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Abstract

Diffusion language models bring together the concept of diffusion - a form of generative

AI based on sequential denoising, commonly used for image generation - into the

domain of language models, unlocking the ability for global control over the generated

text. The challenge of combining the two lies in the inherent discrete nature of natural

language (when expressed as a sequence of tokens), whereas diffusion requires gradient

computations on continuous noise perturbations. In this project I investigate one

approach for implementing diffusion-LMs for controllable text generation: adding

perturbation noise (and running the diffusion process) in a continuous latent space

obtained via a pre-trained encoder/decoder network, rather than in the discrete sentence

space.

Specifically, I extend existing work by showing that the choice of encoder LM is

vital: increasing the model size/capacity of the pre-trained encoder LM has a greater

impact on generated text fluency, than varying the size of the learnt denoising trans-

former network. Furthermore, replacing with an alternative pre-trained LM of similar

capacity (e.g. BART vs T5) has a significant impact. This suggests that fine-tuning of

the encoder LM alongside the diffusion training process should improve results further.

‘Low Rank Adaptive’ (LoRA) fine-tuning was implemented for this purpose, but failed

to improve experimental results for either fluency or control.
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Chapter 1

Introduction

During recent years, the accepted paradigm for training language models for text

generation has been to train large, transformer based auto-regressive neural networks

with a masking/next word prediction objective. Such models have essentially solved the

problem of generating fluent, high quality text (Brown et al. (2020), Chowdhery et al.

(2022), Vaswani et al. (2017)). Controllable text generation, where the output must

satisfy some user-defined restrictions (e.g. on semantic content, sentiment, or syntactic

structure), is an essential next step for deploying any real world generative NLP system.

This problem has received significant recent attention in the literature: existing

approaches usually involve either further fine-tuning of the model (Keskar et al. (2019)),

or appending smaller ‘plug and play’ classification models to steer generation during test

time (Dathathri et al. (2020)). However fine-tuning approaches are often prohibitively

compute-intensive, whilst plug and play steering is successful for relatively simple

control commands only (e.g. sentiment).

An alternative approach to controllable text generation may lie with diffusion

(Ho et al. (2020)) based models. Here, output is generated in a non-autoregressive

way; beginning with random noise in some feature space and performing sequential

denoising steps, culminating with a representation of the final generated output (learning

the denoising network is the main objective during model training). Each denoising step

can also be conditioned on whatever classifier we desire, allowing flexible and powerful

control during sentence generation. Note that this conditioning is global rather than

left-to-right, allowing complex controls such as target syntactic structure.

After initial success in the image domain (Nichol and Dhariwal (2021), Rombach

et al. (2022)), where output representations are fully continuous, Li et al. (2022)

demonstrated that successfully applying denoising diffusion methods to the discrete

1



Chapter 1. Introduction 2

domain of text generation was also possible. Recently, a variety of differing approaches

(outlined in Section 2.3) have been proposed to train improved diffusion language

models.

In this dissertation, we base our experiments on the approach taken by Lovelace

et al. (2022). Here, the authors trained a diffusion model within the latent space of an

existing (pre-trained) encoder/decoder language model, achieving improved text fluency

(MAUVE score / perplexity) compared to the original approach in Li et al. (2022). We

run experiments to confirm that the choice of pre-trained LM is at least as important as

the architecture of the diffusion transformer itself, via varying the size of the pre-trained

LM and diffusion transformer independently. An alternative pre-trained model (T5,

Raffel et al. (2020)) is also tested in place of the BART (Lewis et al. (2020)) model

used in Lovelace et al. (2022). Note that training data size (∼100k samples) and model

architecture (∼100M parameters) will be kept modest in comparison to SOTA, in order

to ensure models can easily be trained using the available computational resources.

Our experiments are evaluated via a range of metrics measuring the fluency and

relevance of the generated text on both an unconditional task (generating restaurant

reviews based on the E2E dataset), and conditional generation task (generating either

positive or negative film reviews using the SST dataset). For the conditional task, we

additionally measure how well our model output adheres to the class condition (see

Section 3.4 for further details).

Furthermore, in an attempt to improve upon the results in Lovelace et al. (2022),

we fine-tune the encoder/decoder network as part of the training process. As a full

fine-tuning process (over all layers) would be prohibitively expensive in terms of

computation, we employ the LoRA technique (Hu et al. (2021)). This has the benefit

of adding relatively little computational overhead during training, whilst adding no

overhead during inference (in Section 4.4 we present average inference times across

all our experiments). Unfortunately, our results here were inconclusive - Section 5.1

suggests some possible reasons for this.

The remainder of this report is set out as follows:

Throughout Section 2, we review the existing literature on controllable language

models, the denoising diffusion method, and alternate approaches for training diffusion

language models. In Section 3 we explain in detail our model architecture (as based

upon Lovelace et al. (2022)), and describe our experimental setup. Results are discussed

in Section 4, before conclusions and possible further work are outlined in Section 5.

Samples of generated text output from our models can be found in Appendix A.3.



Chapter 2

Background

In this section we outline the main concepts required to train our latent diffusion lan-

guage models, and provide motivation for our experiments based on existing literature.

2.1 Controllable language models

Existing approaches for controlling text generation for auto-regressive language models

include additional supervised fine-tuning on (control, text) sentence pairs, such as in

Keskar et al., 2019. Whilst successful, this approach has the limitation that significant

effort must be expended to re-tune the model every time a new control is required.

Furthermore, simultaneous composition of multiple controls is impossible.

The current state of the art is obtained via reinforcement learning through human

feedback (RLHF), coupled with few-shot prompting (provided by the user), as seen in

InstructGPT (Ouyang et al. (2022)) and ChatGPT. The downside here is an extremely

extensive and expensive training process, which is unavailable to most researchers.

An alternative approach is to freeze the underlying LM itself, and apply a separate

‘plug and play’ guidance classifier during generation (Dathathri et al. (2020)). Such

classifiers are much easier to train (orders of magnitude smaller than the underlying

LM)1, and several can be applied in parallel to achieve fully compositional control. For

example, it is possible to simultaneously condition for semantic content, sentiment, and

syntactic structure.

This approach represents an excellent trade-off between performance and training

expense, and the conditional generation method used in this project is based upon it.

1in fact, depending on architecture, an existing pre-trained text classifier can often be substituted -
removing the requirement to train a custom one each time

3
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The main limitation is that when applied in an auto-regressive setting, the left-to-right

conditioning precludes complex constraints from being imposed (such as sentence parse

tree, which requires both left- and right-context). This constraint is removed when we

instead work within a non-auto-regressive setting, such as diffusion based approaches.

This is a primary motivation for developing diffusion based language models.

