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Abstract

Factual knowledge extraction for generating knowledge triples from large language

models (LLMs) has raised surging interest in the natural language processing (NLP)

community in recent years. A variety of works have been proposed in order to improve

the accuracy of extracted knowledge based on optimizing the prompts since prompting

is a computationally cheap way to interact with LLMs. However, an increasing number

of researchers point out that there exists severe undesirable bias among prompt-based

models such as prompt preference bias and prompt verbalization bias. Besides, as

far as we learn, there is no work investigating other tuning methods except prompt

tuning such as adapter tuning, which is a recent popular parameter-efficient tuning

method. In this thesis, to make a comprehensive measure of the prompt verbalization

bias, we first create ParaTrex dataset utilizing the large language models and through

strict human supervision. ParaTrex is shown to have better diversity and larger scales

than the existing paraphrased dataset. Secondly, to mitigate the biases in prompt-

based models as well as fill in the gap of research of adapter-tuning on knowledge

probing, we propose a unified adapter-based framework Uni-Arkex for mitigating both

prompt preference bias and prompt verbalization bias. Experimental results show the

competitive performance of adapter tuning. Moreover, they present that adapter-tuning

helps our proposed framework achieve new state-of-the-art results in extraction accuracy

while simultaneously successfully reducing both of these biases. Sufficient analyses are

conducted to show the adapter’s excellent compatibility with multi-task frameworks

and the synergizing effect of synchronously optimizing those two biases through our

proposed framework.
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Chapter 1

Introduction

Pretrained large language models (LLMs) are now widely employed in the field of

natural language processing(NLP) and have achieved impressive capabilities across

various downstream applications [31] [30]. They are called large language models since

these models contain millions, or billions of parameters and are pre-trained on huge

amounts of public corpus. A crucial reason behind the success of LLMs is shown to be

the inherent knowledge stored in their parameters learned through pre-training, which

includes world knowledge [39], relational knowledge [46], commonsense knowledge[8]

and etc. However, as neural networks are widely considered as a black box system,

the inherent knowledge within language models is typically encoded in a diffused

manner, leading to challenges in both interpretation and updating the knowledge inside.

Contrarily, Knowledge Bases(KBs) are easier to modify and more trustable to access

the required knowledge in practice. Hence, there is a rising interest from researchers to

investigate how to treat LLMs as KBs by measuring and extracting factual knowledge

directly from LLMs.

LAMA [39] is the first and most popular benchmark for measuring the extracted

factual knowledge from LLMs. In LAMA, factual knowledge is represented as triples

<subject, relation, object> and is extracted through the query <subject, relation, ?>

and a manually designed prompt template. For example, regarding a specific query

<Barack Obama, place of birth, ?> , we query LLMs using the prompt:“Barack Obama

was born in [MASK]” to extract factual knowledge. Since searching for optimal prompts

has long been a problem within prompt-based models [31], massive existing research

focuses on automatically optimizing the prompt templates. For discrete prompts such as

natural language prompts, [47] proposed AutoPrompt and aimed at generating discrete

prompts through gradient optimization. In contrast, [32] argue that soft prompts, which

1



Chapter 1. Introduction 2

are formed by continuous vectors, are more effective and propose P-tuning to optimize

the prompt template through an inner Bi-LSTM module from scratch. In addition, [29]

proposed prefix-tuning to tune merely task-related prefix for the input prompts. Aside

from prompt-tuning methods, fine-tuning-based methods such as [28] are widely used in

practice as a powerful baseline or solution for extracting challenging relations like [49].

Despite fine-tuning and prompt-tuning solutions, few research investigate how adapter

tuning, which is another popular parameter-efficient fine-tuning method, performs in

probing knowledge from LLMs. That motivates us to first compare adapter-tuning

methods with existing prompt-tuning and fine-tuning baselines. Extensive experiments

in this paper show that for accuracy performance, adapter-tuning can perform even better

than fine-tuning with less tuned parameters in most cases and is consistently better than

P-tuning methods. That becomes the first motivation for designing an adapter-based

framework for factual knowledge extraction.

With the rising interest in knowledge-probing measurements, some researchers

begin to focus on the underlying rationales behind the answers generated by LLMs. [5]

firstly points out that prompt-based models have severe prompt preference bias. That

means prompt-based models generate answers mostly based on their preference for

specific prompt templates instead of their true inherent knowledge. They show that the

prediction distribution from prompt-only inputs such as “[MASK] was born in [MASK]”

has an extremely high correlation with the original inputs “Barack Obama was born in

[MASK]”, which shows that the prediction is dominated by prompt templates. [53] tries

to mitigate this problem by automatically picking potential objects from prompt-only

inputs through a classifier and maximizing their entropy. However, our experiments

show that the neural classifier may not be trustworthy and we propose a simplified and

interpretable version based on [53] to mitigate prompt preference bias.

In addition to prompt preference bias, recent research points out that inconsistency

between semantically similar prompts is another severe and undesirable problem. In

the remaining parts of this paper, we refer to this inconsistency as prompt verbalization

bias, which means that models may favor specific verbalization of prompt templates

and give a biased distribution. [12] first put emphasis on this problem and tries to

mitigate it through additional paraphrased datasets. [36] further proposed P-adapters.

