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Abstract

This document presents the work of the Extending Tcpdump To Support Homa Transport

Layer Protocol project. As a recently proposed transport layer protocol that is intended

for data centers, Homa has attracted massive attention due to its excellent performance.

This project aims to extend Tcpdump (a popular command-line packet dissector) to be

able to present information about Homa traffic to users. To achieve this goal, a study was

first conducted to understand Tcpdump and Homa packets in depth. Based on the results

of the study, a Homa dissector was implemented as an extension module to Tcpdump,

which is modularised and memory-safe. Several tests and analyses were performed to

evaluate the quality of the implementation. The result of the evaluation shows that the

Tcpdump Homa dissector is generally reliable, and maintainable. However, there are

still limitations in the Tcpdump Homa dissector, including imperfect exception detection

and handling mechanisms and missing links to application layer dissectors. In addition

to fixing these limitations, the possible future work for this project includes writing and

automating more tests to be able to contribute the Homa dissector to Tcpdump.
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Chapter 1

Introduction

1.1 Tcpudump

Tcpdump [7] is an open-source command-line packet dissector (also known as an

analyzer or sniffer), that is able to capture packets flowing over specific network

interface(s) and dissect the packet to provide traffic information to users. Today,

Tcpdump is a popular tool used by various computer science communities (e.g. network

administrators, security experts) for various purposes, including traffic monitoring,

troubleshooting and intrusion detection [15]. Meanwhile, it has now been adopted as a

native tool by various UNIX-like Operating Systems (OS) such as Linux, MacOS and

FreeBSD.

1.2 Homa

To meet the rapidly growing demand for computing resources, the last decade has seen

the emergence of data centers [17]. Data centers typically host large scale networked

computing nodes to provide Internet or cloud services in a distributed manner. Thus,

the performance of the Data Center Network (DCN) becomes a non-negligible part

of then overall data center performance. However, due to its unique characteristics,

traditional networking protocols do not fit well in the data center environment, resulting

in inefficient use of DCN infrastructure resources. The actual performance of DCN is

lower than the potential hardware can deliver [13]. To achieve the expected performance,

data centers has to invest more capital in network hardware [11]. In addition to the

performance and cost issue, the mismatch between traditional protocols and DCN

can also make data centers less scalable, as the additional communication overhead

1



Chapter 1. Introduction 2

introduced by adding more computing nodes can exceed the computation power brought

up by nodes. It has been shown that the network has become the major bottleneck of

data center scalability [9]. The research community has started to design new protocols

suitable for DCN. Homa [13] is proposed by one of these studies, which is a new

transport layer protocol that aims to improve overall packet latency in DCN. It is

hugely different in many aspects from the heavily used transport layer protocol today

- TCP. Homa provides remarkably lower latency than TCP in the data center context,

in extreme cases, the 99th percentile tail latency of Homa packets can be on the order

of microseconds [13]. Nowadays, Homa has been implemented as a kernel module of

Linux [14] with nearly complete functionality for use in production environments.

1.3 Motivation and Objective

Although Homa is still in the experimental phase, due to its powerful performance, it

can be expected that Homa will be used in data center environments in the future. To

support the use of Homa, the objective of this project is to extend Tcpdump to be able to

capture and dissect Homa packets. To be more specific, the extended Tcpdump should

be able to identify Homa as a transport layer protocol, decode the raw data and print

out useful information to users.

1.4 Document Structure

This document presents the work that has been done to fulfil the objective, the result

achieved, its evaluation, limitations and future work. The second chapter illustrates the

background knowledge and related work. The third chapter describes the conceptual

study to gain insight into Tcpdump and Homa. The fourth chapter gives the design and

implementation of the Homa dissector. The result is presented, tested and evaluated in

the fifth chapter. Finally, the sixth chapter gives a brief conclusion on the limitations

and future work.



Chapter 2

Background

2.1 Network Packet and Dissection

Packets are the basic unit of communication for computer networks. Conceptually, a

packet is data that is encapsulated by a set of protocol headers. These headers contain

metadata to enable communication between protocols running on the sender and receiver

ends. According to the OSI Reference Model [10], a network packet typically begins

with a data link layer protocol header (e.g. Ethernet, Wi-Fi), followed by a network

layer protocol header (e.g. IPV4, IPv6) and a transport layer protocol header (e.g.

TCP, UDP), and may end with an application layer protocol header and data payload.

In addition to packets that transmit data, there are also control packets that are used

to configure network systems. Physically, a packet is just a bitstream flowing down

the data link, or binary data stored in memory, which itself makes no sense without a

well-defined protocol format. Although originally designed for communication between

protocols, the metadata of packet headers can also be used to gain insight into network

traffic patterns. For example, by looking at the fields within IPv4 headers, one can

generally model the ongoing communications between nodes on a given network. Thus,

packet dissection mainly focuses on the data within headers of different layers, as the

data payload contains almost no information about traffic.

2.2 Network Interface and Switch

Network interfaces are software (e.g. loopback interface) or hardware (e.g. Network

Interface Card (NIC)) that enable devices to send and receive network packets. They use

specific physical and data link layer standards to communicate with other nodes within
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Chapter 2. Background 4

the network. A NIC also comes with its driver, which is a software component that

controls the behaviour of the NIC. There are a variety of types of NICs manufactured

by different vendors (e.g. Intel, Cisco), and a particular type of NIC may support one

or multiple data link layer protocols. When network interfaces are mentioned in this

document, it always refers to the hardware - the NIC.

A switch is a device within a computer network that performs packet switching. A

switch typically contains a number of network interfaces connected to computers or

other network devices. When packets are received from an ingress interface, a switch

evaluates the header fields of packets and forwards them to a particular egress interface.

If too many packets are forwarded to an egress interface for it to send them all at once

(due to bandwidth limitation), these packets could be buffered in a queue to wait for the

interface to become free. The most common queue for an egress interface is the First In

First Out (FIFO) queue, where packets that arrive early are transmitted early. Unlike

the FIFO queue, the priority queue of network switches consists of multiple queues

with different priority levels (usually 8 or 16). Packets are placed in different queues

based on their priorities, which can be specified by fields of different layer headers

(e.g. Differentiated Services field of IPv4 header, Priority Code Point field of IEEE

802.1Q [6] header). Queues with higher priority levels are always transmitted before

lower ones. In this way, network switches provide a mechanism for classifying network

traffic and providing services of different quality to different classes.

2.3 Communication Pattern of DCN

The overall communication pattern of the DCN differs from the general network, which

has affected the design of Homa. Specifically, the communication of applications within

data centers is dominated by a high volume of small messages (typically hundreds of

bytes) [13]. This is partially due to an inter-process communication method commonly

used in DCNs called Remote Procedure Call [16] (RPC). An RPC can be considered

as a short session between client and server applications. The process of RPC is fixed,

which consists of sending a request message from a client to a server, processing the

request at the server and sending back a response message from the server to the client.

Once the response is received by the client, the RPC terminates. Due to the brevity of

PRC, an application can hold many RPCs simultaneously, with each RPC transmitting a

small amount of data. Given the widespread use of RPC, the service provided by Homa

to upper layer applications is also based on the RPC paradigm.
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2.4 Homa

Homa is a relatively new transport layer protocol that is still under development. How-

ever, the basic functionalities and core features are mature enough as of the Homa/Linux

implementation [12]. In this section, some of the outstanding features and design

concepts are presented to have a better understanding of how Homa achieves its perfor-

mance. When Homa packet is mentioned, it refers to a transport layer segment with a

Homa protocol header followed by the data payload.