2.2 Denoising diffusion models

In order to describe diffusion based language models, we first provide a brief overview

of the underling diffusion process itself:

Denoising diffusion probabilistic models were introduced in Ho et al. (2020) as a

parameterized Markov chain, trained using variational inference. During training, the

forward diffusion process is defined by sequentially adding Gaussian noise βt to the

original training samples x0 over a series of T timesteps. For example if the original

training sample x0 is an image, then x1, ...,xT represent a series of progressively noisy

images culminating in an image indistinguishable from random static - see Figure 2.1.

Figure 2.1: example forward diffusion process, taken from https://medium.com/

@steinsfu/diffusion-model-clearly-explained-cd331bd41166

Whilst the training examples are altered in this way, a separate ‘denoising’ au-

toencoder network pθ(xt−1|xt) is trained with the objective of reversing this process

and recovering the original data distribution. This network usually has a transformer

architecture. The learned parameters θ define the mean of a Gaussian transformation,

which represents the reverse diffusion process. At test time, pure Gaussian noise is

fed through the denoising network in order to reconstruct a generated image which

approximates the training distribution.

Various improvements upon this basic approach have since been proposed: cosine

scheduling of the noise parameter variance βt (rather than constant or linear scheduling),

and learning both the mean and variance for the backwards denoising process (rather

than just the mean), were both introduced in Nichol and Dhariwal (2021).
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A further breakthrough was to perform the diffusion process in a lower-dimensional

latent space, rather than the original pixel space. This was used successfully in the

famous stable diffusion paper (Rombach et al. (2022)), to generate higher quality images

than previous (non-diffusion) approaches such as CLIP (Radford et al. (2021)). This

approach also allows for classifier guidance, enabling fine-grained control over the

generated image (for example by following a text prompt).

2.3 Diffusion language models

As discussed above, diffusion models have achieved great success in continuous domains

such as image generation. The main hurdle to adapting the same approach to text

generation is the discrete nature of language tokens: the requirement to backpropagate

a loss gradient is a limitation when working in discrete space. Two broad classes of

solution have emerged:

2.3.1 Discrete approaches

Some attempts have been made to run the language diffusion process directly as a

sequence of discrete sentence edits. In Hoogeboom et al. (2021), the concepts of Argmax

Flow (composition of continuous noise prior to an argmax function to transform into

categorical space) and Multinomial Diffusion (adding categorical noise) are introduced.

Both can be used to perform diffusion on categorical data.

Discrete Denoising Diffusion Probabilistic Models (D3PMs) were introduced in

Austin et al. (2021). Here, discrete sentence corruptions are based on transition matrices

designed to mimic Gaussian kernels in continuous space.

More recently, DiffusER (Reid et al. (2023)) is a method to train diffusion LMs via

representing noise perturbations as discrete levenshtein edits on the original sentence.

One advantage is that the resulting model has the ability to revise existing text, as well

as generating new sentences (by conditioning on a prototype example).

In addition to these initial forays into diffusion-LMs, the literature contains general

techniques developed for estimating gradients of discrete functions. Examples include

discrete stein operators (Shi et al. (2022)), and Implicit MLE (Niepert et al. (2021),

Minervini et al. (2023)). The application of such techniques to diffusion language

models is one potentially fruitful area for further research.
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2.3.2 Continuous approaches

One way to (partially) side-step the problem of back-propagating a discrete loss func-

tion, is to repeat the trick from Rombach et al. (2022) and perform the diffusion in

a continuous latent space (word embeddings). The first such implementation was

described in Li et al. (2022).

Figure 2.2: Illustration of the forward and reverse diffusion process used in Diffusion-LM,

taken from Li et al. (2022). All variables xi lie in the continuous latent/embedding space.

As shown in Figure 1, the diffusion/denoising process is performed on sentence

representations x0 ∈ Rnd , where n is the number of words in the sentence and d is the

embedding dimension. These sentence representations are formed as concatenations

of continuous word embedding vectors: x0 = EMB(w) = [EMB(w1), ...,EMB(wn)],

where EMB(wi) ∈ Rd is an embedding mapping allowing translation between the

discrete sentence space and latent space.

During the forward diffusion process, a ‘rounding’/argmax operation is carried out

to obtain the closest sentence for a given series of latent word embeddings. As the

majority of the diffusion process occurs in continuous space, we need only to employ

discrete gradient estimators to this final step during backpropagation of the loss.

The promise of this approach was later confirmed in Gulrajani and Hashimoto

(2023), which trained a likelihood-based diffusion language model with a substantial

compute budget called Plaid 1B. This model was shown to outperform a version of GPT2

(Radford et al. (2019)) in terms of zero-shot likelihood on common benchmarks, the

first time a diffusion language model had beaten a large, widely-adopted autoregressive

model in this way.

With this approach, the choice of embedding mapping is vital: both papers showed

that using a fixed pre-trained embedding (such as word2vec, Mikolov et al. (2013))

performs relatively poorly. Instead, learning a custom embedding during the training

process was significantly better: achieving NLL of 3.89 versus 4.54 for using a pre-

trained embedding, according to one ablation study in Gulrajani and Hashimoto (2023).

This observation suggests that focusing further on the embedding part of the architecture,

and not just the denoising transformer itself, is worthwhile.
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Note that the embeddings described in this section are relatively simple static word

embeddings, i.e. that EMB(wi) is independent of all w j, for j ̸= i. In Lovelace et al.,

2022, this assumption is relaxed: diffusion is carried out in the latent space of a pre-

trained encoder/decoder model (BART, Lewis et al. (2020)). This brings two benefits: a

more richly defined set of contextual embeddings based on the current state-of-the-art in

auto-regressive language transformers, and an easy mechanism (the pre-trained decoder)

for decoding latent samples into natural language.

One may then ask: if learning our own embeddings is better than using pre-trained

static embeddings, and if using a modern encoder/decoder model is better than us-

ing word2vec, would even better performance be possible if we trained our own

encoder/decoder network alongside the denoising transformer? These observations

motivate the main experiments of this dissertation: we will use the architecture from

Lovelace et al., 2022 as a baseline, and finetune the encoder network during training.

The methodology is more fully described in the following Section 3, but first we review

one more technique that we will need:

2.4 LoRA

Learning a set of static word embeddings (as in Li et al. (2022)) is relatively simple

compared to the main task of training the denoising transformer for the diffusion process,

due to the relatively low parameter count. However in our case, we wish to finetune

BART-base which contains ∼140M parameters. This is at least as large as the denoising

transformer itself (across all of our experiments), making a full fine-tune prohibitively

computationally expensive. Furthermore, as the BART encoder appears earlier in the

overall architecture (see Figure 3.1), vanishing gradients may prove problematic.

