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Abstract
The expansion of large language models (LLMs) based on the Transformer architec-
ture has yielded substantial advancements in various natural language processing
tasks. Nevertheless, this escalation in scale has led to a corresponding rise in compu-
tational intricacy. Sparse models, drawing inspiration from the Mixture of Experts
(MoE) approach, offer a promising avenue for sustaining the growth of language
models while mitigating their computational demands. Enhancing their speed dur-
ing inference and enabling their deployment on GPU-constrained devices would
significantly lower the obstacles to adopting sparse LLMs. Conversely, emerging
computing platforms such as Edge GPUs, exemplified by NVIDIA Orin, play a piv-
otal role in executing critical machine-learning operations for robotics, self-driving
vehicles, and unmanned aerial vehicles. However, these Edge GPUs lack the capac-
ity to accommodate continuously expanding ML models, including large GPT and
MoE-based architectures. This research delves into the unified memory architecture
of Edge GPUs, crafting a system known as Archer-Edge that aligns with this archi-
tecture. The investigation demonstrates that Archer-Edge demonstrates a notable
2.2x speed-up in inference latency when compared to the in-house library Archer.
Moreover, Archer achieves a significant 14x speed-up in inference latency when
compared to the Accelerate library.
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Chapter 1

Introduction

Large language models (LLMs) are essential for various reasons, including their
advanced natural language processing (NLP) capabilities, improved generative capa-
bilities, increased efficiency, and versatility in a wide range of applications [31], [21].
They have been successful in tasks such as language translation, content generation,
and chatbot development [21]. LLMs can process vast amounts of text data and learn
from it, enabling them to capture the nuances of human language and generate text
that is indistinguishable from what a human might write. They are used in various
fields, including healthcare, software development, and many other use cases [3],
[10].

LLMs have significantly increased memory requirements and computation costs
due to their massive size and the complexity of their architectures. The memory
requirements stem from the need to store a large number of parameters, which can
range from hundreds of millions to trillions, depending on the model size [2], [26].
An encouraging approach to sustain the expansion of LLMs while curbing their
computational intricacies is through sparsity. Shazeer et al. [28] introduced the
Sparsely-Gated Mixture-of-Experts layer (MoE) to augment model capacity and
enhance training efficiency. Examples of sizable MoE models encompass Meta’s
NLLB [30], Google’s Switch-Transformer [14], and OpenAI’s GPT-4 [24]. The
volume of the MoE model is notably impacted by the count of experts it encompasses.

Storing large models in GPUs is certainly a major challenge. Currently, researchers
are using techniques like pruning, quantization, knowledge distillation, and Neu-
ral architecture search(NAS) for compressing deep learning models to fit in the
GPU memory [19], [25]. Challenges exist with model compression methods, as
compressed models tend to overfit on easy samples while struggling to generalize
the complex ones [9]. Additionally, heavily compressed models can exhibit poorer
performance compared to lightly compressed models [23].
The widespread adoption of smart devices and Internet of Things (IoT) sensors, has
caused a substantial increase in data generation at the edge of the Internet. The
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Chapter 1. Introduction 2

effective real-time analysis of this substantial data volume, especially by utilizing
precise deep learning models, often necessitates processing the data in proximity
to the data sources (at the edge of the Internet) to decrease network and processing
delays [20], [17], [18]. Edge devices generally possess limited computational and
memory capabilities in comparison to cloud servers. This disparity in resources
poses challenges when attempting to deploy extensive models on edge devices with-
out appropriate optimization [29]. Techniques such as model compression, aimed at
accommodating models on Edge GPUs, can impact both inference efficiency and
the quality of results (QOR).

Efforts have been made to tackle the challenges of large model inference. Am-
inabadi et al. [1] introduced the concept of ”DeepSpeed Inference,” which presents
a heterogeneous inference methodology that extends beyond the constraints of GPU
memory. It makes use of CPU and NVMe memory in addition to GPU memory
resources. This combined utilization facilitates high inference throughput, particu-
larly for larger models that exceed the capacity of aggregate GPU memory. There
are other solutions as well trying to achieve similar objectives like Accelerate by
Hugging Face [13].

Presently, no solution is available to facilitate inference with large models that
leverage the unified memory architecture of Edge GPUs.In this study, our objec-
tive is to effectively deploy an MoE model (nllb-moe-54b) with a checkpoint size of
206 GB onto an Edge GPU equipped with a GPU memory capacity of 32 GB.

1.1 Research contribution

• Successfully deployed a large MoE model (nllb-moe-54b) having a checkpoint
size of 206 GB on an Edge GPU (Nivdia’s Orin) platform with an available
GPU memory of 32 GB.

• Achieved a speed-up of 2.2x in inference latency with Archer-Edge in compar-
ison to the in-house library Archer.

• Archer achieved 14x speed-up in inference latency in comparison to Acceler-
ate.

In this section, we have elucidated both the research objective and the contri-
butions made within this study. The subsequent sections provide a comprehensive
breakdown of our research journey. Section 2 expounds upon the foundational
knowledge necessary for a thorough investigation. Section 3 details our exploration
of the unified memory architecture of Edge GPUs. In Section 4, we elaborate on
the steps taken in the implementation process to augment Archer for the develop-
ment of Archer-Edge. This section also encompasses discussions regarding the
benchmarking of both Archer and Archer-Edge. Subsequently, Section 5 rigorously
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evaluates the benchmark results, offering a performance comparison among Ac-
celerate, Archer, and Archer-Edge. Lastly, Section 6 encapsulates the conclusive
elements of this thesis paper.



Chapter 2

Background

This segment of the thesis paper furnishes vital contextual information that aids
readers in comprehending the rationale, significance, and pertinence of the study.
Section 2.1 delves into the intricacies of the Transformer and MoE architecture,
which holds pivotal importance in comprehending the architecture of an MoE model.
This section also expounds upon the practical applications of MoE models. In
Section 2.2, the process of inference within the Transformer model is explicated.
This elucidation covers the token generation procedure, emphasizing both the single
encoder iteration and multiple decoder iterations. This understanding becomes
valuable when calculating input and output throughput metrics for benchmarking
purposes. Section 2.3 elucidates the architectural framework of Nvidia’s Orin GPU,
highlighting the distinctions between server GPUs and Edge GPUs, with a specific
focus on the contrast between unified and non-unified memory architectures.

2.1 Mixture of Experts(MoE) models

The Mixture of Experts (MoE) is a machine learning methodology that involves par-
titioning a problem domain into distinct regions using multiple specialized networks
[28], Wikipedia. This approach, which leverages conditional computation, has found
application in language modeling to enhance both model capacity and efficiency
[28]. In MoE-based language models, the input sequence is divided into segments,
with each segment assigned to a specific expert network. To consolidate the out-
puts of these expert networks, a gating network is employed, which determines the
appropriate expert for each input segment.

2.1.1 Architecture

Prior to delving into the architecture for MoE (Mixture of Experts) models, it is
crucial to gain some understanding of the basics behind a Transformer architecture.
This knowledge will be helpful, as many MoE models, such as Switch Transformer
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Chapter 2. Background 5

[14] and NLLB [30], incorporate the MoE technique within the framework of an
encoder-decoder based Transformer architecture. Many cutting-edge language mod-
els, such as BERT, GPT, and XLNet, now depend heavily on transformers [32].
The Transformer model is a deep learning architecture that has gained prominence
in NLP applications such as machine translation, document categorization, and sen-
timent analysis. The Transformer model is built on an encoder-decoder architecture,
with the encoder processing the input sequence and the decoder producing the output
sequence. Each layer of the encoder and decoder incorporates sublayers such as
self-attention, feedforward neural networks, and normalization layers [31]. The
Transformer architecture illustration is shown in figure 2.1.
Key Components of Transformer:

• Encoder-Decoder Architecture: The Transformer model is built on an encoder-
decoder architecture, where the encoder processes the input sequence, and the
decoder generates the output sequence in a step-by-step manner.

• Multi-Head Self-Attention: Multi-head self-attention is a key component of
the Transformer model. It enables the model to focus on different positions
in the input sequence with varying weights, allowing it to capture diverse
relationships and dependencies within the sequence. By employing multiple
attention heads, the model can better understand and represent the input data.

