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Abstract

The process of determining the language being used in a spoken or written text is known

as language identification. The process of determining the language in an audio stream

is known as spoken language identification. Because spoken languages vary so much

in their auditory characteristics, it can be difficult to identify spoken languages. The

goal of this research was to develop a language identification system that can identify

languages by purely using the phoneme sequences generated by universal phoneme

recognisers. The language identification system was further enhanced by incorporating

transcript knowledge which enabled zero-shot language identification of low-resource

languages and the effects of number of unseen languages was explored.

We methodically built a baseline language classifier which classifies the language

based on the sequence of phonemes it observes. This system was then extended for

language identification of low-resource languages and we obtained plausible model

performance, indicating that zero-shot learning is possible, purely based on sequence of

phonemes.
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Chapter 1

Introduction

The process of determining the language being used in a spoken or written text is known

as language identification (LID) and the process of determining the language in a stream

of audio is termed as spoken language identification (S-LID). Effective S-LID systems

have been created for languages like English, French, and Spanish thanks to extensive

research and the availability of vast data resources in those languages. The goal of this

research is to develop a LID system that can identify low-resource languages where

high-quality data is scarce by using universal phoneme recognizers.

Language, as a quintessential human communication tool, plays an integral role

in our daily lives, facilitating the exchange of ideas, emotions, and information across

cultures and borders. Accurate and reliable LID systems are now crucial components of

many technology solutions due to the increasing proliferation of digital content and the

expanding diversity of languages spoken worldwide. These solutions facilitate effective

communication to cross linguistic barriers, improve search engine performance, and

improve user experience.

Huge advancements in LID have been realized recently as a result of the development

of deep learning algorithms and the accessibility of big, annotated datasets. Modern

LID systems, which frequently use deep neural networks, have displayed impressive

performance in a wide range of widely spoken languages. However, dealing with

languages that are poorly represented in the datasets that are available is a considerable

challenge, giving rise to the concept of Low-Resource Language Identification (Low-

Resource LID). In order to distinguish between distinct languages from a vast number

of target languages, an ideal LID system must correctly and minutely exploit various

aspects of speech information [45].
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Chapter 1. Introduction 2

1.1 Motivation

There are now known to be 7,168 languages actively being spoken throughout the world,

according to the most comprehensive source of information on the world’s languages,

Ethnologue [13]. Out of the 7,168 languages 3,045 are considered to be endangered.

When native speakers of a language start to teach and speak another, more popular

language to the younger generation, that language becomes endangered. Because of

their nature, endangered languages frequently have fewer speakers than before, making

it challenging to find out information about them.

Low-resource languages must be preserved because they symbolize distinctive cul-

tural communities and traditions, protecting variety and priceless knowledge. Language

technologies fill gaps in communities by facilitating better communication, resource ac-

cess, and education. The use of different languages in technological solutions provides

equality and accessibility. The development of language technologies for languages with

limited resources can progress artificial intelligence and natural language processing.

A standardized set of phonemes (the smallest, most discrete components of sound

in a language) referred to as Universal Phoneme Sequences (UPS) is intended to rep-

resent speech sounds in many languages. LID through the use of Universal Phoneme

Sequences (UPS) is driven by its motivation to provide a more universal and flexible ap-

proach for language identification for diverse speech and audio processing applications.

The goal of UPS is to capture phonetic characteristics that are shared by all languages.

As a result, LID models can handle a wider variety of languages, including those with

complex phonemic structures or minimal resource requirements. Common phonetic

patterns and universal articulatory characteristics are captured by UPS. This makes

it possible for LID models to concentrate on language specific phonetic features that

represent linguistic identification. By using shared phonetic data, UPS may be able to

support zero-shot or few-shot language recognition, in which the model may identify

languages it hasn’t been explicitly trained on.

1.2 Project Outline

The thesis is organized as follows, we will discuss the background and related work

which has already been done in the context of S-LID in chapter 2. The Dataset prepara-

tion methods will be discussed in chapter 3. An in-depth examination of the method-

ology followed for building a baseline LID classifier with an emphasis on the typical
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neural network topologies, training methods, and evaluation metrics are discussed in

chapter 4. Additionally, this chapter introduces the idea of transfer learning as potential

strategy for addressing the challenges of low-resource LID. Chapter 5 discusses the ex-

periments and results which were conducted according to the methodologies discussed

in the previous chapter. Conclusions and Future scope are discussed in the final chapter.

1.3 Contributions

This section outlines the work carried out in the thesis in pursuit of advancing language

technology by understanding phonetic patterns from universal phoneme sequences. The

major contr ibutions of the thesis is listed below:

• Built a Baseline classifier model purely based on phoneme sequences generated

from the utterances in the FLEURS [9] Dataset.

• Adapted and investigated the model performance on zero-shot scenario.

• Determined the minimum duration of utterance required for fair few-shot perfor-

mance.

• Analysed the limitations and potential solutions for the zero-shot case.



Chapter 2

Background & Related work

An analysis of the challenges of Spoken Language Identification and current research

for mitigation of these challenges will be done in this chapter. Most of the conventional

and contemporary LID system construction techniques are described in the first part.

We will discuss the Universal Phone Recognizers (UPRs) which have been heavily used

in the project and are the backbone of the developed LID system. We will also discuss

the various feature engineering and classification techniques which are essential for

successful development of the LID system.

2.1 Challenges of Spoken Language Identification

A number of factors make it difficult to reliably identify the language being said in an

audio segment, rendering spoken language identification (SLI) a challenging task. First,

it is challenging to distinguish between various languages based only on sound properties

because phonetic and acoustic elements of languages are frequently shared. Second,

subtle differences between languages can be introduced through dialects, accents, and

regional variants within those languages.In addition, background noise and various

acoustic circumstances in recordings can reduce the LID models’ accuracy, particularly

in real-world scenarios. Furthermore, code-switching (the switching between languages)

and language mixing—the blending of many languages—are frequent features of spoken

speech.

Humans on the other hand have been identified to be by far the best Language

Identifiers according to Li et al. [23]. This is because human listeners characterize the

languages using prominent phonetic, phonotactic, and prosodic cues which represent

the various abstraction levels present in an audio signal of any language.

4
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2.2 Cues for Spoken language Identification

Humans are able to efficiently identify languages based on different auditory cues

present. Nearly all studies, including Muthusamy et al. [29], Zissman and Berkling

[47], Li et al. [23], and Lee [21], grouped the cues into the categories shown in Figure

2.1.

