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Abstract

Diabetes and major depressive disorder (MDD) have shown associations with brain

structure alterations. This project intends to disentangle the diabetes and/or MDD

specific patterns based on the 3D T1 structural brain magnetic resonance imaging (MRI)

scans. At first, the lightweight Simple Fully Convolutional Network (SFCN) and the

linear bias correction (LBC) are applied to estimate the brain age gap (BAG) for each

scan. Then BAG is used as a bio-marker to select the scans which have the potential

to intensify the diseases-related patterns. Afterwards, a target dataset, which consists

of the brain MRI scans from subjects diagnosed with diabetes and/or MDD, and a

background dataset, which consists of scans from a healthy control (HC) population,

are used as the inputs of contrastive variational auto-encoder (cVAE)-liked models to

isolate the desired features. Experiments on different values of the total correction (TC)

loss weight γ, cyclical annealing schedules on the Kullback–Leibler (KL) divergence

loss weight β and ablation studies on the discriminator and the KL loss were conducted.

It is discovered that a malfunctioning discriminator can lead to an ineffective learning

in the latent space, and converting a VAE into a deterministic regularized auto-encoder

(RAE) might help with the improvement of model performance. The desired patterns

tend to cluster in the patent space, but no obvious groupings consistent with the scan

types are discovered.
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Chapter 1

Introduction

1.1 Background

Major Depression Disorder (MDD) and diabetes have been proven to be associated

with functional and structural alterations inside a brain [1, 2]. Their pathophysiology

may be distributed across many brain regions and circuits. Normally, these kinds

of brain abnormalities can be visualized and quantified effectively using magnetic

resonance imaging (MRI) [3]. The structure of a brain also changes with a specific

pattern while aging, which makes it possible to predict age accurately based on MRI

scans [4]. The age that is derived purely from the brain imaging data is called brain age,

while the age that is measured from birth to a given date is called chronological age.

The two ages are not always consistent with each other. The difference between the

brain age and the chronological age is referred to as the brain age gap (BAG), which

signifies a deviation from a normal aging trajectory. BAG has become an important

bio-marker in clinic usage indicative of potential brain abnormalities, risk of certain

diseases and even mortality [5].

1.2 Related Work

• Brain Age Prediction Models and the SFCN
Brain age estimation (BAE) methods can be first classified by their input data

types, namely sliced-based, which depends on 2D MRI scans, and voxel-based, which

depends on 3D MRI scans. Usually voxel-based BAE is considered to be able to

utilize more structural connectivity across different parts of the brain, but requires

a significantly larger number of parameters and computational resources [4]. BAE
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Chapter 1. Introduction 2

can then be classified by its model types, namely traditional machine learning models

(such as support vector regression [6], relevance vector regression [7] and Gaussian

process regression [8]) and deep learning models (such as CNN [9], VggNet [10] and

Transformer based [11] models).

One example of the voxel-based VggNet BAE model is the Simple Fully Convo-

lutional Network (SFCN) [12]. Unlike most of the voxel-based models, it is highly

lightweight and has been pre-trained on large-scale data (sample size of 12949) from

UK Biobank (UKBB) [13]. It achieves a mean absolute error (MSE) of 2.14 years on

UKBB test set, which outperforms both a more complex 3D ResNet-152 [14] and a

simpler regression model elastic net [12].

• Bias Correction on Predicted Age
The non-Gaussian distribution of the chronological ages tends to cause the problem

of "regression dilution" for regression models [15], which inevitably leads to an under-

fitting of the prediction. The predicted brain age is often systematically biased towards

the mean of the cohort, indicating an over-prediction of the age for relatively younger

individuals and an under-prediction for elderly individuals [16]. Thus it is needed to

apply bias correction techniques [12] to increase the accuracy of brain age estimation.

• Contrastive Generative Learning and the cVAE
In standard representation learning, usually its goal is to infer the dominant variations

in one dataset of interest. These variations are usually reflected in the embeddings

inferred by generative models. Embeddings of similar samples tend to be close to each

other, while embeddings from different samples tend to be pushed away [17]. However,

the desired features sometimes do not appear as prominent latent factors, which brings

the demand for contrastive analysis (CA). CA contains two datasets. Its goal is to

disentangle the desired (but probably subtle) patterns enriched in one dataset against the

other [18]. CA has been applied to many generative models, such as contrastive principal

component analysis (cPCA) [19], probabilistic cPCA (PcPCA) [20] and contrastive

variational autoencoder (cVAE) [21].

Compared with cPCA and PcPCA, which are linear models, cVAE has been proven

to be able to disentangle highly non-linear features [22]. Normally, cVAE contains

an additional discriminator that aims at encouraging the dependence between inferred

features and a Kullback–Leibler (KL) divergence [23] loss term to update its parameters.

However, under which configurations the discriminator can work successfully and how

a failed discriminator can impact the whole model still remain unclear. Additionally,
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the KL term can sometimes vanishes [24] and impair the performance of the cVAE, but

not enough research has been conducted on the techniques that can guarantee effective

mitigation of the KL vanishing problem on cVAE.

1.3 Research Objectives

This project aims at identifying patterns specific to MDD and/or diabetes based on

the 3D T1 structural brain MRI (T1 sMRI [25]) scans collected from the UK Biobank.

To enrich the patterns, the SFCN and bias correction will first be applied to compute a

BAG for each sample, which is then used as an indicator to select scans that are likely

to intensify the desired patterns. Afterwards, cVAE-liked models will be implemented

to disentangle the desired features based on T1 sMRI scans from subjects diagnosed

with MDD and/or diabetes against scans from a healthy control (HC) population.

This project intends to explore the answer to the following questions:

▶ RQ1. Previous studies have showed that subjects diagnosed with MDD and/or dia-

betes tend to have a higher BAG than a HC population [5]. Utilizing the SFCN model

and bias correction algorithms, do our results fit with this argument?

▶ RQ2. Under which condition can we reckon that the discriminator in a cVAE is

functioning effectively? What is the impact of a discriminator that is functioning,

dis-functioning, or even missing?

▶ RQ3. Does the KL vanishing problem take place during the training of the models?

What are the possible strategies to alleviate this problem and do they work on cVAE?

▶ RQ4. The desired features generated by the models are expected to cluster into three

distinct groups that are consistent with the corresponding scans types (MDD/diabetes/d-

ual) in the latent space. Ideally, the desired features from HC scans should also form

cluster(s) distinct from the non-HC scans. Do our results match the expectation?

The rest of this paper is structured as follows: Chapter 2 will first describe the overall

pipeline of the project, then explain in detail the principles of SFCN, bias correction and

cVAE, and at last describe the visualization and evaluation techniques. Chapter 3 will

describe the collection and statistics of the data we used, and then analyze the results of

the experiments which are designed to answer the four research questions. RQ1 will be

explained and answered in "Brain Age Gap Analysis" part of section 3.2. RQ2 will be

discussed and answered in the part "Discussions on the Indicators of A Successfully

Trained Discriminator" of section 3.3.2, in section 3.3.3 and in section 3.4. RQ3 will
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be answered in the part "Analysis on The KL Vanishing Problem" in section 3.3.4 and

in section 3.4. To explore QR4, visualizations of the latent space are provided in each

experiment. QR4 will also be answered at the end of section 3.4. Finally, Chapter 4

will summarize the main findings and provide suggestions for future improvements.



Chapter 2

Methods

This chapter is intended for explaining in detail the overall pipeline of the program,

the usage of the SFCN model, the application of the bias correction algorithm, the

implementation of the cVAE model, and the techniques to evaluate the results of the

project.

2.1 The Overall Pipeline

The project can be roughly divided into three stages: (1) Data collection, (2) Brain age

estimation and (3) Disentangling disease specific patterns.

• Data Collection
In the first stage, it’s intended to collect four types of T1 brain sMRI scans, namely

"HC scans" – the scans from a health control (HC) population (subjects not diagnosed

with major depression disorder (MDD) or diabetes), "MDD scans" – scans from subjects

diagnosed with MDD but not diabetes, "diabetes scans" – scans from subjects diagnosed

with diabetes but not MDD, and "dual scans" – scans from subjects diagnosed with both

MDD and diabetes. All the scans should be labeled with the chronological age of the

subject at the time the scan was taken.

