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Abstract
To interact effectively with the world around us, we need to learn how to control complex
dynamic systems. In this project, we investigate human goal-directed behaviour in
dynamic control tasks. Specifically, we draw on a novel type of control environment
based on “Ornstein–Uhlenbeck” (OU) networks which simulate causally related variables
over time through Gauss–Markov processes. We are interested in the extent to which
effective control relies on developing representations of the causal structure and dynamics
of this task environment. Recent studies found that people are best described by a
simple control strategy when interacting with continuous-time OU networks, suggesting
they represent only the minimal amount of structure needed to achieve a control goal
(Davis et al., 2018, 2020b). Here, we examine control behaviour in a more challenging
control task featuring multidimensional sequential decision-making and discrete time
intervals. While participants exhibit behavioural markers that are linked to simpler
control strategies, a more complex environment elicits interventions best described by
models with a more sophisticated representation of the task structure.

Keywords: dynamic control, causal learning, dynamic systems, computational
modelling, cognitive modelling, intervention, reinforcement learning
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Chapter 1

Introduction

Many tasks in our day-to-day lives require us to control or interact with complex dynamic
systems whose structure is initially unknown, ambiguous or inherently uncertain to
us. A farmer, for example, needs to remain flexible to accommodate daily changes
in weather patterns, as well as unforeseen events such as disease outbreaks or market
fluctuations. Consequently, farmers must learn which components of their environment
lead to a healthy yield to make timely and effective interventions on their crop’s growing
conditions. For example, they may need to adjust the amount of water in a different
way if a crop is not growing well due to lack of sunlight than if it is due to poor soil
quality. At the same time, they must remain sensitive to the potential impact of water
adjustments on soil degradation or even the risk of crop damage.

Goal-directed learning and complex problem-solving are crucial cognitive activities
to carry out effective actions in both everyday and professional settings. What makes
interacting with naturalistic environments so complex is that they typically involve a
combination of rich, often non-linear, and random relations between different variables
that may be continuously changing, either as a direct consequence of our actions,
autonomously, or both (Simon, 1962; Waldrop, 1993; Holland, 2014). Therefore, an
important question is how people accommodate these complexities when learning to
control a new task.

Recent work in causal cognition has explored many of the complexities of goal-
directed learning in real-world scenarios, isolating factors like stochasticity, interventions,
time, and continuous variables, both individually (e.g., Bramley et al., 2017, 2015, 2018)
and in combination (e.g., Davis et al., 2020a; Rehder et al., 2022). These studies show
that people effectively construct causal representations of the task environment simply by
observing or intervening in a task when they are explicitly asked to do so. Additionally,
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Chapter 1. Introduction 2

a substantial body of work has examined people´s ability to control various complex
dynamic tasks (Osman, 2010). However, a majority of these studies do not formalise
the properties of more complex and realistic dynamic systems and, as a result, they
are unable to discern how control performance relies on learning the system structure
(Kirlik, 2007). Thus, the extent to which structure representations, particularly causal
ones, influence control performance in tasks that are not aimed at maximising our
knowledge about their underlying environment remains unclear.

In this paper, we investigate goal-directed behaviour in a challenging control task
that does not explicitly engage the participants in causal structure learning. We draw on
a novel class of dynamic systems developed by Davis et al. (2018, 2020b), capturing
some of the complexities of real-world dynamic environments while maintaining a
principled approach that enables formal analysis of causal structure learning. The paper
is structured as follows. First, we review relevant prior work on causal learning and
dynamic control. Next, we introduce the new framework for modelling dynamic systems
and detail three distinct computational accounts of causal structure learning of those
systems. We then report on a challenging control task where participants interacted with
the system. We find that participants exhibit some of the behavioural markers linked to
simpler control strategies. However, their interventions were best described by models
with a more sophisticated representation of the task structure.



Chapter 2

Background and Related Work

2.1 Causal Learning

A common paradigm for understanding the mind posits that we inherently seek to
develop and rely on rich, abstract representations of our environment in order to interact
with the physical and social world around us (Tenenbaum et al., 2011). In line with this
paradigm, a significant body of work on causal learning has established the relevance of
representing causal structure for accurately predicting outcomes, providing explanations,
and making effective responses within uncertain environments (Sloman, 2005).

Causal learning has been predominantly studied within static environments, where
people interact with deterministic causal structures between discrete variables. A typical
task, for example, would ask participants to discover the effect of a headache-relief
pill based on several patients who either take the pill or not, and observe if their
headaches get better or not. In such scenarios, causal structure can be defined in terms
of probabilistic contingencies, where a cause influences the probability of its effect
(Hitchcock, 2018). This probabilistic understanding of causality has paved the way
for the adoption of a well-established framework known as Causal Bayesian Networks
(Pearl, 2009) which has enabled researchers to formally represent the causal structure
between multiple variables as networks of probabilistic contingencies. Some studies,
for example, demonstrated that people’s causal structure judgments reflect the actual
contingencies between the variables in the network when they observed or intervened
in the network (Lagnado and Sloman, 2004; Griffiths and Tenenbaum, 2009; Holyoak
and Cheng, 2011). Similarly, research on active learning established that people can
intervene in the networks in ways that are effectively reducing their uncertainty about
the network´s true structure (Bramley et al., 2015; Coenen et al., 2015).
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Chapter 2. Background and Related Work 4

Describing causal structure in terms of contingencies has played a pivotal role in
establishing a principled analysis of causality in cognition. However, in many real-world
dynamic systems, people interact with causal relations that unfold over time and rely on
information that is autocorrelated, noisy or real-valued (Sloman and Lagnado, 2015).
Static task environments where temporal information is either uninformative or omitted
are not equipped to describe these complexities. Several studies have explored more
complex dynamics, finding that people are capable of constructing causal representations
in light of stochasticity (Bramley et al., 2017; Rothe et al., 2018), amongst real-valued
variables (Pacer and Griffiths, 2011), and for dynamics that unfold in time (Bramley et al.,
2014, 2018). Collectively, these investigations underscore our capacity to accommodate
some of the complexities inherent to realistic dynamic systems.