Figure 2.1: Perceptual cues at various levels that can be used for LID. [23]

2.2.1 Syntax & Words

The Lexical cues can be used for LID by building multiple Large vocabulary Continuous

Speech Recognition (LVCSR) models for different languages, the intuition being that

if a model knows to predict the words of an audio then it already knows the target

language. This method is however not used for LID since it requires huge amount of

transcribed data of each language. Hence, it does not make sense to use the Lexical

features for the purpose of Low Resource languages which is the main concern of the

Thesis.
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2.2.2 Acoustic Phonetics

Traditional spoken language identification (LID) techniques use acoustic characteristics

to distinguish between several languages. There are numerous ways to extract these

acoustic features from the voice signal, including:

• Mel-frequency cepstral coefficients (MFCCs) [10]: These spectral features are

frequently employed in LID and voice recognition. They are computed by first

applying a mel filterbank on the logarithm of the voice signal’s power spectrum.

• Coefficients of Linear Predictive Coding (LPC) [31]: LPC coefficients are a form

of time-domain feature that are frequently utilized in LID and voice recognition .

They are determined by fitting a linear predictive model to the speech input.

• Teager Energy Operator (TEO) [28]: TEO is a derivative feature that may be

applied to derive details about the speech signal’s dynamics. It is determined by

multiplying the signal by the derivative of the signal.

After the audio features have been retrieved, a classifier can be trained to identify

between various languages using the features. A Gaussian mixture model (GMM)

[38] is the sort of classifier that was most frequently employed for LID. GMMs are

a kind of probabilistic model that can be used to visualize how different languages’

acoustic feature distributions vary. It has been demonstrated that traditional spoken LID

techniques work well for a variety of languages. They need a lot of labeled data, though,

and their training can be computationally expensive.

Deep learning techniques for LID have been more popular recently as they have

been proved to perform better than conventional techniques. One specific approach

involves the usage of X-Vectors which are extracted from the Deep neural (DNN)

architectures such as Time Delay Neural Netowrks (TDNN) [41] and Convolutional

Neural Networks (CNN) [20]. The extracted acoustic features are fed to one of these

architectures followed by a bottleneck layer, pooling layer and a Linear layer to get the

final X-Vectors. These X-vectors are then used to classify between different languages.

This method has given state of the art performance on various evaluation metrics for

LID. However, they require meticulous designing of the model architecture and can be

quite computationally expensive to train.
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2.2.3 Phonotactical Methods

The smallest separate unit of sound that can alter the meaning of a word in a language

is called a phoneme. It is a fundamental idea in phonology, the study of the sounds

of human speech, as well as linguistics. The fundamental units of spoken language,

phonemes serve to distinguish between words and communicate meaning. Patterns in

the sequences of phonemes can be different for different languages and by identifying

these patterns we can intuitively predict the language.

There can be different rules for the arrangements of phonemes depending on the

language, these rules are known as phonotactics. It has been established that the

phonotactical rules contain more discriminative information about a language rather

than the language-specific phonemes, i.e. the order of arrangement of the phonemes

can be useful to identify the language [22].

Figure 2.2: A unified Voice Tokenizer (VT) divides the component segments of the input

voice feature frames into tokens by giving each segment an acoustic or phonetic identifier.

A statistical language model(LM) here, L paralell Bag-of-Sounds (BoS) LMs that takes

token sequences and extracts language-specific phonetic and phonotactic information,

followed by BoS Classifier [22].

Figure 2.2 represents the Bag of Sounds (BoS) classifier [22] which was adapted

from the traditional Parallel-Phone Recognition followed by Language Modelling

(P-PRLM) architecture [46] which uses a unified Voice Tokenizer (VT) front-end,

containing a unified phoneme set. A VT is a Speech Recognizer that breaks down

spoken text into a series of tokens of a particular language. A unified VT can tokenize

speech of multiple languages.

As we can see that although a unified VT is used, this method still requires training
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of L different BoS Language models which individually score the same audio signal.

Training multiple language models can be very time consuming and requires large

amount of transcribed data, specifically labelled phoneme transcriptions which is very

difficult to engineer.

We will use Universal Phoneme Recognizers (UPRs) to generate phoneme sequences

directly from the audio signal and use these sequences to learn the language specific

phonotactics which then be used for LID.

2.3 Universal Phone Recognizers

The LID developed in the thesis, depends heavily on the generated phoneme sequences

as these are the main input features for language classification.

2.3.1 XLS-R Feature Extraction

XLS-R is a large language model (LLM) recently developed by Meta AI which was

specifically designed for speech recognition and is based on wav2vec 2.0 [5]. XLS-

R was trained on a massive dataset of 436,000 hours of speech from 128 different

languages. It is the largest cross-lingual speech representation model to date.

Multilingual quantized speech units are produced by the XLSR model’s shared quan-

tization module over feature encoder representations. The embeddings of these speech

units are subsequently used as targets by a Transformer that has been contrastively

trained. The model learns the ability to transfer discrete tokens between languages,

hence understanding the dependencies and similarities between them [8].

The XLS-R Model, which was pretrained on the CommonVoice [3],BABEL [14]

and Multilingual LibriSpeech (MLS) [36] datasets. Specifically, the model was trained

on 10 languages (Spanish, French, Italian, Kyrgyz, Dutch, Russian, Swedish, Turkish,

Tatar and Chinese) plus English from the CommonVoice dataset with a total time of

1350h out of which 793h from the 10 languages and 557h of English. This XLS-R

model was then fine-tuned on each language [8].

The Multilingual XLS-R Model performed exceptionally and obtained 13.6% Phone

Error Rate (PER) on average , which is 49% less than the Monolingual (Trained only

on English) XLS-R model [8]. This rapid improvement in PER makes it an ideal choice

for generating phoneme sequences, even for Low Resource Languages.

We used this pre-trained XLS-R model to aid us in generating phoneme sequences
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directly from the audio files. These generated phoneme sequences are the foundation of

the research carried out in the thesis.

Figure 2.3: The XLSR Approach [8].

2.3.2 ALLOSAURUS

Allophones are various ways in which a language’s phonemes can be pronounced that

do not change the word’s actual meaning. A good example is the “t” sound in the word

“top”, which is aspirated in English and is pronounced with a puff of air, as opposed to

the “t” sound in the word “stop”, which is unaspirated and is heard naturally. These two

alternate English pronunciations of the “t” sound are allophones of the same phoneme

because they do not change the meaning of the word.

We already know that the phoneme sequences differ depending on the language.

Since most multilingual acoustic models assume that all training languages have the

same union of phonemes, they only employ the existing phoneme transcriptions [25, 27,

39]. This can be problematic for unseen languages as phonemes may get misaligned

with their respective phones, hence, reducing the model performance.

The ALLOSAURUS (ALLOphone System of AUtomatic Recognition for Universal

Speech) method Li et al. [24] has demonstrated that it can increase phoneme recognition

accuracy on unknown languages by 17%. This method will be helpful for phone

recognition of low resource (LR) languages.

The ALLOSAURUS connects the phonemes that show up in the transcription of

each language to a common limited phone set using an allophone layer that integrates

phonological knowledge into the multilingual model. They used a typical ASR encoder

to first determine the phone distribution, which the allophone layer then converts into the

phoneme distribution for each language. This model was trained from scratch using only
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the allophone lists provided by phoneticians and traditional phonemic transcriptions.

