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Abstract

Prior studies on Distortion have focused on theoretical results. In this study, we look at

11 datasets based on real-world datasets to find the distortions of voting mechanisms.

We then look at the distribution of scores, the distribution of ranks, and run experiments

to see the behavior of high-alternative datasets and the spoiler effect. We find that

distortions are all around low and plurality is the clear winner in most cases. This is

due to how the score and rank distributions allow high-rank weighting mechanisms

to often pick the right choice. Through experimenting with varying voters against

alternatives and the spoiler effect, we also find that bad-case distortions are mainly in

contrived settings that can be easily mitigated. While prior theoretical work illustrates

the limitations of plurality against other voting mechanisms, our results thus show that

in real-world situations plurality is very effective.
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Chapter 1

Introduction

In a standard election, voters usually express their preferences as ordinal rankings of

their preferred candidates. Much of the work in Social Choice Theory in theorems

such as Arrow’s Impossibility Paradox [3] [4] show that it is impossible to build voting

systems that satisfy all the preferable axioms we might want out of a voting system.

If voters expressed their preferences as a profile of cardinal utilities, one could easily

compute the utility-maximizing candidate. However, for most real elections we see that

such preferences are not expressed or may not be even known by the voters themselves.

Distortion measures the ratio of welfare or utility between a given alternative and

the best alternative. As such it provides a way to quantitatively evaluate and compare

different voting mechanisms. Much of the previous literature has been focused on the

theoretical analysis with distortion on voting mechanisms, such as finding the worst-

case bounds for voting mechanisms [2]. However, there have yet to be studies that have

looked at how these voting mechanisms behave in the context of real-world data.

In this dissertation, we perform an exploratory study of distortion on real-world

preferences. We will look at how voting mechanisms behave with different assumptions

of the distributions of cardinal scores, different datasets, synthetic datasets, and more.
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Chapter 2

Background

2.0.1 Distortion

Distortion measures the worse-case ratio of utility between the best alternative and

a given alternative. The formal setting is such that we have alternatives j of set A of

length m, and voters i of set N of length n, and each voter has a strict preference ranking

≺i that contains all alternatives from A. The utility function SW maps the welfare of

each alternative j from A to every voter i in N, such that the utilities for each alternative

for each voter sums to 1 and adheres to the rankings. If we consider a social choice

function f, then the distortion is formally defined as the worst-case ratio between the

utility-maximizing best alternative and the utility of the alternative picked by the social

choice function [5] [2].

Figure 2.1: Anshelevich, Elliot, et Al. “Distortion in Social Choice Problems: The First

15 Years and Beyond.”. International Joint Conference on Artificial Intelligence (2021).

Distortion Equation [1][2]

2.0.2 Voting Mechanisms

7 voting mechanisms are used throughout this study; Plurality, Borda, Veto, Harmonic,

Combined, Copeland, and Uniform. While there are many more and often more

complex voting rules out there, we decided to focus on basic rules as there already exists
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Chapter 2. Background 3

much literature on their theoretical behavior and they are easy to implement and study

the behavior of. Voting mechanisms are divided into deterministic and randomized

versions, whereby deterministic picks the alternative with the best score assigned, while

randomized picks at random with a probability distribution defined by the scores given

by each alternative. This idea of using scores in different ways was introduced by

Caragiannis et Al. [2] as utility embeddings, and for our purposes can provide a more

informative way of comparing the performance of mechanisms. We use asymptotic

notation to describe the worst-case distortion bounds to compare voting rules.

2.0.2.1 Plurality

Plurality assigns a score of 1 to the top ranked alternative for each preference profile.

The upper bound of distortion of plurality is O(m2), which is also the best achievable

for all deterministic voting mechanisms [2]. Randomized plurality has a tight bound of

Θ(m
√

m) [7].

2.0.2.2 Borda

Borda assigns a score of m-1 to the top ranked alternative, m-2 to the next best, and so

on until the lowest ranked alternative has a score of 0. The upper bound of distortion for

deterministic Borda is unbounded. The tight bound for randomized borda is Θ(m5/4)

[7].

2.0.2.3 Uniform

Uniform is random voting. It assigns a score of 1 to every alternative. Randomized

uniform has a tight bound of Θ(m) [7].

2.0.2.4 Veto

Veto assigns a score of 1 to every alternative except the lowest ranking alternative

for each preference profile. The upper bound of distortion for deterministic Veto is

unbounded. The tight bound for randomized veto is Θ(m) [7].

