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Abstract

When mice traverse a virtual corridor, neurons in the visual cortex respond differently to

the same visual stimulus depending on the location. So far, little is known about the exact

mechanism of how spatial information influences visual processing in these navigation

tasks. While predictive coding offers a potential explanation, there are currently no

computational models to test different mathematical frameworks for generating this

spatial modulation of visual activity. This thesis introduces a hierarchical HHM-based

model that simulates neural responses in spatio-visual navigation tasks and exhibits

stimulus selectivity and spatial modulation in visual activation. Our model can be

employed to fit experimental data and explore the impact of different uncertainty-related

model parameters on selectivity and modulation. We argue that our approach serves as

a baseline for assessing computational theories like predictive coding for their capacity

to explain spatial modulation in the visual cortex.
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Chapter 1

Introduction

On a perceptual level, our brain constantly needs to deal with uncertainty, e.g. when

inferring the identity of a three-dimensional object from the two-dimensional retina

image. First proposed by Von Helmholtz (1867), behavioural studies have verified

that humans act according to approximate (Bayesian) probabilistic inference in various

tasks including concept learning (Ellis, 2023; Tenenbaum, 1999), decision making

(Stankevicius et al., 2014), and multisensory cue integration (Alais and Burr, 2019;

Shams et al., 2000). These studies used computational modelling to fit and predict

human performance in the tasks, providing a computational framework that can account

for the observed behaviour. Modeling cognition as a probabilistic inference mechanism

has also been successfully used to examine psychiatric conditions like schizophrenia

(Fletcher and Frith, 2009; Schmack et al., 2015) or autism (Pellicano and Burr, 2012;

Powell et al., 2016). Supported by this body of evidence, probabilistic theories seem to

provide one of the most plausible universal theories for cognition.

Despite humans’ ability to perform close to optimal inference on a cognitive level,

the question remains whether the brain also behaves probabilistically on a neural level

and how this probabilistic mechanism is implemented (Aitchison and Lengyel, 2017). Is

inference only performed by higher cognitive areas or already a tool used in early sensory

processing? Are inference processes separated between sensory regions or does the

inference process span different brain areas with each of them contributing information?

How is sensory evidence information combined with prior expectations about this

information? Additionally, how can binary-spiking neurons represent probabilities

and compute under uncertainty? Here, too, computational models can explore diverse

mathematical frameworks by simulating neural activity to examine how the brain

implements inference.
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Chapter 1. Introduction 2

The predictive coding theory (Friston, 2005; Rao and Ballard, 1999), for example,

answers these questions by postulating that information between different layers in the

hierarchical structure of the cortex is transmitted via predictions and represented by

prediction errors. Top-down signals coming from higher cortical levels entail expec-

tations about the bottom-up signals coming from the lower levels in the hierarchical

structure. Neural activity in a layer then encodes the prediction error, i.e. the mismatch

between these two signals. Although predictive coding was first proposed as a theory

to explain receptive field effects in the visual cortex (Rao and Ballard, 1999), it has

later been extended to more abstract levels of perception and cognition (Clark, 2013;

Friston, 2010) and can thus be considered a prominent candidate for a unifying theory

of cognition.

Fiser et al. (2016) used the predictive coding theory to explain modulations in neural

activity of the visual cortex in a spatial navigation task. Although animals observed the

exact same visual stimulus in different positions throughout their traversal of a corridor,

the measured activity of the visual cortex differed significantly between presentations

along the corridor. Additionally, visual responses became more informative about the

animal’s position with experience. This modulation of V1 activity was confirmed by

subsequent experiments (Saleem et al., 2018; Diamanti et al., 2021). So far, however,

only a few studies attempted to provide a computational modeling analysis of how

spatial and visual information interact in navigational tasks (Recanatesi et al., 2021;

Ujfalussy and Orbán, 2022).

More importantly, to our knowledge, there exists no published study that provides a

biologically inspired modeling framework for simulating spatial navigation experiments

in which spatial modulations of visual activity have been observed (Fiser et al., 2016;

Saleem et al., 2018). This thesis fills this gap by proposing a computational simulation

framework that allows to examine the interaction between spatial and visual information

in one-dimensional visual navigation tasks. Starting with a basic Hidden Markov Model

(HMM) for inferring the current location from stimuli observations, we introduce an

hierarchical HMM version that extends the basic model by latent visual representations.

We encode posterior probabilities using three different encoding frameworks: (1)

Distributional Distributed Codes, (2) sampling-based encoding, and (3) mean encoding.

These encoding methods vary with respect to how they encode the posterior uncertainty.

The proposed simulation approach does not explicitly model selectivity or spatial

modulation in the visual neurons. Nevertheless, our model exhibits both stimulus

selectivity and spatial modulation in visual neurons. In an initial parameter analysis,
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we tested the effect of uncertainty in the model and neural encoding. Both, selectivity

and modulation, increased with decreasing model uncertainty and were highest for the

mean encoding framework that does not encode a measure of uncertainty. Assuming

that learning through experience is reflected in a uncertainty reduction in the system,

our model yields results that are in line with empirical evidence (Fiser et al., 2016).

This verifies our model as a first modelling approach to examine the computational

mechanisms behind the observed spatial modulations in the visual cortex. In future

research, it could be used as a baseline for testing the theory that modulations reflect

spatially informed top-down predictions about upcoming visual inputs according to

predictive coding that was put forward by Fiser et al. (2016).

The following Chapter 2 explains the simulated experiments and their results in more

detail and provides an introduction on modelling approaches of how uncertainty might

be represented in the brain. In Chapter 3, we present the models that were designed

throughout the thesis and explain how we perform inference on them. We first describe

the concept of our basic model design, before explaining why and how this was extended

into a hierarchical model. Chapter 4 focuses on the encoding schemes that we consider

to obtain neural representations of the inference results. Thereafter, we describe the

simulation environment and parameter settings that we use to examine our models

in Chapter 5. Finally, Chapter 6 examines how selectivity and modulation of visual

activity are influenced by uncertainty in our model before pointing out the potential of

our modelling approach for explaining neural recordings in visual navigation tasks and

how it can be used in future research to test more complex theories such as predictive

coding.



Chapter 2

Background

This chapter establishes the context of this thesis in two steps. First, we describe

the neuro-scientific foundations of spatio-visual navigation and explain the findings

in the literature that reported spatial modulation of V1 activity. Second, we present

the computational concepts that we use to model these experiments focussing on the

internal model describtion and relevant concepts of neural coding.

2.1 Neural modulation during spatio-visual navigation

Spatio-visual navigation tasks describe experimental setups in which an agent – usually

a mouse – has to traverse through an environment using visual cues. These tasks

require an information exchange between the brains spatial and visual system. Spatial

information is encoded via place cells that form spatial maps in the hippocampus

(O’Keefe and Dostrovsky, 1971; Shapiro et al., 1997). The hippocampal area CA1 is

especially active in navigational tasks (Hok et al., 2007; Lenck-Santini et al., 2001,

2002; O’Keefe and Speakman, 1987), however representing rather the subjectively

estimated than the actual position (Lenck-Santini et al., 2002; O’Keefe and Speakman,

1987; Rosenzweig et al., 2003; Saleem et al., 2018). Visual cues, for example in the

form of landmarks, were found to play a crucial role in navigational tasks (Chen et al.,

2013; Geiller et al., 2017; Muller and Kubie, 1987; Wiener et al., 1995), with positional

representations already evolving in early stages of visual processing (Haggerty and Ji,

2015; Fiser et al., 2016; Saleem et al., 2018). How and to what extend this information

is exchanged, still remains to be established.

In order to examine the degree to which early areas of visual processing already

entail spatial information, Saleem et al. (2018) recorded from neurons from CA1 and V1

4



Chapter 2. Background 5

in 4 mice while animals were traversing a 100 cm long corridor in a virtual environment.

The corridor comprised two repeated segments of length 40 cm that hold two distinct

landmarks (one grating and one plaid). Although the landmarks were identical in the

two segments and the animals thus received the same visual input in both positions,

Saleem et al. found that the recorded activity for most neurons in V1 differed depending

on the position of the mouse in the corridor (see Supplementary Figure C.1a). In

particular, neural responses were stronger for the preferred landmark than for the

identical landmark shifted by 40 cm along the corridor. Landmark preferences for a

single neuron were consistent over trials and neurons would prefer the first or second

landmark presentation with equal proportion indicating that activity modulations are

not yielded by adaptation.

For their analysis, the authors considered approximately 5000 neurons with suffi-

ciently strong activity along the corridor. They quantified positional activity changes

using a spatial modulation ratio MR:

MR =
activity in non-preferred position

activity in preferred position
(2.1)

The median MR was significantly smaller than 1 ( 0.61 ± 0.31, p < 10−104, Wilcoxon

two-sided signed rank test, Saleem et al. (2018, p. 125)). This modulation in V1 activity

could not be replicated using a purely visual model that simulated complex cells in

the visual cortex, but had no spatial information (see Supplementary Figure C.1b).

Thus, the change in response observed in V1 could not be explained by purely visual

components. Further analysis using a ridge-regularised General Linear Model with

different predictive features to fit recorded neural activity confirmed the necessity of

spatial information for the emergence of the modulation in V1.

These findings are supported by experiments performed by Fiser et al. (2016) in

which mice moved in a virtual tunnel at any speed (forward or backward motion al-

lowed). The authors did not specify the length of the tunnel, but refered to previous

experiments that used a tunnel length of 180 cm (Harvey et al., 2009). The tunnel

was divided into equally sized patches. Partitioned by unique landmarks, the patches

displayed two sinusoidal gratings, A and B, with equal frequency and contrast, but

orthogonal in orientation. The grating presentation alternated along the corridor: grat-

ing A was presented in the first an third patch, whereas the second and fourth patch

displayed grating B. The grating in the fifth section changed according to one of five

conditions, but was set to grating A during learning.

