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Abstract

Concurrency bugs present significant challenges in Go programming, usually arising

from the incorrect utilization of concurrency mechanisms. These bugs can reduce

program reliability and performance, undermining the application and development

of the Go language. This paper conducts a comprehensive evaluation of four popular

Go bug detection tools: GFuzz, Goleak, GCatch, and GoAT. These tools are assessed

using the GoBench benchmark suite, which encompasses go concurrency bugs from

various categories. The experiment is conducted based on evaluation metrics such

as tool deployment difficulty, bug detection capability, and execution load. Through

analysis on the results, the strengths and weaknesses of these tools are identified, and

their recommended use cases are demonstrated. Our study aims to provide valuable

insights for Go developers in selecting testing tools to enhance program reliability.

Furthermore, by evaluating existing tools, we make contribution to the design of more

advanced bug detection tools in the future.
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Chapter 1

Introduction

1.1 Background

Go[12], also known as Golang, is a programming language developed by Google. In

recent years, Go has gained large popularity due to its efficiency, high-performance and

simplicity[10]. It has fostered a rapidly growing developer community, positioning Go

in fast development[8]. Known for its suitability in cloud services development, such

as containerization tool Docker[6] and orchestration system Kubernetes[20], Go has

shown its strengths in software development and holds a promising future[22].

At the core of Go’s high-performance and high concurrency lies the design of

goroutines[10], which is fundamental to Go’s intended usage. Goroutines leverage

explicit message passing through channels for communication, offering a simpler and

more reliable alternative to traditional shared memory mechanisms[5]. Furthermore, Go

also supports traditional shared memory primitives, offering developers diverse options.

However, like many other concurrent programming languages[23][28], the chal-

lenges posed by concurrency bugs are unavoidable for Go. With a variety of concurrency

primitives supported, Go introduces more complexity to the bug detection[31][33]. Be-

yond the classic issues coming from improper use of resource locks, the Go-Specific

primitives, such as channels and anonymous functions, also contribute to the emergence

of bugs. These bugs can lead to unexpected program blocking or produce outcomes

that deviate from expectations[31]. The presence of such bugs obviously damages both

the reliability and performance of Go programs, retarding the growth of Go language.

Hence, effective bug detection tools become important to ensuring the expected execu-

tion of Go programs, as it can expose hidden bugs during test phase, avoiding potential

losses after release.
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Chapter 1. Introduction 2

1.2 Motivation

While a large portion of existing bug detection tools target traditional programming lan-

guages like C/C++ and Java[19][18][26], focusing on shared memory accessing related

bugs, the options of bug detection tools designed specifically for Go is limited[25][3].

Given the importance of effective bug detection methods in ensuring the reliability of

concurrent programs, it becomes necessary to understand the strengths and weaknesses

of existing bug detection tools to select the most suitable ones for program analysis.

Interestingly, there is a shortage of comprehensive cross-tool comparisons in the

existing literature. Tool developers often present their products in scenarios that high-

light their tool’s strengths, creating a somewhat fragmented understanding of their

capabilities. Consequently, a comprehensive evaluation of these tools, clarifying their

features and use cases, becomes both meaningful and crucial. Furthermore, the study of

existing bug detection tools offers insights that can be valuable for the tools’ refinement,

contributing to the reliability and robustness of Go programs and the development of

Go language.

1.3 Main Contribution

This paper conducts a comprehensive study of existing Go concurrency bug detection

tools. In doing so, we achieve the following key objectives:

1. Evaluation of Bug Detection Tools: Our work focus on an extensive evaluation

of four popular Go bug detection tools. To ensure robust evaluation, we employ

these tools to perform bug detection tasks on the widely used GoBench[33] dataset.

This dataset provides various samples that enable comprehensive performance

assessment. Our evaluation focuses on multiple aspects, including:

• Installation and Execution Difficulty.

• Bug Detection Ability.

• Execution Time and Overhead.

2. Comprehensive Analysis: We extend our study to offer a detailed comparison of

the detection results produced by the four tools. We conduct in-depth evaluation

on their performance across different types of bugs and analyze the effectiveness

of the tools’ detection algorithms based on the code. By highlighting the strengths
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and limitations, we provide an all-sided understanding of detection capability

and recommended use cases for each tool. Additionally, based on our findings,

we offer insightful suggestions for the refinement of future Go concurrency bug

detection tools.

Overall, this paper’s main contribution lies in the comprehensive evaluation of

existing Go concurrency bug detection tools. Our work serves to enable developers

to make informed choices when selecting tools to enhance the reliability and quality

of their concurrent programs and advance the understanding of the state-of-the-art

techniques in Go bug detection.
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Background and Related Work

2.1 Go Concurrency Programming

Concurrency programming is a key application in Go that incorporates shared memory

accessing found in traditional languages like Java and C[28][17] and message passing

techniques seen in Erlang[29]. The innovation of Go’s concurrency programming lies

in the utilization of goroutines[10], which are lightweight threads managed by the

runtime scheduler. In comparison to traditional threads, the creation cost of goroutines

is small, allowing hundreds of goroutines to run on a single machine. Within Go, the

main method of communication between goroutines is through channels[21]. Channels

can be created and closed by goroutines and can also have buffer sizes set. When

buffer is empty, an attempt to receive data from the channel will block the receiving

goroutine until another goroutine closes or sends data to it. Similarly, sending data to a

channel with full buffer will cause the sending goroutine to be blocked. Apart from the

basic communication between goroutines, Go also employs the select-case statements,

allowing a goroutine to wait on multiple operations related to channels. A select can

have multiple cases and an optional default branch. When more than one cases are

matched, a random one will be selected to run.

Moreover, Golang supports shared memory mechanisms, which are common in tra-

ditional programming languages[25]. Go permits multiple goroutines to access the same

memory and provides primitives for the protection of shared memory accessing[15],

including Mutex(Lock/Unlock), RWMutex(read/write locks), Cond(condition variables).

Additionally, the primitive WaitGroup, used to synchronize the completion of tasks

among multiple concurrently running goroutines, is also widely used in Go. Like

pthread join in the C language[23], developers can utilize WaitGroup to coordinate the

4
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execution of goroutines, blocking the main goroutine until all goroutines in the group

have completed their tasks. By employing the Add() method, goroutines are added to

the WaitGroup. Goroutines within the WaitGroup use the Done() method to notify task

completion, and the main goroutine employs the Wait() method to await notifications

for all goroutines in the WaitGroup.