P-adapters insert one adapter layer to map different paraphrases into the same space to

improve the robustness of the model outputs. Regarding this bias, we propose a novel

self-augmentation method to improve the inner consistency of our models. Specifically,

we augment the original inputs with the prefix “It is true that” and “It is false that” to
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help the model recheck their output answers. Experiments show that through simple

self-augmentation, the prompt verbalization bias can be significantly reduced.

Motivated by [11], which shows that adapters have good compatibility with multi-

task settings. We then try to design a Unified Adapter-based framework for unbiased

and Robust factual Knowledge Extraction(Uni-ARKEx), with the primary aim of using

a unified framework to mitigate both prompt preference bias as well as prompt verbaliza-

tion bias and have better accuracy over knowledge probing tasks. We demonstrate in our

experiments that our proposed framework achieves a new state-of-the-art performance

on probing accuracy. This achievement is coupled with the advantages of parameter-

efficient tuning, low prompt-preference bias, and a notable level of consistency. We

provide a detailed analysis of our proposed methods in chapter 6.

Besides our proposed models, additional paraphrased datasets are important com-

ponents necessary for measuring the prompt verbalization bias. [12] first proposed a

paraphrased version of the LAMA benchmark called ParaRel. However, due to the

constraints of NLP tools at that time, the scale and diversity still have a large potential

to improve. In this thesis, we proposed a more diverse and high-quality paraphrased

dataset through LLMs GPT-3.5[37]. We report both automatic and human evaluations

on our proposed dataset to ensure its practicality.

1.1 Contributions

We summarise the main contributions of this dissertation as follows.

1. We propose ParaTrex, a large-scale challenging paraphrased dataset based on

the LAMA benchmark. Our evaluations show that our proposed dataset is more

lexically and syntactically diverse than the currently available dataset ParaRel[12].

Our human evaluation shows that ParaTrex has a high agreement with humans.

2. We fill in the gap of research on adapter tuning for factual knowledge extraction

and show that adapter tuning is able to perform nearly or better than fine-tuning

in most cases due to its parameter efficiency and preservation of inner knowledge

in LLMs.

3. We propose two modules on mitigating prompt preference bias and prompt

verbalization bias and design a unified framework for alleviating both of these

biases. Our proposed framework beats the current SOTA MeCoD [53] on BERT-

large and RoBERTa-large settings.
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4. We made ablation studies and case studies to validate the effectiveness of each

module in our proposed framework. It is shown that separate modules within

our models may have synergized effects on mitigating certain biases instead of

working separately.

1.2 Outline

The main structure of this thesis is as follows:

• Chapter 2 We introduce the background knowledge behind factual knowledge

extraction, current methods for accessing the knowledge, and the bias study of

factual knowledge extraction tasks.

• Chapter 3 We explain the motivation of our proposed dataset ParaTrex, the

construction of ParaTrex, and both automatic and human evaluations for ParaTrex.

• Chapter 4 We give a formal definition of our task and evaluation matrices.

• Chapter 5 Our proposed framework Uni-Arkex will be explained, including

four modules: Adapters, maxing entropy. self-augmentation and paraphrased

augmentation.

• Chapter 6 The experiment results, including the ablation study and case study,

will be discussed.

• Chapter 7 We conclude this project and discuss the potential limitations and

future work.



Chapter 2

Background and Related works

This chapter mainly introduces the essential background information and recent works

related to this project. Section 2.1 introduces the origin of the factual knowledge

extraction task and recent relevant research including the main ways for accessing the

knowledge in language models. Section 2.2 introduces the background knowledge of

parameter-efficient fine-tuning instead of fine-tuning. Section 2.3 discusses recent bias

studies related to this task.

2.1 Access knowledge in Large Language models

In the context of this paper, a large language model(LLM) refers to a deep neural lan-

guage model pre-trained on a large amount of unlabeled text in a self-supervised setting

such as masked language modeling (BERT[10]) and next-word prediction (GPT[3]).

Although LLMs have already achieved great breakthroughs in huge amounts of NLP

tasks, we still do not have full control over the behavior of LLMs to let them give

trustable answers[30]. However, knowledge bases are an existing solution to accessing

specific gold-standard relation information. Knowledge bases(KBs) usually represent a

manually engineered schema that prescribes the potential set of entities and relation-

ships, along with their interconnections. This schema guarantees precise, consistent,

and explainable outcomes. Therefore, how can we control the repository of knowledge

stored and, especially, extract the knowledge in the weights of an LLM similar to KBs,

emerges as a compelling avenue for research.

Fine-tuning: A dominant approach to obtaining particular pieces of information

from LLMs is by means of fine-tuning the model on a pertinent downstream task, such

as commonsense question answering. Fine-tuning LLMs for specific downstream tasks

5
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has proven to be a successful approach for refining and eliciting specific knowledge

for evaluation on these tasks [42]. This is because the majority of knowledge that is

encoded in an LLM is garnered during pretraining, with fine-tuning merely acquiring

an interface to access such accumulated knowledge [8]. However, recent works point

out that fine-tuning for factual knowledge extraction may have some potential problems.

An example is frequency shock [24], where, in testing time, the model over-predicts

rare entities in the training set and under-predicts common entities that do not appear

in the training set in enough times. Besides, fine-tuning is also generally considered

to suffer from catastrophic forgetting, which means the LLM forgets the previously

learned knowledge while fine-tuning. This may not be optimal when considering the

utilization of LLMs as generalized KBs or for the purpose of general intelligence.