Our chosen solution to avoid finetuning the entire encoder network is to employ

Low Rank Adaptive finetuning (LoRA, Hu et al. (2021)). As shown in Figure 2.3,

LoRA fixes each block of original transformer weights W whilst introducing two

new weight matrices A and B alongside it. A downscales the input onto dimension

r (a hyperparameter), before B projects back into the original output dimension and

combines additively with the original output of W . Only A and B are trained: the claim

is that these small residual layers have sufficient capacity to encompass the weight

updates required for effective fine-tuning.
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Figure 2.3: Illustration of LoRA finetuning during training versus inference. Taken from

https://huggingface.co/docs/peft/conceptual guides/lora

As we can pick dimension r ≪ d, only a small fraction of the original parameter

count needs to be trained2. This results in minimal computational overhead during

training. Furthermore, as BA can be merged into the original weights W when storing

the final model, there is a complete lack of additional inference latency. This stands

in contrast to some alternative fine-tuning techniques, which append additional tuning

layers on top of the frozen model architecture.

In Hu et al. (2021), it is shown that LoRA performs at least on-par with a full

fine-tune of RoBERTa, GPT-2 and GPT-3. These properties make the technique perfect

for our purposes.

2in our experiments, we pick r = 8. Correspondingly, less than 1% of the original total parameter
count are available for finetuning



Chapter 3

Methodology

In this section we describe in greater detail our model architecture (adapted from

Lovelace et al. (2022)) and training setup, including the datasets and hyperparameter

settings used for our experiments.

3.1 Baseline model

As described in the previous section, we will base our experiments on the architecture

described in Lovelace et al., 2022. The authors trained their models on four datasets

in total - we will restrict ourselves to the smallest two of these, one for unconditional

generation (E2E) and one for conditional generation (SST). The first task is to re-

implement their baseline model on these two datasets.

Whilst their model is relatively lightweight by modern standards (a transformer

based architecture with ∼214M parameters), available GPU hardware was limited to

NVidia GTX-1080Ti cards (with 11GB VRAM) rather than the RTX-3090 and A6000

(24GB / 48GB VRAM) used in their paper. Consequently, we slightly truncate the

architecture to use as our primary baseline - see Section 3.3 for details. The metrics

used to evaluate our models for fluency and control are detailed in Section 3.4.

The original PyTorch code implementation is freely available on github 1, which I

have forked and adapted 2. The overall approach is shown in Figure 3.1.

1https://github.com/justinlovelace/latent-diffusion-for-language
2https://github.com/dolmas1/dissertation public

9
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Figure 3.1: Outline of approach for latent diffusion for language generation (adapted

from Lovelace et al., 2022)

During model training, we sample natural language w of length l from our training

distribution D, and represent it as a sequence of one-hot vectors over our vocabulary,

w ∈ Rl×V . The BART encoder, E(), transforms this sequence into continuous latent

space: x = E(w) ∈ Rl×d .

Next, sample a diffusion timestep t ∈ {1, ...,T} and some Gaussian noise

ε ∼ N (0,I). We obtain the corrupted latent embedding zt by applying the noise ε to

our original latent embedding x, according to zt =
√

αtx+
√

1−αtε.

Here, αt ∈ (0,1) controls the amount of noise for diffusion timestep t according to our

chosen noise schedule.

The corrupted embedding zt , along with the timestep t and (optional) class embed-

ding y, are fed into our denoising network x̂θ (labelled diffusion transformer in Figure

3.1). We train this denoising network against the loss function:

L = ||x̂θ(zt , t,y)−x||22 (3.1)

During inference, the denoising network recovers embeddings from random noise,

which are then decoded into text by the BART decoder. First, we must determine the

length of the sample to generate - during training, l was specified by the training sample

but during inference it must be predetermined. The chosen approach is to sample li
from the empirical distribution of sentence lengths from the training set.

This allows us to sample a fully corrupted embedding, zT ∈ Rli×d ∼ N (0,I).
An iterative process is then performed across t ∈ {T, ...,1}: the trained denois-

ing network x̂θ is used to first denoise the current latent zt into x̃t , before the latent

corresponding to timestep t −1, zt−1, is reconstructed via use of x̃t , zt , and αt .
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Once x̃1 has been reached, it is passed through the BART decoder to obtain the final

decoded text output. Beam search (with a beam size of 4) is used at this point.

Note that this iterative process acts as a bottleneck, and is the main reason why in-

ference for diffusion based LMs is substantially slower than for standard autoregressive

LMs.

3.1.1 Diffusion transformer architecture

As outlined in Lovelace et al. (2022), the diffusion transformer x̂θ(zt , t,y) is a bidi-

rectional Pre-LN transformer (Xiong et al. (2020)) with GeGLU activation functions

(Shazeer (2020)). The latent zt is projected to the input dimension of the transformer,

passed through the transformer, processed with a LayerNorm, and finally passed through

a linear layer to obtain the denoised latent.

Default sizes for the transformer itself are 12 layers with hidden dimension dtx =

768; however in this dissertation we will instead be testing a range of smaller sizes

(partly due to memory limitations, but also to gauge the importance of diffusion trans-

former size in comparison to encoder/decoder LM size).

The timestep is fed into the transformer in an identical manner as for image diffusion:

via a sinusoidal positional encoding ψ(t) passed through a learnable MLP, to obtain a

time embedding MLP(ψ(t)) ∈ Rdtx .

3.1.2 Conditional generation

If conditional generation is required for a specific task (e.g. topic or sentiment condi-

tioning), the ground truth class labels from our training examples are directly encoded

and fed into the diffusion transformer during model training (see ‘class embedding’

component in figure 3.1). For class labels c ∈ {1,2, ...,C, /0} - including the null class -

this is done via learnable class embeddings y(c) ∈ R(C+1)×dtx . These class embeddings

are combined with the latent language embeddings zt via a cross-attention layer in the

denoising network.

In this way, the model learns how to generate examples from each class present in

the training set: during inference, simply pass the appropriate class embedding y(c)

into the denoising network. To retain the ability for unconditional generation, for ten

percent of training updates we randomly mask the class label with /0. This empty class

label can be passed during inference when no class conditioning is required.
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Whilst this framework differs slightly from the classification-model guided approach

in Li et al. (2022), it can still be adapted for scenarios where we have access to a

classifier but not ground truth labels. For example, one could use an existing sentiment

classification model to classify an unlabelled set of training sentences, and pass the

encoded prediction to the diffusion transformer in place of discrete class label. During

inference, we could also specify an arbitrary value for the classifier output rather than a

discrete label (assuming the label encoder was modified accordingly).

3.1.3 Noise schedule

T = 1000 diffusion timesteps are used for every model. The noise schedule αt is

parameterized according to linear schedule introduced by Ho et al. (2020):

α1 = 1e-4 to αT = 0.02.

Such a schedule ‘ensures that the noise scale is relatively small at the beginning,

making it easier for the denoising network to recover the data, while eventually corrupt-

ing the original data to random noise by increasing the noise scale’.

3.1.4 Objective

Note that in the image domain, diffusion transformers are often parameterized to

predict the noise: ε̂θ(zt , t). But our diffusion transformer x̂θ(zt , t) has instead been

reparameterized with the objective of recreating an estimate of the original (noiseless)

latent embedding - see our loss function, Equation 3.1. This is commonly denoted as

‘x0-parameterized loss’.