2.2 Go Concurrency Bugs

In Go programming, concurrency bugs frequently emerge due to the improper use of

concurrency mechanisms[5]. These bugs can be categorized into two types based on

their impact: blocking bugs and nonblocking bugs. Blocking bugs in the Go language

encompass not only global deadlocks but also partial deadlocks where the main process

finishes successfully while some goroutines are blocked[21]. Nonblocking bugs may

lead to unexpected outcomes due to unanticipated behavior[33].

Misuse of resource locks is one of the causes of blocking bugs. For example, when

two goroutines are waiting for each other to release the resource they hold, it results in a

deadlock. This type of bug is not unique to Go and can be found in many programming

languages [19][2]. Communication deadlocks is another cause of this type of bugs,

which arise from the improper use of the channel mechanism[31]. For instance, if a

message is sent to a channel without a buffer, but there’s no other goroutine to receive it,

a deadlock occurs. Additionally, the uncertainty introduced by the select-case statement

contribute to the communication deadlocks, which could lead to unexpected execution

path[24]. Since channel mechanism is Go-Specific, this type of bug is unique to the Go

programming language[31]. Furthermore, due to Go’s various concurrency primitives,

there are blocking bugs produced by mixed deadlocks[33]. For instance, deadlocks can

occur when some goroutines are blocked on resource locks while others are blocked on

messages.

For nonblocking bugs, data races are a traditional and important cause[31][18].

For example, when multiple goroutines simultaneously operate on the same variable,

different orders of these operations can lead to different outcomes. Channels can also

introduce this type of bug, like receiving information from a nil channel, resulting in

unpredictable data[10]. Additionally, bugs can arise from the misuse of anonymous

functions or WaitGroup. For instance, invoking the Wait() method before Add() can

lead to a failure in synchronization between goroutines when WaitGroup is used.
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2.3 Go Bug Detection Tools

Bug detection has always been an important topic within the programming domain,

as effective bug detection can greatly enhance stability and reliability for programs.

Various approaches exist for bug detection, such as stress testing[30], which involves

extensive executions to test as many feasible interleavings as possible. Alternatively,

static analysis of execution paths through code can be employed[27] to assess the risk

of bug existence. As an emerging programming language, Go’s bug detection tools

are relatively few[24]. We choose to evaluate the following four popular bug detection

tools:

2.3.1 Goleak

Goleak[32] is a detection tool that focuses on the state of goroutines. For each goroutine,

Goleak records a stack, which includes its state, creation function, and a full execution

trace. As the program executes, Goleak gathers information about each goroutine. If

the main goroutine doesn’t finish its work within a predefined time threshold, Goleak

reports a global deadlock. Conversely, if the main goroutine does complete, Goleak

proceeds to check whether all other goroutines have also terminated successfully. If any

blocked goroutines are detected, Goleak reports a partial deadlock and pinpoints the

bug’s cause based on the stack trace. This approach is straightforward, as it analyzes

real-time program execution information to identify the presence of blocking bugs.

Additionally, Goleak examines the full trace to analyze how Goroutines access variables

and channels, enabling the detection of nonblocking bugs. To determine the existence

of data races, Goleak cross-checks the full stack traces recorded for goroutines with

runtime[14] data. It checks whether two goroutines are concurrently accessing the same

variable, with at least one involving a write operation, leading to data race condition. In

terms of channels, Goleak employs the trace to locate goroutines that send messages to

uninitialized channels, which can lead to channel misuse bugs.

2.3.2 GFuzz

GFuzz[24] employs message reordering techniques to detect channel related concur-

rency bugs in Go. It targets the Go-Specific select-case statement, where the processing

order of each case is intentionally designed non-deterministic[10]. When dealing with a

substantial number of potential processing orders, unexpected execution orders might
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occur, leading to channel related bugs. GFuzz’s solution is to deliberately alter the order

of concurrent cases, guiding the test program into different execution states and thereby

increasing the likelihood of triggering blocking bugs.

Figure 2.1: Overview of GFuzz’s workflow[24]

As shown in Figure 2.1, GFuzz first identifies concurrent messages within the

program and instruments the code with timer to establish message priorities. Specifically,

GFuzz creates a scenario where a particular case is allowed to execute exclusively for a

fixed period. Only if the case remains unsatisfied after the timeout does the execution

return to a state where all cases have equal priority. Throughout each execution, GFuzz

records the states and sequence of operations on channels to track program execution.

Subsequently, GFuzz assesses whether block is constant on blocking goroutines based

on the collected information. For instance, if a goroutine is blocked on a certain

channel, GFuzz finds other goroutines with references to that channel and examines their

operations on it to determine whether unblocking is possible, aiming to decide whether

concurrency bugs exist. It then applies fuzzing techniques to modify the executed orders,

creating order mutations. Simultaneously, GFuzz leverage the execution feedback to

prioritize interesting orders that are more likely to trigger bugs, speeding up the bugs

exposing process.

2.3.3 GCatch

GCatch[25] belongs to static detectors, which means it identifies bugs by analyzing code

without running it. It consists of two main components: the blocking misuse of channel

(BMOC) detector and the traditional detector. In the traditional detector, GCatch

focuses on identifying traditional deadlocks caused by incorrect usage of mutex. It uses
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detection approaches employed in traditional programming languages[7], implementing

an intra-procedural algorithm to pinpoint issues like double locks and conflicting locks

that lead to resource deadlocks.

Algorithm 1 BMOC Bug Detection in GCatch[25]
1: procedure BMOC DETECTOR(inputGoporgramP)

2: Cgraph← ConstructCallGraph(P)

3: Primitives← SearchPrimitives(Cgraph)

4: OPmap← SearchOperations(Primitives,Cgraph)

5: Dgraph← ConstructDependGraph(OPmap,Cgraph)

6: for each channel c in Primitives do
7: scope,Pset ← DisentanglingAnalysis(c,OPmap,Dgraph)

8: GOset ← SearchGoroutines(c,scope)

9: EPs← ComputeExecutionPaths(GOset ,Pset ,OPmap,scope)

10: for each execution paths ep in EPs do
11: Groups← ComputeSuspiciousOperationGroups(ep,Pset ,GOset)

12: for each group (δ) in Groups do
13: Φ← FilterConstraints(δ)

14: if Z3 finds a solution (s) for Φ then
15: ReportBug(δ,s)

Regarding the BMOC detector, GCatch utilizes the enumeration of all possible

execution paths of goroutines within a specific group to analyze the code as shown

in Algorithm 1. Initially, GCatch traverses all concurrency primitives and constructs

a dependency graph that links them with their corresponding operations. Then, it

creates sets of goroutines to group together the goroutines that access the same channel.