Prompting: At the same time, although the paradigm of pre-training and fine-tuning

is popular among pre-trained language models such as BERT-large [10] with 340 million

parameters, it becomes hard to fine-tune larger LLMs such as GPT-3 [3] and LLAMA

[51] due to huge computation costs, who have 175 billion and 7 to 65 billion parameters

respectively. Fortunately, recent findings by [31] suggest that prompts offer a promising

avenue for directly accessing this knowledge without the need for extra fine-tuning.

The prompting paradigm provides the model with a familiar query format, such as a

cloze-style format for BERT, thereby resulting in improved responses. Prompting is

generally separated into Discrete Prompts and Soft Prompts.

Discrete prompts usually refer to prompts that may not be optimized like continuous

vectors after being tokenized by language models. Many papers tackle prompting from

the view of cloze-style like in [39]. For example, “The capital of United Kingdom

is <mask>” is prompted for BERT if we want to extract the capital knowledge from

LLMs. In Radford’s studies [42], prompting was first introduced. They showed

that it could achieve satisfactory zero-shot performance with the use of well-crafted

prompts. Other researchers have also capitalized on this enhanced performance and

have evaluated various discrete prompting methods, including entailment [52] and

label token optimization [55]. Nevertheless, the process of manually creating the most

effective prompt for specific tasks presents a formidable challenge. To address this issue,

AutoPrompt [47] tackles prompt creation automatically using gradient-based search,

while a more hands-on approach to prompt crafting was proposed by [34]. Despite

these innovations, the quality of discrete prompts still remains uncertain.

Therefore, soft prompts have been introduced. These soft prompts are formulated

using continuous and learnable word vectors as input. Throughout the training process,
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gradient descent updates the parameters associated with the soft prompts, while the

core model parameters remain fixed. Prefix-tuning, as suggested by [29], firstly focuses

on tuning several task-specific vectors as soft prompts and demonstrates comparable

generation outcomes while modifying only a limited subset of the model’s parame-

ters. In contrast to prefix-tuning, which incorporates adjustable prefixes throughout

every Transformer layer, prompt tuning [27] presents a simpler approach involving the

inclusion of soft prompts solely at the input layer. They showed that as the model’s

size grows, the performance disparity between prompt tuning and complete fine-tuning

diminishes. [32] further proposes a method, making all tokens within prompt templates

as learnable soft prompts and showing similar scaling results on larger language models.

As for the factual knowledge extraction tasks, [41] and [56] have determined that soft

prompts offer distinct advantages over discrete prompts since soft prompts exhibit en-

hanced expressiveness, enabling them to encapsulate multiple contexts simultaneously.

However, recent research has begun to challenge the notion that soft prompts consis-

tently outperform straightforward manual prompts and suggests using discrete prompts

as a baseline before using soft prompts [58]. It’s worth noting that all prompt-based

models suffer from certain issues. For instance, they can be sensitive to the choice of

initialization, be unstable to optimize, and can exhibit inconsistency when dealing with

semantically similar prompts [4]. These challenges remain to be effectively addressed.

2.2 Adapter-based Tuning

Shared the same motivation with prompt tuning to overcome the problems of expensive

fine-tuning and pre-training, adapters are proposed for parameter-efficient transfer

learning. Adapter-based techniques inject compact neural components (known as

adapters) into the layers of the Transformer model and only fine-tune these adapters for

the purpose of model adaptation. Among them, Houlsby [19] gives the first instantiation,

which is shown in Fig 2.1. Specifically, the adapter module is inserted between each

feed-forward layer and the layer norm layer within each transformer layer. One adapter

module contains a down-projection and an up-projection neural layer. For an input

feature h ∈ Rd , a down-projection parameter matrix Wd ∈ Rd×r is first applied to map

the input into a r-dimensional bottleneck space, where r is usually far less than initial

dimension d. A nonlinear function is applied after that and then the up-projection matrix

Wu ∈ Rr×d is used to project the vectors back into the d-dimension space. Finally, a

residual connection is added. Within each transformer block, the adapter module is
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inserted following the multi-head self-attention and feed-forward network sublayers.

This arrangement leads to a reduction in the number of tuned parameters per layer

to 2× (2dr for projection matrices+d for residual connections+ r for bias terms). In

practical terms, this strategy involves merely fine-tuning about 0.5% to 8% of the entire

model’s parameters. This leads to about 60% faster than vanilla fine-tuning.

Multi-headed  
attention

Layer Norm

+
Adapter

2x Feed-forward  
layer

Layer Norm

+

Adapter

Feed-forward layer

Transformer  
Layer

Nonlinearity

Feedforward  
up-project

Feedforward  
down-project

Adapter  
Layer +

Figure 2.1: Illustration of adapter architecture [19] in transformer blocks.

Except for parameter efficiency, adapters are also known for their high modularity.