Fiser et al. recorded neural activity in 9 mice over multiple days from approximately
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1600 neurons in V1 and 1700 neurons in CA1. Animals received an reward at the end

of the tunnel before being reset in position to the beginning of the corridor. The authors

analysed the recorded neurons for their preference of grating A or B using a selectivity

index SI defined as

SI =
rA − rB

rA + rB
(2.2)

where r denotes the average response to grating A or B. Neurons in V1 were categorised

into A- or B-selective if their SI was significantly different from 0. Selectivity in these

neurons improved over time and became more stable. Although the visual input in

the first/second and third/fourth was identical, the neural response in these sections

differed in amplitude in some neurons of V1 depending on the position in the tunnel.

Thus, the recorded V1 activity also entailed spatial information, results that match the

findings reported by Saleem et al. (2018). The same modulation was found for CA1

neurons where the selectivity pattern might be due to place cells activity that is known

to integrate sensory cues for position encoding (Chen et al., 2013; Harvey et al., 2009;

Ravassard et al., 2013).

Both, Fiser et al. (2016) and Saleem et al. (2018), excluded experimental factors

such as running speed or reward as an explanation for the observed modulation and,

thus, verified that the spatial modulation in the hippocampus and the visual cortex were

related. Using a decoding analysis (Fiser et al. (2016): Matlab TreeBagger; Saleem

et al. (2018): Independent Bayes Decoder), both studies showed that the activity in V1

and CA1 was informative of the location as decoders were able to predict the position

given the neural activity with sufficient accuracy. Furthermore, Saleem et al. found that

activities in both areas were more informative about the animals subjective position

estimate than its actual position. Fiser et al. also showed that experience influences

the modulation reflected in the accuracy of the decoder performance. In particular,

spatial information in V1 stimulus onset activity increased over time while the mean

CA1 activity became less informative of the animal’s position. Notably, classification

accuracy using CA1 activity onset only was slightly above chance and did not change

significantly with experience. The selectivity increase in V1 thus cannot be explained

by a selectivity increase in CA1.

As spatial information is present in both spatial and visual activity, these areas may

not be processing sensory information independently, but how they interact exactly

remains unclear. Saleem et al. (2018) suggested a common influence signal (either

feed-forward or feedback) on the processing in CA1 and V1 based on an analysis

of simultaneous processing errors in both areas but the authors were indefinite about
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the exact nature of this connection. Although the CA1 hippocampal region and the

visual system, especially the primary visual cortex (V1), correlate in activity (Ji and

Wilson, 2007; Haggerty and Ji, 2015; Niell and Stryker, 2010), they are only connected

indirectly through other brain areas such as the anterior cingulate cortex (ACC) (Fiser

et al., 2016). The ACC is not only responsible for spatial memory (Maviel et al., 2004;

Teixeira et al., 2006), but it is considered to indicate conflicts in sensory information,

even if they occur in early stages of processing (Carter et al., 1998). Fiser et al. (2016)

examined the signals from the ACC into V1. They postulated the theory that spatial

information from the ACC could activate visual representations that would result in

prediction-like V1 activity. Indeed, Fiser et al. could distinguish postsynaptic V1

neurons into purely visual and predictive based on the resulting activity onset during

grating presentation. By varying the last grating in the corridor in different experimental

conditions, they detected a correlation between these two types of neurons in V1 and

proposed that visual neurons encode a mismatch signal between the predicted and

observed visual input, supporting the predictive coding hypothesis (Friston, 2005, 2010;

Rao and Ballard, 1999).

2.2 Modelling uncertainty in the brain

The predictive coding hypothesis is an example for a functional theory of how the brain

might implement probabilistic inference. As presented in Chapter 1, evidence from

behavioural studies supports the theory that the brain is operating in an inference-like

scheme, maybe even performing close to optimal Bayesian inference. The correspond-

ing computations would require a representation of uncertainty in the form of probability

distributions. This uncertainty could be reflected in two different, not exclusive ways:

(1) in an abstracted computation mechanism following a probabilistic model, or (2) in

the neural code representing information about the environment. The following sections

will briefly explore these two ways to represent uncertainty, focusing on introducing

terminology and concepts relevant to this thesis.

2.2.1 Reasoning under uncertainty

Representations of uncertainty require probabilistic models. In contrast to statistical

models that only provide parametric descriptions of relations between variables in

observed data, probabilistic models define probability distributions to express or es-
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timate the likelihood of different parameters or outcomes. Probabilistic models are

especially useful when dealing with situations where there is inherent uncertainty as

they can explicitly quantify the uncertainty associated with predictions or inferences.

However, this separation is not entirely distinct as statistical models can be considered

probabilistic if they define probability distributions over their parameters and variables.

One example for such a model is the Hidden Markov Model (HMM). A HMM

defines the relation between visible states that can be observed and measured and

their possible hidden causes represented by connected latent states that cannot be

observed directly. Each state emits an observation with a certain probability and the

transitions between states follow the Markov property, meaning that the probability

of transitioning to a particular state depends only on the current state and not on any

previous information. Probabilistic inference on these models utilises their Markovian

nature to quantify the probability of the underlying latent states and explain the hidden

mechanism behind observed quantities.

Probabilistic modeling with HMMs finds application in various fields, including

speech recognition (Juang and Rabiner, 1991; Gales et al., 2008), face recognition (Ali

et al., 2022; Liu and Cheng, 2003), and more (see Mor et al. (2021) for a systematic

review on HHMMs). In neuroscience, HMMs define an abstract internal model of the

brain. This model is then used to extract information about possible hidden states and

underlying patterns within neural data, such as electroencephalography (EEG) data or

local field potentials, which can be complex and challenging to interpret directly. The

abstraction level of the hidden states can thereby vary between neural states of different

brain areas and different cognitive or behavioural processes. Concrete applications of

HMMs in neuroscience include decoding of brain states (Chen et al., 2016; Quinn et al.,

2018), spike train analysis (Katahira et al., 2010; Radons et al., 1994), and studying

neural diseases or disorders such as epilepsy (Dash et al., 2020) or post-traumatic stress

disorder (PTSD) (Ou et al., 2015).

2.2.2 Neural encoding and decoding

The specification of internal models like a HMM, however, is only relevant for certain

frameworks of neural coding. Lange et al. (2020) point out the differences between these

encoding approaches for representing neural activity and similar decoding frameworks.

In general, neural encoding models focus on internal conceptual structures – rep-

resented by an internal model – and how they might yield a neural activity response.
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The internal model often comprises unobserved latent variables as well as observable

variables – similar to our generative models defined in Chapter 3. A posterior distri-

bution over the latents given a set of observations can be computed or approximated

by performing inference on this model using the likelihood of the observations given

a certain model status. Notably, the encoding posterior does not take into account the

neural representation of the encoded quantities, but encoding models define a mapping

from these inference outcomes to the neural representations. The characteristics of

the posterior that are used to obtain neural representations vary between frameworks.

While distributional codes provide an expectation-based encoding of the whole poste-

rior distribution (Vértes and Sahani, 2018; Zemel et al., 1998), other frameworks only

encode samples (Hoyer and Hyvärinen, 2002; Orbán et al., 2016) or predictions and

error signals (Friston, 2005).

As one of the main contrasts to encoding, decoding frameworks don’t postulate any

assumptions about an internal model, but focus on the relation between neural activity

and the connected an external stimulus – not the internal (noisy) observation of the

stimulus. This relation can be characterised using only a purely statistical model from

which the posterior over the external stimulus given the neural activity can be computed.

While most encoding perspectives separate uncertainty in neural computation from the

uncertainty representation in population activity, decoding frameworks like probabilistic

population codes (Ma et al., 2006) treat response variability as an explicit way to

represent uncertainty about the world, i.e. the sensory stimulus. The precision of

the decoding posterior therefore increases if more neural responses are considered

for computing the posterior. Notably, the decoding likelihood describes how likely

a particular neural response is given a certain external stimulus. How this stimulus

is perceived or represented is not considered in these frameworks, which makes the

likelihood indirectly dependent on the experimental design. (Lange et al., 2020)

Following Lange et al., both, encoding and decoding frameworks, can be distin-

guished into those models that encode samples from the posterior, and others that

provide a parametric encoding of the posterior distribution. These categories then can

be further divided depending on if and how they use the encoded quantities to perform

inference. For some frameworks, however, these hard divisions cannot be made (Sahani

and Dayan, 2003; Zemel et al., 1998) and some encoding frameworks could be used to

perform decoding and vice versa. However, restating the equations and calculating the

required quantities is often non-trivial (Vértes, 2020).
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Models

h0 h1 h2
... hT

v0 v1 v2 ... vT

o0 o1 o2 ... oT

p(h0) p(h1|h0) p(h2|h1) p(hT |hT−1)p(ht|ht−1)

p(v0|h0) p(v1|h1) p(v2|h2) p(vT |hT )

p(o0|v0) p(o1|v1) p(o2|v2) p(oT |vT )

Hidden
States

Vision
States

Observation
States

H
M
M

H
H
M
M

Figure 3.1: Graphical models for simulating spatio-visual navigation tasks. The

generative model of the basic model is given by a Hidden Markov Model (HMM) with

positions modeled by the hidden states ht and visual observations modeled by the vision

states vt (black lines). Vision stated are directly observed (indicated by red dashed

circles). The Hierarchical Hidden Markov Model (HHMM) extends the basic model

with explicit observation states (gray lines). In this model, vision states become latent

variables and observation states are observed instead (indicated by blue doted lines).

This chapter focuses on the model that we built to simulate experiments discussed

previously (see Chapter 2). We start off by explaining a basic Hidden Markov Model

(HMM) for performing inference in a spatio-visual task environment. This model,

however, lacks an explicit representation of the activity in the visual cortex and was

thus extended to a Hierarchical Hidden Markov Model (HHMM).