Most recently, Davis et al. (2020a) have developed a new type of task environment
which enables the study of multiple complexities of real-world causal learning at the
same time. In both of their papers, they simulate the dynamics of a set of causally
related, real-valued variables over time using Gauss–Markov processes. This framework,
referred to as an “Ornstein–Uhlenbeck” (OU) network, is able to model complex
non-linear phenomena such as feedback loops or oscillations. Crucially, it allows for a
systematic investigation of the types of causal representations people construct when
interacting with the task. The authors find that causal judgements were most accurately
described by a ‘local computations’ heuristic which represents causal relationships
between pairs of variables, rather than a normative model that represents entire causal
structures.

While research on causal learning has been valuable in demonstrating that people
are capable of constructing causal representations when their goal is to discover the
structure underlying a task environment, many everyday control tasks are not aimed at
maximising our knowledge. Here, we explore this aspect further by asking how and
to what extent people build structure representations when they are engaged in a task
other than discovering causal structure. Davis et al. (2018, 2020b) have recently adapted
their OU network formalism to study human control. We thus see the current project as
extending David et al.’s analyses of complex dynamic learning and control.

2.2 Dynamic Control

The work presented here connects closely to the literature on control behaviour in
complex dynamic environments. Control has been extensively studied in a variety of
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tasks such as complex problem-solving tasks (Burns and Vollmeyer, 2002), computer-
simulated scenarios (Brehmer and Dörner, 1993), dynamic decision-making tasks (Berry
and Broadbent, 1984), microworlds (Brehmer, 2005) or naturalistic decision-making
tasks (Lipshitz et al., 2001), and spanning several research domains such as economics,
engineering or human–computer interaction. Here, we follow Osman (2010) and refer
to the tasks as complex dynamic control (CDC) tasks.

Two factors CDC tasks have in common are that they study sequential decision-
making in systems whose dynamics are hidden or initially unknown, and that these
systems change autonomously or as a direct consequence of our actions (Brehmer, 1992).
The tasks were primarily developed to evaluate people´s ability to successfully control
and make effective decisions in stylised, and often ill-defined, simulations of complex
real-world scenarios involving uncertainty, feedback loops, multiple goals or multiple
agents (Funke, 2001). However, a large body of research has started to unpack the
various psychological processes involved in performing control tasks such as attention,
implicit learning, memory, monitoring or planning (for a review, see Osman, 2010).

Theoretical explanations of the cognitive processes underlying control behaviour put
different weight on the extent to which people form and rely on abstract representations
of the task structure and parameters. Berry and Broadbent (1984, 1987), for example,
explored a task where people have to control the size of the workforce in a sugar factory
to achieve a specific level of production. They found that task performance was not
linked their ability to explicitly learn the structure underlying the task. These findings
prompted the development of instance-based learning theories (Berry and Broadbent,
1987), suggesting that people store task-specific properties at each task encounter and
use them to address similar situations, rather than focusing on task structure. In contrast,
Hagmayer et al. (2010) examined control behaviour within a system defined by a simple
causal structure. They found that when parts of the structure were changed people
responded in a way that suggests they had acquired knowledge of the causal structure
itself.

Most studies, including those presented so far, have investigated control behaviour
in static environments. This is because isolating the influence of structure learning
on control performance requires a formal specification of the properties and structure
that generate the task dynamics. This task has historically been challenging, especially
in more complex control environments (Kirlik, 2007). Similarly, other studies that
examine more complex dynamics without formalising their properties have struggled to
determine whether control performance stems from the peoples’ ability to learn structure
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representations or the controllability of the task itself (Lipshitz and Strauss, 1997). One
exception is the work of Davis et al. (2018, 2020b), who use the OU network formalism
to define the dynamics of a complex dynamic control environment. In both of their
papers, the authors conduct a systematic analysis of the conditions in which people
develop causal structure representations, finding that people were best described by a
simple control strategy that uses minimally complex structure representations.

We differ from the work of Davis et al. in two respects. First, while the OU network
formalism permits the modelling of complex phenomena, their control task did not
require participants to engage with the full complexity of the task environment, making
minimal structure representations sufficiently effective. This paper considers a more
challenging control task involving two control variables (rather than one) and discrete
intervals (instead of continuous time). With these modifications, we aim to introduce a
level of realism that engages the complex problem-solving behaviour we are interested
in. Second, Davis et al.’s models were highly correlated. In our task, the incorporation
of discrete time intervals and multiple control variables leads to a significantly expanded
set of feasible actions, enabling a more nuanced investigation of goal-directed behaviour.



Chapter 3

Framework

In this paper, we present a dynamic control task in which participants have to adjust
two sliders to place a target variable in a target region without knowing the process
that generates the movement of the target variable. A reward function provides a scalar
value as feedback, where positive rewards are given when the target variable´s value
falls within the target region, encouraging strategic adjustments of the two sliders.

The transition dynamics of the task are defined by a stochastic Markov decision
process (MDP), consisting of the two slider variables, A and B, and the target variable,
C, which change their state in discrete time steps. The three variables are causally
related and their interdependencies are determined by a causal structure. The structure
between the variables can be illustrated by a causal graph representing variables as
nodes and their conditional dependencies, i.e. causal relationships, as edges between
nodes (see Fig. 3.1).

Figure 3.1: Causal graphs examined in the experiment. All problem types were presented
in random order and counterbalanced between Groups 1 and 2. Regular and inverse
causal connections are depicted using black and white arrowheads respectively.