Trained adapters can be inserted in pre-trained LLMs for specific tasks without the need

to revisit LLMs and fine-tune a new model. Adapter-based fine-tuning offers the benefit

of simultaneously incorporating multiple instances of adapters onto a pre-trained model,

which is valuable in various application scenarios such as multi-task learning [50]

[35]. By integrating adapter modules alongside the self-attention module in a parallel

fashion, pre-trained language models (PLMs) can showcase remarkable representational

capacity within the multi-task learning framework. AdapterFusion [40] is also shown to

be effective in debiasing on multitask-debiasing framework [26], which also motivates

our idea on using adapter-based tuning as a unified framework on unbiased factual

knowledge extraction.

Although the training of adapters is faster than fine-tuning, we note that its inference

time will be 4% or 6% slower [19]. However, this computational cost could be reduced

by dropping adapters dynamically at the low transformer layers [45]. Recent studies

indicate that adapter-based fine-tuning exhibits better robustness compared to traditional

fine-tuning approaches [11]. Notably, in scenarios involving few-shot learning and

cross-lingual tasks, adapter-based fine-tuning has been shown to outperform standard

fine-tuning methods [17]. Furthermore, it has been found to be more robust when

subjected to adversarial attacks [15]. This robustness also motivates us to apply adapter-

based tuning for an unbiased and robust framework for knowledge probing.
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2.3 Bias Study

Although prompt-based factual knowledge extraction is able to achieve decent perfor-

mance, it is crucial to comprehend the reason behind the specific predictions generated

by LLMs in order to attain more accurate outcomes. Recent research reveals that LLMs

occasionally formulate predictions without being based on particular knowledge, which

makes the probing results biased and unreliable. Such biases are mainly divided into

prompt preference bias and prompt verbalization bias in this thesis.

2.3.1 Prompt Preference Bias

Prompt preference bias was first introduced in [5], which means that the prediction of

prompt-based models is severely prompt-biased. Specifically, for prompt-only inputs

such as “<mask> was born in <mask>.” and raw inputs such as “Steve Jobs was born

in <mask>.”, we expect the distributions of predictions stemming from two distinct

inputs to show a significant dissimilarity. This is because prompt-only inputs lack

the key subject information in the input, so models can only depend on prompts to

make predictions instead of their internal knowledge. However, after analyzing the

correlations between these two distributions, [5] shows that correlation coefficients

between these two inputs exceed 0.6 in more than half of the relations. This indicates that

the distribution derived from prompt-only inputs holds greater influence over the final

prediction distribution, implying that prompt-based knowledge retrieval largely relies

on informed assumptions drawn from these prompt-influenced distributions. In simpler

terms, the predictions are produced by sampling from prompt-biased distributions,

guided by the moderate influence of subjects. [4] further applied causal analysis on this

bias, showing that this bias stems from the underlying linguistic correlation between

PLMs and prompts, and giving a causal framework solution by manually intervening to

block the observed back door path in the causal model.

Recent work [53] also proposes a new metric on positioning the prompt preference

bias as well as another solution based on neural models. Under the assumption that

unbiased models should output a nearly uniform distribution over potential candidates

under prompt-only inputs, this paper evaluates prompt-preference bias through the

entropy of the top 10 predictions from prompt-only inputs, which is called counterfac-

tual entropy (See section 4.3 for details). Meanwhile, they provide a muti-task and

contrastive learning framework to mitigate the prompt preference bias. However, their

method solely alleviates prompt preference bias. This inspires us to design a unified
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framework targeting both prompt preference bias and prompt verbalization bias.

2.3.2 Prompt Verbalization Bias

Prompt Verbalization Bias is also known as the inconsistency of LLMs on prompts.

Note that this is different from prompt preference bias in this paper. Prompt preference

bias represents the model excessively depending on the initial distribution established

by prompts to formulate predictions, rather than relying on genuine internal knowl-

edge, while prompt verbalization bias puts emphasis on the inconsistency of LLMs

on semantically similar queries with different verbalizations. Research has shown

that LLMs suffer from a lack of consistency in their answers [12]. They may output

different distributions of answers when queried for the same fact but under a different

verbalization such as paraphrases. Therefore, a strategy to assess the consistency of a

model involves probing LLMs by a paraphrase of the identical relation for a specific

subject and checking whether the model consistently generates the same predictions

[14]. Several benchmarks have been proposed to measure the consistency of LLMs

[12] [44], where [12] tries to improve the consistency of the model by minimizing

the Kullback-Leibler(KL) divergence of output distributions between paraphrases. [4]

further applies causal analysis to show that this inconsistency sources from the same

linguistic regularity with the pre-training corpus. Besides, [36] makes the first step of

inserting adapters between the embedding layer and the first transformer layer in order

to map different paraphrases into the same embedding space, which gives additional

insight into the advantages of adapters in mitigating prompt verbalization bias.

In addition to insensitivity under paraphrases, previous research delves into the

fragility of Language Models and examines the impact of incorporating negation such

as “not” into prompts [23] [14]. They show that an LM can maintain contradictory

beliefs within its parameters, such as simultaneously holding ”Birds can fly” and ”Birds

cannot fly”, indicating insensitivity to the contextual nuances of negation. Furthermore,

[23] demonstrate a comparable effect when misguiding the probe with a misleading

distractor (e.g., ”Talk? Birds can [MASK]”). Thus, robust LLMs are expected to exhibit

consistency not only across varied paraphrases but also negations and entailments. [16]

quantify consistency within entailment, encompassing contrapositives, after updating the

LM’s beliefs. Similar to [12]’s effort on overcoming inconsistency under paraphrases,

[16] includes another loss function to their objective function to minimize the error

across entailed data, which coincides with our proposed multi-task framework.