The subsequent sections focus mainly on the overall structure and parameters

of these models, as well as design choices and biological motivations. For detailed

10
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derivations of the equations used for inference and neural encoding please refer to the

Appendix A for the HMM and the Appendix B for the HHMM.

3.1 Basic Model

Fiser et al. (2016) as well as Saleem et al. (2018) recorded neural activity from the

hippocampus and the primary visual cortex. The hippocampus encodes positions

by means of place cells (Harvey et al., 2009; O’Keefe and Dostrovsky, 1971) and

could propagate this spatial information to the visual cortex over indirect top-down

connections (Fiser et al., 2016; Wang et al., 2011). The primary visual cortex (V1) is

the first cortical area in the visual processing path and is often considered to already

give rise to simple representations like orientation perceptions (Ben-Yishai et al., 1995;

Ferster and Miller, 2000). The presented studies focus on the recordings from these two

regions for their selectivity and modulation analysis. As we aim to provide a simulation

framework to model these experiments and analyses, our basic model has two main

variables representing spatial and visual information, resepectively.

The causal relation of these two variables is given by a Hidden Markov Model

(HMM) where the latent variables represent the position and the observable variables

represent the visual stimuli. The following section defines this generative model and

its parameters, before we explain how we perform inference on this model to obtain

probability distributions over the spatial and visual parameters.

3.1.1 Generative model

Although previous experiments used non-colored stimuli like gratings with different

orientations (Fiser et al., 2016; Saleem et al., 2018), our basic model represents the

visual domain as a three-dimensional vector space. This vector space can, for example,

be assumed to represent a color space like the RGB color space (colors defined by

outputs of primary lights with long, medium, and short wavelength, e.g. red, green,

and blue) or the HSB color space (colors defined by three primary properties, e.g. hue,

saturation, and brightness). According to Trichromatic theory, all perceivable colours

can be created by mixing three linearly independent primaries and, thus, lie in a three-

dimensional linear vector space (Krantz, 1975; Neitz and Jacobs, 1986). However, this

numerical definition of the visual domain could, for example, also be used to represent

the orientation, phase and contrast of a sinusoidal grating.
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In our simulation environment, three-dimensional visual inputs v are presented at

every location h along a one-dimensional corridor. Visual stimuli follow a designed

pattern that provides a non-linear mapping f (h) : h→ v. As the same visual stimulus can

be presented in different positions of the corridor, this many-to-one mapping introduces

ambiguity into the system. Ambiguity was found to modulate visual processing and

perception, on a neural level (Sun et al., 2017) as well as on a perceptual level, e.g.

in bistable illusions (see Brascamp and Shevell (2021) for a review). The mapping

also provides the mean values for the distribution over the observable variable at a

certain location in the corridor. Using Gaussian observation noise ηv ∼ N (0,σv), the

distribution for a visual vt at time step t is given by a multi-variate normal distribution

with mean f (ht) for the location ht at time step t and variance Σv = σvI.
The spatial information is represented by the hidden variables h of the HMM. Due to

the defined non-linear mapping f (h), there exists no closed form solution for inferring

the latent variables h given the observations. Thus, our model discretises space to enable

exact inference. The spatial ht at time step t then represents the index of the current

position in the one-dimensional corridor.

The model simulates the movement of an agent in the corridor using a Poisson

Process. The initial position of the agent is Poisson-distributed with parameter λinit ∈
R+. An agent moves down the corridor by executing an intended action λtrans ∈R+ with

Poisson-distributed innovation noise, i.e. it can only move forward in the corridor. Thus,

the step size in a motion trajectory is given by a Poisson distribution with parameter

λtrans. The intended action is currently set to be constant. However, the model could be

extended to make the choice of the action probabilistic by sampling it from a normal

distribution, for example.

In summary, the basic generative model is given by a Hidden Markov model (HMM)

that is defined as follows:

• Initial probability distribution

p(h0)∼ Poisson(λinit) (3.1)

• Transition probability distribution

p(ht+1|ht)∼ Poisson(λtrans) (3.2)

for a constant intended action λtrans.
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• Emission probability distribution

p(vt |ht)∼ N ( f (ht),Σv) (3.3)

where the mean of the normal distribution is given by the predefined mapping

between the location and observation at time step t. This mapping is given by the

setup of the corridor.

This definition yields the following joint marginal for the HMM:

p(v0, ...,vT ,h0, ...,hT ) = p(h0)
T−1

∏
t=0

p(ht+1|ht)
T

∏
t=0

p(vt |ht) (3.4)

A graphical representation of this HMM is presented with black arrows in Figure 3.1.

3.1.2 Inference

Our model is designed to provide a probabilistic simulation tool to anaylse the neural

modulation that was found in previous experiments (Fiser et al., 2016; Saleem et al.,

2018). Given the model setup defined in the previous section, such modulation in the

position representation would be reflected in the posterior probabilities over the spatial

information, i.e. the hidden variables of the HMM. More precisely, given observations

from previous time steps we care to find the probability distribution over the current

position: p(ht |v1:t). For a HMM, this posterior can be found using the forward algorithm

also known as filtering.

As the visual information is directly observed, modulation analysis can’t be per-

formed for the current time step. Thus, we are also interested in the predictive posterior

for both spatial and visual information to get a reflection of uncertainty in the visual

domain. In addition, Fiser et al. (2016) attributed the activity modulation to predictive

neurons – a theory for which these predictive posteriors provide a intital simple measure

for modulation analysis. These predictive posteriors can be computed using the results

obtained from the filtering algorithm.

The subsequent sections explain the forward algorithm and how we use it to compute

our objective probabilities. Our model is assumed to have perfect knowledge of the

generative process. Therefore, all parameters and probability distributions as well as

the setup of the corridor (i.e. the mapping between the locations and observations) are

known during inference.
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3.1.2.1 Filtering - Inferring the current location

Filtering is performed by message passing using the alpha-recursion algorithm. For

this, the HMM is considered as a factor graph. Given observations {vs}t
s=0, this factor

graph reduces to a chain for all time steps s < t. The factors of the graph are given

by φ0(h0) = p(v0|h1) p(h0) and φs(hs−1,hs) = p(vs|hs) p(hs|hs−1). Messages that are

passed from hs to ht+1 are called α(hs) by convention.

The the alpha-recursion algorithm is then defined as follows1:

1. Init: α(h0) = φ0(h0) = p(v0|h0)p(h0)

2. Update: For 0 < s ≤ t:

α(hs) = ∑
hs−1

φs(hs−1,hs)α(hs−1) = p(vs|hs) ∑
hs−1

p(hs|hs−1)α(hs−1)

In this notation, the marginals are defined by α(st) = p(ht ,v1:s) and ∑ht α(hs) =

p(v1:s) =: Zs. Thus, the desired probability distribution over the current location

in time step t given the observations up to this time step is given by

p(ht |v1:t) =
1
Zt

α(ht) (3.5)

3.1.2.2 Predicting future location and observation

Using the result from the filtering algorithm, the probability of the future location ht+1

given the observations up to the current time step t is given by

p(ht+1|v1:t) = ∑
ht

p(ht+1|ht) p(ht |v1:t) (3.6)

Using p(vt+1|ht+1) = N (vt+1; f (ht+1),Σv), the visual predictive posterior is de-

fined as a mixture of Gaussians:

p(vt+1|v1:t) = ∑
ht+1

N (vt+1; f (ht+1),Σv) p(ht+1|v1:t) (3.7)

3.2 Hierarchical model

The basic model already provides a fundamental framework to analyse the selectivity

and modulation of spatial neurons. However, we particularly aim to simulate neural

1For detailed explanation, see Barber (2012), Section 23.2 Hidden Markov Models (pp. 473-476).



Chapter 3. Models 15

modulation found in V1 activity (Fiser et al., 2016; Saleem et al., 2018). But as the

vision states are directly observed, the HMM lacks an explicit representation of visual

processing areas such as V1 and thus does not allow for an direct modulation analysis

in the visual domain. We therefore extend our basic HMM by an additional emission

layer of observation states which are now directly observed. The vision states, on the

other hand, become latent states and can now be inferred during the filtering process.

On a highly abstracted level, this additional observation layer can be assumed to

represent the activity on the retina, whereas the visual layer represents primary cortical

areas of visual processing (such as V1) that also receive information from cortical areas

of spatial processing (such as the hippocampus). Although we omit intermediate layers

of visual processing like the thalamus, this model already provides a simple hierarchical

structure of spatio-visual processing. We thus call it a Hierarchical Hidden Markov

Model (HHMM).

3.2.1 Generative model

The hierarchical generative model is given by a Hidden Markov model (HMM) with

two emission layers. The generative process largely follows the process defined in

Section 3.1.1. In addition to the visual layer vt , we introduce an explicit observation

variable ot = g(vt)+ηo with ηo ∼ N (0,σ2
oI). For now, we assume g(vt) = Avt with

A assumed to be linear and invertible (∃A−1 : AA−1 = I). Notably, this implies that the

observations and visuals both lie in a three-dimensional space.

Thus, the generative process gets expanded by the following emission function:

• Observation emission probability distribution

p(ot |vt)∼ N
(
Avt ,σ

2
oI
)

(3.8)

This extends the joint marginal of the HMM (see Equation (3.4)) to the following joint

model for the HHMM:

p(o0, ...,oT ,v0, ...,vT ,h0, ...,hT ) = p(h0)
T−1

∏
t=0

p(ht+1|ht)
T

∏
t=0

p(vt |ht)p(ot |ht) (3.9)

In Figure 3.1, this model extension is denoted in the graphical representation of the

HHMM by gray arrows.
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3.2.2 Inference

According to the inference in the HMM, the inference process in the HHMM has two

main objectives: (1) perform filtering to obtain posterior distributions over the latent

variables, and (2) perform prediction to get predictive posterior distributions. In contrast

to the HMM, however, the hierarchical structure of the HHMM allows to infer posterior

distributions over both spatial and visual information, i.e. p(ht |o1:t) and p(vt |o1:t).