• Brain Age Estimation
In the second stage, it’s intended to first predict the brain age of the sMRI scans

collected in the first stage using the SFCN model. Then based on the predicted age and

the chronological age of the HC scans, a linear bias correction algorithm will be fitted.

The fitted algorithm will be applied to all the scans to compute their unbiased brain

age based on their previous predicted age. Subtracting the chronological age from the

unbiased age, we label each scan with its brain age gap (BAG).

5



Chapter 2. Methods 6

• Disentangling Disease Specific Patterns
In the third stage, it’s planned to firstly intensify the disease-specific patterns by

filtering the three types of non-HC scans (the MDD scans, diabetes scans and the dual

scans) with a BAG larger than a particular threshold (usually set to zero) to form a target

dataset. Then we sample the HC scans so that the chronological age distribution of the

sampled HC scans can match the chronological age distribution of the target dataset.

The selected HC scans then form a background dataset. Secondly, utilizing the two

datasets, we plan to build and train cVAE-liked models that can infer high dimensional

latent features which represent the disease-specific patterns.

2.2 Predict Brain age using Simple Fully Convoluted

Network

As stated in Section 1.3, we capitalize on the pre-trained Simple Fully Convoluted

Network (SFCN) built by [12] to infer brain age based on T1 brain sMRI data.

• Lightweight Model Architecture
SFCN is a lightweight deep neural network. It is based on VGGNet [26] with a fully

convolutional structure. As displayed in Figure 2.1a, it contains 7 blocks in total, with

each block having only one convolutional layer before a MaxPool layer and removing

all the fully connected layers, which greatly reduces the number of trainable parameters

and increases the flexibility for accommodating various input sizes [27]. The meaning

of the model structure can be interpreted as: The first five blocks serve as a feature-map

extractor of the input data; The sixth block further increases the nonlinearity of the

previous extraction process; Then the last block converts the extracted features to age

probability distribution. The relatively small model size makes the SFCN requires less

memory and computation time while inference and less prone to overfitting.

• Training and Predicting
The input of SFCN should be batched T1-brain-sMRI scans, with each sample

being a single-channel tensor of shape (160,192,160). For each sample, the output of

SFCN is a tensor q of shape (40,1), representing the predicted probabilities where the

subject’s age falls into one-year age intervals between 42 to 82 [12]. During training,

the model will minimize a Kullback–Leibler (KL) divergence [23] loss function LSFCN

between the predicted age probability distribution (i.e. q) and the true age probability

distribution. The true age probability distribution is defined as a Gaussian distribution
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(a) SFCN Structure [12] (b) cVAE structure [21]

Figure 2.1: Model Architecture

with a mean of its true chronological age and a variance of 1. Hence,the loss function is

given by 1:

LSFCN = KL(q||N (true_age,1)) (2.1)

Denoting the ith element of q as qi, the bin center of ith age interval as agei, the predicted

age y of the SFCN is computed as the weighted average of each age bin:

y =
40

∑
i

qi · agei (2.2)

2.3 Linear Bias Correction on the Predicted Brain Age

As stated in Chapter 1, here we adopt the linear bias correction (LBC) proposed

by [12]. Given a set of samples labeled by chronological age, defining w to be their

chronological age and y to be their predicted brain age, we fit a least square linear

regression model on y = a ·w+b to obtain an optimum slope a and interval b. Defining

ε to be an extremely small value to avoid dividing by zero, the corrected unbiased

predicted age ŷ is then computed by ŷ = (y−b)/(a+ ε). The same a,b can be applied

to bias correction on other unlabeled samples.

1Here we denote a KL divergence of any two distributions p and q as KL(p||q)), a Gaussian distribu-
tion with mean mean a and variance b as N (a,b)
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2.4 Isolate Salient Features via Contrastive Generative

Learning

As stated in Chapter 1, we adopt the basic architecture of the contrastive variational

auto-encoder (cVAE) from [21], as shown in Figure 2.1b, which is composed of two

shared decoders, one encoder and one discriminator. However, the cVAE by [21] is

designed for 2D inputs and has most of its layers fully connected. Thus it is only

suitable for data each with a relatively small volume. However, brain sMRI scans are

3D inputs with huge volume – around size 5×106 if flattened. Hence, it’s necessary

to modify the cVAE to adopt the 3D inputs, and keep the model size down to prevent

over-parameterization at the same time. The principles and detailed structure of our

3D convolutional cVAE will be explained in the rest of this chapter. The number of

parameters of our model is managed to be around 1× 107 at last. It is about 3
5 size

of the cVAE designed by [22], which successfully identifies autism spectrum disorder

(ASD) related patterns also based on brain MRI scans.

• Problem Settings
There should be two (unpaired) datasets of observed samples, namely the target

datasets {x(i)t }Nt
i=1 and the background datasets {x( j)

b }Nb
j=1. The features that are shared

between the two datasets are referred to as the irrelevant features z. The features that are

enriched in the target dataset relative to the other are referred to as the salient features s,

which are exactly the disease-specific patterns we intend to find in this project.

• Assumptions
Any observed sample x, no matter in the target or the background dataset, is assumed

to be independent and identically distributed (i.i.d.). It is also assumed that any sample

can be used to infer, and can be reconstructed from, one irrelevant and one salient

feature. (The salient features for the background samples are fixed as zeros.) Both

of the two latent features are assumed to be independently drawn from an anisotropic

Gaussian prior: s ∼ p(s) = N (0,I), z ∼ p(z) = N (0,I).

• Encoders
The process qs(s|x) of inferring one salient feature from a sample is simplified into a

Gaussian distribution N (s;µs,σ
2
s I). The prediction of the mean µs and the log-variance

logσ2
s of the feature is conducted by a variational encoder Eφs parameterized by φs.

Similarly, the process qz(z|x) of inferring one irrelevant feature from a sample is also

simplified into a Gaussian distribution N (z;µz,σ
2
z I). The prediction of the mean µz
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(a) encoder (b) decoder

Figure 2.2: cVAE Internal Structures

and the log-variance logσ2
z of the feature is conducted by the other variational encoder

Eφz parameterized by φz. Eφs and Eφz are shared between the two datasets and work

independently. Thus, given an observed sample x(k), the latent feature inference process

includes sampling:

s(k) = Eφs(x
(k))∼ qs(s|x(k);φs) = N (s;µ(k)s ,σ2

s
(k)I;φs)

z(k) = Eφz(x
(k))∼ qz(z|x(k);φz) = N (z;µ(k)z ,σ2

z
(k)I;φz),

(2.3)

where s(k) is omitted for background samples.

The two encoders have the same architecture as shown in Figure 2.2a. They take in

single channel images each of shape (160,192,160). The four 3D convolution blocks

have filter size of [32,64,128,256], kernel size of 3 and strides length of 2. They will

convert each input to a feature map of shape (10,12,10), which will then be flattened

and mapped to an intermediate feature of size (1,128) by a fully connected (FC) block.

The encoder will then use another two FC layers to approximate the mean and log

variance of the latent feature respectively, and finally output the salient or the irrelevant

latent feature of size (1,d) by a Gaussian sampler layer.

• Decoder
The reconstruction process of a sample from its salient and irrelevant features is

denoted as an unknown conditional distribution f (x|s,z), which is modeled by a decoder

Dθ parameterized by θ. Thus given s(k),z(k) of any observed sample indexed by k, the

reconstructed sample is drawn from:

x̂(k) = Dθ([s(k);z(k)])∼ f (x|s(k),z(k);θ), (2.4)

where s(k) = 0 for backgroud data.

The structure of the decoder Dθ is displayed in Figure 2.2b. It takes in the concate-

nation of a salient and an irrelevant feature of a sample, and then its first two FC blocks
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will first convert the input to an intermediate size of (1,128) and then to the flattened

size of (1,256×10×12×10). The feature will then be reshaped back to 3D with 256

channels. Afterwards, the four 3D convolutional transpose blocks, which have filter

sizes of [128,64,32,1], kernel sizes of 3 and stride lengths of 2, will map the feature

back to a reconstructed sample same as the input shape (160,192,160). Since the last

layer is the Sigmoid activation layer, all the output elements range between 0 to 1.