2.4.1 RPC Oriented

Homa is RPC oriented, it maintains the state of each ongoing RPC. Each RPC can be

identified by an RPC id, which is specified in the headers of Homa packets. For each

ongoing RPC, the Homa protocol running at the client and server end can be recognised

as sender or receiver according to its position of sending and receiving message. That

is, when sending a request message, the client side can be recognised as the sender of

the message, while the server side can be recognised as the receiver of the message.

When receiving a response from the server, the roles are reversed. Since the states of a

particular RPC are cleaned instantly after receiving the response, it reduces the memory

overhead of Homa, and allows Homa Protocol to maintain states of more RPCs at a

given time. Meanwhile, as the entire message is sent from the application to Homa at

once before transmission, the size of the message can be known in advance by both

sender and receiver, allowing Homa to schedule packets based on message size.

2.4.2 Shortest Remaining Process Time and Priority

Homa attempts to approximate the Shortest Remaining Process Time (SRPT) mecha-

nism, which favours messages with fewer remaining bytes to be transmitted network-

wide. Two major mechanisms are implemented to approximate the SRPT. The first

mechanism is the receiver-driven transmission authorization and priority allocation.

When an RPC is initialised, the client can send the first part of the request message

without permission (called unscheduled bytes). However, the following bytes (called

scheduled bytes) may only be sent if a GRANT Homa packet sent by the receiver is

received by the sender. The GRANT packet specifies the chunk of data that is authorised

to be transmitted (which could be divided into several DATA Homa packets), along with

the priority that the sender should use for these DATA packets. The priorities are then
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expected to be used in the priority queue of network switches to prioritize the trans-

mission of high-priority packets. In practice, there may be multiple senders wishing

to send messages to the same receiver simultaneously. Through this mechanism, the

receiver is able to control the latency of DATA packets of all incoming messages to some

extent, so that packets from messages with fewer remaining bytes are allocated with

higher priority, prioritized by network switches during transmission and are expected to

have a shorter latency. In addition to the receiver side, the sender side also implements

a mechanism to approximate SRPT. Similarly, it is possible for the sender to have

multiple messages that are able to be transmitted at a given time (either granted or

unscheduled bytes). In this case, the sender will always send the message with the

fewest remaining bytes first (which is also likely to have a higher priority).

All types of Homa packets should have a priority specified, in addition to scheduled

DATA packets, this also includes unscheduled DATA packets and control packets. Homa

defines a total of 8 priority levels, represented by numbers from 0 to 7, with the higher

the number the more important. All types of control packets should have the highest

priority. The assignment of priority to Unscheduled Data packets is also controlled

by the receiver, this is done by advertisements to all the receiver’s peers in advance, the

advertisement (i.e. CUTOFFS packet) suggests how to assign priority to unscheduled

DATA packets that sent to the source of the advertisement based on message length.

Normally, different sets of priorities are used for scheduled and unscheduled DATA

packets. The whole sequence of priority levels is divided into two parts by each

receiver, with the higher priority levels part used for unscheduled DATA packets and

another part used for scheduled DATA packets. A receiver makes the division based

on observed traffic and tries to approximate the ratio of unscheduled priorities to

scheduled priorities to the ratio of unscheduled traffic to scheduled traffic.

2.4.3 Overcommitment

As described in the previous subsection, the receiver may have multiple incoming

messages waiting to be granted simultaneously. A further question might then be, how

many messages a receiver shall grant at any given time. To avoid downlink (the data

link from the Top of the Rack switch to the receiver network interface) from being idle,

it is reasonable for the receiver to grant more messages at a given time, as the sender

might not wish to transmit the granted message instantly. However, there is a trade-off

between bandwidth utilization rate and buffer occupancy rate, as granting too many
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messages at one time could result in the switch buffer being occupied by packets to a

single receiver, which may prevent other nodes from using the buffer. Meanwhile, the

receiver could be overwhelmed if all granted messages were sent instantly. Thus, Homa

balances the trade-off using a configurable parameter called max incoming, which

defines the maximum number of bytes that are allowed (either granted or unscheduled

bytes) to be or are being transmitted but not yet received. Meanwhile, Homa maintains

a run-time estimate of the actual incoming bytes, so that new grants can only be issued

if the actual incoming bytes are less than max incoming. In practice, the receiver is

normally allowed to grant 8 messages at a time [12].

2.4.4 Reliable Transmission

Homa provides reliable transmission through a receiver-driven retransmission mecha-

nism. For each granted chunk of data, Homa maintains a timer, when the timer expires

but the receiver has not received any packet of that chunk of data, it will issue a RESEND

packet specifying the sequence of bytes within that message that needs to be retransmit-

ted. If several RESEND packets are sent without response, the receiver will assume that

the peer has crashed and terminate the RPC.

2.5 Related Work

A similar work to this project is the Wireshark Homa dissector [2]. Wireshark [8] is

another popular packet dissector whose functions are generally the same as Tcpdump.

The major difference between Wireshark and Tcpdump is the user interface. Tcpdump

requires users to input options on the command line, and display packet information on

the terminal. While Wireshark provides a more usable Graphic User Interface (GUI)

that allows users to perform customized packet capture and dissection operations by

simply clicking on different buttons, and viewing the output from the GUI. This related

work implements a Homa dissector as a plugin to Wireshark, with limited functionality.

For example, when dissecting a DATA packet (a type of Homa packet that carries data,

the details of which are described in section 3.2), the Wireshark Homa dissector

does not identify its payload as request or response data. In contrast, the Tcpdump

Homa dissector implemented in this project indicates this by identifying the packet

sender and receiver as client or server. The details of how the Tcpdump Homa dissector

achieves this are described in section 3.2.1 .



Chapter 3

Conceptual Study

To achieve the objective of this project, it is essential to (1) understand how Tcpdump

works and (2) understand the format of Homa packets. However, although both Tc-

dump [4] and Homa/Linux [12] are open source, there are no documents describing

the above conceptual knowledge. Therefore, the study was conducted to have a better

understanding of Tcpdump and Homa. This chapter presents the results of the study.

3.1 Working Principle of Tcpdump

Tcpdump is written in C language, which depends on various C libraries from the Stan-

dard C Library to OS libraries and third-party libraries. The architecture of Tcpdump

is complex. It contains multiple modules (e.g. input module for user input processing,

utility modules for I/O and memory access) and multiple I/O routines. In terms of

input, Tcpdump can capture raw packets from a give interface in real time or from a

saved pcap file. The output of Tcpdump can be directed to the Standard Output Stream

(which is terminal by default) or to a given pcap file. As the content written to the pcap

file is binary without the need for dissection, this project focuses on the output to the

terminal, which is generally human-readable information for each input packet. Despite

the complexity of Tcpdump, the core modules can be abstracted to packet capture and

dissection. This section describes the two modules in detail, providing the basis for the

design work.