7



Chapter 3. Framework 8

To model how the dynamics of a causal structure unfold in time, we follow
Davis et al. (2018, 2020b) and define the state transitions of the variables based on
Ornstein–Uhlenbeck (OU) processes. OU processes are a type of stationary Gauss-
Markov process developed in the field of physics to describe the stochastic movement
of a variable toward a stable mean over time (Uhlenbeck and Ornstein, 1930). In the
context of control tasks, this is a convenient mathematical representation of a system´s
state because of the Markov property which ensures that the change of a variable depends
only on its current state. This property greatly simplifies the simulation of the control
environment and the modelling of different control strategies that interact with the
environment. Equation 3.1 expresses the change in the state of variable i, ∆vt

i , according
to the OU process.

P(∆ vt
i|ω,µi,vt

i,σ) = ω[µi − vt
i]+N(0,σ) (3.1)

Here, ω determines how fast the variable returns to the mean, µi is the mean that variable
i reverts to, vt

i is the value of variable i at time t and σ defines its variance.
The standard OU process can be modified to describe the causal influence of a set

of interdependent variables. Specifically, we assume that, when a variable is causally
related to others, it reverts to a non-stationary mean determined by a linear function of
the current states of its causes. Here, the change in the variable i, ∆vt

i, is given by,

P(∆ vt
i|vt ,ω,σ,θi.) = ω

[[
∑

j
θi j ∗ vt

j

]
− vt

i

]
+N(0,σ) (3.2)

where θi j expresses the strength and existence of a causal connection between variable i
and each of the other variables j, and vt

j is the value of variable j at time t. Formulated
for each variable within a causal structure, the set of interrelated OU processes, the
OU network, represents all causal relationships between the variables and, thus, fully
describes the dynamics of a causal system unfolding in time.

By adjusting the causal structure of the variables OU networks are able to represent
complex dynamics, including feedback loops and oscillations. Some of these more
complex relationships are explored in problem types four to six in this study, which
introduce feedback (see Fig. 3.1). A more detailed exploration of the emergent
behaviours within OU networks is provided by Davis et al. (2020a).

Finally, note that OU networks are of course not the only way to express the
dependencies and interactions between causally related variables over time (e.g.,
Griffiths and Tenenbaum, 2009; Pacer and Griffiths, 2011). More generally, they can be
considered a specific instance of a broader probabilistic modelling framework, Dynamic
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Bayesian Networks (DBNs), in which the functional forms describing the relationships
between variables and defining how multiple causal influences combine are specific to
OU networks (Koller and Friedman, 2009).



Chapter 4

Modelling

We now present three computational models of the cognitive processes underlying human
goal-directed learning and explore their qualitative predictions of causal learning in the
above control task. All models share the assumption that successful control involves
forming a representation of the causal structure generating the task dynamics. However,
the models differ in their predictions regarding the extent and complexity of those
representations, spanning from optimal learning (Causal Model Based Controller) to
heuristic mappings between variables (Local Computations Controller) and actions and
outcomes (Proportional-Integral-Derivative Controller). Moreover, the models choose
to apply their knowledge in different ways. While the first two use their representations
to project the effect of the different action choices into the future, the third model
employs its representation to steer actions based on a historical record of past errors.

4.1 Causal Model Based Controller

The Causal Model Based Controller (CMBC) (Davis et al., 2018, 2020b) gives a
normative account of goal-directed learning. Specifically, it predicts that individuals
learn to control the task as if they are guided by a distributional belief over all potential
causal structures underlying the task environment. Whenever new evidence is observed,
the CMBC updates its estimate of the posterior distribution over causal graphs. A causal
graph, g ∈ G, defines for every potential causal connection between two variables xi and
x j whether it is regular (θxix j = 1), inverse (θxix j =−1), or not existing (θxix j = 0). For
a causal structure with three variables, A, B and C, this representation allows for six
potential causal connections per graph, denoted as θg = [θAB,θAC,θBA,θBC,θCA,θCB].
As a result, the hypothesis space considered for the task in this paper contains 36 = 729

10
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possible causal graphs.
To compute the posterior probability of a particular causal graph, the CMBC

calculates the likelihood of the observed change in each variable and at each time step.
This is done considering the values of all variables at time t, as well as the specific values
of the causes of xi that are associated with the causal graph. We define the likelihood as,

P(∆vt
xi
|vt ,ω,σ,θxi.,g; It

i ) =

1 if It
i

N(ω(∑ j θxix j,gvt
x j
− vt

xi
),σ) otherwise

(4.1)

where ∆vt
xi

is the likelihood of the observed change in variable xi at time step t, vt holds
the observed values of all variables at time t, θxi.,g ⊂ θg is the set of causes of xi that
are associated with graph g, and ω and σ are the system parameters. The likelihood
of the observed change in a variable takes into consideration potential interventions
on the variable, as denoted by a binary indicator variable Iti. The indicator variable
takes the value true (1) if the variable has been intervened on, and false (0) otherwise.
Multiplying the likelihood of all variables and for each previous time step gives the joint
likelihood of all observed variables at all time points,

P(v|g,I) =
N

∏
i=1

∏
t ′∈T

P(∆vt ′
xi
|vt ′,ω,σ,θxi.,g; It ′

i ) (4.2)

Here, v is the vector of observed values of all variables up to t, g is the causal graph,
I is the set of interventions up to t, T denotes the set of all previous time steps up to
time t and N is the total number of variables. To obtain the posterior probability of the
causal graph, the likelihood is multiplied by the prior probability of the graph (uniform
distribution) and then normalised by the evidence, as expressed in Equation (4.3).