• Updating the encoders and the decoder
The encoders and the decoder are optimized by maxing the evidence lower bound

(ELBO [28], Lt or Lb) of the log-likelihood of each input sample. In terms of a target

sample x(i)t , its ELBO Lt is derived as 2:

log P(x(i)t ;φs,φz,θ)≥ Lt(x
(i)
t ;φs,φz,θ)

= Eqs,qz

[
log[ f (x(i)t |s(i)t ,z(i)t ;θ)]

]
−KL

(
qs(st |x

(i)
t ;φs)|| p(s)

)
−KL

(
qz(zt |x

(i)
t ;φz)|| p(z)

)
= Eqs,qz

[
log[ f (x(i)t |s(i)t ,z(i)t ;θ)]

]
−KL

(
N (st ;µ(i)s ,σ2

s
(i)I;φs)|| N (s;0,I)

)
−KL

(
N (zt ;µ(i)z ,σ2

z
(i)I;φz)|| N (z;0,I)

)
(2.5)

Similarly, the ELBO Lb in terms of a background sample x( j)
b is derived as:

log P(x( j)
b ;φz,θ)≥ Lb(x

( j)
b ;φz,θ)

= Eqz

[
log[ f (x( j)

b |0,z( j)
b ;θ)]

]
−KL

(
N (zb;µ( j)

z ,σ2
z
( j)I;φz)|| N (z;0,I)

)
(2.6)

Defining the negative sum of the two Expectation terms above as a reconstruction

loss LREC
3 , which can be computed as the mean squared error (per voxel) between

the input sample and its reconstructed sample [29]; Defining the sum of the three KL

divergence terms above as a KL loss LKL
4. Maximizing Lt and Lb will minimize

both LREC and LKL, and thus updating the parameters in the encoders and the decoder

accordingly.

• Total Correlation
2Here we denote st ,zt to be the salient and the irrelevant features inferred from target samples, and zb

to be the irrelevant feature inferred from the background samples.
3LREC =−

(
Eqs,qz

[
log[ f (x(i)t |s(i)t ,z(i)t ;θ)]

]
+Eqz

[
log[ f (x( j)

b |0,z( j)
b ;θ)]

])
4LKL = KL

(
N (st ;µ(i)s ,σ2

s
(i)I;φs)|| N (s;0,I)

)
+ KL

(
N (zt ;µ(i)z ,σ2

z
(i)I;φz)|| N (z;0,I)

)
+

KL
(

N (zt ;µ( j)
z ,σ2

z
( j)I;φz)|| N (z;0,I)

)
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It is discovered that encouraging the independence between the salient and the

irrelevant features can improve the performance of cVAE [21]. The total correlation

(TC) term between s,z is defined as the negative KL divergence between the joint

conditional probability distribution qjoint of the two latent features and the product qprod

of their own conditional probability distributions [21]:

TC =−KL
(
qjoint|| qprod

)
,with

qjoint = qs,z(s,z|x(k);φs,φz) and qprod = qs(s|x(k);φs)×qz(z|x(k);φz).
(2.7)

In this case, TC = 0 only when s,z are independent.

Here we only apply the TC term on the target dataset. The concatenation v̄(i) of the

two latent features inferred from the same target sample are considered to be drawn

from the joint probability: v̄(i) = [s(i)t ;z(i)t ]∼ qjoint. The concatenation v̂(i) of the two

latent features inferred from different target samples are considered to be drawn from

the probability product: v̂(i) = [s(i)t ;z(k)t ]∼ qprod , k ̸= i. In practice, a batch of v̄ is formed

by horizontally stacking a batch of st and the same batch of zt . A batch of v̂ is formed

by horizontally stacking a batch of st and the same batch of zt , but with the position of

the first half batch and the second half batch of zt switched, as displayed in Table 2.1.

st zt v̄ v̂

s1 z1 s1 z1 s1 z2

s2 z2 s2 z2 s2 z1

Table 2.1: Form v̄ and v̂

• Discriminator
Given a concatenation v of any s and any z, we build a discriminator Gψ parameter-

ized by ψ to estimate the probability of the concatenation that is drawn from the joint

distribution: Gψ(v) = p(v ∼ qjoint). The discriminator only has three layers: a FC layer

that takes in the concatenated feature and maps it to a 1D feature, a batch norm layer,

and finally a Sigmoid layer that outputs the probability.

The TC loss LTC is defined on v̄ as LTC(v̄; ψ,φs,φz) = log
[
Gψ(v̄)/

(
1−Gψ(v̄)

)]
,

and the discriminator loss LG is defined on both v̄ and v̂ as LG(v̄, v̂; ψ,φs,φz) =

− log
[
Gψ(v̄)×

(
1−Gψ(v̂)

)]
[21]. Minimizing LTC will force Gψ(v̄)−→ 0, whereas

minimizing LG will force Gψ(v̄) −→ 1 and Gψ(v̂) −→ 0. Hence, these two loss

functions tend to adversarially update the parameters of our cVAE. Ideally, they will
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force two probabilities (or scores) to approach one half: Gψ(v̄) = Gψ(v̂)−→ 1
2 , leading

to LTC −→ log1 = 0 and LG −→ log 1
4 ≈ 0.6021. This means that the concatenated

features drawn from q joint and qprod are too similar to each other for the discriminator

to distinguish, which indicates that the qjoint has become almost the same as qprod.

Therefore, the salient and the irrelevant features have been encouraged to be independent

of each other successfully.

• Overall Training Procedures
In conclusion, Eφs , Eφz , Dθ and Gψ are updated simultaneously by an Adam op-

timizer [30] during training using a total loss LcVAE , which is a weighted sum of the

four loss functions mentioned above: LcVAE = α×LREC +β×LKL + γ×LTC +LG .

The detailed training loop of the cVAE within one epoch is specified in Algorithm 1.

The training process will be early stopped when the validation loss is smaller than a

particular number ∆ for continuous Np epochs. The total number of hyper-parameters

that are needed to be specified by users is 8, namely the dimension d of the two latent

features, the three weights α,β,γ of the loss functions, the batch size B, the learning

rate λ, and the early stop criteria ∆ and Np.

Algorithm 1 cVAE Training Loop

1: input: Training datasets {x(i)t }Nt
i=1 and {x( j)

b }Nb
j=1; Hyper-parameters d,α,β,γ,B,λ

2: for every batch of data {x(i)t }B
i=1 and {x( j)

b }B
j=1 do

3: sample s(i)t = Eφs(x
(i)
t ), z(i)t = Eφz(x

(i)
t ), z( j)

b = Eφz(x
( j)
b ), ∀i, j ∈ [1, ..,B]

4: reconstruct x̂(i)t = Dθ([s
(i)
t ;z(i)t ]), x̂( j)

b = Dθ([0;z( j)
t ]), ∀i, j ∈ [1, ..,B]

5: form v̄(i), v̂(i) and predict Gψ(v̄(i)),Gψ(v̂(i)), ∀i ∈ [1, ..,B]

6: obtain batched loss LcVAE = 1
B ∑

B
i, j=1[α ·LREC +β ·LKL + γ ·LTC +LG ]

7: update parameters φs,φz,θ,ψ by −λ ·∇LcVAE accordingly

8: end for

However, cVAE is a relatively new model and few previous works on a similar

domain can be found. The range of the four main hyper-parameters d,α,β,γ is not

limited to a relatively small scale, and causes enormous possible combinations of them.

d could range from 2 to hundreds; α could range from a voxel level (e.g. 1) to a sample

level (e.g. 160×192×160); β and γ could range from 10−3 to 103. Therefore, the cVAE

is reckoned extremely hard to be trained to properly disentangle the disease-specific

patterns which can form clusters corresponding to the scan types.
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2.5 Visualization and Evaluation Techniques

The performance of the project is estimated by the consistency between the clustering of

the salient features and corresponding non-HC scan types ("MDD", "diabetes", "dual").