• Positional Encoding: Transformers lack the inherent positional information
found in recurrent models. To address this, positional encodings are added to
the input embeddings to indicate the position of each word in the sequence.
This helps the model understand the order of words in a sentence and improves
its performance in sequence-to-sequence tasks.

• Feed-Forward Neural Networks: After the self-attention mechanism, the
Transformer model uses feed-forward neural networks to perform non-linear
transformations on the attended representations. These networks help in further
processing the information and generating more complex representations of
the input data.

• Layer Normalization and Residual Connections: Layer normalization and
residual connections are techniques employed in the Transformer model to
stabilize the training process and mitigate the vanishing gradient problem.
These techniques help in maintaining the flow of information through the
network and ensure that the model can be trained effectively.

Key components of Mixture of Experts (MoE) model:

• Experts and Gating Mechanism: The Mixture of Experts (MoE) model consists
of multiple ”experts,” each responsible for handling specific input data regions.
A ”gating mechanism” is employed to determine which expert should be
activated for a given input, allowing the model to adapt to different parts of
the problem space [14].
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Figure 2.1: Encoder-Decoder based Transformer Model Architecture. (source: [31])

• Mixture Weights: The gating mechanism generates mixture weights that deter-
mine the contribution of each expert to the final prediction. These weights are
typically learned during the training process, allowing the model to optimize
the combination of expert outputs [14].

In the Transformer model, the Mixture of Experts (MoE) can be used to replace
the feed-forward layer in specific Transformer blocks, allowing the model to increase
its capacity without a proportional increase in computation. In a standard Trans-
former model, the feed-forward layer is a dense layer that applies the same weight
matrix to each token position in the input sequence. In contrast, when using MoE in
a Transformer model, the feed-forward layer is replaced by a group of independent
feed-forward networks, each acting as an ”expert”. The gating mechanism generates
a mixture of weights that determine the contribution of each expert to the final
prediction. These weights are typically learned during the training process, allowing
the model to optimize the combination of expert outputs. The MoE model can be
used in an encoder-decoder based Transformer model by replacing the feed-forward
layer with a group of independent feed-forward networks, each acting as an ”expert”.
Please see the illustration 2.2 for better understanding.
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Figure 2.2: Switch-Transformer MoE model Experts Network. (source: [14])

2.1.2 Applications

Following are the applications of MoE models:

• Speech Recognition: MoE models have been applied to speech recognition
tasks, particularly in noisy environments, by combining linear dynamic models
with a mixture of experts architecture [33].

• Deep Learning: MoE layers have been incorporated into deep learning models
to scale up model capacity while maintaining computational efficiency [5].

• Real Estate Appraisal Models: MoE models have been used to construct real
estate appraisal models, providing a more accurate and reliable estimation of
property values [16].

• Rank Data Analysis: MoE models have been used to analyze rank data in
election studies, providing insights into the preferences of voters and the
composition of the electorate [15].

• Machine Translation: MoE can be applied to machine translation tasks by
employing separate experts for different language pairs or specific translation
challenges, such as rare words or idiomatic expressions.

• Natural Language Generation: In tasks like text summarization or dialog
generation, MoE can be employed to have distinct experts responsible for
generating different types of content, resulting in more diverse and accurate
outputs.
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2.2 Understanding Encoder Decoder Iterations during

Inference

For benchmarking Archer & Archer-Edge, it’s essential to grasp the fundamentals of
the inference process within a transformer model. The comprehensive description
of the inference process outlined below draws its inspiration from a video tutorial
provided by HuggingFace.

Figure 2.3: Inference at timestep 1

The illustrations presented in 2.3, 2.4, 2.5, offer high-level visual representations
utilized to elucidate the process of token generation within the language model. In
our context, we employ a transformer model to accomplish a machine translation
task. Specifically, we are translating an English sentence, ”hello my dog is cute,” into
French, yielding ”salut mon chien est mignon.” During the first time step (timestep
1) illustrated in figure 2.3, the initial task involves tokenizing the input sentence,
i.e., segmenting the sentence into words or subwords. To facilitate this, we utilize a
tokenizer such as wordpiece, BPE (Byte-Pair Encoding), or an alternative variant.
Subsequently, these generated tokens are transformed into numerical values known
as input ids. These input ids essentially correspond to a dictionary mapping that
encompasses all the tokens supported by the transformer model. This mapping, also
referred to as the model’s vocabulary, is integral to the process.

These input ids are fed into the encoder, responsible for converting each id into an
embedding vector, often referred to as last hidden states. These vectors are aptly
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Figure 2.4: Inference at timestep 2

termed, as they emerge from the encoder’s operations. Generally, an embedding
vector’s dimensions are 768 in a base model, signifying that, in our context, each
token gets represented by a 768-dimensional vector. For instance, in our illustrative
scenario, each token is represented by such a vector. In our example, after the
encoder’s processing concludes, we are left with encoder last hidden states, depicted
as (1, 6, 768) encompassing all six input tokens.

Conversely, at timestep 1, the decoder involves converting a special token denoted
as start sequence into an id using the model’s vocabulary. Subsequently, a solitary
token, as part of the decoder input id, traverses the decoder. The six hidden states
generated during the encoder phase are integrated into the decoder process. Upon
the decoder’s conclusion, a solitary embedding vector of size 768 emerges for the
decoder input. This embedding vector undergoes processing via a language modeling
head(matrix multiplication operation). The dimensions of this language modeling
head’s matrix are 768 x 50,000. Consequently, this operation yields an unnormalized
logits vector of size 50,000, representing scores for tokens within the model’s vo-
cabulary, which are not yet adjusted. To finalize the process, the transformer model
employs a greedySearch algorithm. This algorithm essentially entails selecting the
token id linked to the highest unnormalized score. Based on the chosen token id, the
corresponding word in the model’s vocabulary is identified.

Upon reaching time step 2 as illustrated in figure 2.4, an encoder pass is unnecessary,
as cached hidden states values are utilized. However, during the decoder phase,
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Figure 2.5: Inference at timestep n

an addition is made: the most recently generated token becomes part of the new
input ids for the decoder input. This augmentation serves the purpose of generating
a fresh token. In our example, while at timestep 1 only the start of the input sequence
was fed, at timestep 2, the token id for ’salut’ (generated in the initial decoder
pass) is supplied. Subsequently, following the decoder’s conclusion, the process
outlined earlier is reiterated, allowing the creation of a new token, ’mon,’ in this case.

As the sequence advances to time step n shown in 2.5, culminating in the last
token’s generation within the decoder pass, it is again introduced into the decoder.
This instance births the end of sequence token. Upon its creation, the transformer
model receives the signal that the inference process has reached completion.

2.3 Edge GPU Architecture

Understanding Edge GPU architecture is a critical aspect of this thesis paper since
this paper focuses on enhancing the efficiency and deployment of large MoE models
on low-resource machines, Edge GPUs serve as a crucial component of this endeavor
as it allows us to grasp the constraints and capabilities of this hardware platform.
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2.3.1 Motivation

Edge computing has grown in popularity over the past several years, due to its
capacity to carry out data processing and analysis closer to the source of the data,
reduce latency, and increase efficiency. The usage of GPUs for inference of big
learning models is one of the main elements of Edge computing [4].
Using cloud computing is a popular method for meeting the computational demands
of deep learning. Data must be transferred from the network Edge location of the
data source such as smartphones and Internet of Things (IoT) sensors to a centralized
point in the cloud in order to utilize cloud resources.
There are various obstacles associated with this possible solution of shifting the data
from the source to the cloud.

• Latency: For many applications, real-time inference is essential. For instance,
an autonomous car’s video frames must be processed fast in order to identify
and avoid obstacles, or a voice-activated assistant programme must com-
prehend the user’s request and respond to it in a timely manner. The strict
end-to-end low-latency requirements required for real-time, interactive appli-
cations cannot be met by sending data to the cloud for inference or training,
as this may result in additional network queuing and propagation delays. For
instance, actual experiments have shown that the entire process of offloading a
camera frame to an Amazon Web Services server and carrying out a computer
vision task takes more than 200 ms [27].