P(v|g,I) = P(v|g,I)P(g)
∑g∈G P(v|g,I)P(g)

(4.3)

The CMBC uses its best estimate of the causal structure to choose the action that
maximises immediate reward. For this purpose, the model engages in planning; it
selects the causal graph with the highest posterior probability and projects the effect of
each possible action choice on the control outcome several time steps into the future.
The expected reward of a particular action choice is determined based on integrating the
distribution of the target variables’ projected values that fall within the target region.
Equation (4.4) defines the expected value of a particular action choice a at time t as the
sum of discounted expected rewards.

EVt(a|g∗) = ∑
k

γ
k
∫ rmax

rmin

N(µT ;s)dx (4.4)
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Here, g∗ is the graph with the highest posterior probability, k is the number of projected
time steps, γ is a discount factor, rmin and rmax define the limits of the target region and
µ is the simulated mean state of the target variable. The locally optimal action at time t
is that which maximises the expected value,

At
.
= argmax

a
EVt(a|g∗) (4.5)

For the task in this paper, we project the impact of a choice for three consecutive
time steps and discount it with γ = 0.9.

4.2 Local Computations Controller

The Local Computations (LC) Controller (Davis et al., 2018, 2020b) offers a compu-
tationally less demanding account of goal-directed learning compared to the CMBC.
Inspired by the local computations heuristic, the LC Controller operates under the
assumption that people simplify complex causal learning problems and only consider
causal connections between pairs of variables (Fernbach and Sloman, 2009). Accord-
ingly, the model estimates the causal connections between two variables considered in
isolation rather than estimating the entire causal structure at once. Similar to the CMBC,
the LC Controller uses its pairwise estimates to simulate potential future trajectories for
all possible actions and determine the optimal course of action. We can formalise the
LC Controller by adapting Equation 4.1 as follows,

P(∆vt
xi
|vt ,ω,σ,θxi.,g; It

i ) =

1 if It
i

∑ j N(ω(θxix j,gvt
x j
− vt

xi
),σ) otherwise

(4.6)

Although pair-wise causal structure representations are very efficient, they introduce
a systematic bias when two variables are mediated by a third (Davis et al., 2020a; Rehder
et al., 2022). Consider, for example, the causal chain A → B →C (θBA, θCB = 1, θAB,
θAC, θBC, θCA = 0). While A and C are not directly causally related, changes in A will
indirectly influence the value of C, resulting in a correlation between the two variables.
The CMBC would correctly infer no direct connection between A and C because it
considers all causal influences of C simultaneously. However, the LC is prone to infer
A →C in addition to A → B and B →C because it cannot account for the mediating
role of B by considering causal links in isolation.

This behaviour produces a testable claim that can be compared to human causal
judgements. Figure 4.1 (B) displays the accuracy of the models in detecting causal
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connections based on link types across all the problem types examined in this paper.
The LC model performs worse than the CMBC at identifying indirectly mediated links
(e.g., θAC in the above example), while the models are on par for direct links (e.g., θAB

and θBC).

Figure 4.1: Accuracy of the computational models at identifying causal connections by
effect type (A) and link type (B) assuming the most probable graph is selected at the
end of each trial. Results are averaged over 100 simulations of each problem type used
in the experiment (see Fig. 3.1).

4.3 Proportional-Integral-Derivative Controller

The Proportional-Integral-Derivative (PID) Controller offers the most heuristic account
of goal-directed learning out of the three models. Originally developed for industrial
process control, the algorithm has been found to align well with how people generate
actions in dynamic control tasks (Ritz et al., 2018; Davis et al., 2018). It predicts that
people only consider the effect of their actions on the control outcome and adjust them
based on the discrepancy between desired and actual outcomes. Equation 4.7 captures
the error (et) between the mean target region and the state of the target variable (vt

C),
where rmin and rmax define the limits of the target region.

et =
rmin + rmax

2
− vt

C (4.7)

To bring the target variable closer to the desired target region, the PID Controller selects a
corrective action based on a weighted combination of the current error (P), accumulated
error over time (I), and the rate of error change (D) as shown in Equation (4.8).

ut = KPet +KI

t

∑
n=1

en +KD(et − et−1) (4.8)
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Here, KP, KI , and KD denote the coefficients for the proportional, integral, and derivative
terms of the PID Controller, respectively.

To achieve meaningful corrective actions, the PID Controller considered in this paper
estimates the causal connections between sliders A and B, and the target variable C.
Other causal links are assigned randomly. In case the PID Controller predicts that both
sliders are causes of the target variable it randomly chooses which slider to intervene on.
Equation 4.9 defines the corrective action given the weighted error (ut), and previous
state (vt−1

x j
).

At
.
= θCx jut + vt−1

x j
(4.9)

Here, θCx j denotes the weight of the slider that the PID Controller intervenes on.
Importantly, this behaviour predicts that people deviate systematically from normative
causal inferences. Figure 4.1 (A) illustrates the accuracy of the different models in
identifying causal connections by effect type, based on 100 simulations spanning all
problem types. In contrast to the CMBC and LC Controller, the PID Controller identifies
only the outgoing causal links from slider variables A and C to the target variable C at
above chance level.



Chapter 5

Method

5.1 Participants

100 participants (38 female, age M = 40.42, SD = 11.27) were recruited from Prolific,
a crowdsourcing platform for research. They were paid a base payment of £2.5 and
received additional performance-related bonus payments (M = £0.56, SD = £0.21).
The experiment took on average 20 minutes (SD = 9.40). In a post-task questionnaire,
participants rated the control task as engaging (M = 8.24, SD = 1.79) and difficult
(M = 8.68, SD = 1.61) on a ten-point scale ranging from 1 (lowest) to 10 (highest).
All procedures were approved by the School of Philosophy, Psychology & Language
Sciences Research Ethics Committee (PPLS REC).