During this process, GCatch disentangles the program to avoid the need to analyze the

entire program for each group, focusing only on the primitives in the scope related to

that channel. GCatch achieves this by finding the lowest common ancestor(LCA) of

operations that are relevant to that channel in the dependency graph, thus generating

the scope from the LCA operation. Subsequently, GCatch explores the execution

paths within each goroutine set. It applies constraint conditions to filter out execution

paths that are infeasible or containing no blocking operations, thus acquiring potential

paths that could result in blocking. Finally, GCatch employs Z3[4] to verify whether

these execution paths can lead to permanent blocking of goroutines, thereby detecting

blocking bugs.
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2.3.4 GoAT

For a given program, GoAT[29] set dynamic tracing as its first step. It instruments the

program by spawning a goroutine to monitor its runtime behavior and injecting a handler

before each concurrency primitive. These handlers disrupt the goroutines execution

schedule by invoking runtime.GoSched()[14] method, achieving a broader range of

execution interleavings[1]. During runtime, each operation on a primitive generates

an event, which is recorded sequentially. These recorded events forms Execution

Concurrency Trace (ECT), serving as the foundation for bug analysis.

Secondly, GoAT conducts offline analysis of program execution based on the ECT.

It begins by constructing a goroutine tree, where edges show parent-child relationships

between goroutines. The tool then traverses the goroutines to determine whether all

of them successfully end after program termination. In the case of a goroutine leak,

GoAT initially verifies the status of the root node goroutine (main goroutine). If it does

not terminate as expected, GoAT reports a global deadlock. Subsequently, a breadth

first search of the tree is performed. If a goroutine is found not to have terminated

successfully, GoAT reports a partial deadlock and identifies the concurrency primitive

responsible for the deadlock using the ECT.

Furthermore, GoAT models Mutex, WaitGroup, and other concurrent components

based on the recorded events. This analysis determines whether these components

operate as expected. For instance, it examines whether the counter for goroutines in

a WaitGroup reaches zero upon program completion, enabling the identification of

potential blocking bugs[15].



Chapter 3

Experiment

We conduct an effectiveness evaluation of four Go concurrency bug detection tools

using the GoBench[33] dataset. To create a controlled environment and avoid hardware

differences affecting tool performance, we perform the experiments on four identical

servers with the following configurations: Intel(R) Xeon(R) CPU (4 total cores with 16

GB memory), 50GB disk, Ubuntu 20.04.6, and Docker version 24.0.4.

3.1 Research Question

In designing the experiments, we formulate the evaluation around the three following

research questions:

RQ1. Installation and Execution Difficulty: How easy is it to install and run the

tools?

To answer this question, we evaluate the installation and execution complexities

associated with each of the four tools. For installation difficulty, we examine three

aspects: the ease of following installation instructions, the compatibility with the latest

Go versions, and the number of prerequisite tools. Regarding execution difficulty, we

evaluate whether the bug detection process is automated, how the target code is stored,

and whether the tool supports Docker. This assessment of installation and execution

difficulty can serve as guidance for developers and researchers in selecting the most

suitable tool for their specific requirements.

RQ2. Bug Detection Ability: How effective are the tools in uncovering bugs in the

dataset?

To answer this question, we run each of the four tools on the GoBench dataset.

To ensure a robust evaluation, we set the frequency of executions to 100 for Goleak

10
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and GoAT and run GFuzz on the entire dataset for 10 hours. As for the static analysis

tool, GCatch, we perform three independent runs to verify result consistency. We

categorize and analyse the detection results for both blocking and non-blocking bugs.

Additionally, we classify the detected bugs based on their root causes, providing a more

comprehensive understanding of the tools’ performance for different bug categories. By

providing an evaluation of the tools’ bug detection abilities, our study equips developers

and researchers with knowledge to choose suitable tool for different codes based on the

concurrency primitives used.

RQ3. Execution Time and Overhead: What are the tools’ execution times, CPU

usage and disk space usage?

To answer this question, we measure the time taken by each tool to expose bugs

in the dataset. Moreover, given the consistency in hardware configuration across the

servers, we evaluate the CPU usage during tool execution and the disk space occupation

after execution to assess the overhead caused by the tools. This assessment provides

insights into the tools’ efficiency and resource consumption, allowing developers and

researchers to make informed decisions when selecting a bug detection tool based on

their hardware and time constraints.

3.2 Dataset

GoBench[33], a comprehensive benchmark suite for Go concurrency bugs. It comprises

a total of 185 bugs, categorized into two subsets: GoReal and GoKer. The GoReal subset

includes 82 real-world concurrency bugs, while the GoKer subset comprises 103 kernel

bugs. These kernel bugs are carefully extracted and simplified from 9 popular widely

used open-source applications and recent research on Go concurrency bugs[31]. The

extraction process focuses on preserving the complexity of the bugs while eliminating

any irrelevant code.

We choose to use the GoKer dataset for our experiments as the extracted codes

allow us to assess the tools’ performance across various bugs more accurately, enabling

a deeper analysis of differences in tool behaviours. In addition, the dataset includes var-

ious concurrency issues involving resource locks, channels, data races and anonymous

functions, etc. By evaluating tools’ performance on this comprehensive dataset, we

can obtain reliable results that shows the capabilities of each tool in detecting different

types of concurrency bugs. The GoReal dataset records the location of bugs within

source codes and the corresponding Docker file to reproduce the execution of these bugs.
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However, instead of providing the isolated buggy code like GoKer, which would allow

for more focused testing, this format makes it challenging to test target bugs, potentially

impacting the accuracy of our test results. Additionally, conducting tests on a large

code hinders our ability to perform in-depth result analysis. As a result, we choose not

to use samples from the GoReal dataset. It is worth noting that all bug types present in

GoReal are included by the GoKer dataset. Therefore, the comprehensiveness of our

results remains unaffected, ensuring a robust evaluation of the tools’ performance.



Chapter 4

Result

In this chapter, we investigate the outcomes derived from our experiments, which align

with the research questions formulated in the preceding Experiment chapter.

4.1 RQ1: Installation and Execution Difficulty

To assess the installation and execution difficulty for each of the four tools, we cate-

gorized the levels of difficulty as Easy, Medium, and Hard. As previously mentioned,

we conduct a comprehensive evaluation of both installation and execution complexities.