8
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Figure 3.1: Packet Capturing

3.1.1 Process of Packet Capture

The packet capture presented in this subsection refers to capturing packets from network

interfaces in real time, as reading from a saved pcap file is straightforward. As a process

running in user space, since Tcpdump doesn’t have the privilege to capture packets

directly from network interfaces, it has to ask the OS through a system call, which in

turn asks the network interface to capture packets. However, the involvement of OS

introduces another issue, as different OSs may provide different Application Program-

ming Interfaces (API) for system calls, it increases the difficulty of being cross-platform

for Tcpdump. To solve this problem, an indirect layer is added between Tcpdump and

the OS - the Packet Capture Library (Libpcap) [7], which is a C programming language

library that provides cross-platform user-level packet capture interfaces. Till now, the

overall picture of packet capture for Tcpdump is clear. As shown in Figure 3.1, as a

packet traverses the network, it is captured and buffered in the NIC. After some simple

computation like an integrity check, the NIC copies the packet into the kernel memory

through Direct Memory Access (DMA), and then informs the OS. Normally, the packet

in kernel memory is then processed by the OS protocol stack, but as for Tcpdump, the

raw packet is copied to the buffer in user space allocated by Libpcap through memcpy,

which can be accessed by Tcpdump.

Although a NIC may support multiple data link layer protocols, the packets captured

by a live capture opened by Libpcap on a particular interface will support only one link

layer protocol. In other words, each time Tcpdump is launched on a particular interface,

the link layer protocol for all raw packets it receives will be the same. Meanwhile,

the link layer protocol of the packets provided by Libpcap will not necessarily be the

same as the link layer protocol on the network, as the NIC or OS may change the real

hardware protocol. An example is the Linux Cooked Mode, a packet-capturing mode
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provided by Linux and utilised by Libpcap, which allows applications to capture packets

from the any interface, but with the real link layer protocol header replaced with a fake

sll or sll2 header.

3.1.2 Process of Packet Dissection

Once a raw packet is received, the rest of the packet dissection is done entirely within

Tcpdump. In general, packet dissection means extracting and printing information

from raw packets in a header-to-header fashion based on the protocol-specific header

formats. Though in theory all network packets should follow the OSI reference model,

in practice, the packet structure can be more complex and diverse than expected. To

give a few examples, an IPv6 packet tunneling through an IPv4 netowrk might have

two network layer headers (an IPv6 header encapsulated within an IPv4 header). A

transport layer segment (a transport layer protocol header followed by the payload) may

be fragmented by the IPv4 protocol. Tcpdump adopts a successive and modularized

approach to make packet dissection universal and robust. Each module (called dissector)

receives input from a lower layer dissector and is responsible for dissecting headers of a

specific protocol.

Figure 3.2 shows the overall architecture of the Tcpdump dissector and an ex-

ample dissection routine of a packet. As mentioned in the previous subsection, it is

guaranteed that all packets accepted from a Libpcap live capture are encapsulated by

the same type of link layer header. which is indicated by a numeric value (the full table

of values and corresponding link layer header types can be found here [1]). Therefore,

the dissection routine is always started with a link layer dissector picked using the link

type value provided by Libpcap. The selected dissector will process the raw header

data according to the defined protocol format and print information to users. Upon

completion, the current dissector will invoke a next one based on some specific fields

within the current header (e.g. the ethertype field of Ethernet indicates the protocol

type for the next header), passing the payload of the current protocol packet as an

argument to the next dissector. Ideally, this process is repeated at each layer of the OSI

model until the application layer protocol is dissected. However, in practice a variety of

situations may arise.

(1) As in the IPv6 tunnelling example, a packet might contain multiple headers of

the same layer. Therefore, it is possible for a dissector to invoke a peer dissector in

the same layer. (2) Unsupported or unknown protocols may be encountered. If this



Chapter 3. Conceptual Study 11

Libpcap
Link-layer 

Frame

interface(link 
layer)

Dissector

netowrk layer
Dissector

transport 
layer

Dissector

application 
layer

Dissector

Ethernet 
Dissector

IEEE802.11 
Dissector

SLL 
Dissector

Arcnet 
Dissector

...etc

IPv4 
Dissector

IPv6 
Dissector

TCP 
Dissector

UDP 
Dissector

Homa 
Dissector

Quic 
Dissector

...etc

Openflow 
Dissector

SNMP 
Dissector

Whois 
Dissector

HTTP 
Dissector

...etc

HTTP 
Header

HTTP Data PayloadTCP 
Header

IPv4 
Header

Ethernet 
Header

Frame check 
sequence

Figure 3.2: Tcpdump Dissector With An Example Routine

occurs, the dissector will terminate instantly. (3) The raw packet provided might be

invalid or incomplete. The former means that the header(s) of the packets do not follow

the protocol definition, which can be caused by sender-side error or disturbance within

transmissions. All dissectors in Tcpdump should perform a validity check on the input

packet header. However, it is not always possible to detect all invalid packets. In some

cases, invalid packets can be detected (e.g. checksum, the value of the length field is

less than the size of the raw packet) with the dissector routine terminating immediately

and invalid information being printed to users. In other cases, the bad data is dissected

and presented to users.

The latter means that the header(s) of packets are partial or not present. This can

be caused by truncation (only part of the packet is captured by network interface) or

fragmentation (the packet of the upper layer is fragmented by the lower layer, such

that the lower layer packet only carries part of the upper layer packet). A packet can

be truncated at any point from the link layer header to the application layer payload.

Fragmentation is a bit different. Fragmentation is caused by the individual behaviour

of a specific protocol. And it is certain that only the upper layers of the protocol that

perform fragmentation are affected. Thus, in Tcpdump the corresponding dissectors of

protocols that support fragmentation (e.g. IPv4 dissector) are responsible for detecting
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and handling fragmentation. In general, if fragmentation is detected by the current

dissector, it will only invoke the next dissector if the payload of the current packet is

the first fragment of the sequence of fragments, as the first fragment is most likely to

contain a complete header of next level. In other cases, the dissector will terminate

the dissection routine. As a result, a normal dissector in Tcpdump does not need to

worry about fragmentation, as it is guaranteed that even though packets of protocol

corresponding to that dissector are fragmented, only the first fragments will be passed to

that dissector. However, all dissectors in Tcpdump still need to implement mechanisms

to check the completeness of their input packet header. If the incomplete headers are

detected, the dissector routine will also terminate immediately with an incomplete

notification printed to users.

3.2 Homa Packet Format

Homa has ten types of packets [12] in total. Each type of packet can have a unique

format and is used for different purposes. In summary, they are (1) DATA for trans-

mitting messages, (2) GRANT for authorising the transmission of a sequence of data,

(3) RESEND for requiring the retransmission of a sequence of data, (4) UNKNOWN to

report receipt a packet with an unknown RPC id, (5) BUSY in response to RESEND to

indicate that retransmission will be delayed, (6) CUTOFFS for advertising priorities to be

used for unscheduled bytes, (7) ACK to acknowledge receipt of a response message,

(8) NEED ACK to require an ACK for a specific RPC, (9) FREEZE and (10) BOGUS for

debugging purposes.