It can be visualized by UMAP [31] and measured by SS [32] and average NMI [33] 5.

• UMAP
To visualize the distribution of the salient features, Uniform Manifold Approxima-

tion and Projection (UMAP) can be applied as a dimension reduction technique that

maps the salient features to a 2D space. A 2D plot of salient features inferred by the

validation set will be generated at each epoch during training a model, and a 2D plot of

salient features on a test set will be generated when evaluating the model.

• SS
A mean silhouette score (SS) of all the salient features indicates how well the

features are matched to the cluster of their own type against other clusters. The score

ranges from -1 to 1. A mean SS close to 1 means features are far away from other

clusters, and thus are more likely to be clustered into the correct group. Normally, a

larger mean SS implies better performance. However, if a mean SS is kept at zero for

a long time during training, it is probably caused by an almost random distribution of

the features generated by the model. In this case, a model with zero mean SS does

not necessarily outperforms a model with a negative mean SS. The mean SS on the

validation set of the target dataset will be tracked at each epoch during training. SS will

also be computed while testing the model.

• average NMI
We first treat the inferred salient features as unlabeled data, and use Gaussian mixture

models (GMM) [34] to cluster them with the number of Gaussians specified as 3. Then

GMM will assign a cluster label for each latent feature, and the normalized mutual

information (NMI) between the assigned labels and the true labels (corresponding scan

types) will be computed. GMM is not a deterministic process, so different labels and

NMI can be obtained at each run of GMM. Here we will run GMM for 100 times

and use the average NMI to measure our models. The NMI of two random variables

estimates the mutual dependence between the two variables. It ranges from 0 to 1. Thus,

an average NMI close to 1 means clustering of the desired features perfectly correlated
5As explained in Section 2.4, the salient encoder is not trained on the background dataset. Thus SS

and NMI will be computed only on the target dataset. However, it is also helpful to know whether salient
features inferred by the HC scans also form a distinct cluster, thus during visualization the salient features
inferred from the background dataset are also plotted.
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with the scan types and indicates excellent cVAE performance. The average NMI will

be only computed while testing the model.



Chapter 3

Experiments

3.1 Data Collection and Analysis

• Dataset Format
The T1 brain sMRI scans collected in this project are categorized as instance 2 of

data field 20252 [35] in UKBB [13] "imaging/raw/t1_structural_nifti_20252" dataset.

The scans use the Montreal Neurological Institute and Hospital (MNI) coordinate

system [36], and are stored in files using the Neuroimaging Informatics Technology

Initiative (NIfTI) format [37].

• Data Collection
The chronological age of the scans is labeled via UKBB data field f .21003.2.0,

i.e. instance 2 of "Age when attended assessment centre" [38]. The MDD status of

the scans is labeled via UKBB data field f .20126.0.0, i.e. instance 0 of "Bipolar and

major depression status" [39]. Subjects marked as 0 are considered to be not diagnosed

with MDD, while subjects marked as 3 or 4 or 5 are considered to be diagnosed with

MDD [40]. The diabetes status of the scans is labeled via f .2976.2.0, i.e. instance 2 of

"Age diabetes diagnosed" [41]. Subjects marked with a NaN value are considered to be

not diagnosed with diabetes, while subjects marked with any other non-NaN value are

considered to be diagnosed with diabetes.

As defined in section 2.1, the collected scans are then labeled by their type accord-

ingly. As a result, 6802 HC samples, 2461 MDD samples, 349 diabetes samples and

137 dual samples are obtained.

• Chronological Age Analysis
The normalized distributions of the chronological age of the four scan types are

15
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(a) Normalised Distribution of Chronological Age

(b) Normalised Distribution of Predicted Age

(c) Normalised Distribution of Unbiased Age

Figure 3.1: Different Age Distributions of the Four Scan Types

displayed in Figure 3.1a. As can be seen, for all scan types, the chronological age

ranges within 45 ∼ 82. The HC scans and MDD scans share similar distributions where

most of the subjects fall into a chronological age range of 55 ∼ 70, while diabetes

scans and dual scans share similar distributions where most of the subjects fall into a

chronological age range of 65 ∼ 75.

3.2 Brain Age Estimation

• Pre-processing
The array of a scan directly extracted from the MNI-NIfTI files has a shape of

(182,218,182) and mostly has a range of (−50,2500). To make the scans suitable for
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Figure 3.2: Bias Correction Results: The blue dots are data points of (predicted age, chronological

age). The orange lines are LBC results of (predicted age, unbiased age).

the SFCN model, we first shrink the range of data within about (−1,15) by dividing

each scan by its mean value, and then crop the scans around their center to remove

skulls and reshape them to (160,192,160). The pre-processed scans then serve as the

input of the SFCN model to predict the corresponding brain age.

• Predicted Age Analysis
The normalized distributions of the predicted brain age of the four scan type are

displayed in Figure 3.1b. As can be seen, for all scan types the predicted age ranges

within 48 ∼ 75. Most of the HC scans and the MDD scans have a predicted age centered

around 50 ∼ 65, while most of the diabetes scans and dual scans have a predicted age

centered around 55 ∼ 65.

• Unbiased Age Analysis
After fitting the LBC algorithm on the HC samples as explained in Section 2.3, an

optimum slope a = 0.714 and interval b = 14.062 are obtained. The LBC results are

displayed in Figure 3.2, and the normalized distribution of the resulted unbiased age of

the four scan types are displayed in Figure 3.1c.

From both figures, we can see that, for all scan types, the unbiased age has a range

of 48 ∼ 85. Compared with the range 48 ∼ 75 of predicted age, it can be seen that the

LBC algorithm extends and shifts the whole predicted age distribution rightwards.

Moreover, based on the HC samples in Figure 3.2, it can be discovered that the LBC

algorithm does help mitigate the error of brain age prediction. Taking a predicted age

of 65 on HC scans as an example, the true (chronological) age of the corresponding

scans has a range of 60 ∼ 80. The LBC shifts the predicted age to the unbiased age of

71.342, which makes the inferred brain age closer to the middle of the true age, and

thus increases the accuracy of brain age estimation.
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Scan Type MAG mean std min 25% 50% 75% max

HC 2.9692 0.0000 3.7884 -16.3517 -2.3987 -0.0464 2.4339 14.5412

MDD 2.8510 -0.0279 3.6214 -14.0778 -2.4696 -0.0012 2.3124 11.8603

diabetes 3.7047 0.9715 4.5829 -15.6052 -1.8281 1.0229 3.8486 11.7400

dual 3.5493 1.4175 4.1759 -12.9674 -1.4059 1.8467 3.8629 13.5201

Table 3.1: Brain Age Gap Statistics ("MAG": mean absolute brain age gap; "std": standard

deviation.)

Figure 3.3: Normalized BAG Distribution against HC Type

• Brain Age Gap Analysis
Then each sample is marked by its brain age gap (BAG), which is computed by

subtracting the chronological age from the unbiased brain age. The statistics of the BAG

of the four scan types are displayed in Table 3.1, and the normalized BAG distributions

of each scan type against HC type are displayed in Figure 3.3.

As displayed, for all scan types the shape of the BAG distribution is similar to a

Gaussian distribution curve. Moreover, compared with the BAG of the HC type which

is centered around -0.0464, the BAGs of the diabetes type and the dual type are centered

around 1.0229 and 1.8467 respectively, which validates that subjects diagnosed with

diabetes tend to have a higher brain age gap than healthy people. This can also be

justified by that the mean absolute value of brain age gap (MAG) of both the diabetes

and the due type, which are 3.7047 and 3.5493 respectively, are higher than the MAG

of the HC type, which is 2.9692.

However, it can be discovered in Figure 3.3 that the MDD type almost shares the

same normalized BAG distribution as the HC type. Additionally, as showed in Table 3.1,

although the center of the BAG of MDD type is slightly larger than that of the HC

type by 0.00452, the MAG of the MDD type is smaller than that of the HC type to a
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(a) (b) (c)

Figure 3.4: Loss Curve of Re-trained SFCN and new Brain Age GAP of MDD samples

larger extent by 0.1182. Both findings above contradicts the hypothesis and previous

research which claim that subjects diagnosed with MDD tend to have higher BAG than

HC population.