5.2 Materials

Participants interacted with three variables, A, B, and C, represented by line graphs
on a dynamic chart (see Fig. 5.1). The variables changed their value in discrete time
steps following the OU process and adhering to a causal structure that determined
their interdependencies. Two of the variables, A and B, were additionally presented as
vertical sliders. The sliders could be interacted with, by clicking, dragging and holding
their handle to adjust the values of variables A and B and override the state of the OU
process. The slider values were rounded to integers and restricted within the range of
−100 and 100. The goal of the task was to place the third variable, C, in a target region
between the values of 35 and 65 that was coloured in yellow. A timer at the top of the
page recorded the steps taken, from 0 to 40, at an increment of two seconds.

On completion of a trial, six queries were presented, each corresponding to a

15
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potential causal relationship between two of the three variables (see Fig. 5.2). The
responses were classified as ‘Regular’, ‘Inverse’ or ‘None’, equivalent to an attracting
relationship (θ > 0), repelling relationship (θ < 0), or no causal relationship (θ = 0)
between two variables respectively. Each query was accompanied by a confidence rating
on a seven-point scale ranging from 1 (‘not confident’) to 7 (‘very confident’).

Figure 5.1: The dynamic control task as it is presented on a computer screen. The
dynamic chart with three line graphs is updated in discrete intervals and according to
the OU process and causal graphs. Control variables, A and B are presented as sliders.
The slider values, ranging from -100 to 100, are by default updated as a function of the
states of their causes or upon participant intervention.

Figure 5.2: Excerpt of the causal queries following each control task. Not shown here
are the queries on B → A, C → A and C → B.
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5.3 Stimuli and Design

Participants interacted with six causal graphs presented in random order over the course
of six trials. The causal graphs consisted of common causal networks, including chain
and common cause networks, as well as, more complex networks including feedback
loops (see Fig. 3.1). All causal networks were chosen such that they exhibit a direct
‘Inverse’ link, θ = −1, from one of the controlled variables, A and B, to the target
variable C. The structure of the network was systematically varied across trials to
mitigate any potential effects or preferences associated with the position of the sliders or
the order of the slider manipulation (cf. Group 1 and 2, Fig. 3.1). The parameters of
the OU process were set to ω = 0.5 and σ = 5. The causal relationships were limited
to θ = [−1,0,1] for a repelling relationship, no relationship, or attracting relationship
respectively. Slider values were updated every two seconds in accordance with the OU
process.

5.4 Procedure

After giving their informed consent (see Appendix C), the participants completed an
instruction phase informing them about the nature, duration and control goal of the task.
The instruction phase included a series of slides and a 40-second video demonstration
of the task showing each slider being manipulated twice, by clicking and dragging
the slider handle. Participants needed to successfully complete a comprehension quiz
consisting of four questions to proceed to the task. The purpose of this quiz was to make
sure participants had understood (1) how to manipulate variables A and B through slider
intervention, (2) that there exist conditional dependencies between the variables, (3) the
relationship between placing variable C in the target region and earning bonus payment,
and (4) the goal of the task of maximising their bonus pay. They had the opportunity to
review the instructions and retake the quiz until all questions were answered correctly.

In the main phase of the experiment, participants completed six trials of the control
task, with each trial lasting for 40 steps (i.e. 80 seconds). To initiate a trial, participants
pressed a ”Start” button located at the bottom of the page, triggering the variables to
start updating according to the OU process and in 2-second intervals. Participants were
able to manipulate any slider by clicking, dragging, or holding it at any desired value,
thereby overriding its behaviour within the OU process for that specific step. Once
intervened upon, the other slider was temporarily disabled for that step. Upon releasing
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a slider, the variable resumed its movement in accordance with the OU process on the
next step. Each step that variable C was successfully placed in the target region the
bonus pay increased by approximately £0.01, and until it reached a maximum bonus pay
of £1.50. At the end of each trial, participants were presented with six causal queries
and were required to enter a judgment and confidence rating for all six potential causal
relations to proceed to the next trial. Participants were not informed about the causal
queries in the instructions ahead of the task.

Following the completion of all six trials, participants completed a short post-task
questionnaire, which included a free-text prompt to describe the strategies they used to
solve the tasks.



Chapter 6

Results

6.1 Controllability

Across all six problem types, participants scored on average 7.83 (SD = 5.48) points
out of a possible 40 points in the task, which is significantly higher than what would
be expected by chance alone, t(99) = 9.69, p < 0.01. They also significantly improved
control performance within a trial, as shown by a linear regression of the proportion
of participants receiving rewards on the number of steps taken, b = 0.005, t(244) =
20.06, p < 0.01 (see Fig. 6.1 (A)). Participants were more likely to score rewards as
the experiment progressed, as demonstrated by a linear mixed model analysis of the
proportionate rewards earned on trial number and with subject-level intercept (b = 0.37,
t(99) = 2.96, p < .01, R2 = 0.62). The results suggest participants were able to transfer
task-related knowledge to subsequent trials.

Figure 6.1: (A) Proportion of participants receiving a reward (scoring) per time step,
with each data point colour-coded based on the problem type (cf. (B) for reference). (B)
Boxplot of participant scores by problem type.

There was no significant difference in mean performance between the causal graphs

19
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in Group 1 (M = 7.45, SD = 5.71) and Group 2 (M = 7.45, SD = 5.49), t(595) = 0.004, p
= 0.99, indicating that there were no apparent effects associated with the positioning of
the two sliders (cf. Group 1 and 2, Fig. 3.1). Therefore, we present the data collapsed
over groups in the remaining analysis. Moreover, a one-way repeated measures ANOVA
was conducted to assess the effect of the problem type on the amount of reward collected
(see Fig. 6.2), revealing no significant effect, F(5, 495) = 1.59, p = 0.16, generalised η2

= 0.01. This outcome was expected, given that all graphs were intentionally designed to
demonstrate a direct inverse connection from one slider to the target, resulting in similar
levels of difficulty in controllability.