3.2.1 Common Header

The common header is the first chunk of data that is common to all types of Homa

packets. It is designed to be compatible with the TCP header in order to utilise TCP

Segmentation Offload service provided by NICs. The format of the common header is

shown at Figure 3.3, with each line representing a chunk of 32-bit data. The length

of the common header is constant - 28 bytes. It can be seen that to be compatible with

TCP header, a lot of fields are wasted. The offset and checksum fields are useless too,

although the offset field is designed to indicate the length of DATA header using the

higher order four bits (in units of 4-byte words), the length of DATA header is constant.

The first two fields hold the source and destination port which are used to identify
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Figure 3.3: Common Heder Format
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Figure 3.4: Data Packet Format

applications. The type field holds that type of current packet. The RPC id field holds

the identifier of the RPC used at the packet sender side. Homa adopts an asymmetric

RPC id mechanism, the client and server end will use different RPC ids to refer to the

same RPC. Based on this mechanism, the role of the packet sender can be distinguished

based on the RPCid field. If the lowest bit of RPC id is set, then the packet sender is the

server and vice versa.

3.2.2 DATA Packet

DATA packet is sent by the message sender to transmit a chunk of data from the message,

it contains an overall header followed by a variable number of segments, each segment

containing a sub-header and a chunk of data. Figure 3.4 illustrates the format of

the DATA packet. The overall header consists of a common header and a DATA header.
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Figure 3.6: Data Segment Sub-header Format

Figure 3.5 presents the format of DATA header. The message length field holds the

total length of the message to be transmitted in bytes. The transmission offset field

provides an offset of a message, such that all data before the offset is expected to be

transmitted. These two fields together provide information to the message receiver to

keep track of unreceived bytes of the message, so that the receiver can grant and allocate

priority based on SRPT. The Cutoff Version field tells receiver the most recent version

of unscheduled bytes priority advertisement (i.e. the CUTOFFS packet) received from

that receiver. The Retran Flag field suggests if the DATA packet is being sent in response

to a RESEND. The length of the overall header is also constant - 40 bytes. The subheader

of each segment holds metadata about the payload it carries. Figure 3.6 shows the

format of the segment subheader. The first two fields hold the offset of the first byte of

the payload within message and the length of the payload in bytes respectively. This

can help the message receiver to position the segment payload within the message.

The following fields, which together identify an RPC, form an acknowledgement of
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Figure 3.7: Grant Packet Header Format

receipt of a response. This acknowledgement takes effect only when the RPC id field is

greater than zero. Thus, as a side effect, the segment sub-header is able to acknowledge

another RPC. However, the acknowledgement fields of the segment subheader are not

optional, which means these fields are used even though no acknowledgement is carried

by the segment subheader. The length of segment sub-header is also constant - 20 bytes.

Meanwhile, although the number of segments carried by a DATA packet is variable (at

least one), there is no field within the headers that explicitly suggests this.

3.2.3 GRANT, RESEND, CUTOFFS and ACK Packet

GRANT packet is sent by message receiver to sender to require the transmission of chunks

of the data. GRANT packet contains only a header without a payload. Actually, all control

packets (packets that exclude DATA) carry no data payload. The structure of GRANT

header is straightforward, as shown in Figure 3.7, excluding the common header, the

first field is a 32-bit integral offset indicating that the sender should send all data up

that offset. The second field is an 8-bit integer, which specifies the priority the sender

should use for new DATA packets. The length of GRANT header is constant - 33 bytes.

RESEND packet is sent by the receiver if a timeout occurs but the expected data

has not been received. Figure 3.8 shows the format of RESEND header, the first two

fields - the offset and length of retransmitted data collaboratively locate the chunk of

retransmitted data within the message. The third field specifies the priority used for

retransmission packets. The length of RESEND header is constant - 37 bytes.

CUTOFF packet is sent from the sender to instruct the recipient on the assignment

of priority if the recipient with to send unscheduled DATA packets to the sender. In

general, the assignment of priority is based on message length, with higher priority

assigned to shorter messages. Figure 3.9 shows format of CUTOFF packet header

(exclude the common header), The first field is an array of 8 elements, the indexes

of elements represent the priority levels, and the value of each element suggests the
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maximum message size (in bytes) that can use the corresponding priority level. The

lower bound of a priority level (minimum message size that can use that priority level)

can be calculated based on the upper bound of next higher priority level. The second

field holds the version of received CUTOFFS packet, which is unique among versions

of all CUTOFF packets from specific sender to specific receiver, as a Homa node may

update its allocation of unscheduled priorities from time to time. The length of CUTOFF

header is constant - 62bytes.

ACK packet is sent from client to server to acknowledge the receipt of response

message for a set of RPCs, such that the server may clean the corresponding states. The

ACK header contains only one field (exclude common header) - a 16-bits number holds

the number of RPCs being acknowledged. The header is then followed by that number

of 12-byte structures (same as the acknowledgement structure at data segment header)

that identify completed RPCs.

3.2.4 UNKNOWN, BUSY, FREEZE, NEED ACK and BOGUS packet

In addition to BOGUS packet whose format is not specified in any document, the format

of the remaining packets is identical. These types of packets only contain a common

header, with the only difference being the type field within the common header. So

far, the format of all Homa packet types become clear. Overall, it can be seen that

the format design of Homa packets is redundant. A lot of fields within the common

header are wasted in order to be compatible with the TCP header. Meanwhile, the

acknowledgement structure within the segment header could be optional.



Chapter 4

Design and Implementation

This chapter describes the design and implementation of a Tcpdump extension module

for dissecting Homa packets- the Homa dissector. The design section gives an overall

architecture, while more details are presented in the implementation section.

4.1 Design

The overall function of the Homa dissector is, given a captured Homa packet, it should

dissect the packet and print out traffic information to users. Modularization and encapsu-

lation are the key principles used in the design of the Homa dissector. Since the formats

of different types of Homa packets are distinct, the whole dissector is modularized into

multiple modules, each module being responsible for the dissection of a single Homa

packet type. In the C Programming Language, modules are represented in the form

of functions. Meanwhile, all the packet dissection modules share a common header

dissector as all types of Homa packets have the same format of the common header.

Modularization can improve maintainability and readability since the modification of a

single module does not affect other modules. In addition to the interface function, which

is designed to be exposed to the outside, other modules within the Homa dissector are

encapsulated to be used only internally. Encapsulation can improve the usability of

the interface and overall security. Figure 4.1 illustrates the architecture of the Homa

dissector. homa printer is the interface function provided to outside, it accepts a raw

Homa packet as input, prints out packet information to users and returns.

18
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homa_printer

Visible Outside Visible Inside

common_header_printer

DATA_printer

GRANT_printer

RESEND_printer

ACK_printer

CUTOFFS_printer

Type 
Evaluator

Figure 4.1: Homa Dissector

4.2 Implementation

The actual implementation of the Homa dissector has to take into account many more

details than just the above architecture. These details are related to the memory safety,

reliability, maintainability and usability of Homa dissector. This section is going to

talk about the implementation details of the Homa dissector, including memory access,

data decoding, exception detection, exception handling, packet priority, user input and

integration.

4.2.1 Memory Access and Binary Data Decoding

As mentioned in the previous chapter, packets are essentially binary data. Therefore, in

order to gain packet information, it is essential to be able to decode binary data.