• Re-train SFCN
The original SFCN might not be pre-trained on only healthy subjects, which might

be a reason for the similar distributions of BAG on the MDD and the HC types in our

project. Hence, with the intention of obtaining a larger BAG on the MDD scans, we

fine-tune the SFCN model by initializing its parameter by the pre-trained SFCN and

keep training it on the HC samples (with 20% of them to be the validation set).

The loss curve is displayed in Figure 3.4a. The validation loss curve is quite wiggly

and reaches its minimum at epoch 2 (with the early stop patience set as 7). Though

there’s not much updating on the model parameters, we take the model at epoch 2 as

our new SFCN model, and use it to predict the brain age of the HC and the MDD types.

After fitting a new LBC algorithm on the HC samples, the new BAG on the MDD types

is obtained. Its statistics and normalized distribution against the original MDD BAG

are displayed in Figure 3.4b and 3.4c.

As can be seen, the distribution of BAG of MDD samples by the re-trained model is

very similar to that by the pre-trained model. Compared with the previous MDD MAG

of 2.8510, the new MDD MAG decreases to 2.2484. Hence, the re-trained SFCN fails

to recognize the MDD samples with larger BAG. Additionally, it is also discovered

that, compared with the mean absolute error of 1.6772 between the chronological age

and the predicted age of the HC samples, the new LBC algorithm increases HC BAG

(i.e. the mean absolute error between the chronological age and the unbiased age) to
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1.7165. This means applying LBC to the results by the new model tends to decrease

the prediction accuracy. Therefore, the re-trained SFCN is not considered a proper

model for the project. The rest of the project keeps utilizing the results obtained by the

pre-trained SFCN model.

3.3 Disentangle Disease-Specific Features

3.3.1 Preparation

• Dataset Collection and Pre-processing
To intensify the disease-specific patterns, a filter of BAG over 4 is added to the

MDD scans, and a filter of BAG over 0 is added to the diabetes and the dual scans. As a

result, 307 MDD samples, 211 diabetes samples and 86 dual samples are selected to

form a target dataset of sample size 604. Then 604 HC samples are selected to form a

background dataset where its chronological age distribution matches the target dataset.

The unnormalized chronological age distribution and the normalized BAG distribution

of the 4 selected scan types are displayed in Figure 3.5. As displayed, most of the

samples have a chronological age of 60 ∼ 78. The HC BAG mostly falls into −1 ∼ 2,

the MDD BAG mostly falls into 4 ∼ 7, and the diabetes BAG and the dual BAG mostly

fall into 0 ∼ 6.

During training, 80% samples from both datasets are randomly selected as the

training sets, and the rest 20% are used as the validation sets. Each sample will be first

cropped into a shape of (160,192,160). Then, to match the output range of the Sigmoid

activation function at the last layer of the decoder, a min-max scaler is fitted on the

training set and applied to all the samples to normalize the input into a range of [0,1].

• Hyper-parameter tuning
At the very beginning of the project, to shrink down the size of cVAE, a large kernel

size (e.g. 11), a small latent feature dimension (e.g. d = 2) and few batch normalization

layers were used. This had led to two problems during training: a) the plotted salient

features were easily aligned to a row and at last overlapped into a single point after

several epochs; b) gradients vanish easily during backpropagation, which causes the

loss becoming NaN and the training being stopped. The first problem was solved by

using a smaller kernel size in the encoders and a larger latent dimension. Kernel size of

3 and latent dim d = 32 1 is applied after considering the cVAE for ASD paper [22].
1 [22] has input shape of 643 and uses d = 16. We have larger input size and thus decide to choose d
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(a) (b)

Figure 3.5: cVAE Dataset

It is also discovered that the KL loss LKL tends to explode at the second batch

in the first epoch during training, and rapidly shrink down to a normal level after

about three epochs. The value that KL explodes to can be influenced by the learning

rate λ. After experimenting with different random seeds, it is discovered that λ of

0.0001,0.0003,0.0005,0.0007 are likely to cause exploding LKL at a magnitude of

103,108,109,1022, and λ > 0.001 can often result in errors in backpropagation and

stop training. Considering both the exploding magnitude and the speed of training,

λ = 0.0003 is chosen to be used in our experiments.

Due to the time limit of the project, to have a quicker convergence on the loss value

during training, the batch size is set to a relatively small value of 10, i.e. B = 10. The

training will be early stopped if there’s no increase in the validation set for 7 epochs, i.e.

∆ = 0,Np = 7.

Then the only hyper-parameters that remain to be decided are the three loss weights

α,β,γ. With the intention of scaling down the range of possible values of them, we first

tried to conduct a grid search on them using a training set and a validation set of sizes 80

and 20 on both datasets. Since the value of the three parameters contributes to the total

loss, models with smaller loss weights are more likely to have a lower total loss. Hence,

it’s not suitable to judge the model performance by the best validation loss. Instead,

SS at the epoch of the best validation loss is used. However, it is discovered that the

training results on the same set of α,β,γ are highly unstable even after blocking all the

randomness. The best validation loss might be reached within the first 5 epochs, or after

50 epochs. The corresponding SS may keep at 0 or decrease to -0.08 2. Therefore, here

twice of their size.
2Normally, for most majority of the tested settings, SS ranges from -0.1 to 0.
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Figure 3.6: Baseline Model – Latent Space of Salient Features at epoch 5, 155, 306 and
456 (0-HC, 1-MDD, 2-diabetes, 3-dual). (SS in the plots of latent space considers HC scans, while

other SS in the text only considers target samples.)

grid search by SS is not considered a robust hyper-parameter tuning strategy. Finally,

we decided to adopt the value of the loss weights used in [22] as a baseline model

(α = 250000 3, β = 1, γ = 100), and afterwards manually adjust the value of them to

improve model performance. 4

3.3.2 Baseline Model

• Overall Training Process
The training loss, the validation loss and the mean SS on the salient features inferred

from the validation set of the target dataset 5 during training is plotted in Figure 3.7 (1).

The training of the baseline model is stopped manually at epoch 456 after the validation

SS keeps at 0 for more than 100 epochs, although the validation loss is still decreasing

at a slow rate as displayed in Figure 3.7 (2). The model is picked at the last epoch for it

has the smallest validation loss so far.

The evolution of the salient latent space of the 4 scan types from the validation set

is displayed in Figure 3.6 at each one-third of the training process. There’s not much

grouping by the scan types that can be discovered in the plots. The first three plots

do contain several clusters with SS<0, while the points in the last plot (by the picked

model) seem to be randomly scattered with SS=0.

• Two Sudden Changes in the Loss Curves
3 [22] uses α = 643 to make reconstruction loss match their input dimension, here we adjust α to

250000 to it at about 1
20 of our input dimension.

4For all other hyper-parameters, if not explicitly stated in below experiments, are fixed as the value
described above.

5For the rest of the paper, we would refer to "the mean SS on the salient features inferred from the
validation set of the target dataset" as simply "the validation SS" of the training process.
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Figure 3.7: Baseline Model – Loss Curves (Except for the validation loss and the validation SS,

all the losses are computed on training set if not specified otherwise.)

It can be seen from Figure 3.7 (1), there are two sudden changes in the loss curves

at around epoch 225 and epoch 356 respectively.

The first sudden change is zoomed in and plotted in Figure 3.7 (3), where both the

training and the validation loss decrease from about 6500 to about 2500 within 2 epochs.

It is caused by the sudden dive in the reconstruction loss. As displayed in Figure 3.7 (5),

the reconstruction losses of the target and the background data almost overlapped. They

decrease rapidly in the first 100 epochs from 0.1275 to 0.0223, then decrease slowly in

the next 100 epochs to 0.0140. At epoch 225 they suddenly dive into 0.0054, and then

level at about 0.0046 afterwards.