According to the survey paper Li et al. (2023), this prevents instability where the

network would otherwise fail to converge onto precise word embeddings, and has been

widely adopted in recent work.

3.1.5 Self-conditioning

The technique of self-conditioning is the final adjustment to the method described above.

Introduced by Chen et al. (2023), it was found that improved sample quality could be

obtained by additionally conditioning the denoising network on its output from the

previous timestep: instead of x̃t = x̂θ(zt , t,y), we have x̃t = x̂θ(zt , t,y, x̃t+1).

In Lovelace et al. (2022), experiments showed that the perplexity of the generated

text was substantially improved when self-conditioning was used. Furthermore, no
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additional calls to the denoising network are required during inference due to the

iterative nature of the sampling procedure. The only tricky detail is that for the very

first denoising step during inference, no previous latent exists - a slight modification

to the training procedure is therefore required, to retain the ability for the denoising

network to condition only upon (zt , t,y).

To allow this, during training we randomly replace the conditioning on x̃t+1 with a

null latent embedding /0 half of the time.

3.2 Datasets

We will train Diffusion-LMs for two different tasks: our first task will be to (uncon-

ditionally) generate sentences of restaurant reviews. The second task is conditional

generation, where we will learn to generate either positive or negative movie reviews.

Each task has an associated training dataset of sample sentences, which our model will

learn to emulate.

E2E Novikova et al. (2017), dataset containing 51,426 restaurant reviews. Each

review describes between 3 and 8 attributes (e.g. price range, location, type of cuisine

etc). The data is split into 42,061 training instances, 4,672 validation, and 4,693 test

instances. The dataset is often used for attribute detection tasks, but we use it for

unconditional generation only - by design, the wide range of attributes contained in the

data ensures sufficient diversity (within the domain of restaurant reviews). An example

training sentence is as follows:

The Phoenix is located in the city centre. It offers English food, has a high price range,

and a customer rating of one out of five.

Stanford Sentiment Treebank Socher et al. (2013) contains 11,855 sentences

extracted from movie reviews, taken from rottentomatoes.com. Each review was

originally labelled (via Amazon Mechanical Turk) on a five point scale. However, we

use a version of the data where the labels have been simplified into binary ‘positive’ or

‘negative’ sentiment only. These binary labels are fed into the diffusion transformer as

the class embedding, along with the sentence embeddings. The data is split into 8,544

training instances, 1,101 validation, and 2,210 test instances. A pair of example training

sentences are as follows:
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Positive: Some actors have so much charisma that you’d be happy to listen to them

reading the phone book .

Negative: I was surprised at how quickly it faded from my memory.

3.3 Experiments

The experiments included in this dissertation are designed to extend the results in

Lovelace et al. (2022) by answering three research questions:

• For latent diffusion language models, would additional model capacity be de-

ployed more optimally (in terms of output quality and inference speed) by expand-

ing the encoder/decoder LM, or the diffusion transformer/denoising network?

• Instead of fixing the encoder/decoder LM, can better performance be obtained

by applying LoRA finetuning to it (alongside the usual process of learning the

denoising network)?

• Do different encoder/decoder LMs, of equivalent size, give similar results?

To investigate we run a fully-crossed experiment design. For each task (E2E & SST)

we train a latent diffusion LM for each combination of:

• Variable dimension / layer count of denoising transformer

• Original (BART-base) vs reduced parameter (BART-small) encoder LM

• LoRA finetuned encoder LM vs fixed

Additionally, we run a handful of experiments swapping out BART-small with T5-small.

T5 is an autoregressive encoder/decoder LM similar to BART, chosen because it boasts

a range of modern architectural and training procedure improvements over BART (see

Raffel et al. (2020)). Yet in terms of model size, T5-small has comparable parameter

count to BART-small making a fair comparison possible.

The full list of experiments is shown in Table 3.1.

3.3.1 Implementation details

BART-base (Lewis et al. (2020)) has 6 encoder and decoder layers, and a hidden

dimension of 768, for a total of 140M parameters. Model weight checkpoints are taken

from huggingface3.
3huggingface.co/facebook/bart-base
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Dataset Pre-trained LM Denoising transformer size LM finetuning

SST

BART-small

(384, 10) None

(dimension dtx, layers) LoRA

(512, 10)
None

LoRA

(512, 11)
None

LoRA

(640, 10)
None

LoRA

BART-base

(384, 10)
None

LoRA

(512, 10)
None

LoRA

(512, 11)
None

LoRA

(640, 10)
None

LoRA

(768, 12) None

T5-small (512, 10)
None

LoRA

E2E

BART-small

(384, 10)
None

LoRA

(512, 10)
None

LoRA

(640, 11)
None

LoRA

BART-base

(384, 10)
None

LoRA

(512, 10)
None

LoRA

(768, 12) None

T5-small (512, 10)
None

LoRA

Table 3.1: Full list of our completed experiments: 18 models were trained on the SST

dataset, and 12 on the E2E dataset. The highlighted rows represent the final model

settings used in Lovelace et al., 2022, however a lack of VRAM prevented us from

successfully training at these model sizes.
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BART-small is a variant of BART trained by Luca Di Liello (University of Trento,

Italy). It uses a smaller hidden dimension of 512, fewer attention heads, and reduced

feed forward size. The total parameter count is 70M. All other training details are

identical to BART-base. Model weights are taken from huggingface4.

T5-small model weights are taken from huggingface5. The total parameter count is

61M.

LoRA finetuning implementation was greatly eased through use of the PEFT python

package6. We use a default value for the LoRA dimension parameter, r = 8.

Training settings common to all models are shown in Appendix Table A.1. Ex-

periments were run on the University of Edinburgh ILCC computing cluster. Each

experiment took between 16 and 36 hours (dependent on settings) to train on a single

NVidia GTX 1080Ti GPU with 11GB VRAM.

3.4 Evaluation metrics

For each experiment, we sample 1000 sentences from the latent diffusion LM. To

measure the fluency and quality of generated text, we calculate four different metrics:

• MAUVE Score. This metric, introduced in Pillutla et al. (2021), compares the

distribution of generated text to a reference, using divergence frontiers. It is

intended to measure how ‘human like’ the generated text is. The calculation of

divergences requires both text samples to be embedded in some space - we report

scores utilizing a modern autoregressive language model, GPT-2 Large (Radford

et al. (2019)), as the embedding model for this purpose. For the reference sample

of human-generated text, we sample 1000 instances from the test set.

• Perplexity (Ppl) measures how likely to occur the generated text is, according to

some oracle model. We report scores using GPT-2 Large.

• Diversity (Div). We want our generated text to not only be fluent, but non-

repetitive. Following Su et al. (2022), we report a diversity metric over our

generated text as follows: diversity = ∏
4
n=2

|unique n-grams|
|total n-grams|

4huggingface.co/lucadiliello/bart-small
5huggingface.co/t5-small
6https://github.com/huggingface/peft
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• Memorisation (Mem). We note that the previous metrics could be near-maximised

by simply regurgitating examples from the train set (overfitting). To measure

the tradeoff between perplexity and memorisation, we report the proportion of

generated 4-grams which were present in the training set.