2.0.2.5 Harmonic

Harmonic assigns a score of 1 to the top ranked alternative, 1/2 to the next best, and

so on until 1/m for the lowest ranked alternative. The upper bound for randomized
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harmonic is O(
√

m log(m)) [3].

2.0.2.6 Combined

Combined is a randomized voting rule introduced by Boutiller [3], that picks at 50%

from uniform, and 50% from randomized harmonic whereby harmonic scores are

probabilities at which each alternative is picked. The upper bound for Combined is

O(
√

m log(m)) [3].

2.0.2.7 Copeland Winner

The Condercet Winner is the alternative that has the pairwise majority to all other

alternatives. That is to say, in any one-off election against the other alternatives, the

Condercet Winner will win and thus is the majority winner. As such, this makes it one

of the preferable property in constituting a ”best” alternative when not using distortion.

Copeland’s Method assigns each alternative a score of 1 for number of alternatives it

has a pairwise majority to, and 0.5 for each alternative is has a pairwise tie to. If there

is a Condercet Winner, then Copeland’s Method will pick the Condercet Winner. Some

preference profiles do not necessarily have a Condorcet Winner.



Chapter 3

Methods

This study was primarily conducted in Python with a Jupyter notebook. Libraries

such as numpy, pandas, matplotlib & seaborn were used for the experiments and for

producing necessary graphs or visualizations. All code can be viewed through the

GitHub link provided in the appendix.

This study is split into two parts, the primary analysis and the case studies. Our

primary analysis will look into the general performance of mechanisms from all datasets.

We then perform a case study based on the observations of the primary analysis for

specific scenarios we found interesting.

3.0.1 Datasets and Preprocessing

All datasets were sourced from Preflib.org [9]. The descriptions of each dataset were

sourced also from Preflib and can be found in the Appendix.

Preflib provides its own libraries to parse the dataset files. Preflib datasets come in

4 data formats, Strict Complete Orders (SOC), Strict Incomplete Orders (SOI), Orders

with Ties - Complete (TOC), Orders with Ties – Incomplete. Strict Orders have no ties

between alternatives and vice versa for Ties. Complete Orders include all alternatives

for each preference profile, while Incomplete Orders may be missing some for each

profile.

For tied orders, we simply flattened the tied alternatives with uniform distribution

within their preference rank. However, for generating cardinal scores, we assigned the

same weight for these tied alternatives in the same “rank” pre-flattening. We believe this

method should more accurately reflect the utility scores rather than blindly applying the

weight functions continuously. For incomplete orders, we added the missing alternatives
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Chapter 3. Methods 6

below the least ranked alternatives in a uniform distribution, applying cardinal scores to

them in the same manner as tied orders.

Datasets often come in multiple files corresponding to different instances of the

event, for example, elections across different years, or across different counties. The

distortions for each instance correspond to each row for the table of distortions generated

for the dataset.

3.0.2 Cardinal Score Generation

As Preflib provides only preference rankings, we needed to generate cardinal scores.

The Dirichlet Distribution accepts a vector of weights of length n and outputs a corre-

sponding vector of length n that are unit-sum normalized to 1. While the direct usage of

the Dirichlet distribution is to sample a distribution of unknown probabilities from a

vector of events, we appropriated the distribution as a straightforward way to generate

scores that fitted within our requirements. The ratio of a weight element to another

weight corresponds to the size of it is output score relative to other scores, while the

magnitude of the weight reduces the variance.

To match with the ordinal rankings, we implemented Linear, Logarithmic, and

Exponential weight functions that corresponded to the distance between each score in a

preference. For logarithmic scores, most alternatives received only slightly less scores

than the previous rank, for exponential, they received much less, etc.

Since the scores are picked from a distribution with some variance, there may be

situations in which the scores for some preferences may be larger than the previous

rank for logarithmic and linear functions. However, as we are often dealing with many

voters and the occurrences and impact of these “breaks” are small, on aggregate the

total utility scores for each alternative do reflect the ordinal rankings.

Obviously, it is a naı̈ve assumption that the real utility distribution of scores may

be similar to these distributions. Not all voters be using the same distribution overall

and there may be different groups using different distributions. Using distributions to

generate scores can also be voting mechanism in their right, as linear weights would

be very similar to Borda scores, but the introduction of randomization within the ties

and incomplete orders may still produce different distributions of scores anyways. As

deciding how to assign these distributions and which would best reflect reality would be

an entire paper in itself, for the scope of this dissertation we decided to stick with mostly

exponential weights as we found that they provided the worst and the most interesting
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distortions.