These distributions can be computed by adapting the alpha-recursion algorithm

presented above (see Section 3.1.2.1). The subsequent section presents the HHMM

version of the filtering algorithm that was derived in the context of this thesis, before

the equations for all target probability distributions are presented. Detailed derivations

for the following equations are provided in Appendix B.

3.2.2.1 Filtering in the HHMM

For calculating the posterior of the latents in time step t given all observations up to the

current time step, we first need to compute the respective marginals. These are given by

the following alpha-omega-recursion algorithm:

1. Init:

α(h1,v1) = p(h1,v1,o1)

= aN
(
A−1o1; f (h1),Σ

′
ot

)
N
(
v1;µ′v1

(h1),Σ
′
v1

)
p(h1)

(3.10)

2. Update: For 0 < s ≤ t:

α(hs,vs) = p(hs,vs,o1:s)

= aN
(
A−1os; f (hs),Σ

′
os

)
N
(
vs;µ′vs

(hs),Σ
′
vs

)
ω(hs)

(3.11)

using

ω(hs) = a ∑
hs−1

p(hs|hs−1) p(hs−1,o1:s−2)N
(
A−1os−1; f (hs−1),Σ

′
os

)
(3.12)

with variances Σ
′
os

:= σ2
oA−1(A−1)⊤+Σv and Σ

′
vs
=
((

σ2
oA−1(A−1)⊤

)−1
+
(
Σv
)−1
)−1

and mean µ′vs
(hs) := Σ

′
vs

((
σ2

oA−1(A−1)⊤
)−1A−1os +

(
σ2

vI
)−1 f (hs)

)
, as well as con-

stant a := |A−1(A−1)⊤| 1
2 (see Appendices B.3 and B.4).
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3.2.2.2 Posterior distributions in the HHMM

The results obtained through the filtering algorithm can then be used to define the

posterior distributions over the latent variables. For the current time step t, the joint

posterior over spatial and visual latent variables, as well as the respective spatial and

visual posterior distributions are defined as follows:

p(ht ,vt |o1:t) =
1
Z

N
(
A−1ot ; f (ht),Σ

′
ot

)
N
(
vt ;µ′vt

(ht ,ot),Σ
′
vt

)
ω(ht) (3.13)

p(ht |o1:t) =
1
Z

N
(
A−1ot ; f (ht),Σ

′
ot

)
ω(ht) (3.14)

p(vt |o1:t) =
1
Z ∑

ht

N
(
A−1ot ; f (ht),Σ

′
ot

)
N
(
vt ;µ′vt

(ht),Σ
′
vt

)
ω(ht) (3.15)

Accordingly, the predictive posteriors for the spatial and visual latent variables are

given by

p(ht+1|o1:t) =
1
Z ∑

ht

N
(
A−1ot ; f (ht),Σ

′
ot

)
p(ht+1|ht)ω(ht) (3.16)

p(vt+1|o1:t) =
1
Z ∑

ht ,ht+1

N
(
A−1ot ; f (ht),I

)
N
(
vt+1; f (ht+1),σ

2
vI
)

p(ht+1|ht)ω(ht)

(3.17)

Derivations of these equations as well as for the normalisation constant Z can be

found in Appendices B.6 and B.5, respectively.
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Neural Encoding

To compare the probabilities resulting from filtering and prediction to neural recordings

from the literature reported by Fiser et al. (2016) and Saleem et al. (2018), the inferred

probability distributions are encoded into firing rates. We compare firing rates obtained

using three different encoding methods: (1) mean encoding (Ujfalussy and Orbán,

2022), (2) distributed distributional codes (Vértes and Sahani, 2018; Zemel et al., 1998),

or (3) sampling-based encoding (Hoyer and Hyvärinen, 2002; Orbán et al., 2016). These

encoding frameworks differ with respect to the quantity they encode, as well as their

relation to representing uncertainty, as we discuss in subsequent sections. However,

all three methods can be used to encode the inferred posterior probability distributions

obtained in time step t into firing rates for N neurons.

The following section defines how we set up the neural populations and basis

functions used in all encoding mehtods. Thereafter, we introduce all three encoding

methods on a conceptual level and explain how these methods encode the HMM and

HHMM posterior distributions obtained during inference.

4.1 Neural basis functions

The visual and spatial information are encoded by different populations of neurons.

Our neural population setup is inspired by the place-cell strucutre in the hippocampus

and follows Ujfalussy and Orbán (2022), adapted from Rich et al. (2014). For both

populations, the receptive fields of the neurons are defined by respective basis functions

that are given by a mixture of Gaussians. These basis functions include the tuning

curves ψik of K different subfields for every neuron i.

18
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In the spatial domain, these tuning curves are given by univariate Gaussians:

ψik(x) = exp
(
− (x−µik)

⊤(x−µik)

2σ2
ik

)
(4.1)

Since observations are multidimensional, the subfield tuning curves in the visual domain

are given by multivariate Gaussians:

ψik(x) = exp
(
− 1

2
(x−µik)

⊤
Σ
−1(x−µik)

)
(4.2)

The basis function φi for neuron i sums up the activity given by the subfield tuning

curves ψik, weighted by activation weights ρik. This weighted activity is then added to

the neurons base rate ρi0. Following this definition, spatial basis functions are given by

φi(x) = ρi0 +
Ki

∑
k=1

ρikψik(x) (4.3)

Accordingly, the basis functions in the visual domain are defined as follows:

φi(x) = ρi0 +
Ki

∑
k=1

ρikψik(x) (4.4)

All parameters are defined and sampled following Ujfalussy and Orbán (2022) (see

Chapter 5).

4.2 Distributed distributional codes (DDC)

Distributional codes – or convolutional codes (Pouget et al., 2003) – are an example for

parametric neural encoding. The underlying concept was first introduced by Zemel et al.

(1998) as distributional population codes (DPC). DPCs encode the expected response

rate E[ri] for neuron i under a certain probability distribution p(x) over a variable X as

E[ri] = Ep(x)[φi(x)] (4.5)

(corresponding to Equation (4.7) in Vértes (2020)). Variability in neural responses

is then induced via a Poisson firing model that takes the expected response rate as

parameter. Notably, if the variable X is observed, the probability p(x) collapses to a

Dirac-delta function and the encoding of the observed value xo is given by the value of

the basis functions at location xo:

Eδ(x−xo)[φi(x)] = φi(xo) (4.6)
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(corresponding to Equation (4.8) in Vértes (2020)).

More recent encoding models have built on the distributional concept of DPCs. Sa-

hani and Dayan (2003), for example, expanded the framework into doubly distributional

population codes (DDPC) to encode multiple stimuli that are presented simultaneously.

Vértes and Sahani (2018) omit the Poission firing model specified by the DPC frame-

work, but keep the rate-based encoding model to define distributed distributional codes

(DDC). Using these DDC encodings Vértes and Sahani propose a expectation-based

computational framework that allows to perform inference and learning in generative

models with a hierarchical latent variable structure - similar to the HHMM presented in

Section 3.2.

Using the DDC encoding framework (Vértes and Sahani, 2018; Zemel et al., 1998),

we define the firing rates encoding a probability distribution γ(x) for a random variable

X are determined as follows:

ri(γ) =
∫

X
φi(x)γ(x)dx (4.7)

This yields the following definitions of the firing rate encoding of the inferred

current and predicted location:

ri(p(ht |x1:t)) = ∑
ht

φi(ht) p(ht |x1:t) (4.8)

ri(p(ht+1|x1:t)) = ∑
ht+1

φi(ht+1) p(ht+1|x1:t) (4.9)

with x = v for the HMM and x = o for the HHMM.

As the visual posteriors are given as mixture of Gaussians, calculating the DDC

encoded firing rate in the visual domain is not trivial, although closed-form solutions can

be derived. The DDC encoding of the current visual posterior inferred in the HHMM is

given by

ri(p(vt |o1:t)) =
∫

∞

−∞

φi(vt)p(vt |o1:t)dvt (4.10a)

B.7
=

1
Z ∑

ht

[
N
(
A−1ot ; f (ht),Σ

′
ot

)
ω(ht)(

ρi0 +
Ki

∑
k=1

ρik

√
(2π)D|Γik|N

(
µik;µ′vt

(ht),Γik +Σ
′
v

))]
(4.10b)

The predictive visual posterior for both generative models is encoded in the DDC

framework as follows:

ri(p(vt+1|x1:t)) =
∫

∞

−∞

φi(vt+1) p(vt+1|x1:t)dvt+1 (4.11a)
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= ∑
ht+1

[
p(ht+1|x1:t)

(
ρi0+

Ki

∑
k=1

ρik

√
(2π)D|Γik|N

(
µik; f (ht+1),Γik +σ

2
vI
))] (4.11b)

with x = v for the HMM and x = o for the HHMM.

The detailed derivation of equations (4.10) and (4.11) are presented in Appendices

B.7 and A.1, respectively. All DDC equations for the HHMM are listed in Appendix

B.8.

4.3 Mean encoding

In contrast to DDCs, the mean encoding framework (Ujfalussy and Orbán, 2022) only

encodes a single value instead of whole a distribution, i.e. the distribution mean:

ri(γ) = φi(xγ) (4.12)

This parametric encoding model encodes a point estimate of the posterior distributions

and disregards all measures of model uncertainty. Uncertainty in the neural representa-

tion is then only induced by the basis functions used for population encoding. It can

thus be used as a baseline model to analyse whether the observed neural modulation in

spatio-visual navigation tasks is influenced by uncertainty representation through neural

encoding.

For both models presented in Chapter 3, the encoded spatial mean is given by the

weighted average of indices according to the respective spatial posterior distribution.