The second sudden change is zoomed in and plotted in Figure 3.7 (4), where the

training and the validation loss jump to about 4700 and 300 respectively from about

1800, and fall back to about 1780 within 3 epochs. It is caused by the sudden jump of the

KL loss on the salient feature to about 2900, as shown in Figure 3.7 (6). Figure 3.7 (7,8)

show that before the jump, KL loss on the three latent features all reach about 3.5. After

the jump, the KL loss on the irrelevant features gradually goes up to about 4.2 at last,

while the KL loss on the salient features levels at about 0.03 (but still with a very slowly

decreasing trend).
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Figure 3.8: Baseline Model – Discriminator Performance

• Analysis on TC Loss and Discriminator Loss
The TC loss LTC and the discriminator loss LG are plotted in Figure 3.8 (1). LTC

decreases almost linearly from −0.0070 to −6.5704, and LG increase gradually from

1.6178 to 6.5731. However, as stated in section 2.4, ideally LTC −→ 0 and LG −→
0.6021.Thus, the value of the two losses deviates greatly from our expectation.

To figure out the reason for the abnormal LTC and LG, it’s needed to monitor the

internal changes of the discriminator, namely the scores (probability) it assigns to the

inputs and its accuracy. The average scores, Gψ(v̄) and Gψ(v̂), the discriminator assigns

to v̄ and v̂ at each epoch are recorded in Figure 3.8 (2). As plotted, after epoch 50 the

discriminator tends to assign a score less than 0.5 to any of its input no matter its v̄ or

v̂, and after epoch 250 it learns to assign a score close to 0 to any input. The accuracy
6 of the discriminator judging whether a concatenated feature is drawn from q joint or

qprod is recorded in Figure 3.8 (3). According to the definition of the discriminator in

section 2.4, it will classify an input as being drawn from qprod if its score is less than

0.5, otherwise as being drawn from q joint . Hence, the scores described above tend to

lead to the absolute majority (or even all) of v̄ and v̂ being classified as being drawn

from qprod , which is consistent with the accuracy plotted in Figure 3.8 (3).

As stated in section 2.4, a successfully trained discriminator should obtain both

Gψ(v̄) and Gψ(v̂) close to 1
2 , rather than 0 as the baseline model. Additionally, LTC

pushes Gψ(v̄) to 0, whereas LG pushes Gψ(v̄) to 1. Therefore, a mean Gψ(v̄) too close

to 0 can be resulted from a LTC which is much stronger than LG . Hence, it is necessary

to scale down the weight γ of the TC loss, so that the discriminator can balance the

scores at around 1
2 and encourage the independence between the salient features st and

6It is worth notifying that here we’re not talking about the overall accuracy on all the inputs of the
discriminator, but the accuracy on v̄ and v̂ separately.
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the irrelevant features zt .

• Discussions on the Indicators of A Successfully Trained Discriminator
It’s significant to define under which condition can we judge a discriminator to be

trained successfully, i.e. a discriminator that can force the st and the zt to be independent

of each other. That the mean Gψ(v̄) and the mean Gψ(v̂) approach 1
2 and that the v̄

accuracy and the v̂ accuracy approach 1
2 are both a sufficient condition for an effective

discriminator. This is because either of the two conditions means the discriminator

tends to classify about half v̄ (and v̂) as being drawn from qprod and the other half as

being drawn from q joint , which indicates high similarity between qprod and q joint .

Additionally, a mean Gψ(v̄) or a mean Gψ(v̂) far away from 1
2 should be a sign of a

malfunctioned discriminator. This is because the situation can be caused by either a high

dissimilarity between qprod and q joint so that the discriminator can tell the difference

between them, or the extremely large (or small) parameters of the discriminator so

that the discriminator assigns 1 (or 0) to any of its input. However, a v̄ accuracy

or a v̂ accuracy far away from 1
2 does not necessarily lead to a failed discriminator.

Considering the case when all Gψ(v̄) = 0.51 and all Gψ(v̂) = 0.49, both the scores are

around 0.5 which means the independence has been reached. However, in this case,

both accuracy are 1. Hence the two accuracy of 1
2 is not a necessary condition of the

independence in practice.

Therefore, the indicator of a successfully trained discriminator should be either that

both v̄ and v̂ score approach 0.5 or that both v̄ and v̂ accuracy approach 0.5.

3.3.3 Experiments on Smaller Value of γ and Ablation Study on

Discriminator

• Model 1: α = 250000,β = 1,γ = 0.01

As suggested in the last section, we keep the value of α and β the same as the

baseline model, and conduct experiments on smaller values (0.01, 0.1, 1, 10) of γ. It is

discovered that γ = 0.01 can successfully lead to both v̄ score and v̂ score approaching

0.5. The curves of the discriminator-related indicators are plotted in Figure 3.9a. As

displayed, after epoch 150, the TC loss levels at -0.0200, the discriminator loss levels

at 1.3864, both the v̄ score and the v̂ score level at 0.4950, the v̄ accuracy and the v̂
accuracy level at 0 and 1 respectively. Hence, the discriminator under this setting is

considered successfully trained.
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(a) Model 1 – Discriminator Performance

(b) Model 1 – Loss Curves

Figure 3.9: Model 1 – Training process

The training of the cVAE under this setting is early stopped at epoch 309 due to no

increase in the validation loss for 7 epochs. Model 1 is picked at epoch 302 for it has the

smallest validation loss so far. The curves of the training loss, the validation loss and the

validation SS are plotted in Figure 3.9b (5). As displayed, the validation SS fluctuates

widely after epoch 180. Compared to the baseline model, one breakthrough of Model 1

should be its SS does not levels at 0, but reach some positive values at several epochs,

e.g.SS=0.0062 at epoch 278, SS=0.0051 at epoch 295 and SS=0.0082 at epoch 309.

Similar to the baseline model, there’s also a small dive in the training and validation

Figure 3.10: Model 1 – Latent Space of Salient Features at epoch 5, 104, 203 and 302;

(0-HC, 1-MDD, 2-diabetes, 3-dual)
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Figure 3.11: Model 2 – Latent Space of Salient Features at epoch 5, 116, 226 and 337;

(0-HC, 1-MDD, 2-diabetes, 3-dual)

Figure 3.12: Model 2 – Loss Curves

loss curve, which is also caused by the change in the reconstruction loss as showed in

Figure 3.9b (6). The evolution of the latent space of the salient features is visualized

in Figure 3.10 at every one-third of the training process. The situation is still not as

expected since no obvious clusters by scan types can be discovered, but compared with

the baseline model, at least the points are not randomly distributed at later epochs.

• Model 2: α = 250000,β = 1, with Discriminator Removed
The baseline model can be reckoned as a sample model with a failed discriminator,

and Model 1 can be reckoned as another sample model with an effective discriminator.

To further study how the TC loss and the discriminator loss can influence the perfor-

mance of the cVAE, an ablation study on a cVAE without a discriminator is worth

conducting. All other settings are kept the same as Model 1.

The training of the cVAE under this setting is early stopped at epoch 344 due to

no validation loss increase for 7 epochs. Model 2 is picked at epoch 337 for it has the

smallest validation loss so far. The evolution of the latent space of the salient features

are visualized in Figure 3.11 at every one-third of the training process. The training loss

curves is depicted in Figure 3.12. It can be discovered that compared with the baseline

and Model 1, the curve of the validation SS of Model 2 becomes much more smooth.
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Models
KL loss on st Avg KL loss on (zt ,zb)

min max trend min max trend

Baseline (357 ∼ 456) 0.0576 0.0216 ↘ 2.6111 4.3797 ↗
Model 1 (210 ∼ 309) 3.3605 4.6359 ⇝ 0.0059 0.0089 ↘
Model 2 (245 ∼ 344) 0.1222 0.2591 ↘ 3.3001 7.9542 ↗
Model 3 (315 ∼ 414) 1.0311 1.8960e ×1019 ↘↗↘ 0.0060 0.0296 ↘

Table 3.2: KL loss on the Last 100 Epochs (texts in bold marks vanishing KL; ↘ – decreasing,⇝

– wiggly but mainly flat, ↗ – increasing)

The SS first fluctuated around -0.0892 at the first 130 epochs, then gradually climbs to

around -0.0184 at epoch 300, and fluctuate around this value afterwards. Unfortunately,

the upward trend of SS stops after epoch 300, and the SS fails to reach any positive value
7. Compared with the baseline model, whose SS curve has a range of [−0.0753,0], and

Model 1, whose SS curve has a range of [−0.0478,0.0083], Model 2 has a lower range

on SS during training, which is [−0.0964,−0.0174]. Therefore, it might be concluded

that the discriminator tends to bring a wiggly SS curve (which might indicate more

drastic changes in the latent space) and higher SS while training.