3.0.3 Linear Programming

Due to limitations with using distributions to model cardinal utilities, we also employed

linear programming to find the worst-case distortions. Boutiller et Al. describe such a

set of constraints for randomized voting functions [3]. The scores of the voting function

p are used to generate the weights for the expected utility. Because the formula for

distortion is not linear, we use a beta value β to approximate the distortion possible

under the objective function. For brevity we will not explain all the constraints save for

that they formalize the definition of distortion earlier into LP constraints.

Figure 3.1: Boutiller et Al. “Optimal social choice functions: a utilitarian view.” Artif. Intell.

227 (2012): 190-213: Lemma 3.5. (LP Constraints)

Whereby the LP tries to minimize the expected utility of the randomized mechanism

minus the utility of the best alternative q scaled by the constant β. As such, if the

objective value is more than or equal to zero, we know that a distortion of at least 1
β

is

possible. If it is less than zero, then such a distortion is not possible, since the expected

utility must always be less than the utility of the best alternative. The deterministic

version of the LP replaces the expected utility ∑ j∈N ∑a∈A pau j(a) with ∑ j∈N u j(a−)

whereby a− is the winner picked by the social choice function.

Since the beta value is an external constant and we do not know the best alternative

beforehand, for each alternative, we used SciPy’s fsolve optimization function to find

which value of β returned in an objective value at or close to 0, thus giving us a close

approximation of the worse-case distortion, then picked the worst distortions of the

alternatives. This process was very computationally intensive, scaling badly with many

alternatives, and thus we limited its usage to interesting datasets.
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3.0.4 Distortion Pipeline

We found that computational efficiency was a major factor to be considered throughout

the experiments. The massive size of some of the data means that the running times for

some of our code, especially Linear Programming could take hours. As such, we did

not run experiments on all possibilities and focused on interesting cases.

For each file in a dataset, the orders and scores are parsed and then generated. The

best alternative is then found. Then a specified number of voting rules is run to obtain

both the picked winner and the scores. The distortions are then calculated for each

voting rule. For computational efficiency, randomized rules are not picked randomly,

and instead, the normalized scores are used to calculate the expected utility that is

then used in the distortion calculation. In order to account for the randomness of the

distributions, especially with non-complete datasets, we reran this procedure ten times

and averaged the results.

Due to computational limitations with the Linear Programming, we only ran random-

ized Plurality, Veto, Borda, and Harmonic along with deterministic Plurality, Harmonic,

and Combined on each file. Our inclusion of only these three for deterministic is due

to our later distribution findings with plurality, and we wanted if there were variations

in the performance for the best performing rules that matched theoretical bounds. As

the distortions for Borda and Veto are unbounded, they were omitted as they would be

predictably high in the worse-case. For the sake of computational efficiency, we thus

could check over those three much faster.

3.0.5 Relative Standard Distribution

Measuring the dispersion of utility from the best alternatives to other alternatives in a

preference profile is used frequently in our analysis. As the scales of scores between

data sets are different, we used Relative Standard Deviation to compare results.

RSD =
σ

µ

RSD is defined as the standard deviation σ divided by the mean µ. Because we want to

measure the spread from the best alternative, we do not use the actual mean and instead

treat the utility of the best alternative as the mean.
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3.0.6 Synthetic Datasets

For our case studies, we often use Mallow’s Model Mix sampling to create synthetic

datasets. A Mallow’s Model Mix accepts several reference orders or elements, each with

a dispersion parameter from 0-1. Orders are then sampled from references according to

this dispersion, whereby a low dispersion results in many orders similar or the same

as the reference order, and a high dispersion of 1 being uniformly random orders [6].

Preflib provides an implementation of Mallow’s Mix Sampler that we use in this study.



Chapter 4

Results

11 datasets with a total of 66 preference profiles were analyzed. The full results for

distribution experiments and LP experiments can be viewed in Normal results.csv and

LP results.csv respectively. Figure 4.1 and Figure 4.2 shows a preview of the results.

Due to the large outliers for the two high m datasets of ”movehub” and ”university”, we

excluded them to better show the variance of the majority of datasets.