However, an issue that needs to be addressed before decoding is the unaligned

memory access. Memory Access Granularity is the minimum size of data a processor

can read or write from memory at each time. The value of memory access granularity

depends on the computer architecture, it can be four or eight bytes. Due to the existence
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of memory access granularity, data stored in memory need to follow a special rule

called Memory Natural Alignment, which requires that the start address of data to be

a multiple of some particular number (e.g. four or eight, depending on the memory

access granularity). Addresses within the memory that are a multiple of the particular

number are called the Natural Boundary. By aligning to the Natural Boundaries, the

operation of the memory access can be efficient. For example, if a four-byte integer

is stored at the memory address 0x03 with a memory access granularity of four, to

read the integer the processor needs to perform two memory access operations, that are

reading from 0x00 to 0x03 and reading from 0x04 to 0x07. By contrast, if this integer

is stored at 0x04, then only one memory access operation is required. However, raw

packets received from network interfaces are typically compact, which means there is

no gap between data. This will inevitably result in some unaligned data, as it is not

always possible to satisfy compactness and alignment simultaneously. Therefore, the

decoding of packet binary data will inevitably need to access to unaligned data. The

operation of accessing unaligned data is defined as Undefined Behavior in the C11

standard, which means that the actual behaviour of this operation is unforeseen and

may depend on computer architecture, compiler and OS. On some types of architecture

(e.g. X86, arm) this operation is supported. However, the compiler might optimize

the operation of unaligned access, resulting in uncontrolled behaviour in architectures

that do not support it. To avoid uncontrolled behaviour on architectures that do not

support unaligned access, Tcpdump wraps C memory access functions (e.g. memcpy,

memcmp()) in outer functions to avoid compiler optimization.

Another issue that needs to be solved in order to decode binary data is the Byte

Order. Packets always contain multi-byte data that consists of more than one byte. Byte

Order defines how multi-byte data is laid out in memory. The Big-Endian means that

the most significant byte (the leftmost byte) of multi-byte data is stored at the lower

address of memory, while the least significant byte (the rightmost byte) is stored at

the higher address. The byte order of raw packets received from network interfaces is

called the Network Order, which is typically Big-Endian. By contrast, Little-Endian

places the least significant byte of multi-byte data in the lower address, and the most

significant byte in the higher address. Figure 4.2 shows an example of Big-Endian

and Little-Endian. Host Order is the byte order in the current computer architecture or

OS, it can be Big-Endian or Little-Endian. Therefore, if the host order conflicts with

the network order, the decoding of multi-byte data could be problematic. To avoid this

issue, a conversion function (e.g. ntohs() in C) is used when decoding multi-byte data
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Figure 4.2: An example of Byte Order

from packets to convert data in network order to host order.

With the two major issues solved, the decoding of binary data can be done in

a more secure way. The definition of various Homa packet header formats is the

core to decoding binary data. For example, the definition of the Homa common

header format suggests that the binary data of Homa packets start with a 16-bit integer

representing the source port. By strictly following the Homa packet header formats

studied in the previous chapter, the binary data of Homa packets can be conceptually

divided into multiple fields and payload, with each field has its size, data type and

semantics. Therefore, one way to decode binary data is to manipulate pointers in the C

Programming language. The type of pointer suggests how the pointed data should be

handled and decoded. By maintaining a pointer that jumps across fields within packet

binary data, the value of each field can be decoded by converting the type of the pointer

to the corresponding type of that field. However, this method can be error-prone and

not memory safe. As there is no boundary check for accessing memory in C, it is easy

to jump out of the memory of packets to access some invalid data. An alternative way

that is safer in terms of memory is using compact struct. A struct in C consists of

multiple members of data. Typically the members of a struct are laid out continuously

in the memory with possible gaps to satisfy the alignment requirement in the memory.

Compact struct forcibly removes the possible gaps between members. By defining a

compact struct that represents each field of a specific Homa packet header using a

member, the chunk of binary data treated as a struct can be safely decoded through

accessing each member of that struct. In the implementation of the Homa dissector,

the method of compact struct is adopted to decode binary data. Each struct is

defined according to the corresponding format of the Homa packet header.
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4.2.2 Exceptions Detection and Handling

As mentioned in the packet dissection section of Chapter 3, the Homa dissector should

implement mechanisms to detect and handle invalid and incomplete Homa headers.

Different handling strategies are used for the two exceptions. If a header is detected to

be invalid, there is little can be done, since the invalidity of a header might mean that the

whole packet is corrupted during transmission or generation. Thus, if the Homa header

is detected to be invalid (through checking the validity of each field, e.g. the type filed

of common header should be in the range 10 to 19), the Homa dissector will terminate

instantly with an invalid notification provided to users. In addition to the field check,

the checksum can also be performed to check the integrity of packets. However, the

checksum is not implemented in the Homa dissector because (1) Homa packets do not

hold a checksum field and (2) the integrity of the Homa packet might be checked in a

lower layer dissector, for example in the Ethernet dissector. By contrast, the best-effort

strategy is used to handle incomplete Homa headers, i.e. the Homa dissector makes

the best effort to dissect as much information as possible. As the sizes of all types

of headers in Homa are constant, the incompleteness of headers can be detected by

comparing the actual captured size with the defined size of the header. However, an

incomplete header does not always mean that no information can be extracted. If a

Homa header is detected to be incomplete, the Homa dissector will still try to print

information on the common header part and then terminate.

4.2.3 Packet Priority

Homa uses priorities to favour the transmission of messages with fewer remaining bytes.

The priority of Homa packets is a special field, although it is specified by Homa when

sending packets, the actual user of this field is the network switches instead of the

Homa at the receiving end. Normally, a network switch can implement at most up to

the network layer, which means that it can process at most the network layer header of

a packet and cannot access the transport layer header. To enable network switches to

access the priority field, it is placed in the network layer header. To be specific, Homa

uses the high-order three bits of the Differentiated Services field in the IPv4 header or

the high-order four bits of the Traffic Class field in the IPv6 header to hold the priority

level. Therefore, the Homa dissector also needs to access the binary data of the network

layer header, which is passed by the IPv4 or IPv6 dissector.
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Figure 4.3: Default Output

Figure 4.4: More Information

4.2.4 User Option and Output Content

Tcpdump provides a variety of options for users to customize the capture and dissection

of packets. Options that are related to dissectors are almost all about the volume

of information printed to users. These options are listed in Table 4.1 in order of

increasing amount of information. The implementation of the Homa dissector also

Option Description

-q Print less information

No option Default volume of information

-v Print more information

-vv Print even more information

Table 4.1: Options Related to Dissector

supports these options. By default, the Homa dissector only prints out information in

the common header, that is: priority of the Homa packet, the source and destination port,

the type of Homa packet, the RPC id and an identification of client and server for the

two communicating machines. Figure 4.3 shows an example of the default output. If

the -q option is set, the RPC id and client and server identification part are omitted from

the default output. If the -v option is set, all information in the Homa packet header

will be printed, this only works for those types of Homa packets whose header contains

more than just the common header (i.e.DATA, RESEND, CUTOFFS, ACK, GRANT packets).

Figure 4.4 shows an example of output with -v option set. The information in the

Homa header addition to the common header is enclosed in ’()’. If the -vv option is
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Figure 4.5: Even More Information

set, all available information will be printed. This only works for DATA packets, as only

DATA packets contain traffic information in non-header places. Figure 4.5 shows an

example output with the -vv option set. The additional information beyond the header

is enclosed in ’[]’.