• Scalability: As the number of connected devices rises, network connectivity
to the cloud may become congested, posing a scalability problem when data
is sent from the sources to the cloud. In terms of network resource usage,
uploading all data to the cloud is also inefficient, especially if the deep learning
process does not require all of the data from all sources. Video streams and
other bandwidth-intensive data sources should be taken very seriously[4].

• Privacy: When sending data to the cloud, people who either own the data or
whose behaviours are recorded in the data may have privacy concerns. Users
can be concerned about how the cloud or application will use their sensitive
data if they upload it to the cloud (such as their faces or speech).

The issues with latency, scalability, and privacy mentioned earlier in this section can
be resolved by Edge computing. A tiny mesh of computer resources is used in Edge
computing to provide computational power near the end devices [4].

2.3.2 Nvidia’s Orin GPU

Nvidia released a new series of Jetson AGX Orin GPUs. The Jetson AGX Orin
series includes the Jetson AGX Orin 64GB and the Jetson AGX Orin 32GB modules.
All the experiments in this thesis are performed on Jetson AGX Orin 32 GB platform.
Orin architecture illustration is shown in 2.6.
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Figure 2.6: Nvidia Orin GPU Architecture. (source: [22])

To empower autonomous systems, the NVIDIA® Jetson AGX OrinTM series pro-
vides server-class capabilities, boasting an impressive AI performance of up to 275
trillion operations per second (TOPS). The NVIDIA Orin System-on-Chip (SoC)
features a comprehensive suite of components, including an NVIDIA Ampere ar-
chitecture GPU, an Arm Cortex-A78AE CPU, advanced deep learning and vision
accelerators, a video encoder, and a video decoder. These components are integrated
into Jetson AGX Orin modules, which offer a memory bandwidth of 204 GB/second,
high-speed IO interfaces, and either 32 or 64 GB of DRAM. These specifications
enable the modules to concurrently support multiple AI application pipelines [22].
Additional information is available in Table 2.1.

2.3.3 Unified versus Non-Unified Memory Architecture

Understanding the differences between unified and non-unified memory architecture
is critical for the context of this thesis. A major difference between a normal server
GPU and an Edge GPU is the memory architecture shown in image 2.7.
Any processor in a system can access unified memory, which is a single memory ad-
dress space as shown in 2.8. Using this hardware/software technology, Applications
can allocate data that can be read or written from code running on either CPUs or
GPUs.
In non-unified memory architecture, the memories of both CPU and GPU are physi-
cally distinct and separated by a PCIe express bus. If there is any data that is shared
by both the CPU and GPU must be allocated in their distinct memories and the
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Feature Jetson AGX Orin 32GB

AI Performance 200 TOPS (INT8)

GPU NVIDIA Ampere architecture with 1792 NVIDIA®

CUDA® cores and 56 Tensor Cores

Max GPU Freq 930 MHz

CPU 8-core Arm® Cortex®-A78AE v8.2 64-bit CPU 2MB L2 +

4MB L3

CPU Max Freq 2.2 GHz

Memory 32GB 256-bit LPDDR5 204.8 GB/s

Storage 64GB eMMC 5.1

UPHY* Up to 2 x8, 1 x4, 2 x1 (PCIe Gen4, Root Port and Endpoint)

3x USB 3.2

Table 2.1: Jetson Architecture Specifications. (source: [22])

Figure 2.7: Unified Vs Non-Unified Memory View. (source: [7])

developer has to explicitly copy data between the memories.

The major advantages that unified memory provides over non-unified memory archi-
tecture are as follows

• Simpler Programming and Memory Model Programmers no longer need to
spend time on the specifics of allocating and copying device memory; instead,
they may go right into creating parallel CUDA kernels [7].

• Performance Through Data Locality Unified Memory can provide the perfor-
mance of local data on the GPU while giving the usability of globally shared
data by transferring data between the CPU and GPU on demand. The CUDA
driver and runtime keep the complexity of this capability hidden, making it
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Figure 2.8: Unified Memory Architecture. (source: [7])

easier to create application code. The goal of migration is to utilize each
processor’s full bandwidth; a Kepler GPU’s compute throughput depends on
the 250 GB/seconds of GDDR5 memory [7].



Chapter 3

Preliminary Study

The preliminary investigation segment of this thesis functions as a fundamental
exploration that establishes the foundational framework for subsequent research
endeavors. Section 3.1 delves into the discussion of baseline libraries such as Accel-
erate and Archer. These libraries are harnessed for tasks such as profiling, bottleneck
analysis, and performance benchmarking. In 3.2, we engaged in experimental ac-
tivities on the Orin GPU platform, aiming to delve into the nuances of the unified
memory architecture and gain more comprehension of the associated CUDA APIs
and underlying memory transfers. In 3.3, we meticulously assessed the disk perfor-
mance on the Orin platform, as offloading parameters to the disk constitute a pivotal
element of this study. This data proves instrumental in the comparative analysis of
channel bandwidth.
Experiments were performed on an Nvidia Orin GPU server, utilizing the Jetson
developer kit to install Pytorch (version 2.0.0+nv23.05) and other necessary de-
pendencies. Miniconda with Python 3.8 was employed to create and manage the
environment, while the utilization of Archer (version 0.0.1) facilitated the process.
We have employed Nvidia’s Nsight tool [6] to conduct all the profiling activities.

3.1 Baselines

For this paper, we are considering Accelerate by Hugging Face [13] and in-house
library Archer for big model inference since they support SSD offloading of param-
eters for running large models on memory-constrained GPU. We also tried to use
DeepSpeed Inference [1] as a baseline but it was not compatible with the Orin GPU
platform.

3.1.1 Introduction to Accelerate Library by Hugging Face

Hugging Face open-sourced Accelerate library to enable us to run large models
without a supercomputer. Accelerate leverages the functionality provided in Py-

15
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Torch. Gaining a comprehensive understanding of the operations of the Accelerate
library holds significance as it provides valuable insights into the mechanics of the
Accelerate interface. This understanding extends to the fundamental algorithms
that facilitate the transfer of parameters, a key aspect for offloading, and proves
instrumental in the subsequent bottleneck analysis discussed in section 4.1.1. Steps
involved in Accelerate for deploying a large model on memory-constrained GPU are
shown in 3.1.

Figure 3.1: Steps to run Inference with Accelerate. (source: [13])

For creating an empty model Accelerate leverages the PyTorch support of meta
device, as a result, they can generate tensors that don’t have any data associated
with them because a tensor on a meta device only requires a shape. They can thus
generate tensors of any size while on the meta device without having to worry about
CPU (or GPU) memory.
One critical component of Accelerate is computing the device map which decides
where each layer/parameter/weight is going to reside before loading the pre-trained
weights. This allows them to release CPU RAM each time a weight has been prop-
erly placed. Since memory occupied by weight/parameter can be computed using
the shape of each tensor and its dtype(data type), this can be done with the empty
model on the meta device.
Accelerate provides options like infer auto device map which can automatically
determine the device map that will try to maximize the use of all available GPUs,
then CPU RAM, and finally flag the weights that don’t fit for disk offload. Users can
provide their own device map as well. The figure shown in 3.2 is an example of a
device map created by Accelerate.

The load checkpoint and dispatch() method is the second tool that Accelerate
introduces, and it enables you to load a checkpoint inside of an empty model. This
supports both sharded checkpoints and full checkpoints, which consist of a single
file containing the entire state dict. When loading a checkpoint that is sharded, the
maximum RAM use will be equal to the size of the largest shard because it will
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Figure 3.2: Example of Device Map. (source: [13])

automatically distribute those weights across the devices you have available (GPUs,
CPU RAM).
Model Inference using Accelerate Library is explained in the later section 4.1.