We repeat this sampling of 1000 sentences and metric calculation five times, and

report the mean and standard deviation of each metric as meanstdev.

As an additional comparison for our models, we generate reference metrics by

taking a natural sample of 1000 instances from the training set. This acts a proxy as a

sample from a hypothetical ‘reference model’. Metrics are generated using this sample

in the same way as described above.

3.4.1 Metrics for controlled generation

• MAUVE score class alignment. For our generic MAUVE metric, we compare

1000 sentences sampled unconditionally from our model with 1000 random test

set samples (containing sentences from every ground-truth class label). However;

we can instead choose to compare test set samples from a single class against

sentences sampled from our model using a specific label conditioning. We iterate

this method to implement a fully crossed design, generating MAUVE scores to

compare each ground-truth label against each conditioning label. We include the

full matrix in our report7. If the model is generating sentences highly similar

to data from the same class it has been conditioned on, this implies that the

conditional generation is working as intended. Conversely, we should expect

lower MAUVE scores whenever the conditioning and ground-truth labels are

misaligned. We can summarise this matrix into a single metric:

Class alignment =
∑

i= j
MAUVEcond=i

re f= j

∑
i̸= j

MAUVEcond=i
re f= j

, where i, j range over the class labels.

7For the conditional dataset (SST) used in this dissertation, this results in a 2x2 matrix only - but the
same approach can be extended to any number of class labels
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Results and analysis

The full table of evaluation results (including MAUVE scores from both validation and

test sets) is available in Appendix A.2. Here, we highlight certain relevant subsets of

these results in order to answer our specific research questions.

4.1 Varying the size of each network

We want to know whether varying the size of the pre-trained encoder/decoder language

model has a greater effect on the quality of generated text, compared to varying the

size of the denoising transformer by a similar degree. To determine this, we ignore

experiments involving either LoRA finetuning or the T5 language model (which has a

different architecture to BART, and so results are not directly comparable). MAUVE

and Perplexity scores for the remaining models are shown in Table 4.1.

We observe that increasing the parameter count of the encoder LM brings a signifi-

cant improvement in terms of both MAUVE and Perplexity scores - see Figure 4.1 for a

clear illustration of this.

Conversely, many of our architecture experiments show minimal (or even negative)

gains when parameter count of the diffusion transformer is increased. See Figure 4.2

for an illustration.

This confirms our hypothesis that additional model capacity should primarily be

spent improving the encoder network, rather than the denoising transformer. This agrees

with findings from previous work (Li et al. (2022)) that learning a better set of word

embeddings can significantly improve diffusion language models.

18
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Task Encoder LM Size Diffusion Transformer Size MAUVE (test) ↑ Ppl ↓

SST

BART-small (70M)

(384, 10) - 46M 0.4650.07 477.666.3

(512, 10) - 81M 0.4260.06 585.993.4

(512, 11) - 88M 0.3990.11 699.5293.4

(640, 10) - 126M 0.3980.11 549.786.9

BART-base (140M)

(384, 10) - 46M 0.6270.13 144.684.8

(512, 10) - 81M 0.6910.09 163.529.2

(512, 11) - 88M 0.6780.1 144.317.9

(640, 10) - 126M 0.5940.07 237.2100.4

E2E

BART-small (70M)

(384, 10) - 46M 0.8780.1 131.723.5

(512, 10) - 81M 0.740.05 129.414.8

(640, 11) - 137M 0.7970.05 140.911.6

BART-base (140M)
(384, 10) - 46M 0.7190.05 11313.4

(512, 10) - 81M 0.8430.07 118.515.5

Table 4.1: Experimental results for varying parameter counts of each model
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Figure 4.1: Effect of Encoder LM parameter count on text fluency: larger models are

strongly associated with improved MAUVE and Perplexity scores, across the range of

experiments
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Figure 4.2: Effect of Diffusion Transformer parameter count on text fluency: no clear

improvement in MAUVE or Perplexity from increased model size

4.2 LoRA tuning of encoder LM

We now know that improving the pre-trained encoder LM is a promising direction for

improving our diffusion language model as a whole. With LoRA finetuning, we test

whether we can train a custom embedding to bring further improvements. In Table

4.2, we show full experimental results (using unconditional generation) for our main

baseline model1, with and without LoRA finetuning. Within each task, the highlighted

cells show whether the LoRA or non-LoRA model was superior.

Task Model MAUVE (test) ↑ Div ↑ Mem ↓ Ppl ↓

SST

Reference metrics 0.9680.02 0.9140.014 0.0480.008 108.823.2

Baseline latent diffusion LM 0.6910.09 0.7870.027 0.060.007 163.529.2

Latent diffusion LM + LoRA 0.6730.04 0.7960.021 0.0620.006 153.825.1

E2E

Reference metrics 0.8190.06 0.1640.012 0.8720.011 128.510.8

Baseline latent diffusion LM 0.8430.07 0.1790.025 0.8390.02 118.515.5

Latent diffusion LM + LoRA 0.740.08 0.1730.014 0.8530.025 122.324.7

Table 4.2: Experimental results for LoRA finetuning (unconditional generation)

Unfortunately, LoRA has completely failed to improve the quality of generated text

for the E2E task according to our chosen metrics - although note that both models attain

similar performance to the reference metrics, suggesting that performance on this easier

task is already near saturated.

1BART-base, with denoising transformer dimension (512, 10)
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On the more difficult SST task (where performance is substantially below the

reference metrics), we see mixed results. Implementing LoRA has improved the

diversity of our generated text from 78.7% to 79.9%, and improved the perplexity from

163.5 to 153.8. No improvement in MAUVE score or memorisation was observed.

Whilst these results are not tremendously encouraging, the relatively large standard

deviations around each metric make drawing conclusions difficult. We attempt to use

the remainder of our experiments (i.e. not only the BART-base / (512, 10) baseline

shown in Table 4.2) to narrow the uncertainty:

For each of our 15 model architectures, we have performance metrics across five

random seeds for both {LoRA and non-LoRA} versions of the architecture. This gives

us 15 * 5 = 75 independent comparisons of LoRA vs non-LoRA for each metric. We

can therefore calculate the proportion of occurrences, across these 75 comparisons, that

the LoRA model was superior to the non-LoRA model:

For diversity, LoRA was superior 53% of the time

For MAUVE, LoRA was superior 44% of the time

For memorisation, LoRA was superior 57% of the time

For perplexity, LoRA was superior 40% of the time

Therefore, we find no significant performance impact from implementing LoRA

finetuning.

4.2.1 Conditional generation

In Table 4.5, we show MAUVE class alignment scores for the conditional generation

task (SST dataset). The same baseline model as above is shown, with and without

LoRA finetuning.