As the visual posteriors are mixtures of Gaussians, the respective means are defined as

the weighted averages of the means of the normal distributions inside the sum. For the

predictive visual posterior in the HMM, the mean is given by

vt+1 = ∑
ht+1

f (ht+1) p(ht+1|v1:t). (4.13)

Accordingly, the encoded means in the HHMM are defined as follows:

vt =
1
Z ∑

ht

µ′vt
(ht)N

(
A−1ot ; f (ht),Σ

′
ot

)
ω(ht) (4.14)

vt+1 =
1
Z ∑

ht ,ht+1

f (ht+1)N
(
A−1ot ; f (ht),I

)
p(ht+1|ht)ω(ht) (4.15)
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4.4 Sampling encoding

In contrast to the previous parametric encoding frameworks, sampling-based methods

(Berkes et al., 2011; Hoyer and Hyvärinen, 2002; Orbán et al., 2016) establish a direct

connection between neural variability and model-induced uncertainty by only encoding

samples drawn from the encoded probability distributions. In the sampling framework,

the encoding of any probability distribution γ(x) is realised by sampling from the

distribution: x̂γ ∼ γ. This sample is then used to determine the firing rates of neuron i:

ri(γ) = φi(x̂γ) (4.16)

For the spatial probability distributions, ĥ is obtained by sampling from the corridor

indices with the provided posterior probability distributions. As the visual predictive

posterior is given by a mixture of Gaussians, it cannot be sampled from directly. Instead,

a normal distribution with mean f (ht+1) is chosen with probability p(ht+1|v1:t) or

p(ht+1|o1:t) for the HMM and HHMM, respectively. v̂t+1 is then sampled from this

chosen normal distribution.
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Experimental setup

The main goal of this project was to provide a computational method to simulate and

analyse the spatial modulation in the virtual cortex reported in the literature (Fiser et al.,

2016; Saleem et al., 2013). We therefore tested our models in an experimental setup

that followed the virtual environment used in these studies. Experiments simulated an

agent moving forward through an one-dimensional corridor and observing different

visual stimuli along the way. Figure 5.1a shows the schematic setup of this corridor.

It is divided into equally sized patches in which a certain stimulus is displayed. As

we discretise space in our model, these patches are divided into P positional bins with

P = 20 for all presented experiments. The length of the corridor with X separate stimuli

patches is consequently given as L = P ·X . For every positional bin, the mapping f (ht)

defined in Section 3.1.1 determines what visual stimulus is observed in this location.

Following the virtual environment structure of Fiser et al. (2016) (see Supplementary

Figure C.2a), presentations of testing stimuli A and B in the corridor are intercepted by

neutral stimuli N and landmark stimuli L1-L4. According to the model description (see

Chapter 3), stimuli are represented in a three-dimensional space and could, for example,

define colours. For the HMM, stimuli values range within [0,255]3 with the neutral

stimulus N marking the center of this space. Stimuli A and B were selected manually

such that they have equal distance to the center and therefore are equally likely to be

covered by random neural basis functions with uniformly distributed mean and variance.

Landmark stimuli were sampled uniformly and are fixed over all presented experiments

and trials. Table 5.1 gives the values for all HMM stimuli in its left column.

As the HHMM extends the basic model, the stimulus values of the HMM become

the values of the visual representations in the HHMM. This maintains the properties

in the neural encoding described for the HMM and thereby ensures comparability

23
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Figure 5.1: Observations from one traversal through the corridor are used to infer

posteriors that are encoded using different methods. (a) The corridor setup follows

the virtual environment structure of Fiser et al. (2016). Space is discretised with every

stimulus patch comprising P discrete position bins. (b) For every time step t of a single

trial traversal, spatial and visual posteriors are inferred and encoded using different

neural encoding methods. All encoding methods use the same neural populations with

possibly multimodal basis functions.

between the two models in terms of neural activity. Visual stimuli in the HHMM are

then obtained by applying the linear transformation A defined by the second emission

function to the visual representations (see Equation (3.8)). Transformation matrix A was

sampled uniformly within [0,1]3 and accepted if |A| ≠ 0 to ensure that A is invertable.

It was keep constant through all presented experiments and was sampled as follows1:

A =


0.16 0.00031 0.22

0.37 0.0020 0.19

0.99 0.79 0.12

 (5.1)

1Values are rounded to the first two significant decimal digits.
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stimulus
stimulus values

HMM HHMM

N (127.5, 127.5, 127.5) ( 48.1, 71.8, 242.1)

A (127.5, 52.5, 202.5) ( 64.3, 86.1, 192.2)

B (127.5, 202.5, 52.5) ( 79.2, 115.1, 310.2)

L1 (197.4, 111.9, 218.9) ( 31.9, 57.5, 292.1)

L2 (177.8, 24.0, 248.8) ( 82.5, 113.5, 225.3)

L3 (194.1, 200.4, 32.7) ( 38.3, 78.1, 354.0)

L4 (114.8, 94.6, 236.3) ( 69.7, 88.1, 216.9)

Table 5.1: Stimulus values in three-dimensional visual space. Stimulus values for

the HMM (left) become visual representations in the HHMM and stimulus values of the

HHMM (right) are a linear transformation of these representations given by A (Eq. (5.1)).

Values are rounded to the first significant decimal digit.

Resulting HHMM stimulus values are defined in the right column of Table 5.1.

The simulation of an agents movement through the corridor follows the generative

model presented in Section 3.1.1. The intended action represented by the parameter of

the transition distribution was fixed to λtrans = 2. In a small grid search analysis, the

parameter of the initial probability distribution λinit and the emission noise parameter

σv – also called mapping noise standard deviation subsequently – were varied over a

grid of values to test the effect of model uncertainty onto the encoded neural activity

(λinit ∈ [0.1,0.3,0.5,0.7,0.9]; σv ∈ [20,40,60]). For the HHMM, the variance of the

second emission distribution was kept constant at σo = 40. For every parameter config-

uration, we run 50 trials that differed in motion trajectory and observation noise. Trial

trajectories ended with the last sampled position within the defined corridor, i.e. hT < L.

Filtering was performed in log-space to avoid numerical underflow. Inferred posterior

probabilities were then transformed back into the probability space for neural encoding.

The generation of neural populations for neural encoding followed the parameter

choices of Ujfalussy and Orbán (2022). All three encoding methods used the same

spatial and visual neural populations that comprised 1000 neurons each. The distribution

over number of different subfields K in the basis function of a neuron i was given by

a gamma distribution with parameters α = 0.57 and β = 1/0.14 (Rich et al., 2014;

Ujfalussy and Orbán, 2022). Sampled values for K were rejected for K < 1. Means

µik of subfield gaussians were sampled uniformly within the respective domain. For
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the spatial neurons, this yields subfield centers that are uniformly distributed along the

corridor, whereas visual subfield means are uniformly distributed in [0,255]3. Subfield

variances were sampled uniformly within a fraction of the respective space considered

in the experiments. In particular, spatial subfields spanning a corridor of length L had

variances σik uniformly distributed in range [0.05 ·L,0.15 ·L]. As visual information is

presented in a higher dimensional space, visual variances σik were uniformly distributed

within a larger fraction of the space and were sampled from [0.05 ·255,0.45 ·255]. The

maximal firing rate ρik of a subfield is given by the gaussians’ amplitude which was

sampled uniformly between 5 Hz and 15 Hz. For every neuron i, subfield activities are

added to a baseline firing rates ρi that were sampled uniformly between 0.1 Hz and

0.25 Hz.

It should be noted that we don’t limit the range of subfield basis functions. As a

result they cover values that are not represented in the current simulation setup. Figure

5.1b indeed shows that spatial basis functions extend beyond the edges of the corridor

which may result in inaccurate representations at the end of the traversal.

All code used for the generative model, the filtering and encoding process, as well

as the analysis was implemented over the course of this thesis.
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Discussion

Our HHM based model was designed to infer the unobserved spatial positions during

a traversal through a corridor by observing the repeating visual stimuli. We did not

account explicitly for any properties that could induce stimulus selectivity or position

modulation. Furthermore, we ensured numerical balance between stimuli through the

choice of the stimulus values and uniform sampling of all neural encoding parameters.

In this chapter, we provide a brief analysis of our model’s performance showing that

it can indeed simulate neural selectivity and modulation. An initial parameter grid

search also indicates that selectivity and modulation in visual responses foster with

decreasing uncertainty in the model. Our results are in line with experimental findings

in the literature and, thus, validate our approach as a potential candidate for future

computational modelling studies of neural modulation in spatio-visual navigation tasks.

6.1 Analysis of selectivity and modulation

Figure 5.1b shows the components of the neural encoding for an example trial in the

HHMM (σv = 20, λinit = 0.7). The inferred posterior over current position is shown

for different time steps throughout the traversal (t = [10,40,70,100,130,160]). As the

agent moves down the corridor, the model is able to keep track of the position indicated

by the mode of the posterior that shifts accordingly. However, the uncertainty about

the most probable position increases constantly over time. The agents starts off with

a fairly certain initial probability distribution as λinit < 1 only yields a small variance

over the initial position. By the end of the corridor, however, a larger proportion of the

probability mass is distributed over multiple visual stimuli considering the patch size

P = 20.

27
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Changing the mapping noise standard deviation (σv = 60) yields the same phe-

nomenon as Figure 5.1b shows. Small shifts in the posteriors of later time steps can

be explained by innovation noise. On the other hand, reducing the initial position un-

certainty to λinit = 0.1 increases the amplitude and decreases the width of the posterior

distributions along the track. This indicates that the increase of posterior uncertainty

is due to uncertainty accumulation by innovation noise and is influenced by initial

uncertainty conditions. These observations are in line with the theory of path integration

in mamals (McNaughton et al., 2006).

The change in uncertainty is reflected in the neural encoding of this spatial posterior.

Figure 5.1b (left) shows the corresponding rates for all three encoding methods – DDC,

sampling, and mean encoding – using the same set of neural basis functions from

four selected neurons. Rates are represented as a function of time step t in the trial.