The allophone layer was first initialized with the list of allophones, and then further

optimized in a self-supervised way throughout the training phase [24].

2.3.3 Transphone Grapheme to Phoneme converter

Transphone is a Grapheme to Phoneme (G2P) conversion library introduced by Li

et al. [26]. Given a piece of text and its corresponding language. Transphone can

auomatically generate its respective phoneme sequences.

The G2P model used in the transphone was trained on the Wiktionary [11] dataset.

Firstly, they trained numerous monolingual models for each of the High resourced lan-

guages (269 languages) in a supervised manner. To tackle the zero-shot case for unseen

languages they mapped the unseen language to the k closest high resource languages by

using phylogenetic tree (i.e. language family tree), this is because Nordhoff et al. [30]

have already provided language family information for approximately 8000 languages.

After obtaining the k closest languages and their respective Monolingual models

they then ensemble the predictions made by each of them to give the final output

phoneme sequence. By using this technique they were able to reduce the Phoneme error

rates to 39.8% on unseen languages.

The Transphone library can currently generate phoneme sequences for 7,456 lan-

guages. Although transphone generates phoneme sequences from text, it is essential for

the LID since we will require phoneme sequences of the textual transcripts available in

our data-set.

2.4 Feature Engineering Techniques

In this section we will discuss the various methods of representing the phoneme se-

quences. The classifiers tested in the thesis require the inputs to be numerical vectors

hence the phoneme sequences need to be converted into numerical vectors. Addi-

tionally, changing the representation of the phoneme sequences helps in reducing the

dimensionality and computationally efficient.

2.4.1 TF-IDF Vectors

Term Frequency-Inverse Document Frequency is referred to as TF-IDF. It is a numerical

representation used in information retrieval and natural language processing to assess
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the significance of a word (or phrase) within a group of documents. The TF-IDF

considers a term’s rarity across the entire document collection as well as its frequency in

a particular document. It attempts to determine the relative weight of words in various

manuscripts [16].

Term Frequency (TF) is a metric used to determine how frequently a term appears in

a given document. It is determined by dividing the total number of terms in a document

by the frequency at which a given term appears in that document. The intuition behind

this is that the terms that appear more frequently in a document are probably significant

phrases inside that document.

TF =
Number of times term appears in document

Total number of terms in document
(2.1)

Inverse Document Frequency (IDF) of a term indicates the percentage of corpus

documents that contain the term. terms that are specific to a small number of documents

are given greater relevance ratings than terms that appear in all documents.

IDF = log
(

Number of documents in the corpus
Number of documents in the corpus containing the term

)
(2.2)

TF-IDF of a term is calculated by simply multiplying the TF and IDF values of the

term.

TF-IDF = TF∗ IDF (2.3)

The TF-IDF takes into account both the frequency of phonemes inside a sequence

and the rarity of those phonemes over the whole dataset. This is useful for identifying

phonemes that occur frequently and are significant in a sequence hence enable us to

potentially use these phonemes to identify different languages. TF-IDF also captures the

importance of certain terms in a document, this can be useful for LID since languages

have a set of phonemes which are more frequently used than the others. Additionally,

TF-IDF is immune to the variability of the length of sequences, eliminating the need of

unnecessary padding to make the phone sequences of the same length. This is useful

due to the fact that since we are dealing with phone sequences generated from an audio

signal, sequence length variability is likely.

2.4.2 One-hot Encoding

One-hot Encoding is a technique in which a token is represented as a binary vector.

Firstly, a set of all the unique tokens is generated from a corpus and assigned a numerical

index. Secondly, a vector is assigned to each token where the corresponding index value
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is 1 and the rest are 0s, the total length of the vector depends upon the total number of

unique tokens found in the first step. This vector is known as the one-hot vector of the

particular token. All the tokens have a unique one-hot vector assigned to them, due to

this, each token becomes independent from the others.

One-hot vectors can be useful to represent individual phonemes as they preserve

the sequential information of the phonemes, However, on the flip side, a large set of

phonemes will have longer one-hot vectors and since we are dealing with phoneme

sequences this would result in very high dimensional data and hence would require

higher computational resources while training the LID Classifiers.

2.5 Methods of Classification

We will discuss the various methods of classification including the Statistical and

Deep Learning Methods which were experimented when designing the LID model.

Choice of an ideal classification technique is essential as it can significantly impact the

performance, accuracy, and generalization of LID model.

2.5.1 Statistical Methods

2.5.1.1 Logistic Regression Classifier

The Logistic Regression (LR) classifier is one of the simplest statistical classifier in

which a decision boundary is created to classify categorical data. LR is best suited

for binary classification tasks, since we have multiple languages to classify, LR can

be adapted to work with multiple classes using clever techniques such as One vs Rest

(OvR) and Softmax.

In the OvR approach, a unique Binary LR model is trained for each class, where

one class is used as the ”positive” class throughout training, while the other classes are

categorized as the ”negative” class. Due to this, there are various binary classifiers that

each differentiate one class from the others. The Softmax approach on the other hand

involves training a single LR classifier that predicts the raw probabilities of each class.

These probablities are then passed through a softmax function, to ensure that the sum

of probabilities is one.

Although LR is a relatively naive model it is a good starting point for developing the

LID classifier as it is easy to interpret and the training times of this model are relatively

low, thanks to it’s simplicity. The LR model may suffer from poor performance as it
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makes the assumption of the data being linearly separable hence it may not capture

complex relationships in the data.

2.5.1.2 Support Vector Machines

Support Vector Machine (SVM) is a supervised Machine learning algorithm which

supports both classification and regrssion tasks. SVM tries to fit a hyperplane that

maximizes the distance between data points of distinct classes while best separating

them. Support vectors are the nearest data points to the hyperplane.

SVMs can handle high dimensional data very efficiently as it makes use of kernel

functions. With the help of these functions, the data is implicitly mapped to a higher-

dimensional space where it may be possible to linearly separate it. This feature of SVMs

enables it to capture complex dependencies in the data, which was the major drawback

of LR classifiers. SVMs usually fit a hyperplane which can be high dimensional, making

it less interpretable than the LR classifier. Dimensionality reduction techniques such as

Principal component analysis and Linear Discriminant Analysis may help to visualise

the fit.

2.5.2 Deep Learning Methods

In recent years, it has been proven that deep learning techniques are useful for spoken

language identification (LID). These techniques can recognize intricate voice signal

patterns that are difficult for traditional techniques to pick up. There are various

architectures which can effectively identify patterns and dependencies in sequences of

phonemes which may be indicative of the language itself.

2.5.2.1 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of neural network that can analyze time-

series data as well as plain language and sequential data. Because they can monitor

their internal state, RNNs are able to recall data from earlier time steps.