As expected, we see higher MAUVE scores where the ground truth reference label

aligns with the label used for conditioning. This demonstrates that our models are

correctly distinguishing between the two classes during conditional generation, and

holds true for both the baseline model and LoRA model. Interestingly, we see greater

differentiation when generating sentences conditioned on the ‘Negative’ class - perhaps

negative movie reviews have more uniquely distinguishing characteristics than positive

reviews.
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Baseline latent diffusion LM Latent diffusion LM + LoRA

Reference Label Reference Label

Negative Positive Negative Positive

Conditioning Negative 0.7130.17 0.3460.06 0.6820.05 0.2860.07

Label Positive 0.4860.16 0.5540.17 0.5640.18 0.5910.07

Table 4.3: Experimental results for LoRA finetuning (conditional generation: MAUVE

class alignment scores on SST dataset)

The class alignment ratio (see Section 3.4.1) for the baseline model is 1.52, com-

pared to 1.50 for the LoRA fine-tuned model. This again shows that both models are

performing at roughly the same level, but that customising our embedding via fine-

tuning has not improved the extent of conditional control we have over the diffusion

model. Examples of conditionally generated text can be found in Table A.5.

4.3 Replacement of enconder LM

Instead of improving the suitability of the encoder LM to our task via by direct finetun-

ing, in these experiments we replace it with an alternative pre-trained LM. We hope to

improve text generation by picking a model that has roughly the same size (T5-small

has 60M parameters, compared to 70M for BART-small), but better performance when

evaluated as a standalone auto-regressive LM. In Table 4.4, we show full experimental

results for our main BART-small model2, compared to T5-small. Within each task, the

highlighted cells show which of the T5 or BART model was superior.

Task Model MAUVE (test) ↑ Div ↑ Mem ↓ Ppl ↓

SST

Reference metrics 0.9680.02 0.9140.014 0.0480.008 108.823.2

Latent diffusion LM: BART-small 0.4260.06 0.8540.011 0.0360.008 585.993.4

Latent diffusion LM: T5-small 0.2020.06 0.8660.016 0.0370.006 406.7313.2

E2E

Reference metrics 0.8190.06 0.1640.012 0.8720.011 128.510.8

Latent diffusion LM: BART-small 0.740.05 0.1580.013 0.8610.015 129.414.8

Latent diffusion LM: T5-small 0.5070.13 0.2310.019 0.7840.025 147.424.4

Table 4.4: T5 experimental results (diffusion transformer dimension (512, 10), non-LoRA)

2with denoising transformer dimension (512, 10) and non-LoRA
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As in the previous LoRA section, results are mixed. We observe some significant

improvements in terms of diversity, memorisation, and perplexity, suggesting that the

T5 embeddings are more successful for our diffusion process.

However, we also observe a very large deterioration in MAUVE score: from 0.426 to

0.202 in the SST task, and from 0.74 to 0.507 in the E2E task. This seems contradictory

at first - we will take a closer look at samples of the generated text to understand why.

4.3.1 Generated text

Inspection of example sentences generated from each model immediately reveals the

issue: many of the sentences generated by the T5 model talk about films in the expected

way, but are in German3! This is due to the inclusion of German, French, and Romanian

translation tasks4 in T5’s pre-training procedure, unlike BART’s.

Whilst all of our training data is in English, note that during training the denoising

transformer is only learning to recover the correct latent embedding of the training

sentences. We hypothesize that roughly the correct embeddings (i.e. representing

semantic content of film/restaurant reviews) are being recovered, but that embeddings

for German and English translations of the same sentence are very close (in terms of L2-

norm) inside the T5 latent space. Investigating further would be an interesting problem,

but outside the scope of this dissertation. Our main conclusion is that switching to

a different pre-trained encoder LM has the potential to deliver significantly different

results, but that care must be taken in choosing the correct model.

Example sentences generated from our BART-small latent diffusion LM, SST task:

1: A tedious drama of a a trangling family man that the slap-buttones

into the confrontation.

2: It’s a solid family romantic drama that’s proves to achieve it.

3: A dark, deeply emotional portrait of a story.

4: The film’s depth may may may not gravitate, but the script is

resurrecting and the morality of their conscience.

3multiple languages in our output easily explains the observed diversity and memorisation im-
provement. As MAUVE and perplexity both depend on large auto-regressive ‘oracle’ models for their
calculation, how they respond to multilingual data will heavily depend on this model choice

4note that mT5, a multilingual version of T5 covering 101 languages, was trained by (Xue et al.
(2021)) and is widely available - but is not the version used here
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Example sentences generated from our T5-small latent diffusion LM, SST task:

1: No cinematic moments in any real action, but there’s no film

clever moments in a real action.

2: Vielleicht hat es hier nicht diesen Charme, weil Sie eine

schwierige Methode haben, ihn zu distanzieren.

3: Ein schmerzhaftes, tiefe und flötvolles Film.

4: Ein entertaining, wenn auch letzten Endes satisfying, documentary.

4.3.2 Conditional generation

In Table 4.5, we show MAUVE class alignment scores for the conditional generation

task (SST dataset). The same BART-small and T5-small models as above are shown.

Latent diffusion LM: BART-small Latent diffusion LM: T5

Reference Label Reference Label

Negative Positive Negative Positive

Conditioning Negative 0.6830.18 0.3950.08 0.1630.05 0.1410.07

Label Positive 0.5480.25 0.6190.05 0.1540.04 0.1840.03

Table 4.5: Experimental results for T5 models (conditional generation: MAUVE class

alignment scores on SST dataset)

Again, we see higher MAUVE scores where the ground truth reference label aligns

with the label used for conditioning, and higher differentiation for generated sentences

conditioned on the ‘Negative’ class. As discussed above, overall MAUVE scores for

the T5-small model are significantly below the BART-small baseline. This contributes

to a low class alignment ratio of 1.18 for the T5-small model, in comparison to 1.38

for BART-small: we conclude that switching to the pre-trained T5 language model has

harmed capacity for controllable generation, as well as fluency.
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4.4 Inference speed

We investigate the time taken to run model inference, sampling 1000 sentences from the

model trained in each experiment. We use the same NVidia GTX 1080Ti as used during

training. Each inference task was repeated five times with differing random seeds. The

full set of results are shown in Table 4.6.
To interrogate these results, we train a simple linear regression model to predict the

number of seconds taken. Due to relatively low variability, this is a straightforward task
(R2 of 91% was achieved). We obtain the following regression coefficients5:

SST task is 3.2 seconds quicker than E2E (statistically insignificant)

LoRA models are 8.8s slower than non-LoRA models (statistically insignificant)