The results of this assessment are summarized in Table 4.1. Regarding installation

complexity, if a tool meets the criteria of Ease of following instructions and Go versions

compatibility, and requires no more than 1 prerequisite tool, we categorize it as Easy. If

either criterion is not met, it falls under Medium. If neither criterion is met, it is labeled

as Hard. The same principles apply to the three indicators of execution difficulty. It’s

worth noting that Goleak falls into the Hard category for execution difficulty due to

its limited automation in detection, even if it meets Unconstrained code storage. We

provide detailed explanation on the results in the following sections.

4.1.1 GFuzz

GFuzz exhibits excellent user-friendliness during the installation process. Following the

provided instructions allows for a seamless and successful installation. The instructions

also comprehensively outlines the tool’s command usages and corresponding examples,

ensuring a clear path for users. Moreover, GFuzz’s compatibility with various Go

versions is good, as the installation shell script specifies the versions of requisite Go

13
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Tools Installation Execution
Ease of following Go versions Prerequisite Automated Unconstrained Docker

instructions compatibility tools number detection code storage supported

GFuzz Easy Easy ✓ ✓ 1 ✓ ✓ ✓

GCatch Medium Medium × ✓ 4 ✓ × ×

Goleak Easy Hard ✓ ✓ 1 × ✓ ×

GoAT Hard Medium × × 2 ✓ × ×

Table 4.1: Installation and Execution complexity evaluation results

environment and dependency packages clearly. Notably, Docker is the only prerequisite

of the installation process, which contributes to the ease of installation.

In terms of execution, GFuzz’s simplifies the testing process by automatically

detecting bugs in the whole application without having to manually modify any source

code. Furthermore, the inclusion of Docker support prevents any potential interference

with other tools or applications, enhancing its usability. Flexibility in the storage of

target code, coupled with the ability to get target codes using Git URL, provides users

with convenience in their testing process. The overall experience with GFuzz highlights

its accessibility and testing automation design, promoting an efficient bug detection

workflow.

4.1.2 GCatch

The installation of GCatch presents some challenges due to certain complexity in the

process. Following the instructions poses difficulties because the absence of explicit

guidance on prerequisite tools and potential issues related to modifying the GOPATH

environment variable, which leads to continuous installation failures. Additionally,

the tool’s code is required to be in Go environment directory, which complicates each

subsequent use and hinders accessibility, especially for the users without root privilege.

The compatibility of GCatch with latest Go versions is evident, facilitated by its usage

of Go modules. GCatch has the largest number of prerequisite tools, including G++,

Python, Make, and the Go environment, but this does not add much complexity because

these tools are not difficult to install.

Upon execution, GCatch’s bug detection process also is automated, making it a

convenient choice for testing applications composed by massive code files. However,

the lack of Docker support introduces potential conflicts with other tools, limiting its
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flexibility within a shared environment. Furthermore, GCatch’s requirement for the

target code to reside within Go environment introduces constraints on execution, limiting

its applicability for users without enough privileges like its installation process. While

the overall experience with GCatch exhibits a balance between installation challenges

and bug detection efficiency, there are limitations in code storage and Docker support

that need to be considered in specific testing scenarios.

4.1.3 Goleak

Goleak’s installation process proves to be easy and accessible. The provided instructions

facilitate a straightforward installation experience as no additional steps beyond package

downloading are required. Compatibility with the latest Go versions is ensured by the

continuous update of the Goleak package. Additionally, For old versions of the Go

environment, we can still find corresponding versions in the historical releases of Goleak.

Furthermore, Go environment is the only prerequisite for the installation process.

However, in terms of execution, Goleak presents challenges. The absence of an

automated bug detection process requires manual code insertion to call functions of

Goleak, which implies that using Goleak in real-world Go applications involves making

numerous manual changes to the source code and running it multiple times. Although

the tool lacks Docker support, it doesn’t impact the local Go environment, so it won’t

interfere with other tools. Additionally, because Goleak is invoked directly through its

package, the target code can be placed in any location with a Go environment. Although

Goleak’s straightforward installation and compatibility with various Go versions remain

valuable aspects of its usability, the manual intervention required for code insertion

introduces critical complexity, which increases with code scale.

4.1.4 GoAT

The installation process of GoAT poses considerable challenges, reflecting its com-

plexity. The need for a dual Go environment setup and the multiple manipulation of

the global Go environment using link file command result in a complex installation

procedure. Moreover, the requirement for additional environment variables to specify

result storage locations further adds to the complexity. The installation instructions face

issues, as the provided commands cannot be used after installation. In our experiments,

we opt to directly invoke the executable binary file after the Go build process. Compati-

bility with the latest Go versions is poor due to GoAT’s lack of Go module integration,
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necessitating manual package installation to address deprecated functions and other

version-specific issues. Go and Make are the only prerequisite tools for GoAT, which

alleviates some installation challenges.

Upon execution, GoAT’s automated bug detection process eases the testing process

by eliminating the need for manual code alterations before testing. However, the

absence of Docker support and its environment-switching nature raise concerns about

potential conflicts with other Go programs on the same machine. The flexibility in

target code storage provides adaptability in execution, but an additional configuration

file is required to specify the code’s location.

4.1.5 Summary

The results of the installation and execution difficulty assessment shed light on the

accessibility, user-friendliness, and practicality of each tool. GFuzz stands out for

its easy installation and clear instructions. Its automated bug detection process and

Docker support enhance usability in execution. GCatch and Goleak presents moderate

installation and execution challenge. Conversely, GoAT’s installation complexity is

notable due to a dual Go environment setup and the lack of compatibility with different

Go versions, with execution offering an automated bug detection process but posing

concerns about Docker support and environment-switching effects. These insights

provide developers and researchers with valuable guidance in selecting appropriate

tools based on their specific needs and constraints.

4.2 RQ2: Bug Detection Ability

To investigate the bug detection capabilities of the four tools, we apply them to the task

of detecting 103 bugs from the GoKer dataset. As shown in Table 4.2, we present a

summary of the detection outcomes1 and organize them into categories based on the

causes of the bugs, offering a clear comparison.