6.2 Learnability

On the causal queries that followed the control task, participants were slightly above
chance level (0.33) at successfully identifying causal links (M = 0.39, SD = 0.10),
t(99) = 5.86, p < 0.01. However, accuracy did not increase as trials progressed. This
was demonstrated by a linear mixed model analysis of trial number on participants’
mean causal judgment accuracy with subject-level intercepts which yielded a non-
significant result, t(99) = −0.62, p = 0.54. Participants also did not identify overall
causal networks (M = 0.003, SD = 0.02), i.e., all six possible causal connections
in a causal graph, significantly above chance (36 = 0.0014), t(99) = 0.84, p = 0.20.
The participants’ relatively poor performance was reflected in their confidence ratings.
Overall, participants reported low confidence in their judgments (M = 2.82, SD = 1.87)
on a confidence rating from 1 (‘not confident’) to 7 (‘very confident’).

Figure 6.2: Participants’ accuracy in identifying causal links by (A) causal effect type
and (B) causal link type. Error bars represent standard errors of the mean.
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Consistent with the theoretical predictions of the PID Controller presented earlier,
participants were slightly more likely to identify existing causal connections in cases
where the sliders influenced the target variable (M = 0.42, SD = 0.18), compared to
cases that affected the slider variables (M = 0.27, SD = 0.19), t(99) = 7.06, p < 0.01 (see
Fig. 6.2(A)). However, their responses did not reveal a preference for simpler models.
Participants considered over half of the possible links to be causally related (M = 0.62,
SD = 0.23), a proportion significantly greater than the true ratio of causal links in the
underlying networks (0.50), t(99) = 5.00, p < 0.01.

Accuracy also varied with the type of causal connection (see Fig. 6.2(B)). Participants
were more likely to correctly identify direct (M = 0.35, SD = 0.15) or absent links (M
= 0.44, SD = 0.27) compared to indirect links (M = 0.26, SD = 0.33), i.e., those links
where two unrelated variables are correlated due to an interaction with a third variable,
F (2,198) = 11.64, p < 0.01. The results align with the predictions of the LC Controller,
suggesting that people often erroneously infer a direct causal relationship when two
variables are only indirectly related (e.g., A and C with θCA = 0 in A → B → C). It is
important to note, however, that the strength of this signal is relatively weak compared
to previous findings in causal learning tasks (Rehder et al., 2022).

6.3 Interventions

To succeed in the control task, effective interventions are essential. Here, we define
an intervention as the participant’s active choice to interact with the task environment
during each time step, instead of passively observing the task dynamics unfold. We
recorded interventions whenever the participant adjusted either of the two sliders by
clicking, holding, or dragging their handles, resulting in 18,838 interventions across
trials.

Throughout the trials, participants allocated a significant portion of their time to
interventions, spending on average 78% (SD = 16%) of the trial time intervening on
the sliders. The distribution was slightly skewed, with a median of 83% and a mode of
93%, mainly due to a few participants who only made a small number of interventions
across trials. The average time spent on interventions per trial slightly increased as the
experiment progressed, b = 0.44, t(99) = 4.00, p < 0.01.

Participants used both sliders extensively during a trial, distributing their interventions
evenly between sliders A (M = 40%, SD = 14%) and B (M = 41%, SD = 14%), t(99) =
-1.04, p = 0.30. The majority of interventions involved adjusting a slider for a single
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step followed by either inaction (M = 22%, SD = 14%) or intervening on the respective
other slider (M = 42%, SD = 18%). In cases where participants intervened on the same
slider for more than a single time step (M = 36%, SD = 16%), their interventions lasted
on average three time steps (SD = 1.78) and displayed considerable variability in the
range between the sliders’ maximum and minimum values (M = 64.84, SD = 54.00).
The observed ‘juggling’ behaviour, wherein participants alternate between sliders, was
unexpected considering that the causal graphs for all problem types (except for problem
type 6, as illustrated in Fig. 3.1) were designed to allow the control goal to be reached
through intervention on either slider individually.

We observed a degree of systematicity in participants’ slider adjustments during an
intervention. The average values of the sliders after interventions significantly differed
from what would be expected by purely random behaviour (with the exception of slider
variable B in problem type 2). Additionally, participants’ slider adjustments showed a
slight tendency toward optimal behaviour. For a detailed illustration of how participants’
average slider adjustments compare to optimal behaviour, please refer to Appendix A,
Figure A.1. Moreover, interventions were moderately correlated. A linear regression
analysis revealed a significant positive relationship (b = 0.60) between the value of an
intervention and that of the preceding intervention for each slider (t(16,955) = 92.85, p
< 0.01), indicating that participants adjusted their interventions based on the outcomes
of previous interventions (see Appendix A, Figure A.2).

6.4 Results Summary

Overall, participants recognised the significance of interventions for task control. They
understood the utility of adjusting both sliders in service of the control goal and the
varying effectiveness of different slider positions. However, their ability to intervene
effectively and learn the task’s causal structure was only moderate. While participants
displayed systematic causal judgment errors as anticipated by the LC and PID Controllers,
the signal strength of this behaviour was relatively weak. Thus, by inspection of the data
alone, it remains uncertain to what extent participants relied on abstract representations
of the task environment in their attempt to control the task.
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Model Comparison

We now evaluate the models on their ability to predict participant interventions in the
experiment. Fig. 7.1 shows the average reward curves of the models when they are
optimised for task performance. First, note that while the CMBC and LC Controller
perform nearly optimally across all problem types, the performance of the PID Controller
is noticeably lower. This decline can likely be attributed to the random component in the
behaviour of the PID Controller. The strength of PID Controllers lies in their ability to
provide coordinated adjustments of a single control variable. However, in this task, the
model selects the slider to intervene randomly whenever it has causal associations for
both sliders and the target. Introducing randomness disrupts this coordination, leading
to unnecessary or conflicting adjustments that do not effectively reduce the error or
achieve stability. Further, note that all three models outperform human participants,
likely because they do not account for decision noise or the possibility that no action is
executed. So, we proceed with a quantitative comparison of the models when they are
fitted to maximise the likelihood of participant data.