Each additional 1M encoder LM parameters will add 0.47s to inference

Each additional 1M diffusion transformer parameters will add 4.8s to inference

Task Encoder LM Diffusion Dim Inference (s), non-LoRA ↓ Inference (s), LoRA ↓

SST

BART-small

(384, 10) 467.7 5.8 422.8 0.8

(512, 10) 545.5 19.8 561.8 12.7

(512, 11) 546.6 8.1 597 7.7

(640, 10) 816.1 2.4 803.7 4.7

BART-base

(384, 10) 462 1.5 476.8 21.2

(512, 10) 550.8 2.8 701.8 27.9

(512, 11) 622.4 1 584 3.2

(640, 10) 842.4 8.8 859.6 3.1

T5-small (512, 10) 580.3 2.6 568.7 7.4

E2E

BART-small

(384, 10) 442.5 5 417.9 2.6

(512, 10) 525.4 2.6 674.9 36.2

(640, 11) 872.2 2.4 871 3.7

BART-small
(384, 10) 423.2 1.2 432.3 4

(512, 10) 683.5 4.4 545.5 4

T5-small (512, 10) 545.5 1.3 542.4 1

Table 4.6: Average wall time (seconds) to generate 1000 samples, for each experiment

5Note that these coefficients must be considered in relation to an average inference time of 600
seconds
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Accordingly, we conclude:

• The task (SST or E2E) has negligible influence on inference speed

• LoRA models do not suffer from significantly slower inference compared to

non-LoRA models

• Increasing the size of the encoder LM and/or diffusion transformer slows down

inference, although the effect of diffusion transformer size is ten times greature.

This is expected, due to the iterative nature of the denoising process during

inference
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Conclusions and further work

In this project we have expanded upon previous work by training a variety of diffusion

language models within the latent space of pre-trained encoder/decoder LMs. These

diffusion-based models currently lag behind current foundational auto-regressive models

in most language modelling tasks, but have the potential to unlock very powerful forms

of classifier control during text generation. In this newly emerging field of study

(entirely within the last ∼ 18 months); the outcome of this project can help guide the

direction of future work.

We have shown that varying the capacity of the pre-trained LM has a large effect

on the quality of generated text, but a modest effect on inference speed. Conversely;

varying the capacity of the denoising network brings a lesser improvement to the

quality of generated text, yet a significant effect on inference speed. Swapping between

different pre-trained LMs brings a large difference in results, although care must be

taken to consider the specific properties of the chosen model.

All of this suggests that it should be possible to successfully fine-tune an existing

LM in parallel with learning the denoising network, but our attempts in this direction

(using LoRA fine-tuning) proved inconclusive. This is disappointing, but we have

suggestions for how further work may overcome this.

Our investigations were able to confirm that conditional generation can success-

fully be used to control latent diffusion language models, but again we observed no

improvement over the baseline level of control when varying our experimental setup.

27
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5.1 Limitations and further work

Due to limited compute budget, the models trained in this work are small in comparison

to modern autoregressive models such as Llama (Touvron et al. (2023)). The LoRA

finetuning approach may be a lot more powerful when applied to larger (>1B parameter)

models - it is not clear whether our results will extrapolate. Additionally, there are

avenues for exploration not covered in this work:

• Varying the dimension parameter r. In our experiments, the number of LoRA-

tuneable parameters is ∼ 0.4% of the original parameter count: higher or lower

values may be optimal

• Varying optimiser settings (learning rate etc) for the LoRA specific weight updates,

rather than sharing an optimiser with the denoising network

• Other methods of fine-tuning the encoder LM: for example unfreezing the last

few layers

Other extensions of this work could involve changing the class conditioning approach:

• Finer grained control could be achieved by passing a series of floats to the class

label encoder during inference, rather than a binary/categorical label. This would

allow generation of ‘mildly positive’ sentences, even though the training data

may only have contained discrete ‘positive’ or ‘negative’ classes. The success of

this approach could be tested by calculating the class alignment ratio of a series

of generated sentences (conditioned on labels e.g. {0.0, 0.1, 0.2, ..., 0.9, 1.0})

against the discretely classified reference sentences.

• Instead of encoding ground truth class labels for each sample during training, we

could experiment with using arbitrary pre-trained plugin classifier models. As

well as enabling finer grained control, this would also reduce the need for human

annotation of training datasets
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Appendix A

Appendix

A.1 Default training settings

Parameter Setting

Max Seq Length 64

Diffusion steps (T ) 1000

Noise Schedule (for αt ) Linear

Regression Loss L1

Transformer Layers variable

Transformer Dimension variable

Optimizer AdamW (Loshchilov and Hutter (2019))

Learning Rate 1e-4

(β1,β2) (0.9, 0.999)

Batch Size 64

Warmup Steps 1000

Learning Rate Schedule Cosine Decay

Adam Weight Decay 0.01

Dropout 0.1

Gradient Clipping 1.0

EMA Decay 0.9999

Iterations 50k

Table A.1: Default training settings used across all our experiments
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A.2 Exhaustive results

Task Encoder LM Diffusion Dim LoRA MAUVE (val) ↑ MAUVE (test) ↑ Div ↑ Mem ↓ Ppl ↓