We defined the mean encoding as baseline encoding framework that does not encode

uncertainty. The presented example indeed shows that the change in uncertainty is

not reflected in the mean encoding. Instead, the mean rates mimic the neural basis

functions, as the mode of the posterior moves close to linearly along the corridor.

The rates obtained by the DDC and sampling encoding, however, also encode the

posterior variance and, consequently, reflect its change over time. The change in

uncertainty representation can be observed, for example, by comparing the first two

subfield activities of the orange neuron (T < 30) with the last two subfield activities

of the red neuron (t > 170). Both subfields have similar modes and amplitudes in

their basis functions. For the orange neuron, these are well reflected in the DDC

encoding. For the red neuron, on the other hand, increased uncertainty at the end of the

traversal blurs neural activity and the two subfield activities cannot be distinguished

anymore. The sampling encoding reflects similar effects although they can not be

observed as clearly due to the strong variability in response rates within one trial.

These observations validate our employed neural encoding representations of the spatial

posterior information.

To compare the overall simulated spatial response to results from Fiser et al. (2016),

we plotted activities of spatial neurons that showed the most selectivity for either

stimulus A or B (σv = 20, λinit = 0.5) and sorted them by peak position according to

Figure 1g in Fiser et al. (see Supplementary Figure C.2b). Stimulus selectivity was

determined using the selectivity index (SI) defined by Fiser et al. (2016) (see Equation

(2.2)). Mean response rates for stimulus A and B where averaged over trials. Notably,

this definitions yields a negative SI-value for B-selective neurons, and positive SI-value
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Figure 6.1: Activities of 200 most stimulus selective spatial neurons sorted by

peak position. Similar to (Fiser et al., 2016) (see Supplementary Figure C.2b), spatial

neurons respond differently for different stimulus positions in the corridor. This can be

explained by the subfield based basis function in neural encoding that coincide with the

stimulus position for these neurons. Uncertainty about the spatial position accumulates

across motion trajectories and is reflected in blurred activities towards the end of the

corridor.

for A-selective neurons. Figure 6.1 shows the neural activities for the 200 most A-

selective and B-selective neurons, i.e. the 200 neurons with the highest/lowest SI-values.

Activities were averaged over all 50 trials, binned in position intervals of size 4, and

sorted by peak position.

The resulting plots allow for two main observations. First, the change of posterior

uncertainty described above for a single example trial is consistent over trials and is

reflected more in the encoding frameworks that account for uncertainty. Furthermore,

the blurring of neural activity is increased in the HHMM over all encoding methods

reflecting the additional observation uncertainty in the position estimation induced by

the second emission probability distribution. Second, according to Fiser et al., the

neurons exhibiting stimulus selectivity also change in response activity depending on
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Figure 6.2: Selectivity grid search results. For all three encoding frameworks –

(a) DDC, (b) sampling-based, and (c) mean encoding – the influence of changes in

uncertainty parameters onto the visual population selectivity are evaluated by the mean

absolute selectivity index SI. Stimulus selectivity in visual neurons seems to foster with

decreasing uncertainty about the expected stimulus in the inferred position.

stimulus position and don’t have a distinct onset response. This characteristic was

mirrored by a reduction in the accuracy of their position classification analysis on

spatial neurons. Our models successfully emulate these findings (see Figure 6.1). Since

we haven’t incorporated any specific model design to accommodate this selectivity,

it emerges from a neural population with randomly sampled neural parameters. The

subfield basis functions span an area that fortuitously coincides with the stimulus

position. As a result, we anticipate a more pronounced onset responses for narrower

subfield widths, and vice versa. In general, the ability of our model to replicate these

plots serves as an indicator of its validity as a simulation tool for modelling spatial

information spatio-visual navigation tasks.

To asses the extend to which our model can replicate selectivity in the visual neurons,
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we conduct a gird search over the mapping uncertainty and initial position uncertainty.

These two parameters are potential influences for the spatial top-down spatial infor-

mation received by visual representations. As presented earlier, the initial position

distribution modulates the posterior during corridor traversal and might therefore mani-

fest in the posterior over visual representations, as it is defined using the corresponding

spatial posterior (see Chapter 3). The information exchange between spatial and vi-

sual neurons is governed by a mapping that represents the corridor setup assuming

full environmental knowledge. In an ideal scenario without any noise parameters, the

model would have perfect information about what visual stimulus to expect in a certain

positions. Consequently, increasing mapping noise results in the blurring of spatial

stimulus information. We evaluate the influence of these parameters by calculating the

mean of the absolute selectivity index |SI| for all 1000 visual neurons over the grid.

Grid search results for selectivity are presented in Figure 6.2, sorted by method and

inferred parameter.

The clearest effect of parameter changes can be observed for the DDC encoding

framework. While the change in the initial position uncertainty does not effect the

selectivity of visual neurons, mean absolute SI increases exponentially with a linear

decrease in mapping uncertainty. Further, selectivity is also increased for the visual

information in the current time step compared to predictive posteriors that incorporate

additional top-down uncertainty induced by the innovation noise distribution. This

implies that visual neurons would have maximum selectivity for a optimal emission

mapping with no uncertainty about the visual information in a location. The mean

encoding supports this theory of the relation between uncertainty representations and

selectivity as it shows no exponential relation between mapping uncertainty and visual

selectivity. As it only encodes a point estimate of the visual posterior given by its mean,

changes in variance are only slightly reflected in the amplitude of the neural responses

since the mode amplitude changes with increasing posterior variance.

Selectivity results of the sampling encoding hints towards the same conclusion. For

low emission mapping uncertainty, the selectivity of neurons is consistently high and

similar in magnitude compared to the mean results. However, as the model uncertainty

increases and visual posterior distributions get wider, the encoded point estimate is

more likely to be sampled further away from the distribution mean. As a result, SI

values significantly vary in magnitude for higher mapping noise standard deviation.

Notably, the small inconsistencies in the mean encoding selectivity as well as these

drastically increased variability of the grid search results for the sampling encoding
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are explained by an analysis of the sample size (see Supplementary Figure C.3). To

better approximate the effects of changes in uncertainty related parameters in these

encoding methods, future analysis should increase the number of trials per experiment

significantly.

In general, selectivity values are quite small indicating that most visual neurons

actually don’t exhibit stimulus selectivity. This can be explained by the uniform

sampling of subfield means that more likely to cover the center of the defined visual

space compared to the stimulus positions that are closer to the edge of this space. In

future experiments, the mean sampling for visual basis functions could be changed to

test account for more equally distributed coverage of all possible stimuli in the visual

space.

Having established the existence of an effect in change of uncertainty on the selec-

tivity of visual responses, we next analyse whether our model is also able to exhibit

spatial modulation in stimulus related activity and how they reflect changes in model

representations of uncertainty. As we don’t classify neurons based on their stimulus

selectivity, we cannot use the modulation ratio MR employed by Saleem et al. (2018).

Instead, we introduce another quantification metric for spatial modulation that adapts

the selectivity index SI used by Fiser et al. (2016), i.e. the modulation index (MI):

MI =
rP1 − rP2

rP1 + rP2
(6.1)

We denote r as the average response of a neuron in the first (P1) and second (P2)

position of a stimulus in the corridor. Negative MI-values indicate a preference of the

first position, and vice versa.

Figure 6.3 shows the cumulative distribution functions (CDF) of the distribution of

MI over all visual neurons for stimulus A (red) and stimulus B (green) over the grid of

tested paramters. Steeper CDFs indicate that less neurons exhibit spatial modulation of

visual responses, with a step function shape indicating close to no visual modulation.

However, as some curves mimic a sigmoidal function, these results show that our model

is able to simulate spatial modulation in visual neurons. Similar to the selectivity

analysis, initial position uncertainty did not yield any observable difference in neural

modulation. For the DDC encoding, a linear decrease in mapping noise standard devia-

tion also resulted in a exponential increase in MI magnitude, similar to the selectivity

index and spatial modulation was, again, largest in the mean encoding method, for

which it did not change for different emission uncertainty parameters. Additionally, the

shape of the sampling CDFs only approximate a sigmoid for the smallest tested mapping
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Figure 6.3: Modulation grid search results. For all three encoding frameworks,

changes in uncertainty parameters onto the modulation of visual responses between the

first and second position of stimulus representation are evaluated using the cumulative

density function (CDF) of the modulation index MI. Activity of visual neurons becomes

more distinct between presentation locations if the model uncertainty decreases. The

difference between stimulus A (red) and stimulus B (green) reflects the evolution of the

spatial posterior during traversals.
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noise standard derivation, consistently representing that encoded samples are closer

to the mean of the posterior distribution for smaller emission noise variance. These

observations complement the conclusions drawn from the selectivity analysis: Spatial

modulation fosters as uncertainty about the expected visual information decreases.

Notably, in the DDC framework, the MI CDFs for stimulus B are consistently

steeper than for stimulus A, indicating more spatial modulation in the latter. This most

likely reflects the uncertainty evolution of the spatial posterior that was described above,

which is most prominent in the DDC encoding. At the beginning of the corridor, the

agent is still quite certain about its position and variance in spatial posterior distributions

is low, but then increases as the agent moves along the corridor and has to integrate

innovation noise over the movement trajectory to estimate its actual position. As

the position estimation of the spatial posterior distribution is reflected in the visual

posterior, the response difference between the the first and second stimulus presentation

is larger for stimulus A that is presented before stimulus B. However, to test this theory,

experiments should be repeated using a different stimulus order.

In summary, we showed that our model can exhibit both selectivity and modulation

in visual responses. Our results are in line with reported findings in experimental studies

as spatial modulation in visual neurons reflects subjective position estimation along the

corridor traversal (Saleem et al., 2018) and fosters with decreasing uncertainty about the

environmental structure that can be considered to simulate learning through experience

(Fiser et al., 2016).