1The full outputs can be found in Appendix
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Bug Type Tools

Category Cause Subcause(#Num) Goleak GCatch GFuzz GoAT

Blocking

Resource
AB-BA deadlock(6) 2 3 0 4

Double locking(12) 11 12 0 11

Deadlock RWR deadlock(5) 1 3 0 2

Communication
Channel(17) 15 7 8 13

Channel & Condition Variable(2) 2 0 1 0

Deadlock
Channel & Context(8) 6 2 5 6

Condition Variable(2) 2 0 0 2

Mixed
Channel & Lock(13) 7 5 4 5

Channel & WaitGroup(2) 1 0 0 2

Deadlock Misuse WaitGroup(1) 1 0 0 1

Nonblocking

Go-Specific

Anonymous function(4) 3 0 0 1

Misuse channel(6) 6 1 1 1

Testing library(2) 0 0 0 0

WaitGroup(2) 1 0 0 1

Traditional
Data race(20) 18 2 2 3

Order violation(1) 1 1 1 1

Table 4.2: Bug detection results on GoKer for the tools

4.2.1 Blocking Bugs

4.2.1.1 Resource Deadlock

Within the Resource Deadlock category, a total of 23 bugs are identified. Notably,

GCatch exhibits the highest bug detection count, containing 18 instances. Moreover,

GCatch’s results mostly accurately identify the causes of bugs, such as correctly labeling

kubernetes 30872 as Conflict Lock and identifying etcd 6708 as Double Lock. This

can be attributed to GCatch’s nature as a static detector, embedded with static checkers

developed for traditional programming language bugs, which encompass the bugs

present within the Resource Deadlock category. GoAT follows closely with 17 instances,

while Goleak identifies 14 bugs. It is worth noting that GFuzz yields no bug detection

in this category. This is attributed to GFuzz’s utilization of the Message Reordering

technique, which exclusively targets bugs originating from concurrent messages. As

a result, bugs triggered by resource locks remain outside GFuzz’s detection scope.

Therefore, we will not evaluate GFuzz’s performance within this section. Among the

three remaining tools, though the detection counts are relatively close, differences
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emerge in the specific bugs detected.

AB-BA deadlock. For the case of AB-BA deadlocks, a comparable number of bugs

are identified across the three tools, but each tool gets distinct outcomes. Interestingly,

there is no overlap in the bugs detected by all three tools, nor are there any instances

that go unnoticed by all tools. Although the performance of all three tools in this

bug category is not optimal, the combined use of GoAT and GCatch still successfully

exposes all bug samples within this type.

Double locking. All three tools demonstrate strong performance on the bug samples

within this category. GCatch successfully detects all bugs, while Goleak and GFuzz

both miss the bug sample etcd 5509. As the code shown in Figure 4.1, we find that the

bug in etcd 5509 will not be triggered under normal executions. This is due to the fact

that the cancel function of context.TODO(), obtained through WithCancel, returns a

non-nil function[9]. Consequently, the closed variable in the acquire function remains

false, rendering the bug inactive, even though RUnlock is absent if closed becomes true.

Thus, this particular bug goes undetected by Goleak and GFuzz, as the buggy code

block won’t be executed in this scenario. However, GCatch includes this case in the

execution paths computed in static analysis, despite it being unattainable in practice due

to the non-nil cancel function of context.TODO().

Figure 4.1: Bug etcd 5509 caused by double locking. (Code simplified for explanation)

RWR deadlock. In this category, GCatch performs more effectively, revealing

the highest number of bugs. We observe that the bug cockroach 16167 isn’t exposed

by any tool. Upon analyzing the code, we find that GCatch’s failure to uncover this

bug is due to its lack of information about the function sync.NewCond, which leads

to it not recognizing that systemConfigCond and systemConfigMu are the same mutex
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lock. In addition, the bug sample retains only the portion of code related to the

locks during kernel extraction, causing consecutive Lock() and Unlock() operations on

systemConfigMu. This arrangement makes it challenging for another goroutine to insert

an RLock() operation in between, causing both dynamic detectors, Goleak and GoAT,

to fail exposing this bug. A similar situation exists in kubernetes 62464, where the

simplified operations between lock and unlock methods make exposing the deadlock

more difficult for the dynamic tools. However, GCatch exposes this bug successfully

as no equivalent lock present in the code. This demonstrates the advantage of static

analysis strategies in detecting bugs that might not easily emerge in normal execution

scenarios.

Figure 4.2: The steps to trigger the deadlock in cockroach 16167

4.2.1.2 Communication Deadlock

Communication Deadlock refers to the scenario where goroutines wait for message

resources. WaitGroup and Condition Variable represent traditional communication

messages, while messages related to channels are Go-Specific. A total of 29 bugs fall

into this category. Notably, Goleak performs the best, detecting 25 bugs. On the other

hand, GCatch exhibits poorer performance in this bug category, exposing only 9 bugs.

Although GFuzz exposes fewer bugs compared to Goleak and GoAT, with only 14

bugs revealed, upon analyzing the code, we discover that GFuzz uncovers almost all

bugs related to the select-case primitive. Some of these bugs are missed by Goleak or

GoAT, such as etcd 6857 and istio 17860. We will deliver a detailed discussion of these

findings in the subsequent sections.

Channel. For bugs only related to channels, Goleak often succeeds in exposing

them, as detecting blocked goroutines for blocking bugs is a straightforward and

effective approach. As we discussed previously in the Resource Deadlock part, Goleak’s

weakness lies in its inability to expose bugs when their occurrence is dependent on rare
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conditions due to the lack of enforced execution order. However, in the case of channel-

related bugs, since messages involve modifications beyond just sending and receiving,

there are more possibilities within the execution path at runtime. However, such

instances can still be found. Only GCatch and GFuzz exposed etcd 6857. As shown in

Figure 4.3, this bug involves three goroutines that run sequentially: one for transmitting

data status, one for receiving status and stopping upon receiving stop message and the

last one for transmitting stop message. When the third goroutine executes prematurely,

i.e., Stop() occurs before status transmission, the goroutine responsible for receiving

data status becomes blocked. As shown in Figure 4.4, GCatch detects the bug after

analyzing the computation path of the channel for transmitting data status, while GFuzz

identifies the bug by reordering the cases in run() method and exposing it in the case

where message from n.stop is received first. Goleak and GoAT, on the other hand, fail

to expose this bug due to the relative simplicity of the status transmission, making it

hard for Stop() to be executed first.

Figure 4.3: The functions for goroutines in etcd 6857

Condition variable. In this section, we concurrently address both Condition
variable and Channel & Condition Variable types of bugs, due to the limited number

of samples in this category and the fact that only the bug in moby 27782 among the

samples in the latter category involves channels. In moby 27782, two goroutines become

blocked — one waiting for the other to modify the condition variable, and the other

waiting for message from the former through a channel, which results in a deadlock.

Although kubernetes 11298 also employs channels, only condition variable contributes

to the occurrence of the bug. Goleak detects all four bugs in this type, showcasing its

robust performance in this bug type. GFuzz successfully exposes moby 27782, which

involves the usage of select for managing various operations on the channel.