3.1.2 Introduction to Archer

Gaining a comprehensive understanding of Archer holds significant importance in
the context of this paper, as it forms a crucial prerequisite for deploying it on the
Edge GPU. This knowledge also proves valuable in the development of Archer-Edge
and is instrumental in effectively profiling the Archer library.
Archer is an open-source high-performance inference engine developed by the
research team led by Dr. Luo Mai at the University of Edinburgh. It is designed
to optimize the efficiency and throughput of machine learning models. The project
aims to create an easy-to-use and extendable engine with a focus on performance
optimization, GPU resource management, and seamless integration with various
applications.
Archer aims to provide a powerful and efficient solution for deploying machine
learning models in real-world scenarios. Currently, Archer does not support the
unified memory architecture of the Edge GPU, this will be one of the major
aims of this dissertation to enhance Archer.

3.1.3 Prefetching offloaded experts algorithm in Archer

The following information regarding the prefetching algorithm is based on the work
conducted on Archer by Leyang Xue, a PhD student under the supervision of Dr.
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Luo.

The most distinctive feature of Archer, which sets it apart from existing solutions
like Accelerate and Deepspeed-MoE, is its ’sparsity aware prefetching’ of experts
during inference. This algorithm leverages the observation that only a sparse subset
of experts is activated during inference, typically about 20% of all the experts in
large MoE models, such as Switch Transformer [14] and NLLB [30].

The core idea behind this approach is to automatically store the experts in external
memory by default. When an inference request is received, the required experts are
proactively fetched to the GPU memory in advance, ensuring efficient and speedy
inference with high throughput and minimal delay. This efficient management of
expert data optimizes computational resources during inference and leads to cost
savings.

To determine which experts should be activated in advance and which ones should
be offloaded from the GPU for replacement, Archer introduces two main features:
”Expert Activation Predictor (EAP)” and ”EAP-Guided MoE Inference Engine.”

The EAP is designed based on the insight that once an expert is activated, sub-
sequent layers tend to follow a skewed probability distribution, where certain experts
are more likely to be activated than others. To exploit this insight, the MoE model is
represented using an expert activation tracing graph.

The EAP-Guided MoE Inference Engine in Archer utilizes the probabilities gen-
erated by EAP as cues to determine the relative priority of experts to keep in the
GPU memory, DRAM, and SSD. It treats DRAM and SSD as additional layers in a
hierarchical cache of experts and also considers the order and occupancy of PCIe
link queues for efficient data movement.

Overall, Archer’s sparsity-aware prefetching and the EAP-Guided MoE Inference
Engine significantly enhance the performance and efficiency of MoE models, partic-
ularly in handling large and sparse data, leading to improved inference speed and
cost-effective resource utilization.

3.2 Exploration of unified memory architecture

Conducting preliminary experiments assumes significance in order to gain deeper
insights into memory architecture and the underlying cuda APIs. This foundational
understanding becomes pivotal for the subsequent stages of development. Aligned
with theoretical expectations, we anticipate that the cudaMallocManaged() API
would demonstrate enhanced memory efficiency when compared to the cudaMalloc()
API.
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#include <iostream >
#include <cuda_runtime.h>
#define N 999

// CUDA kernel to initialize an array

__global__ void initializeArray(int* d_array)
{

int tid = blockIdx.x * blockDim.x
+ threadIdx.x;

if (tid < N)
d_array[tid] = tid;

}

int main()
{

int h_array[N]; // Host array
int *d_array; // Device array

/* Allocate cudaMalloc memory
* accessible only on GPU */
cudaMalloc((void**)&d_array ,

N * sizeof(int));

// Launch the kernel to initialize
* the device array */
initializeArray <<<1, N>>>(d_array);

/* Wait for GPU to finish
* before accessing on host */
cudaDeviceSynchronize ();

// We need a deep-copy from Device
* GPU to Host CPU */
cudaMemcpy(h_array , d_array ,

N * sizeof(int),
cudaMemcpyDeviceToHost);

// Print the result of h_array
std::cout << "Array elements: ";
for (int i = 0; i < N; i++)

std::cout << h_array[i] << " ";
std::cout << std::endl;

// Free memory on the device
cudaFree(d_array);
return 0;

}

Listing 3.1: CudaMalloc Code

include <iostream >
#include <cuda_runtime.h>
#define N 999

// CUDA kernel to initialize an array

__global__ void initializeArray(int* d_array)
{

int tid = blockIdx.x * blockDim.x
+ threadIdx.x;

if (tid < N)
d_array[tid] = tid;

}

int main()
{

int *h_array; // Host array
int *d_array; // Device array

/* Allocate unified memory using
* cudaMallocManaged so that
* it is accessible on CPU and GPU both */
cudaMallocManaged(&d_array ,

N * sizeof(int));

/* Launch the kernel to
* initialize the device array */
initializeArray <<<1, N>>>(d_array);

/* Wait for GPU to finish
* before accessing on host */
cudaDeviceSynchronize ();

/* Since cudaMallocManage allocated
* pointer that is accessible
* on GPU as well as CPU
* we only need a shallow copy.*/

h_array = d_array;

// Print the result of h_array
std::cout << "Array elements: ";
for (int i = 0; i < N; i++)

std::cout << h_array[i] << " ";
std::cout << std::endl;

// Free memory on the device
cudaFree(d_array);
return 0;

}

Listing 3.2: CudaMallocManaged Code

The code shown in 3.2 evaluates the functionality of cudaMallocManaged(),
wherein an array is allocated in the device memory, i.e., GPU. As managed memory
is utilized, this pointer remains accessible on both the host and the device. Notably,
no deep copy is needed to access the array allocated in the device memory. The nsys
profile shown in 3.3a confirms this assertion, as it reveals that there is no additional
copy from the device to the host.

The code shown in 3.1 examines the functionality of the cudaMalloc() function,
which allocates memory on the GPU device. In this case, direct access to the memory
allocated on the device from the host is not possible. As a result, the cudaMemcpy()
API is required to perform a deep copy from the device memory to the host memory.
The nsys profile shown in 3.3b provides evidence supporting this claim, as it shows
a copy operation from the device to the host. If we attempt to avoid the use of
cudaMemcpy() for transferring data from the Device to the Host, after allocating
memory with cudaMalloc(), any attempt to access the host memory will result in a
segmentation error.
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Figure 3.3: Unified Memory Cuda Profiling

(a) cudaMallocManaged Profile (b) CudaMalloc Profile

Operation Bandwidth

Sequential Write 1.9 GB/s

Random Write 0.15 GB/s

Sequential Read 3.88 GB/s

Random Read 0.53 GB/s

Table 3.1: FIO testing Results on Orin Platform

3.3 Testing PCIe channel bandwidth on Orin

Considering that this paper focuses on deploying large MoE (Mixture of Experts)
models on memory-limited GPUs, a crucial aspect of this process involves offloading
the Model weights/parameters to the Disk. During inference, the necessary model
parameters/weights should be available in the GPU to perform the forward pass of
the neural network. Hence, the efficient transfer of data between the GPU and Disk
significantly impacts the model’s inference efficiency.
To achieve this, We are conducting experiments on the Nvidia Orin GPU, which is
connected to an SDD (Solid State Drive) using a PCIe Gen4 channel. The aim is
to determine both the maximum and minimum bandwidth utilization of this PCIe
channel on the Orin GPU platform. The collected data will then be compared with
the bandwidth achieved by baseline methods. The primary goal of this comparison
is to assess whether the PCIe channel’s bandwidth is fully utilized or not, which
will ultimately impact the overall efficiency of the MoE model inference on the
memory-constrained GPU.
We are using the Flexible IO tool for benchmarking the persistent disk performance
on the Orin platform. Results are shown in table 3.1



Chapter 4

Profiling, Implementation, and

Benchmark

In this section of the thesis, we explore the fundamental components of profiling,
implementation, and benchmarking, which constitute the central elements of our re-
search inquiry. In 4.1, we engaged in an extensive profiling exercise of the Accelerate
library on NLLB-MoE-54b (checkpoint-size: 206 GB) using the accelerate interface.
Subsequently, in 4.1.1, a comprehensive analysis of the accelerate profile revealed
critical bottlenecks, underscoring the dominant role of transfer time for parameter-
s/weights between the Disk and CPU. Additionally, the transfer time between the
CPU and GPU emerged as another significant factor. Section 4.2 elucidates the ne-
cessity and intricacies of deploying Archer on the Orin GPU platform. In section 4.3,
we outline the efforts dedicated to integrating unified memory architecture support
into Archer, resulting in the development of Archer-Edge. The subsequent section,
4.3.1, offers an exhaustive analysis of bottlenecks within Archer and Archer-Edge,
introducing a unified caching allocator that enhances inference performance. Finally,
section 4.4 details the methodology for benchmarking and the pertinent metrics
employed in our evaluation.