The three models generate action decisions for each time step in a trial, taking as
input the states of the three variables, A, B and C, and participant interventions. The
CMBC and LC Controller select an action based on a vector of expected values over
all action choices. To accommodate for potential decision noise when choosing an
appropriate action, the vectors of expected values are passed through a softmax function,
converting it into a probability distribution over action choices,

P(⃗z)i =

ezi

τ

∑ j
ez j

τ

(7.1)

where z⃗ denotes the vector of expected values, zi denotes the ith element of z⃗ and τ is
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Figure 7.1: The proportion of possible reward received over the course of a trial by
condition. Blue lines represent participants; red lines the CMBC Controller; green
lines the LC Controller and purple lines the PID Controller. Error bars denote 95% CI
(normal approximation to binomial). The data is collapsed over groups.

a temperature parameter. The temperature is fitted to maximise the log-likelihood of
participant actions, adjusting the smoothness of the probability distribution. Higher
values of temperature result in increased decision noise.

The PID Controller provides a single action which adjusts one of the sliders in
proportion to its error. We represent the selected action (z∗) as a one-hot vector over
possible values of the selected slider (z⃗∗). The probability of selecting action zi can be
constructed based on two cases. In the first scenario, where only one slider is predicted
to be causally relevant, the probability distribution is given by,

P(⃗z)i =


ε

|⃗z|
+(1− ε)P(zi|z∗,σ) if zi ∈ z⃗∗

ε

|⃗z|
otherwise

(7.2)

where ε is a small value between 0 and 1, and |⃗z| represents the total number of actions.
If zi belongs to the set of actions associated with the chosen slider z⃗∗, its probability
consists of a base probability,

ε

|⃗z|
, and a weighted probability derived from a Gaussian

probability density function centred around the position of the one-hot vector with value
1. In the second scenario, where the model faces a choice between sliders A and B, the
distribution is adjusted as follows,

P(⃗z)i =
ε

|⃗z|
+(1− ε)

1
2

P(zi|z∗,σ) (7.3)
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Here, action zi is chosen from the sliders, A or B, with equal probability, weighted by a
Gaussian probability density function centred around each slider’s chosen value. The
base rate ensures every action has a minimal probability of being selected. Similarly,
to the temperature parameter, the standard deviation (σ) is estimated from the data to
control for decision noise.

For all models, we fit a parameter (α) that scales the probability distribution over
action choices with a vector that accounts for steps where no action is executed,

[P(⃗z)(1−α),α] (7.4)

The three models are evaluated against a baseline which assumes each action is randomly
selected from the space of possible action choices. No parameters were fitted for the
baseline.

Models NLL BIC τ α σ ε Mean
BIC

Number
Best Fit

Baseline 143,974 287,949 2879.49 1
CBMC 125,395 250,810 5018.68 0.22 2503.81 56
LC 125,435 250,890 8404.72 0.22 2505.28 39
PID 127,592 255,214 0.22 150.22 0.99 2704.39 4

Table 7.1: Results of the model comparison. All models were fitted to maximise the
log-likelihood of participant actions.

Figure 7.2: Evaluation measures for all models against the baseline. (A) Mean Bayesian
Information Criterion (BIC) value per participant. (B) Number of participants best fit
by each model as a function of BIC.
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Table 7.1 summarises the results of the model comparison. For each model, we
report the negative log-likelihood (NLL) and the Bayesian Information Criterion (BIC)
at the experiment level with their associated fitted parameter values, as well as, the
mean participant level BIC value (Mean BIC) and the number of participants best fit
by each model (Number Best Fit). A posthoc Chi-squared test confirmed a significant
deviation from a uniform distribution in the number of participants best fit across models
(χ2

3 = 53.03, p< 0.01). Across all participants, the CMBC Controller had the lowest
BIC score (see Fig. 7.2). On a per-participant level, 56 out of the 100 participants were
best fit by the CMBC and the LC Controller gave the best account for 39 participants.
Four participants were best represented by the PID Controller and one by the baseline.
The results suggest that participant interventions in the task are best described by a
control strategy with more complex causal structure representations, rather than relying
on more heuristic representations.
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Discussion

In this paper, we examined human goal-directed behaviour in the context of dynamic
control tasks. Our focus was on understanding the extent to which effective control
relies on developing representations of the structure and dynamics of a task environment,
especially, when the environment exhibits multiple complexities of real-world dynamic
systems. To address this, we designed a challenging control task featuring multidi-
mensional sequential decision-making within discrete time intervals. We found that
participants displayed some of the behavioural markers linked to simpler representations
of the task structure. However, when considering interventions overall, models with a
more sophisticated representation provided a better description of their behaviour.

The task dynamics were generated by a new class of dynamic systems with attractive
properties for the study of causal learning. Previous research either lacked precise
formalisations of the task dynamics (as seen in Lipshitz and Strauss, 1997) or greatly
simplified the dynamics by considering static environments (e.g., Hagmayer et al., 2010).
As a result, these studies were either unable to analyse the extent to which control relies
on causal representations or failed to capture the dynamics of many real-world situations
adequately. Here, we were able to achieve both objectives. Firstly, by formalising the
dynamics of causally related variables over time, the OU network is able to replicate
some real-world complexities such as oscillations and feedback loops. Additionally,
the OU network enabled us to specify different models that predict the data-generating
dynamics of our task at different levels of complexity. This, in turn, allowed us to isolate
causal structure learning from other aspects that contribute to control performance and
conduct a formal analysis of causal structure learning in the task.