Figure 4.1: Full Deterministic Results (Preview)

Distortions are all around very low with low variance for most of the datasets with

low m. The low variance is surprising as despite the large amount of variance for m

and n, the distortions themselves remain fairly homogeneous across all the datasets.

Deterministic performance appears to show that most datasets managed to pick the

best or close to the best alternative for most datasets, and randomized also displays

generally quite low distortions. Plurality clearly has the best performance of the voting

mechanisms, with its low scores and very low variance, while Harmonic and Combined

are better than Borda and Veto when looking at the full mean. This matches the

theoretical findings of the bounds of these mechanisms. Copeland also performs very

well for most datasets with corresponding Condorcet winners but fails disastrously in

10



Chapter 4. Results 11

Figure 4.2: Full Randomized Results (Preview)

Figure 4.3: Full LP Results (Preview)

movehub whereby a Condorcet winner does not exist.

All voting mechanisms have better performance than uniform voting which is good

since then our voting mechanisms are worth using in reality. In Figure 4.3, the LP

worst-case results show a similar pattern, in which randomized plurality leads with

harmonic, then combined, then borda and veto trailing. As expected, the LP has worse

distortions for every case and a higher standard deviation for every rule. What is also

interesting is the deterministic LP results all have the same distortion, implying that

each voting rule picked the same or similar alternatives.

Figure 4.4: French Results for Distributions
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Figure 4.5: French Results for LP

Figure 4.4 displays the distribution distortions for the French dataset as a ”repre-

sentative” dataset. Each index corresponds to an instance of the dataset for brevity,

and distortions across instances are quite similar throughout with plurality taking the

lead. The LP results in 4.5 have higher distortions as expected, but are similar to the

distribution results in having very homogeneous distortions.

Figure 4.6: French Plurality Scores vs Real Utility Scores for Index 3

The total score of each alternative provides more context for these distortions in

Figure 4.6. Due to ranking restrictions, the winners picked by Plurality will always

have high utilities that are within the best performing alternatives. This means that in

the situation where the Plurality winner is not the best alternative, the distance between

its utility and the utility of the best alternative is small enough that the resulting ratio

provides a very small distortion. Such events are quite rare, as looking at the plurality

scores, much of the scoring weight that is ascribed to the next best alternative is from

being the top ranked alternative for many profiles. Rather it is a very small portion of

near “ties” that likely decide which alternative is the real winner.

As some of our datasets are not strict complete orderings, the use of randomization

to decide ties produces non-deterministic results. Due to how we assign scores based

on the initial ties, randomized results are generally the same, but for deterministic
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results, it will affect the voting mechanisms. Figure 4.5 shows Plurality picking the

right winner, but its average distortion is not 1. The reason for this is due to the large

variance between the scores of the top ranked alternatives 5, 10, and 4 that plurality is

”alternating” across these choices. Considering the significant difference in error bars

between the real scores and plurality, their differences illustrate the loss of information

when moving from strict ties to strict-complete orders. That being said, the smaller

error bars with Borda and Harmonic in Figure 4.7 may show how less ”extreme” voting

rules that assign a score to every alternative are more resilient to such random processes.

Nonetheless, their error bars are still large enough to cause that same ”alternating”

phenomenon as we see in Borda.

Figure 4.7: French Borda Scores vs Harmonic Scores for Index 3

Figure 4.8: Alternative Rank Counts for French Index 3
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Figure 4.9: Alternative Rank Counts for 5,4,2,1 for French Index 3

For randomized voting rules, because distortion measures against the best alternative,

voting rules which assign more weight to lesser scoring alternatives are going to perform

considerably worse than rules that assign more relative weight to the top ranks. This is

especially noticeable for Borda which is virtually identical to the real score distributions,

yet performs worse than Plurality. The harsher penalties that Plurality and Harmonic

give to weaker performing alternatives result in higher scores. For this reason, the RSD

of the score distributions for each voting rule is highly relevant, as the higher RSDs

correlate to placing more weight on the better performing alternatives. This is especially

apparent when looking at the rank counts for each alternative in Figure 4.8, whereby

the top ranks contribute the most to the total counts for the best performers. Figure 4.9

displays the rank counts for alternatives 5, 4, 2, and 1 for better clarity. We can see

the trend of how better-performing alternatives have frequencies in a semi-descending

monotonic order, middling alternatives have a semi-uniform frequency, and the worse

performing alternatives have a semi-ascending monotonic order.