4.1 Profiling the “Accelerate” library on MoE models

We are conducting profiling on the ”Accelerate” library applied to MoE (Mixture
of Experts) model to thoroughly assess its performance characteristics and identify
potential bottlenecks. By profiling, we aim to understand how the library functions
when handling these models, gain insights into its efficiency and pinpoint any areas
where optimization might be necessary. Our expectation is that this profiling will
provide valuable information about the execution behavior of the library on MoE
models, helping us identify any inefficiencies and areas for improvement.
We are using the Accelerate interface provided by Hugging Face for running infer-
ence with models ”facebook/nllb-moe-54b” and ”google/switch-base-256”. Both

21
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models’ checkpoints (pre-trained weights) are available for download from the
Hugging Face website [11], [12]. The pre-trained ”facebook/nllb-moe-54b” has
a checkpoint size of 206 GB and ”google/switch-base-256” has a checkpoint size
of 55 GB. Accelerate library interface for running inference with nllb-moe-54b is
shown in 4.1.
from transformers import AutoTokenizer , AutoModelForSeq2SeqLM
from transformers import AutoConfig
from accelerate import init_empty_weights
import os
import torch
import time

device = (’cuda’ if torch.cuda.is_available() else ’cpu’)
checkpoint = "facebook/nllb -moe -54b"
config = AutoConfig.from_pretrained(checkpoint)
with init_empty_weights():

model = AutoModelForSeq2SeqLM.from_config(config)
model.tie_weights()

from accelerate import load_checkpoint_and_dispatch
from accelerate import infer_auto_device_map
my_device_map = infer_auto_device_map(model ,no_split_module_classes=

["NllbMoeEncoderLayer", "NllbMoeDecoderLayer"])

start2 = time.time()
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint ,

device_map=my_device_map ,
offload_folder="/mnt/shivaz/offload/",
offload_state_dict = True)

model.eval()

from transformers import AutoTokenizer
print(f"Stage 3: Start intiliazing tokenizer")
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

input_text = "UN Chief says there is no military solution in Syria"
input_ids = tokenizer(input_text , return_tensors="pt").input_ids
print(f"Input Token ID: {input_ids}")
print(f"Input Tokens Length: {input_ids.shape[1]}")

st = time.time()
with torch.no_grad():

input_ids = input_ids.to(device)
translated_tokens = model.generate(input_ids ,

forced_bos_token_id=
tokenizer.lang_code_to_id["fra_Latn"],
max_length =100)

print(f"Generation time: {time.time() - st}")

print(f"Output Tokens ID: {translated_tokens}")
print(f"Output Tokens Length : {translated_tokens.shape[1]}")

print(f"Stage 6: Start generating output")
print(f"Required translation : {tokenizer.decode(translated_tokens[0],

skip_special_tokens=True)}")

Listing 4.1: Accelerate Interface for nllb-moe-54b

PyTorch incorporates specific functions known as hooks, which are automatically
activated after a specific event. These hooks are registered for every Tensor or
nn.Module objects that are triggered during the forward or backward pass of the
respective object.
Accelerate takes advantage of PyTorch’s hooks feature to facilitate the execution
of Model inference. To achieve this, Accelerate inserts hooks into the model.
These hooks play a vital role behind the scenes, enabling the library to perform
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certain actions during the forward or backward pass of the model. The precise
functions and actions performed by these hooks are tailored to enhance the efficiency
and performance of the Model inference process, thereby optimizing the overall
execution. How Accelerate runs inference of big models that do not fit on the GPU
is explained below:

• The inputs are placed on the appropriate device at each layer, so even if your
model spans multiple GPUs, it still functions.

• Just before the forward pass, the weights are offloaded on the CPU and put on
the GPU, and cleaned up after the forward pass.

• The weights that were previously offloaded onto the hard drive are loaded in
RAM, transferred to a GPU right before the forward pass, and then cleared
out immediately after.

Figure 4.1: Accelerate Profile Generated for nllb-moe-54b Model

4.1.1 Identification of major bottlenecks in baseline

The Accelerate Library, designed to facilitate inference with large models, experi-
ences considerable time overhead even for processing just 38 tokens. Attempting
to employ Accelerate with more than 100 tokens becomes practically unviable due
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to the extensive runtime required for completion. To profile the baseline perfor-
mance, Nvidia Nsight tool couldn’t be utilized, so a manual annotation approach
was adopted to comprehend the sections of the Accelerate library code responsible
for the most significant runtime. As previously observed, executing large models
necessitates transferring weights from DISK to CPU and then from CPU to GPU.
Subsequently, the released weights from the GPU need to be copied back to the CPU.

Referring to figure 4.1, the complete inference process requires approximately
2095 seconds, with a significant portion (around 55% or 1192 seconds) dedicated to
data transfer from disk to memory. Additionally, about 550 seconds are spent on the
transfer between the GPU and CPU. A crucial observation is that Accelerate lacks
support for Unified Memory Architecture. Consequently, when moving a weight
or parameter from disk to the GPU, it follows a two-step process: first bringing the
weight to the CPU and then transferring it to the GPU.

Figure 4.2: Disk Transfer Time for Parameter

Figure 4.3: Number of Parameter Requests from Disk
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The analysis based on the provided bar graph 4.2 reveals important insights
regarding the transfer of tensor weights/parameters from the SSD(Disk) to the CPU.
The x-axis represents the six unique sizes of tensor weights, while the y-axis indi-
cates the frequency of transfers from the disk to the CPU. Notably, tensors with a
size of 67.1 MB are the most frequently requested, followed by 8.1 KB tensors as the
second highest in demand. On the other hand, 2.09 GB tensors are the least requested.

Moving to graph 4.3, it showcases a correlation between the requested tensors
and the disk transfer time. The most requested tensors take the longest disk trans-
fer time, while 8.1 KB tensors contribute insignificantly to the transfer time. The
cumulative transfer size for all parameter sizes is 1893.3 GB, relative to the model
checkpoint size of 206 GB.

Another bottleneck lies in the weight transfer between CPU and GPU. Addressing
this issue through support for a unified memory architecture in Accelerate could
potentially alleviate the runtime bottleneck, resulting in improved performance and
efficiency. Analysis results for profiling Accelerate on nllb-moe-54b are summarized
in table 4.1.

Table 4.1: Latency and Throughput Statistics

Metric Value (s=seconds)

Maximum bandwidth achieved 3.2 GB/s

Minimum bandwidth achieved 0.8 MB/s

Average bandwidth achieved 1.1 GB/s

FIO Tool Reported Bandwidth 3.88 GB/s

Accelerate Achieved Bandwidth 1.1 GB/s

Input Throughput 0.131 tokens/s

Output Throughput 0.108 tokens/s

4.2 Deploying Archer on Edge GPU

As previously elucidated, the exploration of employing a substantial MoE (Mixture
of Experts) model for inference on an embedded GPU remains uncharted territory.
Deploying an extensive model on such a platform posed a considerable challenge
in itself. The primary obstacle encountered during the course of this dissertation
project revolved around encountering OOM (Out of Memory) errors and prolonged
inference runtimes. The ongoing active development within Archer introduced
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certain complications as well. However, after meticulous adjustments to the code,
we succeeded in executing inference using the facebook/nllb-moe-54b (206 GB)
model with Archer. To our astonishment, Archer exhibited noteworthy speed in
processing an equivalent number of tokens. The data presented in table 4.2 was
generated through initial analysis during Archer’s initial deployment on the Edge
GPU platform. Subsequent enhancements were applied to Archer to further optimize
inference, and these outcomes are shared in the evaluation section 5.