4.2.5 Integration

This subsection describes how the Homa dissector is integrated into Tcpdump, such

that when a packet that uses Homa as its transport layer protocol is captured, the Homa

dissector can be invoked correctly by a network layer dissector. Currently, the Homa

dissector is linked to IPv4 and IPv6 dissectors. Both IPv4 and IPv6 headers have

an 8-bit field (Protocol in the IPv4 header and Next Header in the IPv6 header) that

holds the type of protocol for the next header. The list that maps numeri values in this

field to specific protocols is maintained by the Internet Assigned Numbers Authority

(INAN) [5]. The IPv4 and IPv6 dissectors in Tcpdump refer to this list to invoke the

next dissector based on the given value in the next-protocol field. Normally, a deployed

protocol needs to register with INAN to get its unique number, but INAN also defines

numbers 253 and 254 to be used by experimental protocols. Currently, as Homa is still

in the experimental phase, it is not formally registered with INAN, but is temporarily

using the number 253.
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Evaluation

This chapter evaluates the result of this project - the Homa dissector in several aspects.

First, several tests are performed to evaluate the reliability and functionality of the

Homa dissector. Functionality evaluation includes functional integrity evaluation (i.e.

whether Homa dissector provides all expected functions) and functional correctness

evaluation (i.e. whether Homa dissector is able to dissect all types of packets correctly).

While the reliability evaluation evaluates whether Homa dissector sustains in a large

volume of traffic and exceptions. Then a critical analysis is presented to evaluate the

maintainability and usability of Homa Dissector.

5.1 Functionality and Reliability

There are four sets of tests in total. The first set takes input from a static pcap file

that contains raw Homa packets and tests the functional integrity and basic functional

correctness of the Homa dissector. With the output of the static test, a subsection is

also inserted to illustrate the meaning of general Homa dissector output. The other

three sets take input from network interfaces that capture real Homa traffic in simulated

Homa usage scenarios, testing the functionality and reliability of the Homa dissector.

To be closer to the real usage scenario, the simulated scene tests are carried out in

two physically separated nodes provided by CloudLab [3], a dedicated subsection is

presented to illustrate the environment configuration and how simulations are done.

25
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5.1.1 Static Test

The static test is designed to test the integrity and basic correctness of functions provided

by the Homa dissector.

Input. The input of Tcpdump for this test is a pcap file (homa traffic all types.pcap,

which is provided by the project supervisor Dr. Honda) that contains all types of Homa

packets. The Homa traffic in this file are not real, they are generated manually as it is

difficult to collect all types of Homa packets in real traffic. The code used to generate

Homa traffic in this pcap file is attached at appendix 1. The generation code specifies

the value of some fields within Homa packets.

Tcpudmp Command. The exact Tcpdump command used in this test is tcpdump

-r homa traffic all types.pcap -vv.

Output. The output of Tcpdump for this test is:

(1) 14:32:58.864983 192.168.11.11 > 192.168.11.10: Homa 32769 > 2000 DATA,
Client > Server RPCid 4 (Retransmission, Message Length 1000, 1000

bytes is sent, cutoff version 0) [offset 0, length 1000(ACK RPCid 2,
32768 > 2000 )]

(2) 14:32:58.864983 192.168.11.11 > 192.168.11.10: Homa 32769 > 2000
FREEZE, Client > Server RPCid 4

(3) 14:32:58.864983 192.168.11.11 > 192.168.11.10: Homa 32769 > 2000 BUSY,
Client > Server RPCid 4

(4) 14:32:58.864983 192.168.11.11 > 192.168.11.10: Homa 32769 > 2000 NEED
ACK, Client > Server RPCid 4

(5) 14:32:58.865091 192.168.11.11 > 192.168.11.10: Homa 32769 > 2000
RESEND, Client > Server RPCid 4 (offset 101, length 202, priority 7)

(6) 14:32:58.865091 192.168.11.11 > 192.168.11.10: Homa 32769 > 2000 ACK,
Client > Server RPCid 4 [RPCid 15679845049023743747, 33727 > 65535]

(7) 14:32:58.865091 192.168.11.11 > 192.168.11.10: Homa 32769 > 2000
CUTOFFS, Client > Server RPCid 4 (cutoff version 1, [priority 0:cutoff
1001][priority 1:cutoff -1][priority 2:cutoff 0][priority 3:cutoff

819122368][priority 4:cutoff -1][priority 5:cutoff 809125635][priority
6:cutoff -2084569089][priority 7:cutoff 1491306162])

(8) 14:32:58.865091 192.168.11.11 > 192.168.11.10: Homa 32769 > 2000
GRANT, Client > Server RPCid 4 (offset 303, priority 71)

(9) 14:32:58.865091 192.168.11.11 > 192.168.11.10: Homa 32769 > 2000 DATA,
Client > Server RPCid 4 (Message Length 1000, 1000 bytes is sent,

cutoff version 0) [offset 0, length 1000(ACK RPCid 2, 32768 > 2000 )]

Each chunk represents the dissection of a particular type of Homa packet, which



Chapter 5. Evaluation 27

starts with a timestamp, followed by the source and destination IPv4 addresses and

the dissection of the Homa packet. The link layer and network layer portion of the

actual output are removed for brevity. As shown in the output, the Homa dissector is

able to dissect all types of Homa packets (except the BOGUS packet whose format is not

given). Meanwhile, the values of the output are checked against the values specified

in the generation code. The result of the check shows that Homa dissector is able to

dissect all types of Homa packets correctly to some extent. Therefore, through this

test, the functional integrity and basic functional correctness of the Homa dissector are

confirmed.

5.1.2 Illustration of Output

The first chunk is a dissection of DATA packet, in addition to the common header part

whose fields are illustrated in the User Option and Ouptut Content section, the content

wrapped in () contains (1) a flag indicating that this DATA packet is sent as a response

to a RESEND packet, (2) the total length of the message to which the data belongs, (3)
the offset (in bytes) within the message that the receiver can expect to receive, (4) the

latest version of CUTOFF packet received from the receiver. The content wrapped in []

is the sub-header of a data segment, which contains (1) the offset within the message

of data carried by this segment, (2) the size of the data, (3) the acknowledgement of

completion of particular RPC, which can be apart from the RPC of the current packet

and is optional.

The second, third and fourth chunks are dissections of FREEZE, BUSY and NEED ACK

packets respectively. These types of packets contain only the common header.

The fifth chunk is the dissection of a RESEND packet, in addition to the common

header part, the content wrapped in () contains (1) offset within the message of data

that needs to be retransmitted, (2) the length of retransmission data and (3) the priority

to be used by the retransmission data. The sixth chunk is the dissection of a ACK packet,

which contains an acknowledgement of completion of a particular RPC, wrapped in

[]. A three-tuple - RPCid, source and destination port number is used to uniquely

identify an RPC network-wide. The seventh chunk is the dissection of a CUTOFF packet,

the content wrapped in () contains (1) the version of current CUTOFF packet, (2)
the maximum message size that can use each priority level. The eighth chunk is the

dissection of a GRANT packet, the content wrapped in () contains (1) an offset within

the message that all data up to that offset is granted to be transmitted, (2) the priority
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should be used by new DATA packets.