Chapter 3

Extending dataset through large

language models

This chapter discusses our motivation and methodology for expanding knowledge

probing datasets into their paraphrased versions leveraging large language models.

These datasets will be then used for measuring consistency and training in the following

chapters. Section 3.1 explains our motivation for proposing a new dataset. Section 3.2

elaborates on the methods for creating datasets. The evaluation matrices are introduced

in section 3.3, including automatic matrices and human evaluation.

3.1 Motivation

As mentioned in section 2.3.2, we measure prompt verbalization bias by checking

whether LLMs can provide consistent predictions based on different prompt paraphrases.

There already exists several benchmarks for paraphrasing to measure the consistency

of LLMs [44] and methods for generating paraphrases [2]. For instance [9] employs

back translation to generate paraphrases for measuring consistency after modifying

the factual knowledge in LLMs. However, they do not perform on the LAMA dataset.

Therefore, before conducting our experiment, a paraphrased version of our factual

knowledge benchmark LAMA [39] is necessary.

[12] and [36] make the first trial to generate paraphrased versions based on the

LAMA dataset. [12] generates a high-quality paraphrase dataset called ParaRel, with

328 distinct paraphrases over 38 relations. They use back-translation to augment each

base pattern of prompt templates and further do a systematic exploration of Wikipedia

sentences containing the identical subject-object tuple as in LAMA datasets. Then

11
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they manually extract their templates. However, we argue that there are two main

limitations of this dataset. Firstly, given the limited accuracy of automatic methods like

back-translation and the labor constraints of human annotation, it is contended that the

scale of their generated paraphrases remains somewhat limited. To illustrate, a mere

two paraphrases are generated for one of the relations as an instance of their limitation.

Secondly, since they leverage a syntax-based search engine SPIKE [48] to search for

patterns, the lexical diversity of the paraphrase is not guaranteed. That may not be ideal

when simulating the true situation when humans query for certain factual knowledge.

For example, people may a variety of sentences such as ”[X] was situated in [Y].”, ”[X]

could be observed in [Y].” to ask for the location of a certain item, not only ”[X] is

located in [Y].”. [36] claim to extend paraphrases into about 81 paraphrases per relation.

However, their datasets are not available as far as we know.

Fortunately, recent breakthroughs in LLMs in NLP make it practical to generate

large-scale and high-quality paraphrases with affordable costs. LLMs such as GPT-

3.5 and GPT-4 have been shown to have a surprising agreement with human beings

after instruction tuning and reinforcement learning with human feedback [37]. This

motivates us to construct a large-scale, highly diverse, and comprehensive paraphrased

dataset based on LAMA benchmark. Our primary objective is to contribute a more

comprehensive dataset that not only poses a challenge but also offers an effective

evaluation benchmark for assessing the consistency of LLMs when extracting the

inherent knowledge.

3.2 Dataset Creation

Formally, for a specific relation such as ’Captital of’, where we extract the factual

information given prompt ’[X] is the capital of [Y]’, we want to generate several

paraphrases such as ’[Y]’s capital city is [X]’, or more complicatedly, ’[X] is the

administrative center of [Y]’. We construct our paraphrased version of LAMA datasets

called ParaTrex with the following steps: (1) We began with the patterns provided

by LAMA [39]. Here each relation has one prompt template called base-pattern. For

example, the base pattern of relation ”Capital Of ” is ”[X] is the capital of [Y].” (2)

For each relation, we extract its base pattern and the corresponding description of this

relation such as ”country, state, department, canton or other administrative division of

which the municipality is the governmental seat” for relation ”Capital Of ” so as to make

the generation more specific. (3) we formulate a meticulously crafted manual prompt,
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directing ChatGPT (GPT-3.5) to produce a total of 40 paraphrases. This includes 5

succinct paraphrases, each comprising no more than 7 words, as well as 5 extended

paraphrases, each encompassing fewer than 15 words. An illustrative instance of this

paraphrase generation process is illustrated in Figure 3.1. (4) Through human inspection,

we remove inappropriate paraphrases characterized by excessive ambiguity or excessive

similarity to preceding generations. (5) We execute steps 3 and 4 iteratively until

satisfying answers are achieved. We ensure that for each relation, we have at least 25

paraphrases, 5 short paraphrases less than 7 words, and 5 long paraphrases less than 15

words. Furthermore, we introduce a random division of our paraphrases into two distinct

sets: an in-domain set comprising 50% of the entire dataset, and an out-of-domain

set constituting the remaining 50% of the original data. Notably, the out-of-domain

set encompasses all long and short-version paraphrases. This is because we want to

simulate the situation where individuals seek to extract specific knowledge by inputting

a concise query or an exceptionally long query for seeking specific knowledge. We

provide an example of a specific relation ’Capital of’ in ParaTrex in Appendix A.1.

I got a prompt template for probing factual knowledge from 
language model: "The capital of [X] is [Y] ." , where [X] and 
[Y] are two entities. The description of the template is: 
primary city of a country, state or other type of 
administrative territorial entity. Don't change token [X] and 
[Y], help me generate 40 similar paraphrase as new prompt 
templates and 5 short paraphrase no more than 7 words and 
5 long paraphrase no more than 15 words.  Please do not 
provide repeat answers or include any replies to this query.