Model Checkpoint Size Tokens Accelerate Archer Speed-up

facebook/nllb-moe-54b 206 GB 38 2095.7 sec 467.6 sec 4.48x

Table 4.2: Model Performance Comparison

Having previously analyzed the Accelerate library in section 4.1.1, we identified
a bottleneck centered around the time required for transferring weight(s) from Disk to
CPU. The suboptimal performance of Accelerate can be attributed to its lack of
consideration for the inherent sparsity of the MoE (Mixture of Experts) model.
This shortcoming becomes apparent in its handling of data transfer operations.
Unlike Archer, which employs a selective approach by transferring only activated
Experts, Accelerate transfers all Experts for a given layer from the disk to the GPU.
Accelerate incurs a substantial overhead, transferring an extensive volume of tensor
weights totaling around 1893.3 GB from the Disk to the CPU. In contrast, Archer
demonstrates a more efficient strategy, transferring a mere 187 GB of weights. The
impact of this inefficiency is particularly evident when examining specific tensor
weights. Notably, tensors with a weight size of 67.1 MB are transferred a staggering
40866 times from the disk to the GPU. Additionally, tensors weighing 8.1 KB are
moved 27901 times.

Another factor contributing to the variance in inference times between Accelerate
and Archer lies in the underlying mechanism employed for moving weights from
the disk to the CPU.
The Accelerate library utilizes the numpy.memmap() utility for facilitating weight
transfers from disk to CPU. This utility creates a memory-mapped connection to
an array stored in a binary file on disk. Memory-mapped files serve the purpose of
accessing discrete sections of large files on disk without necessitating the complete
loading of the entire file into memory. This definition is sourced from the numpy
documentation [8]. It’s important to acknowledge that memory-mapped performance
might fluctuate based on factors such as the storage medium, the access pattern, and
the specifics of the hardware.

In contrast, Archer employs the DeepSpeed IO transfer architecture to facilitate the
transfer of weights from disk to the CPU, or in the case of unified memory, to the
GPU. The DeepSpeed IO module has been meticulously designed to enhance data
loading and reading within deep learning applications. It boasts features such as
multi-threaded data loading, asynchronous data loading, and optimizations tailored
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for a variety of data formats.

4.3 Archer-Edge Implementation

This section holds a pivotal role within the context of this paper. Here, we will delve
into the enhancements made to Archer, leading to the development of Archer-Edge.
The core objective of this paper was to delve into the realm of unified memory
architecture and to successfully deploy a substantial MoE model. To achieve this
objective and ensure Archer’s compatibility with the unified memory architecture,
it was imperative to grasp the intricacies of the existing implementation and to
thoroughly comprehend the operational flow of Archer. The majority of efforts
dedicated to this enhancement were in C++.

Up until this point, Archer had been characterized by two distinct memory pools: the
DeviceMemoryPool and the HostMemoryPool. These interfaces exercised control
over memory allocation on the host (CPU) and the device (GPU) respectively. On
the host side, memory allocation employed the cudaHostAlloc() API, which facili-
tated memory allocation on the CPU while also locking pages. On the device side,
memory allocation was achieved using the cudaAlloc() API. Notably, the pointers
allocated via these APIs were confined to their respective memory pools, creating a
situation where if data existed on the device and needed to be accessed on the host,
it became the user’s responsibility to perform explicit data copying. This additional
step introduced a performance overhead. However, Archer-Edge introduced an
addition in the form of the UnifiedMemoryPool. A pointer allocated within this pool
boasts accessibility from both the host and the device, and this is achieved using the
cudaMallocManaged() API.

Figure 4.4: Memory Transfers in Archer & Archer-Edge
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Central to the Archer operational flow are parameter offloading and prefetching,
which play a critical role. Conventionally, parameters were transferred from disk to
CPU and subsequently from CPU to GPU. However, Archer-Edge revolutionized this
process by directly transferring data from disk to GPU, bypassing CPU intervention
entirely, as depicted in the visual representation 4.4. This enhancement was sup-
ported by the introduction of novel APIs that are robust. Additionally, a high-level
flag ”UNIFIED MEMORY” was incorporated, providing the ability to activate the
unified memory operational flow by setting it to true within the environment. An
essential aspect of this enhancement was the thorough understanding of the core
CUDA APIs that played a pivotal role in its realization.
All the code implemented for Archer-Edge is present on a ’unified mem dev’ branch
in a private Github repository. Currently, the work is not open-sourced, but for access
please contact Dr. Luo’s Team. The high-level algorithm of Archer-Edge is shown
4.2
1: Initialize Archer -Edge Modules

2: Load model checkpoint weight
2.1: Read tensors/weights from checkpoint state dict
2.2: Register tensors by allocating a pinned -memory
2.3: Construct an archer_index in disk

/*archer_index maps tensor_id Vs tensor/weight pointer */
2.4: Delete memory allocated to tensor/weight
/*Above mechanism helps in loading a 200 GB in a 32 GB memory*/

3: Construct a "Node" tracing graph
2.1: For each layer of the model
2.2: Create a node
2.3: Bind tensor_ids(parameters) of the layer to that node
/*Example: Node 0 tensor ids 512
Node 1 tensor ids 514 515 516 517 518 519 520 521 522 523 528
Node 2 tensor ids 524 525
*/

4: In pre-forward call
4.1: Acquire tensor_id from disk
4.2: Bring the Node that contains the tensor_id
4.3: Since Node contains multiple tensor_ids , we need to

transfer all tensor_ids from Disk to GPU directly
/*

Here we utilize "UNIFIED_MEMORY" architecture.
Otherwise , the only way to transfer parameters
is to first copy from DISK to CPU and then copy
from CPU to GPU.

*/

if pre-fetching is enabled:
4.4: On a parallel thread , bring the nodes based on

Experts activated probability for the next layer.
/*

Pre-fetching helps to parallelize data transfer
of tensors/parameters from disk to GPU and
computation of forward -pass.

*/

5: In post -forward call
5.1 Release tensors that are not required anymore

Listing 4.2: Archer-Edge System Implementation
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4.3.1 Profiling Archer & Archer-Edge

We implemented Archer-Edge and now it was time to test our implementation. We
ran nllb-moe-54b (206 GB) with Archer and Archer-Edge, we found that Archer-
Edge was 25% faster than Archer shown in table 4.3. This comparison is conducted
considering the initial implementation of Archer-Edge. For the final comparison
results, please refer to section 5.

Model Checkpoint Size Tokens Archer Archer-Edge Speed-up

facebook/nllb-moe-54b 206 GB 42 467.6 sec 351.3 sec +25%

Table 4.3: Model Performance Comparison

We saw improvement in Archer-Edge compared to Archer, now it was time to
analyze the bottlenecks in the current implementation and improve on them. We
used Nvidia’s Nsight tool [6] for generating profiles for inference with Archer and
Archer-Edge on nllb-moe-54b with only 22 tokens. The nsys profiles for the runs
conducted using Archer and Archer-Edge can be found in the appendix under sec-
tions A.1 and A.2 respectively. From these profiles, we have extracted crucial data,
which has been condensed into summary tables as shown in tables 4.4, 4.5, 4.6, and
4.7. Table 4.4 provides insights into the percentage of time consumed by memory
operations in the case of Archer, while table 4.5 presents the most time-consuming
Cuda APIs utilized by Archer. Similarly, tables 4.6 and 4.7 outline corresponding
statistics for Archer-Edge. The observed differences in memory utilization within
the profiles were substantial, enabling us to gain a comprehensive understanding of
the existing functionality and bottlenecks.

Profile run with Archer and Archer-Edge reveals that parameter/weights transfer be-
tween host and device is the major bottleneck and needs to be addressed to improve
the latency and throughput. Findings from the profiles show that a major amount of
time is taken by operations cudaMemcpy, cudaMemcpyAsync, cudaFreeHost and
cudaHostAlloc for both Archer and Archer-Edge.

• cudaMemcpy: copies data between host and device.

• cudaMemcpyAsync: Copies data between host and device, but it is asyn-
chronous with respect to host so the function call may return before the copy
is complete.

• cudaFreeHost: Frees page-locked memory on the host.

• cudaHostAlloc: Allocated page-locked memory on the host.