5.1.3 Environment Configuration and Homa Application

Software Version

Homa Linux Version 6.1.38

Linux Kernel Version 6.1.38

Libpcap Version 1.11.0-PRE-GIT

Tcpdump version 5.0.0-PRE-GIT

Table 5.1: Environment Configuration

Table 5.1 shows the version of required software in simulated scene tests. The

Homa transport protocol is built from Homa\Linux [12], inserted as a Linux kernel

module. The Tcpdump version is the base version on which the Homa dissector is

implemented.

To simulate usage of Homa and to generate real Homa traffic, two groups of appli-

cations are adopted, each group consisting of a client and a server that communicate

with each other using Homa. The client end is responsible for sending request messages

to and receiving response messages from server, while the server end is responsible for

receiving requests, generating and sending responses. The first group of Homa Applica-

tions is implemented within the project, which performs a total of five RPCs, when all

RPCs are finished, the client end will output the information of each RPC (including

RPCid, request and response message). The second group adopts the cp node program

provided by Homa\Linux [12], which performs RPCs communication continuously

until it is interrupted.

5.1.4 Simulated Scene Test 1

The static test in the previous section confirms that Homa dissector is able to dissect

manually generated Homa packets correctly. This test further evaluates the functional

correctness of Homa dissector against real Homa traffic. This test adopts the first group

of Homa applications to generate real Homa traffic. Each application (server or client)

runs on a different node, the extended Tcpudmp is launched on both nodes to capture

packets from all available network interfaces.
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Input. The input of Tcpdump for this test is the real Homa traffic generated by

client and server.

Tcpdump Command. The exact Tcpdump command used in this test is tcpdump

-i any -vv

Output. The output of Tcpdummp is:

(1) 12:48:19.827125 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404864 (Message Length 10,

10 bytes is sent, cutoff version 1) [offset 0, length 10(ACK RPCid
5404862, 3000 > 9999 )]

(2) 12:48:19.827138 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404866 (Message Length 10,

10 bytes is sent, cutoff version 1) [offset 0, length 10(ACK RPCid
5404860, 3000 > 9999 )]

(3) 12:48:19.827144 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404868 (Message Length 10,

10 bytes is sent, cutoff version 1) [offset 0, length 10(ACK RPCid
5404858, 3000 > 9999 )]

(4) 12:48:19.827150 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404870 (Message Length 10,

10 bytes is sent, cutoff version 1) [offset 0, length 10(ACK RPCid
5404856, 3000 > 9999 )]

(5) 12:48:19.827156 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404872 (Message Length 10,

10 bytes is sent, cutoff version 1) [offset 0, length 10(ACK RPCid
5404854, 3000 > 9999 )]

(6) 12:48:19.828156 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us: Homa
9999 > 3000 DATA, Server > Client RPCid 5404865 (Message Length 19,

19 bytes is sent, cutoff version 1) [offset 0, length 19]

(7) 12:48:19.828185 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us: Homa
9999 > 3000 DATA, Server > Client RPCid 5404867 (Message Length 19,

19 bytes is sent, cutoff version 1) [offset 0, length 19]

(8) 12:48:19.828203 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us: Homa
9999 > 3000 DATA, Server > Client RPCid 5404869 (Message Length 19,

19 bytes is sent, cutoff version 1) [offset 0, length 19]

(9) 12:48:19.828223 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us: Homa
9999 > 3000 DATA, Server > Client RPCid 5404871 (Message Length 19,

19 bytes is sent, cutoff version 1) [offset 0, length 19]

(10) 12:48:19.828240 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us:
Homa 9999 > 3000 DATA, Server > Client RPCid 5404873 (Message Length
19, 19 bytes is sent, cutoff version 1) [offset 0, length 19]
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The link layer and network layer parts of dissections are also removed. The first five

dissections represent the five requests sent from the client to the server. The remainder

represents the five responses sent back to the client. The output of the client end is:

rpcid: 5404864, request: Request:5, response: Request:5 Response
rpcid: 5404866, request: Request:4, response: Request:4 Response
rpcid: 5404868, request: Request:3, response: Request:3 Response
rpcid: 5404870, request: Request:2, response: Request:2 Response
rpcid: 5404872, request: Request:1, response: Request:1 Response

By checking each entry of the dissection against the corresponding RPC of the client-

side output, it can be shown that the Homa dissector is able to dissect real Homa

traffic correctly. (Note that although the length of the request message and response

message shown in client output are 9 bytes and 18 bytes respectively, the size of actual

messages is one byte larger to accommodate a ’\0’ character). Therefore, this test

further confirms the correctness of the Homa dissector functions.

5.1.5 Simulated Scene Test 2

This test evaluates the reliability of the Homa dissector against truncation. The setup of

this test is the same as the Simulated Scene Test 1 except that the packets received by

Tcpdump are truncated intentionally.

Input. The input of Tcpdump for this test is real truncated Homa traffic generated

by client and server.

Tcpdump Command. The exact Tcpdump command used in this test is tcpdump

-i any -s 90 -vv , where the -s option suggests that only the first 90 bytes of each

packet are captured. As the link layer header of packets captured from any interface is

16 bytes long, meanwhile there are no optional fields in the IPv4 header, this value can

incorporate up to the common header of a DATA packet.

Output. The output of Tcpdump is:

(1)14:19:37.320643 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404904 (Message Length 10, 10
bytes is sent, cutoff version 1) [|homa]

(2)14:19:37.320656 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404906 (Message Length 10, 10
bytes is sent, cutoff version 1) [|homa]

(3)14:19:37.320662 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404908 (Message Length 10, 10
bytes is sent, cutoff version 1) [|homa]
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(4)14:19:37.320669 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404910 (Message Length 10, 10
bytes is sent, cutoff version 1) [|homa]

(5)14:19:37.320677 hp012.utah.cloudlab.us > hp040.utah.cloudlab.us: Homa
3000 > 9999 DATA, Client > Server RPCid 5404912 (Message Length 10, 10
bytes is sent, cutoff version 1) [|homa]

(6)14:19:37.320564 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us: Homa
9999 > 3000 DATA, Server > Client RPCid 5404905 (Message Length 19, 19
bytes is sent, cutoff version 1) [|homa]

(7)14:19:37.320587 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us: Homa
9999 > 3000 DATA, Server > Client RPCid 5404907 (Message Length 19, 19
bytes is sent, cutoff version 1) [|homa]

(8)14:19:37.320600 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us: Homa
9999 > 3000 DATA, Server > Client RPCid 5404909 (Message Length 19, 19
bytes is sent, cutoff version 1) [|homa]

(9)14:19:37.320612 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us: Homa
9999 > 3000 DATA, Server > Client RPCid 5404911 (Message Length 19, 19
bytes is sent, cutoff version 1) [|homa]

(10)14:19:37.320625 hp040.utah.cloudlab.us > hp012.utah.cloudlab.us: Homa
9999 > 3000 DATA, Server > Client RPCid 5404913 (Message Length 19,

19 bytes is sent, cutoff version 1) [|homa]

The output of client end is:

rpcid: 5404904, request: Request:5, response: Request:5 Response
rpcid: 5404906, request: Request:4, response: Request:4 Response
rpcid: 5404908, request: Request:3, response: Request:3 Response
rpcid: 5404910, request: Request:2, response: Request:2 Response
rpcid: 5404912, request: Request:1, response: Request:1 Response

As shown in the output of Tcpdump, the Homa dissector prints all information up to

the common header and terminates with an indication of truncation (the [|homa]).