Through the use of multiple layers, a typical feed-forward neural network generates

an output from the input. After the input has been processed through a recurrent layer

and is preserved in an internal state, an RNN generates an output based on both the

input and the internal state. The RNN can process sequential data and maintain context

over time as a result. RNNs make advantage of the idea of sequential information. A
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RNN is a neural network with a memory that influences future predictions based on

data that is stored sequentially [2].

2.5.2.2 Long-Short Term Memory Networks

Long Short-Term Memory (LSTM) is a form of RNN designed to mitigate the draw-

backs of conventional RNNs. Long-term dependencies are a difficulty for RNN that

can be solved utilizing an LSTM-RNN network. LSTMs are highly suited for jobs that

need sequential data, such as speech recognition and natural language processing, since

they can better maintain information over lengthy time steps.

LSTM cells have a more intricate structure than conventional RNN cell. Each

LSTM cell has a hidden state, an input gate, an output gate, and a forget gate. The

LSTM can selectively read, write, or forget data from earlier time steps thanks to these

gates. These gates protect or control the condition of the cell. The sigmoid function that

makes up the LSTM network only has two possible outcomes: either it will pass all of

the input data, or it won’t. As a result, we may use a cell state to control the long-term

dependencies that were a difficulty for RNNs [17].



Chapter 3

Data Preparation

Data preparation is a very important step for building a strong and robust classification

model. The LID system heavily relies on this step. When data is prepared properly, it

is accurate, consistent, and ready for use. Information regarding the data-set used and

techniques to prepare the data will be discussed in this chapter.

3.1 About the Dataset

There are several publically available large-scale pretraining and evaluation datasets

like Multilingual LibriSpeech [36], VoxPopuli [42], CoVoST-2 [43], CommonVoice [3]

and BABEL [14].

Conneau et al. have recently released another publically available data-set, the

Few-shot Learning Evaluation of Universal Representations of Speech (FLEURS) [9]

data-set. They created FLEURS based on the FLoRes-101 [15] data-set which contains

3001 sentences extracted from the English Wikipedia. These sentences have been

translated to 101 different languages by human translators hence the name FloRes-101.

They collected three recordings of all the sentences by the native speakers of each of

the languages.

Some key features of FLEURS which make it ideal for our LID System are:

• FLEURS contains n-way parallel speech and text in 102 languages.

• FLEURS provides high-quality, authentic human speech and transcripts in each

language under strict quality control.

• FLEURS utilizes a bottom-up technique for gathering spoken utterances for

15
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aligned segments, whereas the majority of other datasets use automatic segmenta-

tion and alignment for segments at the document level.

FLEURS as the name suggests is an evaluation data-set specifically designed for few

shot learning which contains parallel speech and transcripts for 102 languages including

low resource languages such as Asturian, Estonian, Kabuverdianu and Icelandic, hence

we used this data-set for training and inference of our LID system.

3.2 Data Preprocessing

The FLEURS Dataset is publically available on the Hugging Face website [18]. The

dataset is avalable by language and is already split into training, development and test

sets. This eliminated the need to explicitly split the data. The audio utterances are in

wav format which is the most common format used in Speech Recognition tasks. The

transcripts and duration of each utterance is mapped by its respective ID.

FLEURS does not provide a master dataset containing utterances from all the 102

languages, Instead they provide the Audio and TSV files for each language separately.

After extraction of all the Audio files for all the languages we had 102 folders for each

language and the total size was 299GB.

The next step was to merge all the folders into one single master folder, However

due to the large size of the data we simply could not merge them directly, So, we used

the Kaldi Toolkit [34].

The files listed above were created easily by running a simple python script for

each language folder. Kaldi has a built in script ”combine data.sh” which automatically

combines the above listed files in multiple project folders into a single project folder.

This method of merging the data was very fast as merging of the text file is faster rather

than the data files themselves.

The single project folder contained all these files and upon examining the line counts

of the wav.scp file in the Train, Development and Test, we found that the there are a total

of 27200, 34000, 78000 entries repectively, each entry represents a single utterance.

3.3 Generation of Phoneme Sequences

Generation of phoneme sequences was the most crucial step as the whole project

revolves around phoneme sequences. After merging the data from all the languages, we
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generated two sets phoneme sequences for each utterance, one from the audio file and

the second from the respective transcripts. The procedure followed for generation of

these sets of phoneme sequences is discussed below.

3.3.1 From the Audio

A Time Delay Neural Network (TDNN) [33] with 18 hidden layers each with 798

hidden units and 90 bottleneck layers was designed. The model was trained with

LF-MMI [35] using the Kaldi toolkit and has 7.2M total parameters. It utilised 40

dimensional cepstral mean and variance normalised (CMVN) MFCC features as inputs

[19].

The trained Universal Phone Recogniser (UPR) takes in the CMVN MFCC features

of an utterance as inputs and generates the universal phoneme sequence for it. We

created a simple shell script which gives these features to the model and maps the

respective utterance to the phoneme sequences generated in a text file. Due to the sheer

size of the data (299GB), it was not possible to run the script on our local machine, so

we used the zamora server which has Quad 8 core CPUs, and 512GB of RAM. We will

call these phoneme sequences as Decoded Phoneme Sequences (DPS) the following

sections.

The DPS contain ‘sil’, which represent silence segments in the audio i.e. when the

speaker takes a pause this phone gets generated. Silence segments are essential for

breaking up audio streams into manageable chunks, which facilitates language identi-

fication. These segments affect feature extraction, which is important for identifying

speech, quiet, and noise, acoustic cues that are unique to each language. They also

aid in controlling background noise and improve LID accuracy by taking into account

various patterns in various languages.

Despite the benefits of ‘sil’ phonemes we them from the DPS, since we will also be

generating phoneme sequences from the transcripts which is text, we cannot output ‘sil’

as it is speaker dependant. The presence of ‘sil’ in DPS would only add noise in the

DPS.

3.3.2 From the Transcripts

The generation of phoneme sequences from the transcripts is essential as these serve

as the ground truth for a given utterance. There are a total of 384,060 total utterances.

We used the Transphone [26] python library to automatically generate the phoneme
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sequences of the utterances. The transphone library takes the text and lanugage as input

and outputs a sequence of phonemes. These inputs were easily accessible thanks to

the ’utt2lang’ and ’text’ files present in our Kaldi project, however, we noticed that

the transphone library takes longer time to generate phoneme sequences for longer

sentences i.e. more than 5 words. This was problematic as most of the transcripts are

naturally longer than 5 words, and we have a lot of utterances.

To circumvent this issue, we wrote a python script which first groups all the utter-

ances according to their language, then finds the set of unique words in each of the

languages. After finding the unique words of each language, phoneme sequences were

generated word by word for each language using the transphone library. The generated

phoneme sequences were then mapped to the words in the transcripts hence, creating

the phoneme sequence of the long sentences present in the transcripts. This method

was faster because we generated the phoneme sequence word by word rather than the

whole utterances. We will refer to these phoneme sequences as Transcript Phoneme

Sequences in the subsequent sections.