Channel & Context. While samples in this category involve the use of the context

package, upon examining the code, we find that the cause of bug occurrence is like
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(a) GCatch’s bug report for etcd 6857

(b) GFuzz’s order enforcement in the run() method

Figure 4.4: Illustration of the tools’ operations on bug etcd 6857

that of samples where the cause is a channel. In other words, bugs still come from

improper channel send or receive operations. This is because the Context usage focus

on managing and controlling goroutines[9], such as transmitting termination signals

by combining the cancel function and the ctx.Done() method, leading to changes in

conditions following the case statements. However, the formation of concurrency bugs

remains centered around the usage of channels. Therefore, detection results resemble

those in the Channel category. Goleak and GoAT expose the highest number of bugs,

totaling 6. GFuzz identifies some less easily exposed bugs, such as istio 18454.
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4.2.1.3 Mixed Deadlock

Mixed Deadlock refers to deadlocks caused by a combination of resource locks and

message passing. Across this category’s 16 bug samples, the performance of the four

tools is less than optimal. Goleak and GoAT show close performance, detecting 9

and 8 bugs respectively. In contrast, GCatch and GFuzz detect only 5 and 4 bugs.

The performance of GCatch and GFuzz aligns with expectations, because GFuzz

exclusively targets bugs related to concurrency messages and GCatch’s static analysis

of concurrency primitives, such as resource locks and channels, operates independently,

which resembles a union of multiple checkers. Therefore, when these two causes are

combined, GCatch struggles to expose most of these bugs.

Channel & Lock. The performance of the four tools on the samples in this category

all are not satisfactory. Among the 13 bug samples in this category, Goleak still

performs the best, exposing 7 bugs. The good news is that by employing all four

detection tools simultaneously to tackle these mixed cause bugs, only 3 bugs are left

undetected. However, this also warrants our attention as these bugs concurrently expose

the deficiencies of all four tools. For instance, consider etcd 6873, where the main

goroutine G1 generates data and creates another goroutine G2 to perform coalesce

operations. Simultaneously, a third goroutine G3 is responsible for closing the channel

used in the process. The latter two goroutines ensure mutual exclusion through a mutex.

However, G2, responsible for data coalescing, is also in charge of closing the donec

channel used for receiving data in G3. Therefore, if G3 gains control of the mutex first,

it will be blocked by donec, causing G2 to be blocked by the wbs.mu lock, as shown in

Figure 4.5. In this bug, since G2 immediately performs coalescing upon receiving data

from updatec and anticipate acquiring the wbs.mu, it becomes challenging for G3 to

preemptively acquire the mutex. As a result, both Goleak and GoAT fail to detect this

bug during dynamic detection. GFuzz also fails to enforce reordering the execution path

because the order is unaffected by the select-case keyword. GCatch, on the other hand,

is unable to analyze the buggy path due to the different types of primitives that block

G2 and G3 in the deadlock. It can be inferred that the mixed causes for bugs introduce

higher complexity in detection. The combined use of multiple tools becomes an option,

taking advantage of their different strengths.

WaitGroup Related. This category encompasses two causes: Channel & Wait-
Group and Misuse WaitGroup. All bug samples of this type are successfully detected

by GoAT. GoAT optimizes its detection for the WaitGroup primitive by recording related
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Figure 4.5: The steps to trigger the deadlock in etcd 6873

events. Additionally, because WaitGroup is essentially a goroutine counter[15], it is less

affected by execution order compared to locks, because the increment and decrement of

counters do not involve as many scenarios as the locking and unlocking of read-write

locks. When dealing with bugs related to WaitGroup, GoAT stands as the preferred

choice due to its effective optimization and the relative simplicity of the WaitGroup

primitive.

4.2.2 Nonblocking Bugs

There are 35 nonblocking bug samples in the GoKer dataset, out of which Goleak

detects 29. We observe that the remaining three tools detect no more than 7 bugs

each. This limitation is attributed to their primary focus is blocking concurrency bugs,

rendering them incapable of identifying nonblocking bugs. Some bugs in the results

are detected by these three tools due to their potential for causing blocking behavior.

For example, in the case of kubernetes 88331, there exists a risk of a goroutine getting

blocked due to channel stopCh at line 91, rather than just the risk of triggering a data

race. As a result, we exclusively focus on discussing the performance of Goleak in this

section.

4.2.2.1 Go-Specific

Goleak successfully detects 10 out of the 14 bugs in the Go-Specific category. For bugs

falling into the Misuse channel category, the causes primarily are sending messages

to a closed channel. For instance, in the case of , if a message is sent to the r.stopped
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channel by EtcdServer before the execution of the run() method of raftNode, a bug can

arise because the stopped channel is not initialized yet. Goleak successfully detected

all the bugs within the Misuse channel subcategory. This is because sending messages

to an uninitialized channel triggers a panic in the Go environment[13]. which can be

leveraged to find the goroutine that caused it and trace back its stack, thus making it

relatively easy for Goleak to identify and locate the bugs of this type.

Figure 4.6: The functions involved in misusing channel within etcd 3077.

For the remaining subcategories, Goleak’s detection method basically revolves

around spotting data races. Take the example of cockroach 35501, where the developer

invokes the method validateCheckInTxn() within an anonymous function, which carries

a risk of data race. Goleak detected this bug because its data race detection is focused

on memory access. Thus, the nested structure of anonymous functions doesn’t interfere

with the detection process. However, for bugs not fitting this pattern, Goleak lacks

the capability to detect them. For instance, in the case of serving 6171, the issue

comes from the misuse of the Testing package[16], where the test doesn’t wait for all

goroutines to finish before concluding. This can lead to unpredictable and inconsistent

test results, resulting in test flakiness. Because this bug originates from the improper

usage of the Testing package, it goes undetected by Goleak.

4.2.2.2 Traditional

For the traditional nonblocking bugs, Goleak successfully detects 19 of the 21 samples.

Among these samples, 20 bugs are attributed to data race, which stands as a main

cause of nonblocking bugs. Goleak’s detection mechanism for data race is effective

as it detects 18 out of 20 bugs in this category. In the Order violation category, the
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only sample, moby 18412, presents a unique scenario. In this case, the RunCommand-

WithOutputForDuration() method spawns a goroutine that can modify one of its return

values, aiming to influence the return only when it triggers the function to return. But it

might also impact the return value when the function is returning due to the timeout. As

shown in Figure 4.7, when the process is killed due to the timeout, the Wait() method

completes[11] and the waiting goroutine could set exitCode to 1 before the function

returns, which is not an intended behavior. Goleak identifies this race condition by

detecting that the main goroutine and the waiting goroutine may access the exitCode

concurrently, with the waiting goroutine performing a write operation. We observe

that the other three tools detect this bug as a partial deadlock, as the waiting goroutine

also sends message to the done channel. However, in the case of timeout, this message

will not be received by the main goroutine, causing the waiting goroutine to become

blocked. The result shows Goleak’s reliability in dealing with traditional nonblocking

bugs, making it a good choice for detecting this type of bugs.