Upon careful code examination, we identified instances of redundant invocations
of cudaMemcpy and cudaFreeHost during the parameter transfers between the disk,
CPU, and GPU within the unified memory configuration. By optimizing the code
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Memory Operation Contribution

Memset 5.8%

HtoD memcpy 65.8%

DtoH memcpy 28.3%

DtoD memcpy 0.1%

Table 4.4: Archer Profile Memory Operations

Cuda API Total Time Taken Contribution

cudMemcpy 25.763 s 20.6%

cudMemcpyAsync 20.641 s 16.5%

cudaFreeHost 18.483 s 14.8%

cudaHostAlloc 16.533 s 13.2%

cudaMallocManaged 11.752 s 9.4%

cudaMemSet 10.072 s 8.1%

cudaFree 9.142 s 7.3%

cudaLaunchKernel 8.621 s 6.6%

Table 4.5: Cuda APIs Statistics for Archer

and eliminating these superfluous memory copies, a notable improvement in infer-
ence latency was achieved. Additionally, we introduced a unified memory caching
allocator to further bolster performance.

Unified Memory Caching Allocator

This idea for implementing a unified memory caching allocator was inspired
by the work of another Ph.D. student in Dr. Luo’s team. Certain mobile operating
systems, like the Pixel 3, have shown a tendency to promptly release memory back to
the system, which can lead to page faults on occasion, ultimately impacting overall
performance negatively. This caching allocator has been developed to tackle this
issue. Additionally, it offers users the flexibility to define their own memory allocator
by creating their own implementations of the allocate and free virtual interfaces.
This caching allocator further helped in improving the performance. Below are a
few APIs shown in 4.3 related to the implementation of the caching allocator.
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Memory Operation Contribution

Memset 5.8%

HtoD memcpy 65.8%

DtoH memcpy 28.3%

DtoD memcpy 0.1%

Table 4.6: Archer-Edge Profile Memory Operations

Cuda API Total Time Taken Contribution

cudMemcpy 95.666 s 45.6%

cudMemcpyAsync 28.543 s 13.6%

cudaFreeHost 25.305 s 12.1%

cudaHostAlloc 19.197 s 9.1%

cudaMemSet 12.969 s 6.2%

cudaMalloc 9.452 s 4.5%

cudaLaunchKernel 9.234 s 4.4%

cudaFree 9.122 s 4.3%

Table 4.7: Cuda APIs Statistics for Archer-Edge

inline void* UnifiedCachingAllocator::allocate_and_cache(const size_t bytes)
{

// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
void* ptr;
at::cuda::CUDAStreamGuard guard(CUDA_STREAM_H2D_VIEW (0));
auto cuda_err = cudaMallocManaged(&ptr, bytes);
if (cuda_err != cudaSuccess) {

free_cached();
cuda_err = cudaMallocManaged(&ptr, bytes);

if (cuda_err != cudaSuccess) {
throw std::runtime_error("cudaMallocManaged failed");

}
}

allocation_map_[ptr] = bytes;
return ptr;

}

void* UnifiedCachingAllocator::allocate(const size_t bytes)
{

std::lock_guard <std::mutex > guard(mutex_);
const auto& it = available_map_.find(bytes);
if (it == available_map_.end() || it->second.empty()) {

return allocate_and_cache(bytes);
}
return it->second.pop_back_val();

}

void UnifiedCachingAllocator::free(void* ptr)
{

// NB: since we are not really freeing the memory
// the cases such as quantization code freeing original weights
// on mobile, will not quite work, as we likely will hold
// onto that memory.
// NB: We can also enable max memory cached for better memory
// management such that free will actually free the memory if
// we are nearing or above the watermark.
std::lock_guard <std::mutex > guard(mutex_);
// If this allocation was done before caching allocator was enabled
// then free regularly
const auto& it = allocation_map_.find(ptr);
if (it == allocation_map_.end()) {

at::cuda::CUDAStreamGuard guard(CUDA_STREAM_H2D_VIEW (0));
cudaFree(ptr);
return;

}
const size_t alloc_size = it->second;
available_map_[alloc_size].push_back(ptr);

}

Listing 4.3: CudaMalloc Code
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4.4 Benchmarking MoE model using Archer and Archer-

Edge

We recognized the performance limitations of Accelerate, as discussed in section
4.1.1, and endeavored to address these constraints within the frameworks of Archer
and Archer-Edge. Benchmarking MoE model using both Archer and Archer-Edge
is a crucial step to assess the effectiveness of the proposed enhancements. This
comparison allows us to quantify the performance gains achieved by Archer-Edge
over the original Archer framework. By subjecting both implementations to rigorous
benchmarking, we can objectively measure and analyze various metrics, including
inference latency, throughput, and other relevant performance indicators. This evalu-
ation serves to validate the improvements introduced in Archer-Edge and provide
empirical evidence of its superiority in terms of inference efficiency. The anticipated
outcome of this benchmarking is to demonstrate that Archer-Edge indeed delivers a
notable reduction in inference latency and potentially other performance enhance-
ments when compared to the baseline Archer model.
To gauge the effectiveness of our solutions, we developed a new utility for bench-
marking. This utility quantifies essential metrics such as overall inference latency,
input and output latencies, and throughput for input and output tokens. Explanation
of important metrics reported in the benchmark report:

• Inference Latency: This represents the time required for an inference task to
be completed. It’s measured in seconds.

• Input Latency: Input latency quantifies the time the encoder takes to produce
the final hidden states for the input tokens. A single encoder pass occurs in
each inference.

• Output Latency: Output latency gauges the time taken by all decoder passes
to generate output tokens. Multiple passes of the decoder happen in a single
inference, generating new tokens in each pass.

• Throughput (Input): Input throughput is measured as the input tokens pro-
cessed per second. Its value is calculated as (Total number of input tokens/
Input Latency).

• Throughput (Output): Output throughput is measured as the output tokens
processed per second. Its value is calculated as (Total number of output tokens/
Output Latency).

As the primary emphasis of this paper does not revolve around the Quality of Re-
sults (QoR) for the Machine Translation (MT) task, our primary concern is directed
toward evaluating the inference performance. To construct a benchmarking dataset,
we extracted samples from the TREC dataset, encompassing diverse token counts
spanning from 10 to 200 for both input and output tokens. The inputs were classified
into three distinct categories, namely Group 1, Group 2, and Group 3, delineated by



Chapter 4. Profiling, Implementation, and Benchmark 33

the token count they encompass.

For running the benchmark, we are using Nvidia’s Orin GPU platform with 32
GB memory. We are running nllb-moe-54b having a checkpoint size of 206 GB.
We disabled prefetching in Archer & Archer-Edge as it was causing some I/O
contention issues explained in section 5.3. Algorithm 4.4 shows steps involved in
the benchmarking script.

Initializing Archer
Start logging
Loading nllb -moe -54b model using Archer
For input in group\_ids: // Iterate on inputs in group\_id

model.generate(input) // Inference API
Capture all metrics

End logging

Listing 4.4: Benchmark Script Pseudo Code

Tables 4.8 and 4.9 present key metrics such as total latency, input and output
latencies, and input and output throughput across different token counts, categorized
by the group id, for both Archer and Archer-Edge respectively.
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Table 4.8: Archer Model Performance on nllb-moe-54b

Group Tokens Latency (seconds) Throughput (tokens/seconds)

Input Output Input Output Overall Input Output

G1 17 20 19.755 95.319 115.075 0.21 0.861

15 19 12.837 83.727 96.565 0.227 1.168

14 20 14.663 89.791 104.454 0.223 0.955

17 26 15.376 116.702 132.078 0.223 1.106

16 21 15.09 95.998 111.09 0.219 1.06

20 28 17.163 128.083 145.246 0.219 1.165

20 23 16.496 104.785 121.282 0.219 1.212

17 31 15.915 143.14 159.069 0.217 1.068

19 22 16.325 98.696 115.023 0.223 1.164

G2 69 88 35.806 409.812 445.619 0.215 1.927

63 92 33.924 430.519 464.443 0.214 1.857

68 84 34.551 384.716 419.268 0.218 1.968

71 94 35.324 434.345 469.67 0.216 2.01

83 119 36.79 552.039 588.842 0.216 2.256

65 89 29.107 408.241 437.349 0.218 2.233

71 97 34.574 448.98 483.555 0.216 2.054

71 93 31.618 427.61 459.229 0.217 2.246

59 79 30.534 368.009 398.543 0.215 1.932

52 61 31.023 282.997 314.021 0.216 1.676

G3 158 191 47.707 799.701 847.409 0.239 3.312
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Table 4.9: Archer-Edge Model Performance on nllb-moe-54b