3.4 Conversion of Generated Symbols

The Decoded Phoneme Sequences (DPS) contain phonemes which are in Extended

Speech Assessment Methods Phonetic Alphabet (X-SAMPA) [44] format, whereas,

the Transcript Phoneme Sequences (TPS) have phonemes which are in International

Phonetic Alphabet (IPA) [44] format. Although both formats are used for phonetic

representation, IPA has a significantly larger phoneme dictionary than X-SAMPA.

Therefore for data consistency, both of these need to be in the same format.

We made use of the ’phones’ [4] python library, and converted the DPS from

X-SAMPA to IPA and also the TPS from IPA to X-SAMPA. Futhermore, we also

converted both DPS and TPS into a third, ’ARPABET’ [37] format. We incorporated

all the converted phoneme sequences into our Dataset. All the conversions were done

utterance by utterance.

3.5 Final Data-set Structure

The Final Dataset now contains 271798, 34452, 77810, rows in the Train, Development,

and Test sets. The information about the columns in the data set is shown in Table 3.1
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Column Name Description

ID The ID of the utterance

Language The language of the utterance

DPS The decoded phoneme sequences generated by the UPR in

X-SAMPA format.

DPS IPA The decoded phoneme sequences generated by the UPR in

IPA format.

DPS ARPA The decoded phoneme sequences generated by the UPR in

ARPABET format.

TPS The phoneme sequences of the transcripts generated by the

transphone library in IPA format.

TPS XSAM The phoneme sequences of the transcripts generated by the

transphone library in X-SAMPA format.

TPS ARPA The phoneme sequences of the transcripts generated by the

transphone library in ARPABET format.

Text This contains the transcripts themselves.

Duration This contains the duration of each utterance in seconds.

Table 3.1: Table explaining the columns in the final data-set structure after processing

This was the final prepared data which was used in all the experiments conducted in

Chapter 5.



Chapter 4

Methodology

This chapter discusses the various evaluation metrics and how they can be used for

our specific task. We also discuss the rationale behind the methodology adopted for

building a baseline classification model for LID and the steps followed for adapting the

model for Low Resource LID.

4.1 Evaluation Metrics

Language Classification is the main focus of the thesis hence, we used traditional

evaluation metrics such as Accuracy, Precision and Recall. [7] and F1-score. The

percentage of correctly classified data instances over all data instances is known as

accuracy. Accuracy is susceptible to class imbalance and can be misleading in the

interpretation of results. For each class, Precision is the ratio of True Positives and the

sum of True positive and False Positive, it helps us to understand the model’s ability to

correctly classify the languages. For each class, Recall is the proportion of correctly

classified examples over all the examples in the same class. F1 Score is the Harmonic

Mean of the Precision and Recall values and it helps to identify the trade-offs between

precision and recall.

Although we chose to evaluate our LID Model on all the 4 metrics, we gave more

importance to the precision,recall and F1 scores, since we observed significant class

imbalance among the 102 languages used to train the LID model. These metrics were

also useful for identifying the single class performance as we were concerned with the

performance on Low Resource Languages.

20
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4.2 Building the Baseline Model

This section explains the rationale behind the experiments carried out for training the

Baseline LID Model. Please refer to Chapter 5 for specific experimental setups, results

and discussions

4.2.1 Ideal Sequence Length

We did not observe any utterance with a duration longer than 20 seconds, So, we

experimented by training multiple Logistic Regression (LR) classifiers each trained on

phoneme sequences of different lengths. We simply concatenated the phone sequences

of two or more consecutive utterances of the same language to lengthen phone sequences

to a particular duration. All the models were evaluated under the same metrics.

We used LR clsssifiers because they are relatively faster to train. Also it is safe to

assume that other model architectures would also follow the same trends of the LR

model since we are manipulating the data itself. It was essential to determine the ideal

sequence length at the very beginning as this was the only experiment involving data

manipulation.

The effects of various lengths of phoneme sequences on model performance is

essential to analyse as this will help decide the minimum utterance duration the model

would need for effective LID.

4.2.2 Model Selection

This was the very first step towards the development of the LID system after fixing the

sequence length, and various classifiers such as Logistic regression, Support vector ma-

chines, RNN and LSTM were trained and evaluated. We created feature representations

using the TF-IDF vectorizer from the scikit-learn [32] and used the default ngram range.

We chose the best performing model for the subsequent experiments.

Model selection is a crucial step for building a LID system because it has a direct

impact on the system’s functionality, its generalization potential, and suitability for LID.

Our baseline LID system’s accuracy, effectiveness, and capacity to deal with various

languages and situations can all be dramatically impacted by selecting the appropriate

classifier.
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4.2.3 Choice of N-Gram value of TF-IDF features

We used the TF-IDF vectorizer provided by the scikit-learn [32] python library to

represent the phoneme sequences as numerical vectors. The TF-IDF vectorizer has a

parameter ’ngram range’ which controls the number of ngrams extracted while creating

the TF-IDF feature vectors for the phonemes. We investigated the performance of the

chosen model for different ngram orders.

Choice of an ideal value of ngram range is essential as a higher value would naturally

result in sparse feature vectors which would thus require more computational resources.

An ideal value will ensure that the trade-off between computational resource required

and model performance in minimal.

4.2.4 Choice of Format of the Phone Sequences

The Dataset contains phoneme sequences in X-SAMPA, IPA and ARPABET formats.

We trained three separate models on phone sequences in each of the three formats and

evaluated their performance. We also calculated the phoneme error rates (PER) for

DPS and TPS in different formats to help us get a better understanding behind the

performance differences of the classifiers.

This experiment enabled us to understand which format best captures the dependen-

cies and patterns in the phoneme sequences which is necessary for effective LID.

4.2.5 Effect of Number of Languages

We also investigated the effect of Number of Languages on the model performance. We

trained independent models on different number of languages by simply varying the

total the number of languages and their respective utterances.

This experiment has less significance with regards to Low Resource LID, Rather, it

serves as a verification that the LID classifier is working correctly as a model trained

to classify lesser languages should perform better than the others. This verification is

essential as we want to be sure that the model is consistent and can produce reliable

language classifications.
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4.3 Adapting the Baseline for Low Resource Languages

This section discusses the various experiments that were carried out for adapting the

Baseline LID model to allow the classification of Low resource languages. For full

experimental setups, results and discussions please refer to Chapter 5.

4.3.1 Transcript knowledge

All the experiments carried out previously, were purely on the Decoded Phoneme

Sequences (DPS). However, training the model solely on DPS is not enough as we want

to explore the Zero-shot scenario in which the model would never see the DPS of Low

resource languages. Therefore, we need to incorporate Transphone Phoneme Sequences

(TPS) while training the model such that it observes the Low resource classes even if

we do not give DPS of the same.