For a given alternative, the frequencies of ranks were calculated. Then the difference

between the frequency of each adjacent rank was calculated with np.diff. This value

was then averaged to give a rough estimate of the monotonicity. This was done for the

best performing alternative, the middle performing, and the worse for each dataset.

Across all datasets, the findings here were similar to the observations with the

”french” dataset. The full data for each file can be found in mono.csv
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4.0.1 Different Distributions

The probability distribution used to assign scores has a large effect on distortions. Figure

4.10 shows how the distribution of scores changes between logarithmic and exponential

for high m. While it was expected that the interaction between the distribution of rank

frequencies would affect the distortions, we found that overall exponential distributions

provided the worst distortions.

Figure 4.10: Logarithmic vs Exponential Distributions for French Dataset 3

Figure 4.11: Distortion vs Varying Mixed Distributions

We designed a mixed distribution function with a parameter p between 0-1 that ac-

cepts two distribution functions. For each order, distribution 1 is used with a probability

p, or distribution 2 is used with a probability 1− p. Figure 4.11 shows how a mixed dis-

tribution affected the distortion as we varied the p from 0 to 1 between exponential and

logarithmic distribution functions. We can clearly see that p = 1, when the exponential
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distribution is fully used that we achieve the highest distortions. This experiment was

repeated across a few representative data sets and showed similar patterns, thus we used

only exponential distributions for computational efficiency for all the distortions in the

experiment. Intuitively this makes sense since the difference in scores, the low RSD for

logarithmic will result in very low penalties and thus distortions.

4.0.2 High M Datasets

Figure 4.12: MoveHub Distribution Distortions

Figure 4.13: MoveHub LP Distortions

Figure 4.14: MoveHub Real Score Distribution

For datasets with high m, distortions become more pronounced and the differences

between voting rules become more distinct. The ”MoveHub” dataset as shown in

Figure 4.12 and Figure 4.11 is an unusual dataset, with an m = 216 and an n of 12.

With an RSD of 0.966, the real score distribution is extremely skewed, showing similar
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behavior to Zipf’s law. With n greatly less than m, Veto degenerates into uniform, and

their extremely high distortions are expected with the penalty of picking against the

best alternative being so high. ”MoveHub” does not have a Condorcet Winner, and

Copeland’s does not perform well here. The LP Distortions reveal similar relative

performance as expected, with Plurality, Harmonic, Combined, Borda then Veto in

order of performance. While high, the deterministic distortions are far short of the

theoretical upper bounds. A distortion less than the m of 216 is quite good and should

highlight that the profiles required for the worst bounds may not be that common.

Figure 4.15 shows the top 5 scoring alternatives given by Borda, of which alternative

“121” is the 4th best. Given Borda’s standard deviation of 519.41, it was “close” for

Borda to achieve the best alternative, however, the massive distortions for picking the

wrong choice should highlight the limitations of deterministic mechanisms. In contrast,

Plurality’s standard deviation of 0.054 means that the mean score of 2 for “121” would

clearly make it the best alternative. This is the same for harmonic and combined scores,

where we can see most alternatives being well out of the cutoff. The exception is ’150’

for Combined, but ’121’ is still far above. The cutoff of 1 standard deviation should

thus illustrate the extent of ”certainty” each voting mechanism has with its best choice.

Figure 4.15: Score Distributions for the Top 15 Ranked Alts for Movehub

The ”University” dataset with m= 200 and n= 19 confirms similar results in Figure
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Figure 4.16: Score Distributions for the Top 15 Ranked Alts for University

4.16. In fact for Plurality, Harmonic and Combined the ”certainty” is even more extreme

here, where the cutoff is far higher than every other alternative save for plurality.

4.0.3 Synthetic Datasets: Varying m against n

Figure 4.17: Varying N against M

The high m datasets are characterized by having a much higher m than n, leading

to real score distributions of very high RSD. However, we may want to see how

distributions behave when the ratio between the two is not so high. Prior studies
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Figure 4.18: Varying N against M (LP Worse Case)

by Caragiannis et Al. [2] have found that when m ≈ n, distortions can be go down

drastically for randomized voting functions. If the m > n by a great amount, then

distortion may even reach close to 1, similar to the results we observed with the low

m data. As such, we want to see if such a behaviour would be common for a uniform

dataset sampled from a Mallow’s mix model.