3.3.4 Experiments on β annealing and Ablation Study on KL loss

• Analysis on The KL Vanishing Problem
While training VAEs, the KL loss term can sometimes become extremely small

and then vanish, which makes the inferred latent features match their prior distribution

closely. This problem can limit the diversity of the latent space, which makes the whole

model overly focus on reconstructing the input sample and prevents the encoder from

learning meaningful and well-structured latent representations.

As depicted in Figure 3.7 (7,8), Figure 3.9b (7,8) and Figure 3.12 (4), for all the three

models obtained above, the KL loss of either the salient features (st) or the irrelevant

features (zt ,zb) tends to approach 0 at the end of the training process. Table 3.2

summarizes the range and the trend of the KL loss at the last 100 epochs of the three

models. The KL vanishing problem is considered to take place if the minimum value is

below 0.1 and the trend is not increasing (↗). The happening of the problem has been

7Even though we have tried increasing the early stop patience to 15 to continue the training of the
model for about another 50 epochs, no obvious increase in SS can be discovered. For the consistency of
experiments, here we only report the results with early stop patience set as 7.
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Figure 3.13: Model 3 – Latent Space of Salient Features at epoch 5, 131, 251 and 384

(0-HC, 1-MDD, 2-diabetes, 3-dual)

marked in bold in the table. As displayed, the KL loss on the salient features of the

baseline model and the KL loss on the irrelevant features of Model 1 vanishes. The KL

loss on the salient features of Model 2, though not reckoned as vanishing, also becomes

relatively small (only slightly higher than 0.1). Therefore, it is important to mitigate the

KL vanishing problem during training.

Two strategies are adopted to alleviate the problem. The first is the cyclical annealing

schedule [24] on the KL loss weight β. The second is to conduct the ablation test by

avoiding the use of KL loss via transforming the cVAE into a deterministic contrastive

regularized auto-encoder (cRAE) [42].

• Model 3: α = 250000,β = 1,γ = 0.01, with Cyclical Annealing Schedule on β

The annealing schedule usually sets β to a small value (e.g. 0) at the first several

epochs to let the reconstruction loss dominate the total loss, and then progressively

increase the KL β. With a cyclical schedule, it’s intended to repeat the procedure of

increasing β for multiple times. However, as mentioned in section 3.3.1, the KL loss

tends to explode at the very beginning, so we set β = 1 for the first l epochs and then

start the cyclical annealing schedule. Let C denote the length of a cycle, βt denote the

value of KL loss weight at epoch t, the schedule is then formed by:

βt =

1, t < l or (t > l and m ≥ C
2 )

m · 2β

C , t > l and m < C
2

, m = (t − l) mod C (3.1)

It should be noticed that βt contributes to the total loss LcVAE . As βt increases, LcVAE

tends to increase as well. Hence, an early stop patience Np smaller than C is not suitable

with this schedule, as the increase in the validation loss may be caused by the increasing

βt rather than overfitting on the validation set. Here Np =
3C
2 is applied, so that the

training can stop only if the validation loss increases under the same value of βt .

With all other settings kept the same as Model 1, experiments on C = 10,20,30 with
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Figure 3.14: Model 3 – Loss Curves

fixed l = 5 have been conducted. However, the annealing schedule fails to mitigate the

KL vanishing problem in our case. For all the experiments, the KL loss on the irrelevant

features decrease to lower than 0.1 at the last 100 epochs. Here we report the results of

the experiment with C = 20 as it has the highest minimum KL loss on the irrelevant

features. The training stops at epoch 414 and Model 3 is picked at epoch 384 as it has

the smallest validation loss so far. The evolution of the latent space on salient features

is visualized in Figure 3.13 at every one-third of the training process. The loss curves

of the cVAE are plotted in Figure 3.14. The discriminator is also trained successfully in

this setting. The plots of the discriminator-related indicators are put in Figure A.1 in

Appendix A.

As can be seen from Figure 3.14 (1, 5), there exists an explosion of training loss

(to 1018) and validation loss (to 1034) at around epoch 350, which is caused by the

explosion of the KL loss on the salient features. From Figure 3.14 (6), it can be seen

that the for each annealing cycle the salient feature tends to "explode" to a much lower

value compared with the explosion at epoch 350. As displayed in Figure 3.14 (5, 6, 7,

8), the KL loss on the salient features decreases to about 1.0 before the explosion, jumps

abruptly to about 1.89×1019 at the explosion, then returns back to about 6.41×1013



Chapter 3. Experiments 31

Figure 3.15: Model 4 – Latent Space of Salient Features at epoch 5, 103, 161 and 239

(0-HC, 1-MDD, 2-diabetes, 3-dual)

and keeps decreasing to about 1.46×1012 afterwards. The KL loss on the irrelevant

features decreases to below 0.1 at about 160 epochs, reaches about 0.0084 before the

explosion, jumps abruptly to about 0.030 at epoch 351, then returns back to about

0.0082 and keeps decreasing to about 0.0060 afterwards. The range and trend of the KL

loss on the last 100 epochs are also recorded in Table 3.2.

It can be concluded that the annealing schedule we experiment with does not fit our

cVAE, as it fails to mitigate the KL vanishing on the irrelevant features and encourage

the KL exploding on the salient features. Other settings on C and l, or other annealing

schedules might be needed. Since the vanishing problem tends to take place on either

the the KL loss on the salient features or the KL loss on the irrelevant features, it is

suggested to assigning different weights to the two KL terms, and applying different

schedules on them. It is also unclear that which KL term will vanish while training,

thus studies on under which conditions which KL term tends to vanish can also help.

Additionally, as can be seen from Figure 3.14 (3), the loss curves after the explosion

oscillate extremely widely and unstably, with the higher values reaching 1013 and the

lower values only around 5× 103. This is possibly caused by that the parameters of

the model might be in a narrow valley of the loss landscape during training, and a

fixed learning rate moves the parameters to some large peaks in the landscape. Hence,

implementing a learning rate schedule that can decrease the value of λ as training goes

on is also suggested.

• Model 4: cRAE with α = 250000,β = 1,γ = 0.01

Another way to mitigate the KL vanishing problem is to avoid the usage of the KL

loss. According to [42], a VAE can become deterministic by substituting squared L2

norm on latent features for the KL term to form a regularized auto-encoder (RAE).

Here, we replace the LKL in Model 1 by L f =
1
2 ||st ||22 +

1
2 ||zt ||22 +

1
2 ||zb||22 to form a

contrastive RAE (cRAE). All other settings are kept the same as Model 1.
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Figure 3.16: Model 4 – Loss Curves

The training is early stopped at epoch 246 as no validation loss increase for 7 epochs.

Model 4 is picked at epoch 239 as it has the lowest validation loss so far. The loss

curves are plotted in Figure 3.16. As can be seen, the validation SS curve oscillates

much less widely when compared with the baseline, Model 1 and Model 3, which can

indicate a smoother updating of the latent space. The reconstruction loss, similar to all

the previous models, decreases smoothly from around 0.12 to around 0.01. The L f on

the salient features, despite several small explosions, decreases sharply from 146.82 to

4.75 within the first 50 epochs and levels at around 1.08 after epoch 100. The L f on the

irrelevant features decreases smoothly from above 3000 to 1.3931. The discriminator-

related indicators are plotted in Figure A.2 in Appendix A, which indicates a normal

performance of the discriminator since its v̄ score and v̂ score both approach 1
2 . The

evolution of the latent space on the salient features is visualized in Figure 3.15 at every

one-third of the training process. It can be discovered that several salient features of

the diabetes samples tend to form small clusters at the lower right corner in the plot of

epoch 103, and at the middle left part in the plot of epoch 161 and 239, as circled in

blue in Figure 3.15.