We attempted to analyse the effects of incorporating transcript knowledge along

with the DPS on model performance and compared it to the baseline model which was

trained solely on DPS of all the classes.

4.3.2 Zero-shot Setting

The Decoded Phone Sequences (DPS) were generated from the audio itself, hence, they

are treated as speech input to the model, while the Transphone Phone Sequences (TPS)

were generated from the transcripts.

We treat the DPS as a direct source of audio data, whereas the TPS was not treated

as audio data, since it has been generated from the transcripts directly. When the model

is trained only on TPS of some languages, it means that it has never seen the spoken

data of the same, thus these languages can be treated as unseen.

For example, if there are 5 languages and the model is trained on DPS+TPS of 3

languages and only TPS of the remaining 2. Here, the model can classify 5 languages

but it has only seen the transcripts of the 2 languages and no audio data. This way of

training the model simulates the zero-shot scenario for low-resource languages. We

selected some languages to be treated as unseen i.e. low resource and the rest as well

resourced languages.

We conducted an experiment in which we trained the baseline model on both DPS

and TPS of the well-resourced languages and only the TPS of unseen languages. We

ran inference on the unseen languages by only providing their DPS i.e. speech data
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from the test set and recorded the model performance.

This experiment was perhaps the most important out of all the experiments done

until now, as it helped us answer the fundamental question, whether zero-shot LID

using phoneme sequences is even possible or not.

4.3.3 Effect of Number of Unseen Languages

We conducted another experiment under the same zero-shot setting but this time we

trained multiple separate models by changing the number of unseen languages and

observed their performance.

This experiment was particularly helpful, since it allowed us to determine the ideal

number of unseen languages for which we may observe the best inference performance.

4.3.4 Extending to the Few-shot setting

We extended the zero-shot setting to serve as few-shot setting by incorporating some

number (not all) DPS for the unseen languages while training the models. The number

of DPS added was decided by the duration of the DPS themselves, also, the same

duration of DPS were added for all the unseen languages.

We carried out another experiment in which we trained and evaluated multiple

models under the few-shot setting, we varied the number of DPS added based on

different durations in minutes, and observed the model performance.

Few-shot experiments were useful for understanding the model performance on low

resource languages as soon as it sees a small amount data of them. This also aided us

in determining the minimum duration of spoken data the model needs to observe for

successful LID of low resource languages.
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Experiments, Results & Discussion

This chapter discusses the Experiments carried out according to the defined Methodol-

ogy in Chapter 4. We list the hypothesis, followed by the experimental setup, results

and finally, discuss our findings of each experiment.

5.1 Building the Baseline Model

5.1.1 Ideal Sequence Length

5.1.1.1 Experimental Setup and Hypothesis

We explored the effects of varying the minimum duration of sequence lengths (ranging

from 10 seconds to 180 seconds of DPS) on model performance. We trained multiple

Logistic Regression(LR) classifiers independently for this experiment since they are

relatively easier to interpret and faster to train, also this experiments requires the training

of multiple classifiers i.e. 18 classifiers each trained on DPS of the respective value of

minimum duration.With the help of a simple python script we concatenated consecutive

DPS of the same language class, according to the minimum duration needed.

We hypothesized that as we increase the minimum duration of DPS, the model

should start performing better as it would see longer phoneme sequences for a particular

language class.

5.1.1.2 Results & Discussion

The plots of Accuracy vs Duration is shown in Figure 5.1a and Precision,Recall,F1 vs

Duration is shown in Figure 5.1b.

25
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(a) (b)

Figure 5.1: (a) Graph of Accuracy vs Duration, (b) Graph of precision, recall and F1-

Score vs Duration

From the results we observe that the classification performance increases as the

minimum duration of DPS increases, confirming our hypothesis. We observed highest

performance when the model sees input DPS lengthened to 180 seconds (3 minutes).

However, it would not be ideal to use DPS of 180 seconds as the model will not be

able to correctly classify utterances which are significantly less than 3 minutes because

it has only seen data which has a duration of 3 minutes. Therefore, we decided to fix

the minimum duration to 60 seconds, as the performance between 60 and 180 second

model difference is not that great.

5.1.2 Model Selection

5.1.2.1 Experimental Setup and Hypothesis

We experimented with different types of classifiers namely, Logistic regression (LR) ,

Support vector Machine (SVM), Recurrent Neural Network (RNN), and Long Short

Term Memory (LSTM). We trained each of the classifiers just on the DPS of all the 102

languages in our dataset.

The LR and SVM classifiers were trained using the scikit-learn [32] python Library,

where as we used the TensorFlow [1] library. Both RNN and LSTM networks had

5 layers each containing 256 units, followed by a feed forward layer with a softmax

activation function and 102 units, since we had 102 total languages to predict. Addi-

tionally, we trained the RNN and LSTM models using early stopping by monitoring the
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validation loss, to prevent overfitting. All the trained classifiers were evaluated on the

test set so the results can be compared directly.

We hypothesized that the RNN and LSTM models would perform better than the LR

and SVM classifiers since they are particularly good at capturing sequential information

in the data. LSTM should perform slightly better than the RNN model since they

overcome some subtle drawbacks of the RNN model, for more information please refer

to Section 2.5.2.

5.1.2.2 Results & Discussion

The Performance results of all the four classifiers is shown in Table 5.1

Model Accuracy % Precision Recall F1-Score

LR 38.889 0.393 0.388 0.374

SVM 38.874 0.400 0.388 0.380

RNN 41.950 0.428 0.419 0.411

LSTM 43.717 0.465 0.437 0.428

Table 5.1: Performance results of LR, SVM, RNN and LSTM classifiers upon Accuracy,

Precision, Recall and F1-Score

Upon examining the results we can safely conclude that the LSTM model out

performs the other classifiers, corroborating our hypothesis. Also we see that the

Deep learning based classifiers i.e RNN and LSTM perform better than the statistical

classifiers (LR and SVM). We selected the LSTM model as our designated classifier for

LID in the subsequent experiments.

5.1.3 Choice of N-Gram value of TF-IDF features

5.1.3.1 Experimental Setup and Hypothesis

All the experiments till now were conducted by representing the DPS as TF-IDF vectors

but we used the default value of ngram range. Hence, we experimented with various

values of ngram values ranging from 1-5 to study the performance variations, we

trained five separate LSTM classifiers for different ngram range values, and analysed

the performance characteristics of the models. We also observed the number of trainable

parameters and the training times.
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The ngram range value determines how many ngrams the TF-IDF vectorizer will

consider while creating the feature matrices for representing the phonemes. We antici-

pated the classifier with higher ngram value would have significantly more trainable

parameters and take longer time to train. We also expected the the higher order ngram

model to perform well compared to the other models.

5.1.3.2 Results & Discussion

Figure 5.2 depicts the evaluation results of the different LSTM classifiers trained on

different Ngram values used by the TF-IDF vectorizer for representing the phonemes in

the DPS.