Group Tokens Latency (seconds) Throughput (tokens/sec)

Input Output Input Output Overall Output Input

G1 17 20 18.228 41.337 59.566 0.484 0.933

15 19 15.316 34.275 49.592 0.554 0.979

14 20 14.998 34.555 49.554 0.579 0.933

17 26 15.064 43.28 58.345 0.601 1.129

16 21 15.307 34.827 50.134 0.603 1.045

20 28 15.457 50.359 65.816 0.556 1.294

20 23 15.393 38.516 53.909 0.597 1.299

17 31 14.955 52.292 67.248 0.593 1.137

19 22 15.34 37.595 52.936 0.585 1.239

G2 69 88 15.842 159.509 175.352 0.552 4.356

63 92 15.312 165.862 181.175 0.555 4.114

68 84 15.524 154.628 170.152 0.543 4.38

71 94 15.827 174.877 190.704 0.538 4.486

83 119 15.576 217.792 233.368 0.546 5.329

65 89 15.829 168.625 184.455 0.528 4.106

71 97 15.784 182.495 198.279 0.532 4.498

71 93 15.514 169.24 184.755 0.55 4.577

59 79 15.399 144.898 160.297 0.545 3.831

52 61 15.416 107.469 122.886 0.568 3.373

G3 158 191 15.944 349.005 364.949 0.547 9.91
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Evaluation

The evaluation segment of this thesis explores the proposed methodologies in a
comprehensive manner. Section 5.1 focuses on illuminating and contrasting the
profiles generated for Accelerate, Archer, and Archer-Edge. In 5.2, we elucidate the
performance enhancements observed in Archer-Edge compared to Archer, alongside
an examination of the benchmark outcomes.

5.1 Comparing profiles for Accelerate/Archer/Archer-

Edge

A critical part of this paper was the evaluation of the performance of different li-
braries on nllb-moe-54b model (206 GB). As previously observed, the inference
performance of Accelerate on a large MoE model is notably suboptimal. When
attempting to process 12 input tokens and generate 26 output tokens, Accelerate’s
performance deteriorated significantly, requiring more than 2000 seconds to com-
plete. Despite my efforts to execute the benchmark script with Accelerate, the
process was excessively time-consuming, eventually compelling me to terminate it
due to the constraints on available time.
Further analysis reveals that Archer achieves an average bandwidth of 1.8 GB/sec-
onds approximately on the Orin platform whereas Accelerate achieves around 1.2
GB/seconds approximately.

Table 5.1 presents an overview of the inference latency for Accelerate, Archer,
and Archer-Edge utilizing the most up-to-date code. As we can see in table 5.2 there
is a speed-up of 14x in Archer while comparing it to Accelerate, we have already
discussed the reasons for slowness in Accelerate in 4.2.

The suboptimal performance of Accelerate can be attributed to its lack of con-
sideration for the inherent sparsity of the MoE (Mixture of Experts) model. This
shortcoming becomes apparent in its handling of data transfer operations. Unlike
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Model Checkpoint Size Tokens Accelerate Archer Archer-Edge

facebook/nllb-moe-54b 206 GB 38 2095.7 sec 147.33 sec 71.76 sec

Table 5.1: Model Performance Comparison on NLLB-MoE-54b

Accelerate to Archer Archer to Archer-Edge Accelerate to Archer-Edge

14x 2.2x 29x

Table 5.2: Inference Speed-up Comparison between Accelerate/Archer/Archer-Edge

Archer, which employs a selective approach by transferring only activated Experts,
Accelerate transfers all Experts for a given layer from the disk to the GPU.

5.2 Improvements in Archer-Edge compared to base-

line

Figure 5.1: Input and Output Latency Plots for Archer vs Archer-Edge

(a) Input Latency Plot Archer vs Archer-Edge (b) Output Latency Plot Archer vs Archer-Edge

The information gleaned from Plot 5.1a and 5.1b shows the input and output
latency comparison for Archer vs Archer-Edge. The x-axis of the graph represents
the number of input/output tokens, and the y-axis represents the input/output latency
in seconds. It indicates that Archer-Edge exhibits reduced input/output latency
compared to Archer as the count of input tokens rises. This trend remains consistent
for output latency as well.
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Figure 5.2: Overall Inference Latency Archer Vs Archer-Edge

Figure 5.3: Throughput Plots for Archer vs Archer-Edge

(a) Input Throughput Plot Archer vs Archer-Edge (b) Output Throughput Plot Archer vs Archer-Edge

The image 5.2 shows a graph of the overall latency comparison between Archer and
Archer-Edge. The graph is a line graph, with the x-axis representing the number of
input and output tokens, and the y-axis representing the overall latency in seconds.
The blue line represents the latency for the Archer, and the orange line represents
the latency for the Archer-Edge. As the number of input and output tokens increases,
the latency for both models increases. However, the Archer-Edge has consistently
lower latency than the Archer.

The images 5.3a & 5.3b show graphs of the throughput comparison based on in-
put/output tokens for Archer and Archer-Edge. The x-axis of the graph represents
the number of input/output tokens, and the y-axis represents the throughput in tokens
per second. The blue line represents the throughput for Archer, and the orange line
represents the throughput for Archer-Edge. As the number of input/output tokens
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increases, the throughput for both models increases. However, the Archer-Edge
has a consistently higher throughput than the Archer.
In the context of input tokens, the throughput demonstrates a linear increase with the
expansion of token count for both Archer and Archer-Edge. Conversely, concern-
ing output token generation, the throughput remains constant for both Archer and
Archer-Edge despite an escalation in token quantity.

5.3 Limitations in Archer-Edge

It is crucial to emphasize that Archer-Edge exhibits superior performance compared
to Archer. However, it’s important to note that certain issues, which remain unre-
solved due to the time constraints imposed by this thesis project, are imperative to
address for the sake of Quality of Results (QoR).

• Archer-Edge faces a PyTorch issue wherein the tensor for certain weights
fetched from the disk is not being appropriately configured.

• In both Archer and Archer-Edge, the process of prefetching has resulted in I/O
contention. While Archer’s prefetching strategy aims to proactively retrieve
weights from disk to the GPU for optimal GPU usage, this approach is causing
an Out of Memory (OOM) error on the Edge platform.



Chapter 6

Conclusions

This thesis paper was a novel attempt to deploy a large MoE model on Edge GPU.
The following points are the main contributions of this paper:

• Exploration of unified memory architecture. Understanding the major differ-
ences between a normal server GPU compared to an Edge GPU.

• Archer surpasses Accelerate significantly in terms of inference latency, achiev-
ing a substantial 14x speed-up in overall inference speed.

• Developed Archer-Edge that is compatible with the unified memory architec-
ture of Edge GPU.

• Showed a 2.2x speed-up in inference latency in Archer-Edge when compared
to Archer. Archer-Edge beats Archer in throughput metric as well.

• Issues that need to be addressed in Archer-Edge.

Addressing the persistent PyTorch problem in Archer-Edge is imperative for
enhancing the Quality of Results (QoR) of the machine translation (MT) task. There
exists significant potential for achieving improved outcomes by resolving the IO
contention issue associated with prefetching on the Edge GPU. In conclusion, this
investigation has been a captivating endeavor carried out within the confines of
restricted time. The ongoing surge in the prominence of extensive language models
and their broad acceptance underscores the need for enhancements in inference speed.
This study aims to further enhance research effectiveness in harnessing large-scale
deep learning models on mobile Edge devices.
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Figure A.1: Profile with Archer
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Figure A.2: Profile with Archer-Edge
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