6.2 Conclusion and future research directions

The previous section showed that our proposed HHM-based modeling approach of

spatio-visual navigation tasks can simulate stimulus selectivity and spatial modulation

in visual neurons. However, we only provide an initial analysis of how these effects

are influenced by different parameter settings, focussing on uncertainty-related model

parameters. Further analysis is required to establish a better understanding of these

influences. Besides extending the parameter space of the grid search for the initial

position uncertainty and mapping noise standard derivation, these analyses should also

test the influence of the observation noise in the second emission probability distribution

for the HHMM on the selectivity and modulation of the visual neurons. The metrics for

analysing these quantities should also be extended by a position classification analysis

that was performed by both, Fiser et al. (2016) and Saleem et al. (2018), to quantify
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the spatial information entailed in the visual responses. For all analysis purposes, the

number of trials per experiment should be increased to obtain a better approximation of

true SI and MI values, especially for the sampling encoding framework.

To further examine the spatial information entailed in the visual representations of

our model, the HHMM should be compared to a non-spatial baseline model. Such a

baseline could be provided by a purely visual model of receptive field activity in the

visual cortex that was employed by Saleem et al. (2018) as a null-hypothesis model for

spatial modulation analysis. To allow for better comparison between this model and our

spatially informed approach, visual representations of the HHMM also could be changed

to follow the receptive field structure of V1. Although such a more biological plausible

representation of V1 representations would be desirable, the mapping from spatial to

visual observations as well as the process of inverting the observation generation in

such a modified generative model may not be trivial.

In terms of biological plausibility, the simplified representation of visual information

in V1 is not the only flaw our model has. Up to now, it also does not represent memory

within and between trials. Such a memory representation would optimally include a

representation of time that passes within a motion trajectory. For example, loosing

memory about previous observations could be modeled using a decay parameter and/or

a memory cache that can extend beyond trials. Observations stored in the memory

could then be used to model learning through experience, providing a more detailed

approach to simulate findings and fit data in experiments similar to Fiser et al. (2016).

If we interpret learning as gaining better knowledge about the environment and, thus,

reducing uncertainty, the optimal fit for experience-dependent modulation reported by

(Fiser et al., 2016) should show a decrease of the fitted mapping uncertainty over time.

Changing the uncertainty parameters of the model is the only way our approach

allows to simulate learning so far. In theory, future research could implement learning

the generative model of the HHMM by fitting a recognition model using variational

learning algorithms. Given the non-linearity introduced by the mapping of spatial

onto visual information, approximation of the latent posterior distributions may not

be trivial, though. As an alternative approach, learning could be models by extending

the hierarchical probabilistic structure of the HHMM. Instead of fitting parameters

of uncertainty representation, one could fit distributions over these parameters as a

function of time. Inference in such a model may build on the equations provided in this

thesis and would not require the learning in the probabilistic sense. The model would

still have full knowledge of the optimal parameters, but becomes increasingly certain
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(one might say ”aware”) of that knowledge.

Finally, we want to point out another possible research direction related to how

learning may be realised in our HHMM. By model design via the definition of con-

ditional dependency structures, the visual posteriors of both our models have spatial

information provided by the emission mapping. In the hierarchical model, additional

bottom-up information about the stimulus is provided by the observation. Referring

to definition of the posterior over the current visual representation in the HHMM in

Equation (3.15), the term N
(
A−1ot ; f (ht),Σ

′
ot

)
could be interpreted as bottom-up sig-

nals that invert the linear transformation in the generative model. Accordingly, the term

N
(
vt ;µ′vt

(ht),Σ
′
vt

)
ω(ht) could be interpreted as the spatially informed top-down signal

that holds expectations about visual representations in this time step. Summing over

the product of these two signals for all positions ht , mimics a convolution of the two

Gaussians and, thus, corresponds to calculating a mismatch signal between spatially

informed expectations and stimulus informed observations. Interpreting this mismatch

signal as a form of prediction error, we believe that our model could actually be used to

implement learning and inference in the context of predictive coding by minimising the

prediction errors in the visual representations of the hierarchical structure.

In fact, the HHMM might actually already implement a weak version of predictive

inference, although it only defines conditional independences and performs inference

by adapting the commonly used filtering algorithm for HMMs. According to the testing

conditions in Fiser et al. (2016), future experiments should examine this by varying

the observations in the final stimulus position which is fixed to stimulus A in our

experiment, without changing the corresponding mapping for the inference process, and

evaluate whether the resulting posterior over the visual representations can already be

interpreted as prediction errors. However, probabilistic inference through predictions

does not necessarily imply the implementation of predictive coding (Aitchison and

Lengyel, 2017). Therefore, examining whether our inference equations could represent

a exact correspondence of the predictive coding framework also remains subject to

future research. However, if this correspondence can be established, our hierarchical

HHM-based model provides a computational framework to test predictive coding as a

potential explanation of observed spatial modulation in visual activity, as proposed by

Fiser et al. (2016).
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Appendix A

Detailed derivations - basic model

A.1 Derivation of future observation DDC equation

ri(vt+1) =
∫

∞

−∞

φi(vt+1) p(vt+1|v1:t)dvt+1 (A.1a)

=
∫

∞

−∞

φi(vt+1)
(

∑
ht ,ht+1

p(vt+1|ht+1) p(ht+1|ht) p(ht |v1:t)
)

dvt+1 (A.1b)

=
∫

∞

−∞

(
∑

ht ,ht+1

φi(vt+1) p(vt+1|ht+1) p(ht+1|ht) p(ht |v1:t)
)

dvt+1 (A.1c)

1
= ∑

ht ,ht+1

[∫
∞

−∞

φi(vt+1) p(vt+1|ht+1) p(ht+1|ht) p(ht |v1:t)dvt+1

]
(A.1d)

2
= ∑

ht ,ht+1

[∫
∞

−∞

(
ρi0 +

Ki

∑
k=1

ρik ψik(vt+1)

)

p(vt+1|ht+1) p(ht+1|ht) p(ht |v1:t)dvt+1

] (A.1e)

= ∑
ht ,ht+1

[
p(ht+1|ht) p(ht |v1:t)

∫
∞

−∞

(
ρi0 +

Ki

∑
k=1

ρik ψik(vt+1)

)

p(vt+1|ht+1)dvt+1

] (A.1f)

= ∑
ht ,ht+1

[
p(ht+1|ht) p(ht |v1:t)

(∫
∞

−∞

ρi0 p(vt+1|ht+1)dvt+1

+
∫

∞

−∞

Ki

∑
k=1

ρikψik(vt+1) p(vt+1|ht+1)dvt+1

)] (A.1g)
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3
= ∑

ht ,ht+1

[
p(ht+1|ht) p(ht |v1:t)(

ρi0 +
∫

∞

−∞

Ki

∑
k=1

ρikψik(vt+1) p(vt+1|ht+1)dvt+1

)] (A.1h)

1
= ∑

ht ,ht+1

[
p(ht+1|ht) p(ht |v1:t)(

ρi0 +
Ki

∑
k=1

∫
∞

−∞

ρikψik(vt+1)p(vt+1|ht+1)dvt+1

)] (A.1i)

4
= ∑

ht ,ht+1

[
p(ht+1|ht) p(ht |v1:t)

(
ρi0 +

Ki

∑
k=1

ρik
√
|Γik|√

|Γik +Σv|

exp
(
− 1

2
(
µik − f (ht+1)

)⊤(
Γik +Σv

)−1(µik − f (ht+1)
)))]

(A.1j)

= ∑
ht+1

[
p(ht+1|v1:t)(

ρi0 +
Ki

∑
k=1

ρik

√
(2π)D|Γik|N

(
µik; f (ht+1),Γik +Σv

))] (A.1k)

1. (TONELLI’S THEOREM) IF ∀n,x : fn(x)≥ 0 ⇔ ∫
∑n fn(x)dx = ∑n

∫
fn(x)dx

2. Definition Tuning Curves, see Equation 4.4

3. ∀ PROBABILITY DISTRIBUTIONS p(x) :
∫

R p(x)dx = 1

4. Derivation of subfield integral:∫
∞

−∞

ρikψik(vt+1)p(vt+1|ht+1)dvt+1 (A.2a)

4a
= ρik

∫
∞

−∞

√
(2π)D|Γik|

ψik(vt+1)√
(2π)D|Γik|

p(vt+1|ht+1)dvt+1 (A.2b)

4b
= ρik

√
(2π)D|Γik|

∫
∞

−∞

N
(

vt+1;µik,Γik

)
N
(

vt+1; f (ht+1),Σv

)
dvt+1 (A.2c)

4c
= ρik

√
(2π)D|Γik|

∫
∞

−∞

N
(

vt+1;µ′,Σ′
)

N
(

µik; f (ht+1),Γik +Σv

)
dvt+1

(A.2d)

= ρik

√
(2π)D|Γik|N

(
µik; f (ht+1),Γik +Σv

)∫ ∞

−∞

N
(

vt+1;µ′,Σ′
)

dvt+1

(A.2e)

3
= ρik

√
(2π)D|Γik|N

(
µik; f (ht+1),Γik +Σv

)
(A.2f)
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(4.2)
=

ρik
√
(2π)D|Γik|√

(2π)D|Γik +Σv|

exp
(
− 1

2
(
µik − f (ht+1)

)⊤(
Γik +Σv

)−1(µik − f (ht+1)
)) (A.2g)

=
ρik
√
|Γik|√

|Γik +Σv|
exp
(
− 1

2
(
µik − f (ht+1)

)⊤(
Γik +Σv

)−1(µik − f (ht+1)
))

(A.2h)

(a) ψik(vt+1) is Gaussian with mean µik and cov. mat. Γik ⇒ adding normalisa-

tion constant yields a probability distribution (normal distribution)

(b) Define normal distributions:

ψik(vt+1)√
(2π)D|Γik|

=: N
(

vt+1;µik,Γik

)
(A.3)

p(vt+1|ht+1) =: N
(

vt+1; f (ht+1),Σv

)
(A.4)

(c) GAUSSIANS ARE CLOSED UNDER MULTIPLICATION

N
(
x;a,A

)
N
(
x;b,B

)
= N

(
x;c,C

)
Z

WITH C =
(
A−1+B−1)−1

, c =C(A−1a+B−1b) AND Z = N
(
a;b,A+B

)
Note:

√
|Γik|= ∏

D
j
√

γ j j and
√
|Γik +Σv|= ∏

D
j
√

γ j j +σ j j.