With Mallow’s Model Mix sampling, we decided to vary n across a fixed m to see

how the distortions and RSD would change. A single random reference was used to

build a uniform (i.e) totally random preference profile with a dispersion of 1.

Figure 4.17 shows the distortions for the uniform sampling. Veto and Borda’s

distortions are not shown for clarity due to their enormous distortions early on. As we

can see, the distortion declines as the number of voters increases after the inflection point

of 50. This matches Caragiannis et Al.’s findings. A high m alone will not guarantee a

high distortion, the ratio of n to m also matters. However, since the distortions plateau

at around 100-200, increasing m will still force a minimum distortion. The randomized

voting functions do not actually reach 1 and do not appear to be decreasing. The

distortions from the LP in Figure 4.18 show that this still holds even in the worst case

score profiles. We did not test for large m for the LP due to computational limits. It

is also interesting to note how the scores are increasingly clustered after the inflection

point, such that the voting rules become highly homogeneous. This may be the behavior

we saw with the low m datasets whereby n was greatly higher than m.

4.0.4 Spoiler Effect Testing

The Spoiler Effect is commonly well known phenomenon with the Plurality voting sys-

tem. It is when voters with similar preferences that are split across different candidates
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may lose against a single plurality winner that is not the best candidate. Most of the

deterministic distortions over 1 for plurality can be seen as examples of the spoiler

effect. However, the margins for these events to occur are very small, as the utility

of the best alternative and the plurality winner is often very small, as shown by the

previous results. We thus decided to build preference profiles that varied these voting

margins to see how the voting mechanisms perform.

Our basic example of a Plurality-Loosing profile is with m = 3 with candidates

A,B,C. 30% of voters have the profile 1: A >C > B, 30% have profile 2: C > A > B

and 40% have profile 3: B >C > A. B is the Plurality winner, but it is clearly not the

majority winner as it lacks the pairwise majority for 60% of voters. For Mallow’s Model

Mix, these three orders are the reference elements. Each has a dispersion of 0.1 for a

bit of randomness. Profile 3 is given a largeWeight weight that is varied from (0−1)

at steps of 0.1. Profile 1 and 2 are given a smallWeight weight that is defined by the

equation. We sampled from m = 100 for each sampling and we repeated 50 times for

each iteration and averaged to reduce the effect of randomness.

smallWeight =
1− largeWeight

2

Figure 4.19: Varying Spoiler Effect

In figure 4.19, we can see that from around 0.2 – 0.6, Plurality performs at its worse,

with Borda and Veto actually beating it until around 0.5. Randomized Veto and Borda

beat other randomized rules including Plurality until around 0.4 until which they become

worse. Note that as p increases, the preference profile become more homogeneous

with order (3 > 1 > 2). This is likely why Borda, Veto and the randomized voting

mechanisms get worse as P increases, as more utility is assigned to alternative 3 such
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that the weights given to the rest of the alternative ”pull down” the score, similar to

what was discussed earlier.
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Evaluation

5.0.1 General Evaluations

The low distortions and homogeneity across different voting mechanisms show how for

the most part, most preference profiles encountered in the real world are simple enough

for basic voting mechanisms to achieve high social welfare. Even with the worst-case

LP distribution of scores, the distortions never reached the theoretical bounds and all

stayed nestled within the linear range of m. Due to the thin margins between voters, the

spoiler effect’s actual social cost is overstated, as even the non-Condorcet-winner will

be bringing in large social welfare anyways.

What is more surprising is the dominance of plurality over all other voting rules.

While it is expected for deterministic plurality that its worst-case scenario is the best

we can do, randomized plurality beats all others despite having a higher theoretical

bound Θ(m
√

m) than all other voting mechanisms. The relative performance of the

randomized mechanisms is inverted compared to their theoretical bounds, in which Veto

and Uniform should perform the best, yet they perform the worst. In our datasets, this

is due to how the high RSD of the plurality allowed it to place less weight on poorly

performing alternatives than the other mechanisms. And since we found that most high

utility alternatives had a negative monotonicity, aka they derived most of their votes

from the top ranks, then plurality would always be successful. While our distributions

are experimental assumptions, the rank distributions are not. And the LP results confirm

similar results. This thus would imply to reach the theoretical bounds would require

highly contrived preference profiles.