While OU networks have the potential to generate complex dynamic phenomena in
theory, they must be embedded in a suitable control task to engage the type of complex
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problem-solving behaviour we are interested in. In previous studies, participants
interacted with OU networks in continuous time through manipulation of a single
slider (Davis et al., 2018, 2020b). However, this task set-up did not require them to
engage with the full complexity of the task dynamics. As a result, simple strategies
with minimal structure representations proved sufficient. In this project, we aimed to
address these limitations by devising a more challenging control task. We introduced
intervals, which provide a higher level of realism compared to a discrete task set-up
while imposing a lower temporal resolution than continuous-time settings which comes
at the cost of reduced information. Additionally, we added a second control variable
which created a multidimensional decision-making context, prompting participants
to assess the combined impact of both sliders on the target variable. We found that
these changes drastically reduced the controllability and learnability of the task. At the
same time, participants displayed a tendency to make systematic errors in their causal
judgments. The observed errors were consistent with the predictions of more heuristic
causal structure representations, suggesting they had formed representations between
pairs of variables (Fernbach and Sloman, 2009; Davis et al., 2020a) and with a focus on
representing actions and their outcomes (Davis et al., 2018, 2020b).

To attain a deeper understanding of causal structure learning in our task, we examined
participant interventions. By introducing discrete time intervals and multiple control
variables we effectively broadened the scope of possible interactions with the task
compared to previous instantiations of the OU network. This notably larger set of
feasible actions enables a nuanced investigation of goal-directed behaviour. For example,
we found that participants alternated between the two sliders at almost every time step,
even though most of our problem types allowed for simpler control strategies such as
intervening on a single slider. This behaviour might stem from a belief that manipulating
both sliders simultaneously provides a sense of greater perceived control or achieves
a more desired outcome, even when simpler strategies might suffice. Alternatively,
manipulating both sliders might also have been perceived as the only way to address
the complexity of the task. However, the greater scope of actions becomes especially
relevant when comparing the different models of goal-directed learning on their ability to
fit participant interventions. This is because variations in the models’ control strategies
are more likely to stand out (Palminteri et al., 2017). Here, we found that participant
interventions were best described by a normative account of control with a sophisticated
causal structure representation, despite the fact that their explicit judgments had displayed
some of the behavioural markers linked to simpler representations.
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This project was exploratory in nature and there are several limitations that could
be addressed with future experiments. Firstly, managing two sliders simultaneously
likely increased cognitive load as the participants needed to process and coordinate
information from both sliders. Moreover, the observed multitasking, where participants
alternated between sliders, likely led to divided attention and potentially compromised
the effectiveness of the participants’ control strategies. Future studies could simplify
the task set-up by separately exploring the effects of two control variables or discrete
time intervals. Next, while the computational models presented here varied in the
extent to which they rely on causal structure representations, we have not been able to
successfully disintegrate their behavioural signatures in the task. Further investigations
could examine heuristic strategies or processing limitations with clearly dissociable
behaviours. Finally, the success of models with sophisticated representations of the task
structure might be partly linked to the limitations of the PID Controller in handling tasks
involving multiple control variables. For subsequent analysis, researchers may prioritise
maintaining a consistent action selection mechanism to separate the impact of different
task representations from the effectiveness of various action selection mechanisms.

Goal-directed behaviour and complex problem-solving are challenging to study
because they rely on intricate cognitive processes that likely involve a range of cognitive
capacities at once. The OU network allowed us to adapt the formal analyses of the causal
learning literature to the context of control tasks and isolate the role of causal structure
learning from other aspects of control performance. We believe that this formalism,
alongside well-designed control tasks, provides a fruitful experimental framework to
unpack the role of causal learning in dynamic control and has the potential to contribute
to many disciplines that study or rely on successful control strategies such as machine
learning and artificial intelligence, engineering or economics.
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Appendix A

Participant Interventions

Figure A.1: Participants’ average slider adjustments over the course of a trial, categorised
by problem type. Blue lines represent adjustments made on Slider A, red lines represent
adjustments on Slider B. Optimal adjustments based on a complete understanding of the
problem type’s causal structure are illustrated by dashed lines. Error bars denote 95%
CI (normal approximation to binomial). The data is collapsed over groups.
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Figure A.2: Distribution of the change in slider value after intervention by time step.
The change is computed with respect to (A) the slider value on the previous time step and
(B) the slider value after the previous intervention on the slider. Results are presented
collapsed over both sliders.
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Participant Response Profiles

36



Appendix B. Participant Response Profiles 37

Figure B.1: Participant Response Profiles (Condition = 1 and Group = A). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.2: Participant Response Profiles (Condition = 1 and Group = B). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.3: Participant Response Profiles (Condition = 2 and Group = A). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.4: Participant Response Profiles (Condition = 2 and Group = B). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.5: Participant Response Profiles (Condition = 3 and Group = A). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.6: Participant Response Profiles (Condition = 3 and Group = B). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.7: Participant Response Profiles (Condition = 4 and Group = A). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.8: Participant Response Profiles (Condition = 4 and Group = B). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.9: Participant Response Profiles (Condition = 5 and Group = A). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.10: Participant Response Profiles (Condition = 5 and Group = B). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.11: Participant Response Profiles (Condition = 6 and Group = A). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Figure B.12: Participant Response Profiles (Condition = 6 and Group = B). Variables A,
B, and C are represented by the colours blue, red, and green respectively. Dots illustrate
interventions.
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Participant Information Sheet and
Consent Form
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Figure C.1: Participant information sheet and consent form as presented at the beginning
of the study.