Paraphrases (40):
[X]'s main city is [Y].
[X]'s adminstrative center is [Y].
...
Short Paraphrases (5, ≤7 words):
[X]'s capital: [Y].
...
Long Paraphrases (5, ≤15 words):
[Y] holds the central position of being the capital city for [X].
[X] has established [Y] as the primary administrative and 
governmental center. 

GPT-3.5

Query

LAMA
Step 3:

Construct prompts 
generate paraphrases

Step 2: 
Get base pattern:
"The capital of 
[X] is [Y] ."
and description:
“primary city of 
a country, state 
or other type of 
administrative 
territorial entity”

Step 4:
Human filtering:
[X]'s main city is [Y].
[X]'s adminstrative 
center is [Y].

End

Figure 3.1: Illustration of our workflow to generate ParaTrex, a paraphrased version of

prompt templates. Here we present a specific relation ’capital of’ in LAMA [39].

3.3 Dataset evaluation

In this section, we perform an evaluation of ParaTrex, our proposed paraphrased version

of the LAMA dataset and compare them with the existing datasets ParaRel [12]. We

follow [12] to carry out the evaluation based on both automatic metrics and human

judgment. Overall, the statistics of ParaTrex and ParaRel are illustrated in Table 3.1.
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ParaRel [12] ParaTrex(Ours)

# Relations 39 40

# Patterns 329 1544

Min # patterns per rel. 1 27

Max # patterns per rel. 20 47

Avg # patterns per rel. 8.3 38.6

Avg lexical per rel 5.73 8.42

Table 3.1: Statistics of ParaRel and ParaTrex.

3.3.1 Automatic evaluation

0 10 20 30 40
# of parapharses

ParaRel

ParaTrex

Boxplots for the number of patterns in each relation

Figure 3.2: Boxplot of the size comparison between ParaRel. ParaTrex contains 40

relations in ParaTrex and ParaRel consists of 39 relations in total. It shows that the size

of data in ParaTrex is far larger than in ParaRel.

Size. We first report the size of our generated dataset. We count the number of

generated templates in each relation and show the boxplot for the comparison between

ParaRel [12] and ParaTrex in Fig 3.2. Generally, we can observe that the average of

templates in our dataset is approximately 4.5 times bigger than ParaRel. Furthermore,

our dataset consists of more relations and exhibits a more extended average lexical

content within the templates, as detailed in Table 3.1.

Diversity. We then illustrate the diversity of our proposed ParaTrex. Specifically,

we first listed all pair-wise permutations of n templates for each relation, getting n(n-1)

sentence pairs. Then pair-wise n-gram BLEU score [38] was calculated on these pairs

to evaluate their diversity. BLEU is an automatic score widely used for evaluating the

similarity between the target and reference sentences among machine translation. It

measures the precision of the n-gram span in target sentences and that in reference

sentences. Given that the sentence pairs have similar semantics (evaluated by humans in

the next section), the average score of the lower-order n-gram score tends to represent

lexical diversity more and the average score of the higher-order n-gram score tends

to capture the diversity of complex syntactic structures. Fig 3.3 shows the trend over
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n-gram average pairwise BLEU scores of all relations. Here we omit the n-gram order

greater than 4 since the value becomes too tiny to observe. We find that the BLEU

scores of ParaTrex perform consistently lower than ParaRel, which depicts that our

proposed dataset has a better lexical and syntactical diversity of generated sentences.

1-gram 2-gram 3-gram 4-gram
n-gram for calculating BLEU

0.0

0.1

0.2

0.3

0.4
BL

EU
 sc

or
es

0.456 0.439

0.287

0.209
0.164

0.095 0.078
0.032

Pair-wise BLEU Comparison of ParaRel and ParaTrex
ParaRel
ParaTrex

Figure 3.3: Bar chart of the pair-wise BLEU comparison between ParaRel. The scores

are the average BLEU scores between all relations. ParaTrex gets a consistently lower

score than ParaRel, representing that the templates in ParaTrex are more lexically and

syntactically diverse.

3.3.2 Human evaluation

In addition, we conduct a human evaluation study to rate the quality of our generated

paraphrases. Specifically, we examine whether the meaning of the raw inputs remains

the same as the generated outputs. Due to the restriction of funding and time, we

recruited five judges with diverse backgrounds to evaluate our datasets1. Following [12],

we randomly picked 82 paraphrases in the ParaTrex dataset and 42 wrong paraphrases

sampling from the paraphrases of wrong relations. We ask the evaluators to select
candidates that are not the paraphrase of the given inputs. The participants need

to pick out the wrong paraphrases. We consider the remaining answers as what they

think to be the correct paraphrases of the given inputs. In Appendix A.2, we show the

questionnaire designed for evaluating our datasets. Results show that on average, human

evaluators get 96.88% accuracy in successfully identifying inaccurate paraphrases and

a 92% accuracy in selecting the true paraphrases provided by ParaTrex, which shows

that our proposed datasets have a satisfying agreement with human beings, thus proving

the favorable quality of our datasets.