(a) (b)

Figure 5.2: (a) Graph of Accuracy vs Ngrams, (b) Graph of precision, recall and F1-Score

vs Ngrams.

Ngram Value No. of Params. (in Million) Training Time

1 6.15M ∼10 Mins

2 7.97M ∼19 Mins

3 34.48M ∼34 Mins

4 199.66M ∼3 Hours

5 708.84M ∼12 Hours

Table 5.2: Number of parameters and Training times for the LSTM Classifiers for different

Ngram values

From Table 5.2, it is clear that as we increase the Ngram value the number of model
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parameters increases, this was already expected as higher order ngram feature vectors

are be sparse, as a result we observe the model with 5-gram feature vectors had 708.84

Million parameters whereas there were only 6.15 Million parameters.

Furthermore, from 5.2 we can see that the performance of the LSTM classifier

increases as we increase the order of ngrams, but the performance decreases as we

increase the order of ngram beyond 2. This is due to the fact that the number of parame-

ters increases exponentially as seen from Table 5.2 and the model starts overfitting the

data. Following the results of this experiment we used bigram (ngram order 2) feature

vectors in the subsequent experiments.

5.1.4 Choice of Format of the Phone Sequences

5.1.4.1 Experimental Setup & Hypothesis

All the experiments done till now were on the DPS in X-SAMPA format, we trained three

separate LSTM classifiers each trained on the DPS in X-SAMPA, IPA and ARPABET

format. X-SAMPA has a relatively smaller phoneme dictionary than IPA and not all

IPA symbols are present in the X-SAMPA dictionary.

ARPABET is a format which was created mainly for English, so the DPS in ARPA-

BET format presumably may have many overlapping phonemes across different lan-

guages, However, their sequences might be more unique when compared to the DPS in

X-SAMPA and IPA symbols. We might be able to see better model performance when

trained on DPS in the ARPABET format.

5.1.4.2 Results & Discussion

From Table 5.3, we can see that the model performance degrades drastically when

trained on DPS in the IPA format, the model is only 2.7% accurate. Whereas, we see a

7.8% increase in the model performance when trained on DPS in ARPABET format.

Also from Table 5.4 we see that the DPS and TPS coverted in the IPA format have

the highest PER, whereas, the ARPABET has the lowest PER. This is because the IPA

format has a significantly larger phoneme dictionary. On the other hand, ARPABET

has a small phoneme dictionary.

So the conversion into ARPABET format may have created unique sequence lan-

guage specific patterns in the DPS. This result was strong enough to convince us to run

our further experiments on the DPS and TPS in ARPABET format.
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Format Accuracy % Precision Recall F1-Score

X-SAMPA 46.934 0.473 0.469 0.458

IPA 2.712 0.020 0.027 0.016

ARPABET 54.772 0.556 0.547 0.538

Table 5.3: Model Performance Evaluation when trained using DPS of X-SAMPA, IPA and

ARPABET phonetic alphabet formats.

Format PER %

X-SAMPA 48.30

IPA 56.42

ARPABET 38.59

Table 5.4: Phoneme Error Rates (PER) between the DPS and TPS when converted into

the same format.

5.1.5 Effects of Number of Languages

5.1.5.1 Experimental Setup & Hypothesis

We trained multiple LSTM classifiers where we gave both DPS and TPS for training and

observed the model performance as we incrementally increased the number of output

classes from 10 to 102 with a step size of 10.

Although it is known that models which have fewer output classes perform better,

the results of this experiments would verify that the model is performing correctly, and

is able to effectively learn meaningful patterns in the DPS.

5.1.5.2 Results & Discussion

The results from Figure 5.3 confirm that the model performance improves as we decrease

the number of languages to classify. The model has an accuracy of around 80% when

it only has 10 classes which decreases to around 45% for all the 102 languages. This

result verifies that the model is performing correctly and is effective at discovering

useful patterns in the DPS and TPS.
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(a) (b)

Figure 5.3: (a) Graph of Accuracy vs Number of Languages, (b) Graph of precision,

recall and F1-Score vs Number of Languages.

5.2 Low Resource Experiments

5.2.1 Transcript knowledge

5.2.1.1 Experimental Setup & Hypothesis

This experiment was mainly conducted to see the impact of incorporating the TPS along

with the DPS when training the model. To incorporate TPS in the DPS we simply

trained the LSTM model on two copies of all the utterances, one had the DPS as before

and the other had TPS. Essentialy, we doubled the training data such that the model saw

both DPS and TPS of the same utterance.

This experiment was mandatory to run as we need to adapt the model to be able to

predict Low resource languages. Although we added the TPS while training the model

was evaluated only on DPS in the test set because we are concerned about spoken LID

and evaluating on TPS would mean evaluating the transcripts.

Upon seeing the TPS along with the DPS of an utterance, Theoretically,the model

should be able to learn patterns in between the TPS and DPS themselves, thereby be

able to improve its classification performance due to the added transcript knowledge. If

this hypothesis turns out to be true, then it means the model can be able to predict the

Low Resource languages for which little or no DPS would be seen.
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Format Accuracy % Precision Recall F1-Score

DPS only 54.772 0.556 0.547 0.538

DPS + TPS 69.492 0.715 0.694 0.698

Table 5.5: Model Performance Evaluation of the LSTM classifier when trained only on

Audio (DPS only) and Audio plus transcripts (DPS + TPS).

5.2.1.2 Results & Discussion

The results observed in Table 5.5 are significant, as we see that the addition of TPS

increased the model accuracy from 54.7% to 69.4%. Furthermore it is proof that the

model is able to learn some dependencies between the DPS and the TPS, hence, the

model may be able to generalize in the zero-shot scenario.

5.2.2 Zero-shot Learning

5.2.2.1 Experimental Setup & Hypothesis

We trained the LSTM classifier in a special way for this experiment, we selected 20

languages out of the 102 languages to be treated as Low Resource (LR) languages.

The languages were sorted in ascending order based on the total duration of utterances

and the first 20 languages were selected as this ensured that the selected languages

were actually low resourced. However, English was also included in the LR languages

because we plainly selected the first 20 languages in the sorted according to the total

duration of all the utterances combined.

We trained the model on the DPS and TPS of the remaining 82 languages and

just the TPS for the 20 LR languages. After training the model we removed the top

feed-forward layer of the LSTM network and fine-tuned it on the TPS of LR languages

in the train-set. We ran inference on the DPS of the LR languages in test set to simulate

the zero-shot setting described in Section 4.3.2.

The addition of transcript knowledge increased the model performance, so we

speculate that the model may be able to identify LR languages based on their DPS

as it may have learnt the inter-dependencies between the TPS and DPS of the seen

languages.
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Model Accuracy % Precision Recall F1-Score

Fine tuned LSTM 17.977 0.191 0.179 0.130

Table 5.6: Model performance on various evaluation metrics after fine-tuning on the low

resource languages
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Figure 5.4: Raw Confusion matrix of the Zero-shot LID Model for 20 LR languages.