Special case: Γik and Σik are diagonal (no correlations between stimulus dimen-

sions)

∀γ j j : γ = γ j j ⇒
D

∏
j

√
γ j j =

(√
γ
)D

∀γ j j : γ = γ j j,∀σ j j : σ = σ j j ⇒
D

∏
j

√
γ j j +σ j j =

(√
γ+σ

)D



Appendix B

Detailed derivations - hierarchical

model

B.1 Change Gaussian over ot to Gaussian over vt

To derive the recursive forwarding algorithm, we need to express the second emission

distribution as a function the visuals, i.e. a distribution over vt .

N (ot ;Avt ,σ
2
oI)

1
= N (Avt ;ot ,σ

2
oI) (B.1a)

=
1

(2π)
D
2 |Σo|

1
2

exp
[
− 1

2
(Avt −ot)

⊤
Σ
−1
o (Avt −ot)

]
(B.1b)

=
1

(2π)
D
2 |Σo|

1
2

exp
[
− 1

2
(Avt −AA−1ot)

⊤
Σ
−1
o (Avt −AA−1ot)

]
(B.1c)

=
1

(2π)
D
2 |Σo|

1
2

exp
[
− 1

2
(
A(vt −A−1ot)

)⊤
Σ
−1
o
(
A(vt −A−1ot)

)]
(B.1d)

=
1

(2π)
D
2 |Σo|

1
2

exp
[
− 1

2
(vt −A−1ot)

⊤A⊤
Σ
−1
o A(vt −A−1ot)

]
(B.1e)

2
=

1

(2π)
D
2 |Σo|

1
2

exp
[
− 1

2
(vt −A−1ot)

⊤(A−1
Σ(A−1)⊤)−1(vt −A−1ot)

] (B.1f)
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=
1

(2π)
D
2 |Σo|

1
2
· (2π)

D′
2 |A−1Σ(A−1)⊤| 1

2

(2π)
D′
2 |A−1Σ(A−1)⊤| 1

2

exp
[
− 1

2
(vt −A−1ot)

⊤(A−1
Σ(A−1)⊤)−1(vt −A−1ot)

] (B.1g)

=
(2π)

D′
2 |A−1Σ(A−1)⊤| 1

2

(2π)
D
2 |Σo|

1
2

· 1

(2π)
D′
2 |A−1Σ(A−1)⊤| 1

2

exp
[
− 1

2
(vt −A−1ot)

⊤(A−1
Σ(A−1)⊤)−1(vt −A−1ot)

] (B.1h)

=
(2π)

D′
2 |A−1Σ(A−1)⊤| 1

2

(2π)
D
2 |Σo|

1
2

N
(
vt ;A−1ot ,A−1

Σ(A−1)⊤
)

(B.1i)

3
= a · N

(
vt ;A−1ot ,σo A−1(A−1)⊤

)
(B.1j)

1. GAUSSIANS ARE SYMMETRICAL IN x AND µ:

N
(
x;µ,Σ

)
= N

(
µ;x,Σ

)
2. INVERSE OF MATRIX PRODUCT:

(AB)−1 = B−1A−1

⇒ (AΣ
−1)A = (A−1(A⊤

Σ
−1)−1) = (A−1

Σ(A−1)⊤)−1

3. Given that A needs to be squared for A−1 to exist, it must hold that D = D′.

Thus,

(2π)
D′
2 |A−1Σ(A−1)⊤| 1

2

(2π)
D
2 |Σo|

1
2

=
|A−1Σ(A−1)⊤| 1

2

|Σo|
1
2

=
|A−1(σ2

oI)(A−1)⊤| 1
2

|Σo|
1
2

=
|σ2

oA−1(A−1)⊤| 1
2

|σ2
oI|

1
2

=
σ2D

o |A−1(A−1)⊤| 1
2

σ2D
o |I| 1

2

= |A−1(A−1)⊤| 1
2

=: a

B.2 Joint marginal for HHMM

Using the independencies that are defined through the HHMM definitions, the joint

marginal for HHMM, p(ht ,vt ,o1:t), can be derived as follows:

p(ht ,vt ,o1:t) = ∑
ht−1

p(ht ,ht−1,vt ,o1:t) (B.2a)
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= ∑
ht−1

p(ot |ht ,ht−1,vt ,o1:t−1)p(ht ,ht−1,vt ,o1:t−1) (B.2b)

= ∑
ht−1

p(ot |vt)p(vt |ht ,ht−1,o1:t−1)p(ht ,ht−1,o1:t−1) (B.2c)

= ∑
ht−1

p(ot |vt)p(vt |ht)p(ht |ht−1,o1:t−1)p(ht−1,o1:t−1) (B.2d)

= p(ot |vt)p(vt |ht) ∑
ht−1

p(ht |ht−1,o1:t−1)
∫

∞

−∞

p(ht−1,vt−1,o1:t−1)dvt−1

(B.2e)

B.3 Proof initial marginal

Using results from previous sections, the initialisation for the filtering algorithm in the

HHMM can be derived as follows:

α(h1,v1) = p(h1,v1,o1) (B.3a)

= p(o1|v1)p(v1|h1)p(h1) (B.3b)

= N
(
o1;Av1,σ

2
oI
)

N
(
v1; f (h1),σ

2
vI
)

p(h1) (B.3c)
B.1
= a · N

(
v1;A−1o1,σo A−1(A−1)⊤

)
N
(
v1; f (h1),σ

2
vI
)

p(h1) (B.3d)
1
= a · p(h1)N

(
v1;µ′v1

(h1,o1),Σ
′
v1

)
N
(
A−1o1; f (h1),Σ

′
o1

)
(B.3e)

with

Σ
′
o1

:= σ
2
oA−1(A−1)⊤+σ

2
vI (B.4)

and

Σ
′
v1

:=
((

σ
2
oA−1(A−1)⊤

)−1
+
(
σ

2
vI
)−1
)−1

(B.5)

µ′v1
(h1) := Σ

′
v1

((
σ

2
oA−1(A−1)⊤

)−1A−1o1 +
(
σ

2
vI
)−1 f (h1)

)
(B.6)

1. GAUSSIANS ARE CLOSED UNDER MULTIPLICATION

N
(
x;a,A

)
N
(
x;b,B

)
= N

(
x;c,C

)
Z

WITH C =
(
A−1 +B−1)−1

, c =C(A−1a+B−1b) AND Z = N
(
a;b,A+B

)

B.4 Proof recursive marginal

Starting from the joint definition derived in B.2, the recursive marginal definition is

derived as follows:
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α(ht ,vt) = p(ht ,vt ,o1:t) (B.7a)

= p(ot |vt) p(vt |ht) ∑
ht−1

p(ht |ht−1)
∫

∞

−∞

p(ht−1,vt−1,o1:t−1)dvt−1 (B.7b)

B.3
= N

(
ot ;Avt ,σ

2
oI
)

N
(
vt ; f (ht),σ

2
vI
)

∑
ht−1

p(ht |ht−1)∫
∞

−∞

a · p(ht−1)N
(
vt−1;µ′vt−1

(ht−1,ot−1),Σ
′
vt−1

)
N
(
A−1ot−1; f (ht−1),σ

2
oA−1(A−1)⊤+σ

2
vI
)

dvt−1

(B.7c)

= N
(
ot ;Avt ,σ

2
oI
)

N
(
vt ; f (ht),σ

2
vI
)

∑
ht−1

p(ht |ht−1)
(

a p(ht−1,o1:t−2)

N
(
A−1ot−1; f (ht−1),σ

2
oA−1(A−1)⊤+σ

2
vI
)∫

∞

−∞

N
(
vt−1;µ′vt−1

(ht−1,ot−1),Σ
′
vt−1

)
dvt−1

) (B.7d)

1
= N

(
ot ;Avt ,σ

2
oI
)

N
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with

Σ
′
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′
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1. ∀ PROBABILITY DISTRIBUTIONS p(x) :
∫

R p(x)dx = 1

2. Recursive definition:
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B.5 Derivation of normalisation constant Z
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B.6 Derivation of posterior distributions from filtering

results

Using
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the following posterior distributions are derived:
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4. Spatial predictive posterior:
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5. Visual predictive posterior:
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B.7 Derivation of DDC encoding for p(vt|o1:t)

The following derivation follows the argumentation used in Section A.1. For detailed

explanations of the steps, please refer to that section.
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1. Using the results derived in Section A.1, the following holds:∫
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B.8 DDC equations for HHMM

The following equations give the DDC encoding for the HHMM:
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1. Spatial posterior:
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2. Spatial predictive posterior:
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3. Visual posterior:
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4. Visual predictive posterior:
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Appendix C

Supplementary figures

This appendix presents figures that are not directly related to the findings of the thesis

but important for the presented arguments.

(a) (b)

Figure C.1: Figures 1e, 1f, 1g, and 1h taken from Saleem et al. (2018). (a) V1-neurons

sorted by peak position. (b) Spatial modulation ratio averaged over all trials and neurons

(top) and only low and high speed trials compared to a purely visual receptive-field-based

model (bottom).

55
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(a)

(b)

Figure C.2: Figures 1b and 1g taken from Fiser et al. (2016) (a) Corridor setup. (b)

A-selective neurons (left) and B-selective neurons (right) in the hippocampus (CA1)

sorted by peak position.
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Figure C.3: Testing the number of trials for estimating the SI. 50 trials are sufficient for

the DDC encoding and close to sufficient for the mean encoding as the SI values are

aligned well to the diagonal. However, the SI values for the sampling conditions are not

reliable for 50 trials.
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