The extra operations with varying m and n and the spoiler effect should also illustrate

how the bad-case situations can be mitigated. High m situations can be reduced to very
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low and very homogeneous distortions with sufficiently high n, which is not unrealistic

in real world scenarios. The presence of extra voters reducing distortion is similar to

the ”wisdom of the crowds” effect in how adding increasing information can often help

converge to optimal choices. The 0.2-0.6 margin does show that the conditions required

for the Spoiler effect to occur is not insignificant, but even in the situation that it does

occur the distortions will be small anyways due to the previous properties shown with

the monoticity of most data sets. These results should thus show how the bad-case

situations would likely be uncommon in reality or how can be mitigated regardless.

Much of the motivation behind social choice theory and the notion of distortion

has been to understand the limitations of real-world voting systems. As the most

commonly well-known and popular system, plurality is a system we would want to

nonintuively ”show” that is not the best choice in all scenarios and has limitations. And

such limitations have been studied and showed in prior works. But in this study, given

the assumptions we’ve made, it would appear that the intuitive ”trust” in plurality for

the common voter would be generally well-founded.

5.0.2 Future Directions

The largest limitation of this study was the choice of how to distribute the scores. While

we experimented with a random choice between logarithmic and exponential and found

that exponential provided worse scores, realistically score distribution would not be

random. Score distribution would likely be clustered into groups with similar preference

profiles and may use more extreme distributions like some form of k-ranks. While the

worst-case situations can be found through running linear programming, more work

could be done to try to model how real-world utilities are actually distributed. Another

direction would also obviously be to test out more complex voting methods that mirror

real-world elections such as the use of IRV in the Australian elections [8].



Chapter 6

Conclusions

Through running distortion experiments with real preference profiles, we found that

most voting mechanisms performed quite well, and plurality performed the best despite

having worse theoretical worst-case bounds than other competing mechanisms. Through

looking at the rank distribution and the score distribution, we found that because most

high welfare alternatives also derived most of their utility from high ranks, hence the

mechanisms that gave more weight to these high ranks would perform much better and

with more certainty. We also found that the spoiler effect only really occurred during

a small margin between the frequency of voting profiles with low distortion, and how

the sufficiently large n over small m could push distortion scores very low, matching

prior theoretical studies. In conclusion, our findings thus find that in most real cases,

distortions can be kept very small, and simple rules such as plurality suffice in providing

the best or very high utility alternatives. The worst-case situations appeared to rely on

more contrived and unique preference profiles that may not be very common in reality.
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Appendix A

First appendix

A.1 Datasets

• (Files 00026). 2002 French Presidential Elections. 6 Instances corresponding to

6 regions across France [9]. Collected by Jean-Francois Laslier and Karine Van

der Straeten [11].

• (Files 00030). 2010 UK Labor Party Leadership Vote [9]. Collected by Jim Riley

et Al [10].

• (Files 00019). 2010 Oakland, CA City Council and Mayoral Elections [9].

Collected by Jeffrey O’Neill [12].

• (Files 00005). 2009 Burlington, Vermont Mayoral Election [9]. Collected by

Jeffrey O’Neill [12].

• (Files 00016). 2009 Aspen, CO City Council and Mayoral Elections [9]. Collected

by Jeffrey O’Neill [12].

• (Files 00020). 2008 Pierce, WA County Elections [9]. Collected by Jeffrey

O’Neill [12].

• (Files 00004). Netflix Prize Data that contains the ratings of movies by users,

converted into orders [9]. Collected and Converted by James Bennet and Stan

Lanning [13].

• (Files 00028). American Psychological Association Elections between 1998-2009

[9]. Collected by Michel Regenwetter et Al. [14].
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• (Files 00001). Dublin, Ireland North, West and Meath elections in 2007 [9].

Collected by Jeffrey O’Neill [12].

• (Files 00021). 2008-2012 San Francisco, CA Elections, including Board of

Supervisors, District Attorney and Mayoral Elections [9]. Collected by Jeffrey

O’Neill [12].

• (Files 00046). 2012-2015 University Ranking preferences by students generated

from indicator-based rankings [9]. Collected by Niclas Boehmer and Nathan

Schaar [15].

• (Files 00050). MoveHub City Ranking, generated by indicator-based rankings of

cities to move to [9]. Collected by Niclas Boehmer and Nathan Schaar [15].

A.2 GitHub Repository Link

https://github.com/Knhwong/Dissertation/settings

https://github.com/Knhwong/Dissertation/settings
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