SST

Reference metrics 0.976 0.9680.02 0.9140.014 0.0480.008 108.823.2

BART-small

(384, 10)
0 0.421 0.4650.07 0.8420.005 0.0420.006 477.666.3

1 0.517 0.4050.13 0.8570.009 0.0320.004 546.823.1

(512, 10)
0 0.589 0.4260.06 0.8540.011 0.0360.008 585.993.4

1 0.345 0.3720.07 0.8410.013 0.0430.011 560.187.8

(512, 11)
0 0.327 0.3990.11 0.8590.016 0.0330.007 699.5293.4

1 0.451 0.4510.08 0.8620.013 0.0370.009 535.240

(640, 10)
0 0.495 0.3980.11 0.8550.012 0.0380.008 549.786.9

1 0.422 0.4480.09 0.8440.013 0.0390.008 596.879.3

BART-base

(384, 10)
0 0.548 0.6270.13 0.7560.022 0.0650.01 144.684.8

1 0.753 0.6160.04 0.7310.014 0.0660.008 9901858.4

(512, 10)
0 0.609 0.6910.09 0.7870.027 0.060.007 163.529.2

1 0.803 0.6730.04 0.7960.021 0.0620.006 153.825.1

(512, 11)
0 0.571 0.6780.1 0.780.012 0.0610.009 144.317.9

1 0.672 0.6460.17 0.7870.015 0.0570.009 165.942.4

(640, 10)
0 0.479 0.5940.07 0.8060.022 0.0580.009 237.2100.4

1 0.637 0.6650.08 0.8190.019 0.0570.005 227.388.9

T5-small (512, 10)
0 0.136 0.2020.06 0.8660.016 0.0370.006 406.7313.2

1 0.19 0.1840.05 0.8640.016 0.0380.012 278.836.1

E2E

Reference metrics 0.907 0.8190.06 0.1640.012 0.8720.011 128.510.8

BART-small

(384, 10)
0 0.996 0.8780.1 0.150.014 0.8730.014 131.723.5

1 0.906 0.8310.09 0.1890.015 0.8190.005 139.66.8

(512, 10)
0 0.949 0.740.05 0.1580.013 0.8610.015 129.414.8

1 0.914 0.830.11 0.170.017 0.8410.015 135.911

(640, 11)
0 0.994 0.7970.05 0.190.019 0.8310.019 140.911.6

1 0.913 0.7630.12 0.1910.014 0.8330.007 139.918.5

BART-base

(384, 10)
0 0.773 0.7190.05 0.1460.021 0.8710.019 11313.4

1 0.907 0.7550.07 0.1550.016 0.8560.011 135.540.8

(512, 10)
0 0.925 0.8430.07 0.1790.025 0.8390.02 118.515.5

1 0.95 0.740.08 0.1730.014 0.8530.025 122.324.7

T5-small (512, 10)
0 0.556 0.5070.13 0.2310.019 0.7840.025 147.424.4

1 0.478 0.4880.17 0.2190.029 0.7910.042 144.513.1

Table A.2: Full list of experimental results (unconditional generation fluency metrics)
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Task Encoder LM Diffusion Dim LoRA ‘Neg’ conditioning / ‘Neg’ reference Neg / Pos Pos / Neg Pos / Pos

SST

BART-small

(384, 10)
0 0.490.12 0.2080.06 0.250.08 0.4380.15

1 0.3890.09 0.2710.07 0.2630.11 0.4670.06

(512, 10)
0 0.6830.18 0.3950.08 0.5480.25 0.6190.05

1 0.7160.2 0.3710.14 0.4720.2 0.7310.06

(512, 11)
0 0.4760.14 0.310.08 0.2960.04 0.4590.17

1 0.4090.14 0.2480.07 0.2690.13 0.3850.09

(640, 10)
0 0.6160.12 0.2880.05 0.5630.16 0.5660.1

1 0.5380.1 0.3590.18 0.6360.14 0.4180.1

BART-base

(384, 10)
0 0.440.09 0.2120.06 0.3070.13 0.3880.08

1 0.4280.19 0.2150.07 0.2940.1 0.430.12

(512, 10)
0 0.7130.17 0.3460.06 0.4860.16 0.5540.17

1 0.6820.05 0.2860.07 0.5640.18 0.5910.07

(512, 11)
0 0.3830.14 0.2330.07 0.3610.18 0.3580.1

1 0.3870.15 0.1960.03 0.2980.07 0.3710.06

(640, 10)
0 0.5240.13 0.2580.1 0.4530.16 0.5650.08

1 0.640.11 0.3870.11 0.3880.11 0.7240.04

T5-small (512, 10)
0 0.1630.05 0.1410.07 0.1540.04 0.1840.03

1 0.1930.04 0.1380.04 0.140.02 0.1660.02

Table A.3: Full list of experimental results (MAUVE label alignment scores for conditional

generation). Labels are ‘Neg’: negative sentiment, and ‘Pos’: positive sentiment
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A.3 Qualitative Examples

id generated text

1 For a average price of less than £ 20 £ 20, try you can at Giraffe. You will find it

near The Bakers.

2 If you are looking for a restaurant at The Golden Curry. It serves Chinese food. It is

very expensive with a good rating.

3 The Eagle has an average rating and serves English food.

4 At The Portland Arms, The Waterman pub has a customer rating of 5 out of 5.

5 Green Man is a restaurant providing Indian food in the more than £ 30 price range.

It is near All Bar One in the riverside area near All bar One.

6 The Rice Boat in the £ 20 - £ 25 - 25, customer Rating is in riverside and is near the

Express by Holiday Inn.

7 Green Man, located near All Bar One, offers Indian food in the moderate price

range.

8 The Phoenix is a good place with a customer rating of 5 out of 5. It is located in

riverside and serves Japanese food for moderate price.

9 Midsummer House Near Café Rouge It is near Café Rouge. It has average customer

ratings.

10 The Rice Boat serves Japanese food with a 3 out of 5 rating. It is located in city

centre.

11 There is a Japanese restaurant called The Loch Fyne which is child friendly.

12 Loch Fyne is a family friendly restaurant serving Japanese food less than £ 20

13 In the riverside area there is a pub called The Waterman. It has been a customer

rating of 1 out of 5. It serves Japanese food.

14 The Plough is a pub located in city centre near Café Rouge. It is family - friendly.

15 The Dumpling Tree a pub that serves Japanese food. It is near The Portland Arms.

Table A.4: Further examples of generated text: E2E task, BART-base, (512, 10), no-LoRA
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id generated text label

1 I don’t think the thought why anyone else else... I dont think that he seems

to think to think even thought.

Negative

2 If a better picture of this twisted, shameless organization will be forth-

coming, this new effort.

Negative

3 The film offers a few few moments moments moments. Negative

4 Adam Sandler’s script’s flaws are easily mitigated by a small-scale sense

of empathy is little more than mediocre.

Negative

5 A good-hearted movie that trumps to use old-hearted humor and pends

for the audience. A movie that pays homage to old-fashioned humor and

wides for their sympathy, regardless if you’re willing the film or despise

the audience or care for the cast or its characters to care about.

Negative

6 Amitabh Bachchan has a lot of problems in the film industry. It is a big

problem in the industry. But, it has a big problems.

Negative

7 This new nihilism genre becomes forgettableable. Negative

8 Why why would such such such an such such a thing? Negative

9 When you see you, love each other, you never quite see the story together. Negative

10 Eagle creates an almost impossible impossible piece of work – and, of,

most of it, of course, is forgotten.

Negative

16 The most of it is fairly funny, despite mostly all the actors, the actors gig-

gle through interesting dialogue in ways – creepy, awfuly and annoying.

Positive

17 An American American fable that skits just just slightly amusing enough

to the audience that the audience a slightly fling.

Positive

18 Watching through a play of Prince Charming, the “ fairytale of the fairies

” and the story of Mr. and Mrs. Claus is an exhilar experience.

Positive

19 What more powerful the film is it is that Shawan manages to transcend

an culture of black black and cultural of black who have become our

oppressors.

Positive

20 Unfortunately Depp, Shostakovich, Tarantino and Hollywood’s lauded

film debut all up for this ambitious effort.

Positive

21 The cast performances are outstanding, and the performances are perfor-

mances, and The performances are top-notch.

Positive

22 Director David Lean beautifully delivers such a paean to the faith to the

God of the universe, but co-director/director/filmmaker/director-director-

producer-turned-directorial-writer-director Nichelle Nichols still oozes

raw and raw, while his messages and message

Positive

23 An intriguing French French Frenchthriller-turned-comedy-dramarama

about the family and their lives – and how their families.

Positive

24 This is a small-budget film and deserves a high level of rating and audience

value.

Positive

25 It’s on the big screen. Positive

Table A.5: Further examples of generated text: SST task, BART-base, (640, 10), no-LoRA