1Those bilingual speakers excluded the author and included four MSc students in the University of
Edinburgh and one MPhil student majoring in Applied Linguistics in the University of Cambridge.
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Task definition

In this chapter, we will provide a formal definition of our tasks. Section 4.1 will

introduce the specific definition of the problems we want to solve/mitigate. In section

4.2, we elaborate on the details of the used datasets. Finally, in section 4.3, we will

carefully discuss the evaluation metrics we employed for measuring our models.

4.1 Problem definition

We first give a formal definition of the three main parts we want to focus on in this

thesis, which are factual knowledge extraction, prompt preference bias, and prompt

verbalization bias.

Factual Knowledge Extraction. Let E = {e1,e2, · · · ,en} be a set of entities and

R = {r1,r2, · · · ,rn} be a set of relation. A knowledge graph(KG) is made up of triples

(subject, relation, object) denoted as (ei,r j,ek), where ei,ek ∈ E are subject and object

entities and r j ∈ R is the relation. Factual knowledge Extraction aims to extract such

triples within LLMs M . Specifically, we let M make predictions based on incomplete

triples (ei,r j,?) after being converted into natural language queries through a designed

prompt template P j. We denote the converted query by P j(ei). For instance, suppose

we want to query the profession of Obama (i.e. (Barack Obama, profession, ?) ). We

achieve this by converting the template of relation “profession”, which is “The profession

of [X] is [Y]” into “The profession of Barack Obama is <mask>” by replacing [X], [Y]

tokens with the subject and <mask> respectively. The masked token is then predicted

by LLMs based on their output probabilities and the top predictions are adopted as the

16
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answer êk. Mathematically:

êk = argmax
o

PM (o|P j(ei)) (4.1)

o = M (P j(ei)) (4.2)

where o is the generated word, a random variable whose distribution is estimated by an

LLM M . Our task is to let the generated answer êk be close to the reference answer ek.

We apply the top 1 hit rate and mean reciprocal rank (MRR) to evaluate the quality of

our knowledge extraction (see Section 4.3.1 for details).

Prompt Preference bias. Based on [53]’s definition of object bias, for target triples

(subject, relation, object), prompt Preference bias refers to the phenomenon that: (1)

LLMs with prompts retrieve object candidates unequally when only subject-masked

prompt P j(<mask>) is given. (2) The divergence between the distribution generated

by the subject-masked prompt and the normal prompt becomes too small, which means

that the model relies too much on the prior distribution provided by the prompt tem-

plates. For example, given the template “The native language of [X] is [Y].”, the model

prefers “French” to “English” when subject [X] is not assigned, which further makes

the model tend to predict “French” when given subject such as “J.K. Rowling”. Our

task to mitigate such bias is to both maximize the divergence between subject-masked

prompts and smooth the prior object distribution of LLMs’ output through subject-

masked prompts. We use three measurements for this task, which are counterfactual

hit rate, counterfactual entropy, and the Kullback–Leibler(KL) divergence. These will

further be explained in section 4.3.2.

Prompt verbalization bias We follow [12]’s definition of consistency as prompt verbal-

ization bias. Formally, prompt verbalization bias refers to the inconsistency of the model

in responding to semantically similar prompts, stemming from the model’s potential

favor of specific verbalization for various prompts. We define a model to be inconsistent

when, given a pair of quasi-paraphrased cloze-phrases like “Seinfeld originally aired on

[MASK]” and “Seinfeld premiered on [MASK]”, it produces logically conflicting predic-

tions for N-1 relationships across an extensive array of entities such as NBC and ABC.

We define the model predicting both NBC and ABC for the aforementioned patterns as

lacking consistency due to the contradiction of these two words. Notably, consistency

does not require strict factual accuracy, although factual correctness remains an essential

attribute for knowledge bases (KBs). We, therefore, measure them separately, which

will be discussed in section 4.3.3. Our task to alleviate prompt verbalization bias is
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Dataset Relation Query Answer

T-REx[39]

P1412(Languages spoken) Carl III used to communicate in [MASK]. Swedish

P19(Place of birth) Francesco Bartolomeo Conti was born in [MASK] Florence

P176(Manufacturer) iPod Touch is produced by [MASK]. Apple

LM-KBC[49] 1

CountryOfficialLanguage The official language of Philippines is [MASK]. Filipino, English

PersonInstrument
Chris Daughtry plays [MASK], which is an instrument. guitar

Bang Yong-guk plays [MASK], which is an instrument. -

ParaRel[12] P1412(Languages spoken)

Carl III used [MASK] to communicate. Swedish

Carl III communicated in [MASK]. Swedish

Carl III typically used [MASK] to communicate. Swedish

ParaTrex P1412(Languages spoken)

Carl III employed [MASK] for communication. Swedish

Carl III spoke [MASK] for their communication needs. Swedish

Carl III engaged in communication through [MASK] as their primary language. Swedish

Table 4.1: Examples of each dataset. We give 3 examples for each dataset we used

within our experiments. The first and second rows illustrate two knowledge-probing

datasets used for measuring extraction accuracy. The third and fourth rows show

the instances from the paraphrased version of T-REx dataset, which is employed on

measuring the consistency of models.

therefore to make LLMs give identical predictions given different quasi-paraphrased

cloze-phrases prompts.

In summary, we introduce task formulations for factual knowledge extraction,

prompt preference bias and prompt verbalization bias. Since probing factual knowledge

from LLMs requires both precision and robustness [1], the final goal of this project is to

develop a unified framework for unbiased, robust, and precise factual knowledge extrac-

tion. That means to both give precise predictions and remain robust on counterfactual

subject-masked inputs as well as semantically similar paraphrases.