Therefore, this test confirms that the Homa dissector is reliable in the face of truncation.

5.1.6 Simulated Scene Test 3

This test evaluates the reliability of the Homa dissector against a large amount of Homa

traffic. The setup is the same as Simulated Scene Test 1 except that the second group of

Homa applications is adopted. The client and server ends are terminated approximately

30 seconds after being launched.

Input. The input of Tcpdump for this test is a large amount of real Homa traffic.
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Figure 5.1: A fragment of output

Tcpdump Command. The exact Tcpdump command used in this test is tcpdump

-i any -vv.

Output. The amount of data output in this test is extremely large, containing

more than fifty thousand entries of dissections. Figure 5.1 shows a fragment of output.

Through this test, it can be confirmed that Homa dissector is able to sustain massive

data.

5.2 Maintainability and Usability

5.2.1 Maintainability

As described in section 4.1, the architecture of the Homa dissector is designed to be

modularized, with each module responsible for the dissection of a certain type of Homa

packet. Therefore, the modification of a specific type of Homa packet would only affect

the corresponding module. Meanwhile, if new types of packets are added to Homa, the

Homa dissector only needs to implement new modules without concerning any existing

codes. So, it can be concluded the Homa dissector is generally maintainable.
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5.2.2 Usability

Usability can be further divided into user usability and programmer usability. In terms of

user, the usability of the Homa dissector is inherently the usability of Tcpdump, which

is not very usable as a command line tool. Users need to understand and memorize the

meaning of each option in order to fulfil their objectives. However, once familiar with

these options, input in the command line can be more efficient than clicking through

the GUI. In terms of programmers, the interface provided by the Homa dissector is

usable. It abstracts the necessary information to programmers and hides unnecessary

implementation details in encapsulation.



Chapter 6

Conclusion

6.1 Limitations

6.1.1 Limitations On Implementation

The implementation of the Homa dissector has several limitations. First, the truncation

handling mechanism can still be improved. To be specific, the granularity of the

truncation handling can be finer. When a truncation is detected, instead of making the

best effort to parse the available data chunk by chunk (e.g. if a DATA header is truncated,

check if the common header part is complete), it can be finer to parse the available

data field by field. For example, if the common header of a Homa packet is truncated,

the Homa dissector could make the best effort to parse those complete fields within

the common header. Second, the function of detecting invalid packets is imperfect,

the current implementation is only able to detect invalid fields whose values are out

of the predefined range. Some other invalidity, for example, the values of fields are

inconsistent with the actual situation, can be detected with a more perfect invalidity

detection mechanism. Third, although Homa fragments data from application layer

protocols, the current Homa dissector does not implement any fragmentation handling

functions or links to existing application layer dissectors.

6.1.2 Limitation On Test

The tests performed on the Homa dissector are limited. First, since Homa applications

cannot directly control the type of packets sent by Homa protocol, it is difficult to

generate all types of Homa packets in real traffic. As a result, the real Homa traffic

generated in several tests used to test several aspects of the Homa dissector contains

34
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only partial types of Homa packets. Second, due to the same reason of not being able to

control the Homa kernel module to generate real invalid packets, the reliability of the

Homa dissector against invalid packets is not tested.

6.2 Future Work

6.2.1 Link With Application Dissectors

It may take some work to link the Homa dissector with all existing application dissectors.

This is because (1), Homa fragments the message from the upper layer, so the Homa

dissector needs to implement a mechanism to identify the first fragment of each message,

as the remaining segments must not contain complete header data. (2) All types of

Homa packets contain no field to indicate the type of protocol for the next layer, such

that the Homa dissector might need to evaluate part of the data of the next layer to

determine the type of protocol.

6.2.2 Tests That Are Closer To Usage Scene

Since Homa’s usage scenarios are mostly in the data center, which can be much more

complex than a single client and server. Thus, to be closer to the usage scene of Homa,

larger-scale tests can be performed in the future with a dozen applications running on a

cluster of nodes, each application can serve as a client and server simultaneously.

6.2.3 Contribute To Tcpdump

The implementation of the Homa dissector has met most of the requirements to con-

tribute to the repository of Tcpdump [4], except for testing. For any extension, Tcpdump

requires incorporating several tests that read from pcap files and compare the output

of the extension with the correct output (which can be generated manually or by the

extension itself). The static test performed in this project is similar to these required

tests, except that the static test compares the output with the correct output manually.

Therefore, to be able to contribute to Tcpdump, in the future, more pcap files need to

be collected to create more tests, meanwhile, the test should be automated by using the

CTest framework.
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6.2.4 Overall Conclusion

To conclude, this project implemented a Homa dissector, which is an extension module

of Tcpdump that is able to decode all types of raw Homa packets and print information

to users. To implement the Homa dissector, a conceptual study was performed in early

work to gain a deep insight into the working principle of Tcpdump and the formats for

Homa packets. The Homa dissector was implemented based on a modularized design,

meanwhile a lot of details were covered to make it safer and more reliable. Many tests

including a static test that read input from pcap files and simulated scene tests that

capture real Homa traffic were performed to evaluate the functionality and reliability of

the Homa dissector. A critical analysis was presented to evaluate the maintainability

and usability of the Homa dissector. It can be confirmed that the Homa dissector is

generally reliable, maintainable and usable for programmers. Moreover, it can also be

confirmed that Homa has provided all the required functions correctly. However, there

still exist limitations, the current Homa dissector is not linked with other application

dissectors, meanwhile, the exception detection and handling mechanisms within the

Homa dissector are imperfect. Several future works were brought up to solve some

of those imperfections and to further improve the quality of this project, including

performing more tests in the context of data centers and automating static tests.
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.1 Appendix 1 Code to generate Homa traffic in the input

of static test

void homa_xmit_data(struct homa_rpc *rpc, bool force)

homa_rpc_unlock(rpc);
skb_get(skb);

homa_xmit_unknown(skb, rpc->hsk);

struct freeze_header freeze;
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homa_xmit_control(FREEZE, &freeze, sizeof(freeze), rpc);

struct busy_header busy;
homa_xmit_control(BUSY, &busy, sizeof(busy), rpc);

struct need_ack_header h;
homa_xmit_control(NEED_ACK, &h, sizeof(h), rpc);

struct resend_header resend;
resend.priority = 7;
resend.offset = htonl(101);
resend.length = htonl(202);
homa_xmit_control(RESEND, &resend, sizeof(resend), rpc);

struct ack_header ack;
ack.num_acks = htons(1);
homa_xmit_control(ACK, &ack, sizeof(ack), rpc);

struct cutoffs_header h2;
h2.unsched_cutoffs[0] = htonl(1001);
h2.cutoff_version = htons(1);
homa_xmit_control(CUTOFFS, &h2, sizeof(h2), rpc);

struct grant_header grant;
grant.offset = 7;
grant.offset = htonl(303);
homa_xmit_control(GRANT, &grant, sizeof(grant), rpc);

__homa_xmit_data(skb, rpc, priority);
force = false;
homa_rpc_lock(rpc);