5.2.2.2 Results & Discussion

Table 5.6 depicts the Accuracy, Precision, Recall and F1-score when fine-tuned on the

TPS of the low resource languages. Although the performance scores are pretty low,

they are significantly higher than the chance level which in this case would be 5%.

Hence, we concluded that the model is able to learn the inherent patterns in the TPS of
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the low resource languages and generalize over the DPS of the unseen languages in the

test set.

The confusion matrix shown in Figure 5.4, Not surprisingly, we observe a huge

overlap for English. This was due to the fact that the phoneme sequences were converted

in ARPABET format. We observed a rather scattered confusion matrix for this model

because of the poor classification performance of the model.

5.2.3 Effect of number of Unseen languages

5.2.3.1 Experimental Setup & Hypothesis

The Experimental setup for this experiment was the same as the previous experiment,

only differnece was that we varied the Number of LR languages from 20 to 5 in steps

of 5, i.e we tested the Model performance for 20,15,10 and 5 LR languages.

We hypothesized that as we decrease the number of LR languages the model should

perform better, mainly because it has fewer classes to classify and also because it sees

DPS of more languages so, it is able to learn more complex and intricate patterns which

help in better generalization over LR languages.

5.2.3.2 Results & Discussion

(a) (b)

Figure 5.5: (a) Graph of Accuracy vs Number of Unseen Languages, (b) Graph of

Precision, Recall and F1-Score vs Number of Unseen Languages.

Results observed from Table 5.5, conform our hypothesis, as we saw an improvement

in the classification performance for less number of unseen languages. This is because
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firstly, the model has lesser classes for classification. Secondly, the model observes

more DPS of seen languages it is able identify the interdependencies in the DPS and

TPS of the seen languages and generalize over the unseen languages.

5.2.4 Few-shot Learning

5.2.4.1 Experimental Setup & Hypothesis

To simulate the few-shot scenario we incorporated the DPS of the LR languages along

with the TPS. Specifically, we fine-tuned six separate models on 10, 20, 30, 40, 50, 60

minutes of DPS for the LR languages and ran inference on these.

For this experiment we kept the number of LR languages constant i.e. 20. Our

hypothesis was that the inference performance would increase as we add more DPS

information about the LR languages.

5.2.4.2 Results & Discussion

(a) (b)

Figure 5.6: Model performance when fine-tuned with varying durations of DPS (in

minutes) knowledge of unseen LR languages (20 unseen languages). (a) Graph of

Accuracy vs Duration of DPS of LR Languages, (b) Graph of Precision, Recall and

F1-Score vs Duration of DPS of LR Languages.

The results seen from Figure 5.6 are consistent with our hypothesis and prove

that incorporating DPS information in the Unseen languages increases the model

performance. This means that our model can comfortably extend to the few-shot

training scenarios.
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Conclusion

6.1 Results Summary

The research carried out in this thesis has shed light upon some important discoveries

and ideas that advance our knowledge of this complex and important field of language

technology. This study has clarified the advantages and disadvantages of employing

Universal Phoneme Recognizers (UPRs) to identify languages with scarce linguistic

resources.

Through the experiments that have been carried out while building the baseline

model we identified some key data augmentation strategies such as varying the sequence

length, changing the number of language classes and conversion of symbol formats,

which have been proven to be beneficial for improving the performance of our LID

system. The strengths and weaknesses of the proposed methods have been shown by

thorough performance evaluation on various model designs. The effectiveness of the

models has been evaluated using metrics including accuracy, precision, recall, and

F1-score.

The low resource experiments that have been performed in our research shows

that, although the classification performance on low resource languages might not

be phenomenal, it is still possible. Furthermore, The experimental outcomes high-

lighted Few-Shot LID’s potential to overcome linguistic limitations by demonstrating

encouraging classification performance with minimal training data. The ability of the

models to recognize common phonetic patterns across linguistic boundaries revealed

the fundamental similarities in human speech.

In summary, the use of UPRs has emerged as a promising method for overcoming

the difficulties brought on by low-resource scenarios. We investigated deep learn-
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ing architectures that supported phonetic universality because we believed that these

recognizers could serve as linguistic bridges across many languages. These models

demonstrated their potential to cross linguistic barriers and offer a ray of hope for

endangered languages by utilizing shared phonetic elements.

6.2 Future Scope

6.2.1 Alignment of Phoneme sequences

Fundamentally, the task of LID based purely on phoneme sequences, relies on finding

unique patterns for each language. Errors in phoneme sequences generated from the

audio as well as the transcripts will propagate while building a LID classifier as it

may learn incorrect patterns and associations between the phoneme sequence and the

language.

In our thesis we used two different UPRs, one for audio and the other for the

transcripts, both generated phoneme sequences which were yet, in different formats and

had to be aligned to a single format before they could be used. UPRs themselves are

trained models which have their own error rates, these were bound to be propagated in

the LID system.

We believe that phonemes are exceptional at representing phonotactical information,

it would be interesting to see a UPR which can generate phoneme sequences from audio

which closely align with the transcripts. Existing UPRs can also be improved, perhaps

by training a machine translation model which aligns the phone sequences of audio and

transcripts.

6.2.2 Deeper Network Architectures

Due to time constraints and limited computational resources we could not explore

deeper and more sophisticated network architectures such as Transformer Encoder

Decoder [40] networks BERT [12] and GPT-3 [6]. These networks are the current state

of the art for sequence classification tasks and have shown phenomenal capabilities.

These models were out of scope for this thesis mainly due to their sheer size and

computational demands necessary for training.
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6.2.3 Different Feature Representation Methods

We made use of TF-IDF feature vectors as they are easy and fast to construct. TF-IDF

vectors preserve information of the frequency of the phonemes and lose the sequential

information in the process. It would be interesting to see the performance variations

of the LID classifier when different feature representation techniques are used. Due to

computational limitations we were not able to test the performance of the model using

one-hot feature vectors. Also it would be intriguing to see the performance when we

use different feature representation methods like, Dynamic Time Warping and word

embeddings to represent the phonemes.

6.2.4 Incorporating Acoustic Phonetics

This thesis focussed on building a LID classifier purely based on phoneme sequences.

phoneme sequences were genereated by UPRs which are not 100% accurate themselves

and we saw these errors propagate in our LID classifier.

We believe the LID has the potential to become more robust and accurate when

Acoustic phonetics is used along with the phoneme sequences. Pitch, intensity, duration,

and formants are only a few examples of the physical characteristics of speech sounds

that are taken into account by acoustic phonetics. This additional physical characteristics

may further make the LID classifier more accurate and reliable as it would be able to

generalize over different speech variations and it would force the model not to solely

rely on the phoneme sequences.
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