Figure 4.7: The buggy code block in moby 18412.

4.2.3 Summary

Blocking bugs. Each of the four tools has shown different strengths and performances:

GCatch emerges as a reliable detector in the domain of Resource Deadlock. Leverag-

ing its static analysis approach, GCatch could uncover bugs that might be challenging to

trigger in the actual runtime. Additionally, GCatch optimizes its resource lock analysis

by embedding traditional checkers, which has demonstrated its practical value. However,
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GCatch’s performance fails in the domain of Mixed Deadlock, where the independence

of checkers for channels and locks renders it less effective at exposing bugs from mixed

causes. Furthermore, when dealing with equivalent primitives introduced by library

functions, GCatch struggles due to the lack of function information.

GFuzz, designed exclusively for Communication Deadlock, employs message re-

ordering technique to expose bugs related to message passing. Its effectiveness in this

domain is evident, with the capability to uncover a significant portion of bugs linked to

select-case statement. The enforcement of message reordering reveals subtle bugs that

might hide in unnoticed cases. However, GFuzz has limited detection ability for other

bug types.

Goleak distinguishes itself through its comprehensive detection strategy, analyzing

the state and stack trace of each goroutine. This universal approach ensures robust

detection capabilities across various bug types. Goleak proves to be a good choice when

the type of target bug is uncertain.

GoAT, as another dynamic detector, employs events analysis of different concurrency

primitives to identify bugs. Its bug detection ability across most categories is close

with those of Goleak. GoAT’s strategy allows for optimization for specific primitives,

yielding better results for primitives like WaitGroup.

Nonblocking bugs. Goleak stands as the only tool equipped with detection ability

among the four tools for this bug type. It employs modules for identifying misuse of

channels and data races, exhibiting high effectiveness. However, Goleak’s performance

in uncovering nonblocking bugs arising from other causes is less satisfactory.

4.3 RQ3: Execution Time and Overhead

To study the execution time and resource overhead of the four tools, we collect data as

they perform detection on GoKer, which is shown in Table 4.3. This includes tracking

metrics such as disk usage, CPU usage, execution time and average time taken to expose

a bug. Employing identical blank servers for experimentation allows us to determine

disk usage by subtracting its pre-installation state from the disk occupancy after tool

execution. This encompasses usage such as the execution environment, tools, code,

detection logs, and intermediate results. CPU usage during tool execution is obtained

using Google Cloud platform’s CPU monitoring tool, and we subtract the usage of

idling server to obtain final CPU usage. Execution time represents the time taken by the
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tools to complete detection on all GoKer samples. Notably, for GFuzz, we consider the

time when it last detects a bug, even though we have run it for 10 hours, since GFuzz

does not terminate autonomously and can run indefinitely without manual termination.

In Figure 4.8, we present the data sources for GFuzz’s CPU usage and execution time

as an example.

(a) Timestamps in GFuzz’s execution logs

(b) CPU monitor for GFuzz’s execution server

Figure 4.8: Presentation of data sources for GFuzz in RQ3

Observing disk usage, GoAT shows the highest consumption at 2.7GB, followed by

GFuzz at 1.85GB. GoAT’s large disk usage stems from generating substantial interme-

diate files while tracing each primitive and the tool’s complex execution environment,

which accounts for nearly 1.7GB after installation. GFuzz’s disk usage is mainly

attributed to execution logs, encompassing results and configuration files. While in-

dividual log files are small, only around 10KB each, the cumulative effect of running

for 10 hours generates nearly 87,000 logs. Comparatively, Goleak and GCatch show

smaller disk consumption due to their avoidance of persistent storage of intermediate

results during execution. In terms of CPU usage, GFuzz consumes the highest amount

of resources due to deploying multiple workers to parallel detect different samples. In

contrast, Goleak’s CPU usage is minimal as its detection process mainly is monitoring
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Tools Disk Usage CPU Usage Time Avg. Time

Gfuzz 1.85G 77.80% 14min49sec 40.41s

Gcatch 1.1G 55.52% 5min40sec 9.44s

GoAT 2.7G 70.12% 85min15sec 96.51s

Goleak 0.87G 29.42% 160min17sec 124.9s

Table 4.3: Comparison of results from different tools in RQ3

goroutine runtime stack within the program, which consumes relatively fewer resources.

Regarding runtime, GoAT and Goleak display notably longer duration, both in

overall execution time and average time taken to expose a bug. This can be attributed

to the fact that both GoAT and Goleak need to completely execute the code for each

detection, and their global deadlock detection employs a timeout mechanism, where a

program is classified as a global deadlock when its execution time exceeds threshold,

incurring substantial time overhead. GCatch relies on static code analysis, offering the

fastest execution time. Regarding GFuzz, despite being run for 10 hours, it reveals all

22 bugs in its result within 14 minutes and 49 seconds. Thus, we opt to consider this

data as the actual execution time, showing a fast detection speed like GCatch, which is

attributed to its multi-worker mechanism.

In summary, Goleak occupies the least system resources, but it has the longest run-

time. Comparatively, GCatch achieves the fastest detection speed and utilizes relatively

moderate resources. In cases of constrained CPU performance, it’s recommended to

avoid using GFuzz. Likewise, for systems with restricted disk space, caution is needed

when choosing GoAT.
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Conclusion

5.1 Summary

In conclusion, this paper has presented a comprehensive investigation into the realm

of Go concurrency bugs. By introducing the concept of Go concurrency bugs and

utilizing the GoBench benchmark suite, encompassing various bug categories, we

systematically evaluate four popular and leading Go concurrency bug detection tools.

This evaluation covers several aspects like tool deployment difficulty, bug detection

efficacy and runtime overhead, providing an insightful understanding of each tool’s

features. This study equips Go developers with valuable insights to guide their selection

of bug detection tools and enhances the knowledge of the Go bug detection process.

Summarizing the results in response to our research questions, we conclude that Goleak

is the prime choice for nonblocking bugs. For blocking bugs, if the software size is

small, Goleak is recommended; for larger software, GoAT is suitable for machine with

higher performance, while GCatch is preferable with lower performance. A program

with frequent resource lock usage favours GCatch, whereas a substantial usage of the

select-case statements indicates GFuzz as an ideal solution.

