the dropout

rate over the training procedure to optimally control fitting to the data. Or, we could

tailor the data augmentation scheme by more accurately control the dropout rate. Instead

of using one fixed dropout rate, we could use a distribution of dropout rate to generate

29
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Figure 5.1: The visualisation of model output on training set and test set. The top two

figures simply overlay the model prediction and ground truth, while the bottom two figures

points an arrow from the model prediction to ground truth. The two figures on the left are

model output on the training data, and the two figures on the right are model output on

the test data. Note that some arrows are not plotted in the training set to avoid cluttering.
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a data distribution that allows the model to learn better representation on the noisy

dataset.

In addition, when we perform hyperparameter grid search in sec. 4.2.2, we com-

pare the performance of models by selecting the model with the best validation set

performance. However, as we have shown in sec. 5.2, this may not show the hyperpa-

rameter setting that allow us to learn the best models. We might be able find a better

hyperparameter combination that allows the model to better learn on the training set by

selecting the model with the best test set performance instead.

Suggestions for future work would be to separate the model selection process with

model training process. During training, the focus should be on which method would

allow the model to learn mapping that have the best test set performance, and consider

the appropriate selection process later on. Mixing the two problem will cause confusion

as to which factor is causing the problem.

5.2 Validation-guided training

To better understand how validation-guided training helps with training better models,

we trained two models with normal training method and validation-guided training for

15000 epochs, and visualise the relation between validation set performance and test set

performance along their training trajectories in fig. 5.2.

As can be seen in fig. 5.2, model trained without validation guidance will gradually

overfit to the training data as the training epoch increases, shown as the shift of concen-

tration of dots to the bottom left, and model selected with low validation loss will have

higher test loss. In contrast, model trained with validation guidance does not exhibit

such a overfitting process, and can thus train longer and discover better ways to fit the

data. Although it is possible to train the model normally with early stopping and hope

for a decent test set performance, validation guidance provides more guarantees as we

can safely train the model for a very long time without overfitting, and consequently the

model has more opportunities to discover better ways to fit the data.

The effectiveness of the validation-guided training suggests there exists some inter-

nal ‘consistency’ between training samples, i.e., fitting the model to some noisy data

will causes the model performance to decrease on some other samples, and validation-

guided training utilise this property to provide some regularisation during training. A

interesting research direction would be to design a metric to evaluate the consistency

between samples, based on which sample selection can be performed.
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Figure 5.2: Relation between validation set performance and test set performance of the

model trained with (right) and without (left) guidance from the validation set.

On the other hand, the current validation set is selected randomly from the same

validation set on the training set. With our model trained that perform well on clean test,

we can easily select samples that are more likely to be clean in the training samples, via

loss modelling [28], etc. A low hanging fruit for future research would be to construct a

cleaner validation set to better provide guidance for training. Note that the validation

set does not need to be completely clean and noiseless, as guidance that are in the right

direction most of the time is sufficient to provide regularisation and prevent overfitting,

as demonstrated in fig. 5.2.

In addition, the fact that the validation set and training set come from the same noisy

distribution suggests that it might be possible to combine the two sets together and

train the model, which gives more training samples model and thus should give better

performance. In terms of guidance, instead of sampling a mini-batch from the validation

set and calculate the weight for each sample, we could sample the mini-batch from the

combined set to provide guidance. In addition, it might be worth investigating the effect

of the batch size of the sampled mini-batch. A larger batch size could theoretically

provides more accurate guidance during training. This will be left for future research

due to the time constraint.
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5.3 Model selection

In sec. 4.3.1 and sec. 4.3.2, we have shown that we can achieve significant performance

improvement by selecting multiple models along one or more training trajectories.

However, the selected model is still not the best model we can find (the minimum of

the test set loss is usually around 1.89 meters and the ensemble method is only able to

achieve 1.93). A future research direction is to find a better way to select models along

the training trajectory. One particular method possible is to filter out samples in the

validation set that are too noisy. This can be achieved by modelling the distribution of

the validation set loss, as in [28]. By creating a cleaner validation set, we can better

select models that are more likely to generalise to the test set.

5.4 SimCLR

As shown in fig. 4.7, training with SimCLR objective will in fact, deteriorate the learned

representation. We hereby hypothesis the potential reasons for this phenomenon.

Consider two fingerprint that are close to each other in the coordinate space. These

two fingerprints will share some fragments that are similar, and some fragments that are

not. The SimCLR objective will pull the representations of the two dissimilar fragments

apart, as they are not the same fingerprint. However, these two fragments should be pull

together, as they are close to each other in the coordinate space. This will cause the

representations to be less suitable for WKNN.

However, this hypothesis is not verified, as a complicated visualisation tool is

required to visualise the latent space of the model. This will be left for future research.

5.5 Extra thoughts

A problem that plagued the project is the hardness to understand the dataset. Although

we can visualise the geographical property of the dataset and the behaviour of the

model as in fig. 5.1, we did not take into account the Wi-Fi fingerprint, as this is

difficult to visualise and thus prevents us from understanding the dataset better. It is thus

recommended that a visualisation tool be developed in the future to better understand

the dataset and the noise inside. In addition, it might be beneficial to visualise the latent

space of the model using t-SNE [42] to better understand the model behaviour.

Here I attach some personal experiences gained during the dissertation. During
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the project, a lot of time was spent on hyperparameter grid search in order to be

‘comprehensive’ and ‘thorough’. However, this is not a good use of time, as the

hyperparameter space is usually very large, and a complete hyperparameter search does

not offer any insight into the problem. In addition, by performing statistical analysis on

the grid search results, many valuable information contained in the training curve is lost.

Instead, a more interactive and iterative process should be used to quickly prototype,

test ideas and finding a rough range for hyperparameter where models works well, and

the hyperparameter search should only be performed when the model is stable and in a

constrained hyperparameter space. An alternative to the manual hyperparameter search

approach is to use hyperparameter optimisation library such as Optuna [43] to automate

the process.
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Conclusion

In this dissertation, we investigate the problem of indoor localisation using noisy dataset.

We first propose a novel Wi-Fi encoder that uses transformer architecture to process

the Wi-Fi fingerprints, and show that it is able to encode Wi-Fi fingerprints into a

latent space that is more suitable for localisation compare to encoding the fingerprints

as fix-size vectors. We then find the best data augmentation settings using dropout

and Gaussian noise for training the model without overfitting to the noise. The exact

mechanism for training on extremely noisy dataset are investigated in sec. 5.1, and

some relevant future research direction are discussed.

Next, we investigate the effect of validation-guided training on the performance

of the model. We showed that in combination with good model selection techniques,

validation-guided training allows us to better train the model without overfitting to the

data, and gives significant improvement to the model performance. We show that the

validation-guided training provides a principled approach to train models on a noisy

dataset without overfitting to the noise, even when a clean validation set is not available.

It provides another weapon in the arsenal of machine learning practitioners to deal with

noisy data, and can be used in conjunction with other techniques such as dropout to

achieve better performance. We also discuss how to improve this method in sec. 5.2.

Combining all the techniques we investigated, including data augmentation, validation-

guided training, and ensemble method, we are able to achieve a mean error of 1.93

meters on the test set, 1.77 meter better than training the model directly on the noisy

dataset.
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