3.4 Evaluation

The models are evaluated on an unseen test set. The test set is picked randomly

from the set of all the available samples collected from UKBB excluding the scans used

during training. The test set contains 40 samples for each scan type ("HC" / "MDD" /

"diabetes" / "dual").

As explained in section 2.5, SS and average NMI are computed on the MDD,

diabetes and dual scans for each of the five models described above. The latent space of
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Models
Settings Val Test

α β γ G Vanish Anneal Loss SS SS Avg NMI

baseline 250000 1 100 ✕ ✓ ✕ KL 0.000000 0.000000 0.000000

1 250000 1 0.01 ✓ ✓ ✕ KL 0.008120 -0.026349 0.017399

2 250000 1 None None ✕ None KL -0.017647 -0.026674 0.014950

3 250000 1 0.01 ✓ ✓ ✓ KL -0.069846 -0.037510 0.017335

4 250000 1 0.01 ✓ None None L2 -0.020680 -0.028302 0.017470

Table 3.3: Model Evaluation Column Meaning: "G " – whther the discriminator is trained successfully;

"Vanish" – whether the KL vanishing problem takes place; "Anneal" – whether the cyclical annealing

schedule on KL β is implemented; "Loss": whether the KL loss or the squared L2 norm loss is used. The

highest values of validation SS, test SS, test average NMI among the four improved models are marked in

bold, and the lowest values are underlined.

the salient features on the test set is visualized in Figure 3.17. The evaluation results

on the test set, the validation SS at the epoch the model is picked, and related model

settings are summarized in Table 3.3. The highest values of SS and NMI among the

four improved models (Model 1 ∼ 4) are highlighted in bold, and the lowest values are

underlined.

It can be seen from Table 3.3 that, in terms of test SS, the lowest and highest value

are obtained by Model 3 and Model 1. Model 1 and 2 yield similar values of test SS.

In terms of test average NMI, the lowest and highest value are obtained by Model 2

and Model 4. Model 1, 3 and 4 yield very close values of NMI. In general, Model 1

(the one with a successfully trained discriminator) can be considered to have the best

performance, since it obtains the highest test SS and the second-highest average NMI

among the four improved models, although the visualizations of the distributions on the

latent space of Model 1,2,4 seem quite similar.

As displayed in Figure 3.17, it seems that the baseline model learns to distribute the

features almost randomly. Thus its test SS and average NMI are 0, because GMM tends

to assign the same label to all the data points even with the class number being set to 3.

This means clustering in the latent space can be hardly discovered. The model probably

fails to disentangle any disease-specific features. Hence the baseline model can not be

reckoned as a valid model of the project. It can also be discovered that Model 3 (the one

with a successfully trained discriminator and an annealing schedule on KL β) yields

the slimmest distribution in the latent space. It obtains the lowest test SS among all the



Chapter 3. Experiments 34

Figure 3.17: Latent Space of Salient Features on Test Set

models.

Combining the results of the baseline model, Model 1 and Model 2, it can be

concluded that a missing or failed discriminator does harm the performance of a cVAE.

The cVAE with malfunctioned discriminator (the baseline) yields the worst performance

as it fails to form any cluster in the latent space. In terms of either the test SS or

the test average NMI, the cVAE with a successfully trained discriminator (Model 1)

outperforms the cVAE without a discriminator (Model 2). Combining the results of

Model 1, Model 3 and Model 4, it can be concluded that the annealing schedule on KL

β fails to improve the performance of a cVAE, as Model 3 has both a lower test SS and a

slightly lower test average NMI compared with Model 1. The implementation of cRAE

(Model 4 vs. Model 1) helps to improve the clustering performance in terms of the test

average NMI, but impairs the performance when considering the test SS. Moreover, it

is worth notifying that all the results so far are quite negative. Although except for the

baseline model, salient features inferred by the other four models tend to form clusters

in the latent space, none of the models can be declared to be trained successfully, as for

now no obvious groupings consistent with the scan types are discovered in the latent

space.
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Conclusion

This project makes attempts on using cVAE-liked models to disentangle MDD

and/or diabetes specific patterns, and compare the performance between the models

using test SS and test average NMI.

At first, SFCN and LBC are applied to compute the BAG of each sample. As

expected, the distribution center and the MAG of diabetes and dual scans are higher than

those of the HC scans. However, the MDD and the HC scans share similar normalized

distributions, and the MDD scans have lower MAG than the HC scans, which do not

match our expectation. Then scans are selected with positive BAG to enrich the desired

patterns, and then the experiments on cVAE-liked models are conducted.

The baseline model adopts the hyper-parameter setting from [22]. However, its

discriminator fails to function effectively, which might result in an almost random

distribution in the latent space of the salient features and fails to disentangle the disease-

related features. It is discorvered that either the mean Gψ(v̄) and the mean Gψ(v̂)
approaching 1

2 or the v̄ accuracy and the v̂ accuracy approaching 1
2 is a sufficient

condition for an effective discriminator. Hence, experiments on smaller TC loss weight

γ were conducted and found that γ = 0.01 can lead to a successful training of the

discriminator in our project. An ablation study on the discriminator was also conducted.

Considering the evaluation results, it can be concluded that an effective discriminator is

crucial to the performance of cVAE, as Model 1yields the best SS and Model 2 yields

the lowest test average NMI.

After taking a detailed look at the loss curves of the baseline model, Model 1 and

Model 2, we found that either the KL loss on the salient features or the KL loss on

the irrelevant features tends to approach zero at the later stage of the training. Thus

the cyclical annealing schedule on KL loss weight β is implemented. However, the

35
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schedule fails to prevent the KL vanishing problem as the KL loss on the irrelevant

features of Model 3 decreases to around 0.0060 at last. Moreover, the schedule might

encourage the KL exploding issue on the salient features. Considering the evaluation

results, the schedule also fails to improve the performance of the cVAE, as both test

SS and test average NMI of Model 3 are smaller than those of Model 1. Afterwards,

we intend to avoid the KL vanishing problem by replacing the KL loss term with the

squared L2 norm term. In this way, a variational AE becomes a deterministic RAE.

Considering the evaluation results, the RAE can improve the performance of the cVAE

since Model 4 has the highest test average NMI among all the models.

However, unfortunately, although according to the visualization plots, the four

improved models tend to form clusters in the latent space of the salient features, there’s

no obvious groupings consistent with the scan types can be found. It should also be

kept in mind that due to the time limit of the project and the length of time to train a

model (roughly 21 hours per training), not enough experiments have been done to fully

explore the research questions. Hence further studies on the implementation of cVAE

for the MDD and/or diabetes specific patterns are needed. Here we make suggestions

on the following for future research:

▷ 1. Increasing the number of samples used for training and balancing the number of

samples of different scan types. The dataset used for cVAE in this project might still be

too small considering the large size of the model. Data augmentation techniques might

help with balancing the samples.

▷ 2. Increasing the latent dimension d to above 128. A d = 32 can be too small to

present the changes of the disease-related patterns.

▷ 3. Implementing learning rate schedules. The updating of the parameters can

sometimes enter a narrow valley in the loss landscape (as in Model 3). A learning rate

of a constant value might lead to highly unstable loss changes and result in unexpected

peaks in the loss curves.

▷ 4. Using different weights for the KL loss on the salient features and the KL loss on

the irrelevant features. This can help figure out which KL loss tends to vanish and apply

mitigation strategies separately.

▷ 5. Applying different optimisers to the cVAE and its discriminator. The discriminator

can be seen as an extra module that is independent of other modules of the cVAE.

Updating them in an asynchronous way might help improve the performance.
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Appendix A

Plots

• Model 3

Figure A.1: Model 3 – Discriminator Performance

• Model 4

Figure A.2: Model 4 – Discriminator Performance
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