5.2 Limitations and Future work

It is essential to acknowledge the limitations of our work. While using GoKer dataset

for our experiments enables more accurate bug detection analysis and result evaluation,

not conducting experiments on real-world large applications could introduce deviation

between experiments and practical scenarios. This deviation might affect the tools’

detection abilities. Additionally, the assessment of runtime resource consumption

29
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might be inaccurately represented due to the varying rates at which different tools

experience increased overhead as code size grows. For instance, Goleak’s accumulation

of goroutine stack traces contributes to runtime overhead more than GCatch’s localized

analysis of each primitive’s call graph. Looking forward, our future work aims to

address these limitations by conducting experiments on larger, real-world software

to validate the reliability and consistency of our evaluation results. Furthermore, we

observed that in certain cases, such as Channel & Lock category bugs, none of the four

tools demonstrates optimal performance. Therefore, we aspire to identify or design

improved bug detection tools to deal with these cases, enhancing the reliability of Go

bug detection methods.
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Appendix A

Detection results on GoKer

Table A.1 displays the outputs on blocking bugs, while Table A.2 displays the outputs

on nonblocking bugs. These outputs are produced by our execution of the four tools

on the GoKer dataset, which can be found in the Project Material attached. We have

organized the outputs in a way consistent with Table 4.2, making it convenient for

readers to reference. The meaning of the keywords in the tables is as follows: X: Not

detected, D-PA: Partial Deadlock, D-GL: Global Deadlock, MU: Missing Unlock, CL:
Conflict Lock, DL: Double Lock, DR: Data Race, MC: Misuse Channel.
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Cause SubCause Bug Goleak GCatch GFuzz GoAT

Communication Deadlock

Channel

cockroach 2448 X X D-PA X

cockroach 24808 D-GL X X D-GL

cockroach 25456 D-GL X X D-GL

cockroach 35073 D-GL X X D-GL

cockroach 35931 D-GL X X D-GL

etcd 6857 X D-PA D-PA X

grpc 1275 D-PA X D-PA D-PA

grpc 1424 D-PA D-PA D-PA D-PA

grpc 660 D-PA D-PA X D-PA

istio 17860 D-PA X D-PA D-PA

kubernetes 38669 D-PA X D-PA D-PA

kubernetes 5316 D-PA D-PA X D-PA

kubernetes 70277 D-PA X X X

moby 21233 D-PA D-PA X D-PA

moby 33293 D-PA D-PA D-PA X

moby 4395 D-PA D-PA D-PA D-PA

syncthing 5795 D-GL X X D-GL

Condition Variable
moby 29733 D-GL X X D-GL

moby 30408 D-GL X X D-GL

Channel & Condition Variable
kubernetes 11298 D-GL X X X

moby 27782 D-PA X D-PA X

Channel & Context

cockroach 10790 X X D-PA D-PA

cockroach 13197 D-PA X D-PA D-PA

cockroach 13755 D-PA X X D-PA

cockroach 18101 D-PA X D-PA D-PA

grpc 862 D-PA X X D-PA

istio 18454 X X D-PA X

kubernetes 25331 D-PA D-PA D-PA D-PA

moby 33781 D-PA D-PA X X

Mixed Deadlock

Channel & Lock

etcd 6873 X X X X

etcd 7443 X X X X

etcd 7492 D-GL D-PA D-PA X

etcd 7902 D-PA D-PA X X

grpc 1353 D-PA X D-PA D-PA

grpc 1460 D-PA D-PA D-PA D-PA

istio 16224 D-GL X X D-PA

kubernetes 10182 D-PA X X X

kubernetes 1321 X X X D-PA

kubernetes 26980 X MU X D-GL

kubernetes 6632 X D-PA X X

moby 28462 D-PA X D-PA X

serving 2137 X X X X

Channel & WaitGroup
cockroach 1055 D-GL X X D-GL

cockroach 1462 X X X D-GL

Misuse WaitGroup moby 25384 D-PA X X D-PA

Resource Deadlock

AB-BA deadlock

cockroach 10214 X X X D-PA

cockroach 7504 X X X D-GL

hugo 3251 D-GL X X D-GL

kubernetes 13135 D-PA MU X X

kubernetes 30872 X CL X D-PA

moby 4951 X CL X X

RWR deadlock

cockroach 16167 X X X X

cockroach 3710 X DL X D-PA

cockroach 6181 D-PA DL X X

kubernetes 58107 X X X D-GL

kubernetes 62464 X DL X X

Double locking

cockroach 584 D-PA MU X D-PA

cockroach 9935 D-PA DL X D-PA

etcd 5509 X MU X X

etcd 6708 D-GL DL X D-GL

etcd 10492 D-GL DL X D-GL

grpc 3017 D-GL MU X D-GL

grpc 795 D-GL DL X D-GL

hugo 5379 D-GL DL X D-GL

moby 17176 D-PA MU X D-PA

moby 36114 D-PA DL X D-PA

moby 7559 D-PA DL X D-PA

syncthing 4829 D-GL DL X D-GL

Table A.1
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Cause SubCause Bug Goleak GCatch GFuzz GoAT

Go-Specific

Anonymous function

cockroach 35501 DR X X X

kubernetes 70892 X X X D-PA

moby 22941 DR X X X

moby 27037 DR X X X

Misuse channel

etcd 3077 MC X X X

grpc 2371 MC X X X

grpc 1687 MC X X X

istio 8967 D-PA X X D-PA

serving 5865 MC D-PA D-PA X

serving 3068 MC X X X

WaitGroup
cockroach 4407 X X X X

kubernetes 13058 DR X X D-PA

Testing library
serving 6171 X X X X

serving 4908 X X X X

Traditional
Data race

etcd 9446 DR X X X

etcd 8194 DR X X X

etcd 4876 DR X X X

grpc 3090 DR X X X

grpc 1748 DR X X D-PA

istio 16742 DR X X X

istio 8214 DR X X X

istio 8144 DR X X X

kubernetes 89164 DR X X X

kubernetes 88331 DR D-PA D-PA D-PA

kubernetes 82550 DR X X X

kubernetes 82239 DR X X X

kubernetes 81148 DR X X X

kubernetes 81091 X X X X

kubernetes 80284 DR X X X

kubernetes 79631 DR D-PA D-PA D-PA

kubernetes 77796 DR X X X

kubernetes 49404 DR X X X

serving 6472 X X X X

serving 3148 DR X X X

Order violation moby 18412 DR D-PA D-PA D-PA

Table A.2