4.2 Datasets

For assessing the knowledge in LLMs, lots of benchmarks have been proposed for

probing knowledge contained in LLMs. For example, linguistic knowledge [14] [54],

syntactic knowledge [7], factual knowledge [39] [20] [22], and commonsense knowl-

edge [57]. Here we introduce two basic benchmarks we use for assessing our models

and two paraphrased extensions we use for measuring the consistency of our models.

Specific examples for each dataset are shown in Table 4.1.

LAMA [39]. LAMA (LAnguage Model Analysis) probing [39] is the first dataset

invented for testing the factual and commonsense knowledge in language models. It
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provides a set of knowledge sources that are composed of a corpus of facts. Each fact is

converted into a clozed-phrase statement which is used to query the language model,

as is shown in Table 4.1. Here we use the T-REx knowledge source, which is a subset

of Wikidata triples derived from the T-REx dataset [13]. It contains a total of 34039

facts for 41 relations. To make the consistency results comparable, we follow [12] and

remove all N-M relations when calculating consistency between models (31 relations

remained).

LM-KBC [49]. Although much follow-up work reporting further improvements

of models for factual knowledge extraction using LAMA dataset [32] [53] as well as

criticism recently [4] [5] [23] [24] [53], it’s worth noting that these studies do not extend

their results on the common other datasets except LAMA T-Rex. Based on the need for

broader evaluations across diverse datasets, we, therefore, use additional latest datasets

called LM-KBC(Knowledge Base Construction from Pre-Trained Language Models)

to extend our results. LM-KBC is a challenge at the 21st International Semantic Web

Conference (ISWC 2022). This challenge exhibits a parallel pattern and task formulation

when compared to LAMA T-Rex while being more complicated and challenging. The

key difference is that LM-KBC made no assumptions on relations cardinalities, which

means that a subject entity could stand in relation with zero, one, or many object entities

as shown in Table 4.1. This dataset consists of 12 relations, each comprising 100

subjects for training and 50 samples as validation sets.

ParaRel [12]. ParaRel was a paraphrased version of LAMA designed for mea-

suring the probing consistency of LLMs, consisting of 38 relations over 328 distinct

paraphrases on the relation in LAMA T-REx. It is constructed using paraphrased from

LPAQA [21] and the syntax-based search engine SPIKE[48] to augment the original

prompt template. Although the scale of the dataset is not large, it takes the first step

in constructing paraphrase datasets on factual knowledge extraction tasks and shares a

high agreement with human evaluations. Three specific examples in ParaRel for relation

“Language spoken” are shown in Table 4.1, where we can observe that most paraphrases

are syntax-based. We argue that this dataset can further be enhanced with both more

lexical diversity and quantities, which motivates our construction for ParaTrex.

ParaTrex. We construct ParaTrex, another paraphrased version of LAMA, with

the primary objective of providing a dataset with greater diversity and complexity on

measuring the consistency in the knowledge probing task. The construction details can

be seen in chapter 3. ParaTrex is formed by a total of 1544 facts from 40 relations, with

greater lexical can syntactical diversity than ParaTrex and good human agreements.
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4.3 Evaluation Metrics

4.3.1 Accuracy measurement

We use the top-1 hit rate(Hit@1) and mean reciprocal rank (MRR) to evaluate the

accuracy of our extracted results. Hit@1 measures the accuracy of the answer provided

by LLMs with the highest probability and MRR measures the average reciprocal rank

of the golden answer in the output distribution of LLMs. Specifically for each relation

consisting ni number of samples:

Hit@1i =
1
ni

ni

∑
j=1

I(êi j = ei j) (4.3)

MRRi =
1
ni

ni

∑
j=1

1
rank j

(4.4)

, where nrel is the number of relations in the dataset, ni refers to the samples in a specific

relation i, I() is an indicator function which outputs 0 if the condition in the bracket is

satisfied otherwise 0. Here êi j and ei j refer to the output prediction and golden-truth

entity respectively the same as equation 4.1. rank j is the rank of the golden-truth entity

within the output distribution of LLMs. Notably, the hit rate metric focuses on the

performance of models on retrieving the most confident results while MRR gives a

more general overall evaluation on the retrieving performance of our model.

4.3.2 Prompt preference bias measurement

For measuring Prompt preference bias, we use three matrices: counterfactual hitting
rate, counterfactual entropy, and the Kullback–Leibler divergence (KL divergence).

Counterfactual hitting rate and counterfactual entropy are evaluated based on the coun-

terfactual subject-masked input. This metric intuitively shows the abnormal accuracy

of the models’ prediction based on the subject-masked dataset. The counterfactual

entropy is calculated by the entropy of the probability among the first K predictions.

This measurement captures, more generally, the extent to which the model exhibits bias

towards candidate objects without giving the key information of the subject. We choose

the K to be 10 here following [53] since based on manual observations, the first 10

outputs are unlikely to include irrelevant candidates such as stopwords. Specifically, for

the i-th relation with ni number of samples:

Counter Factual Entropyi =−
1
ni

ni

∑
j=1
{

K

∑
k=1

p(êik)log2 p(êik)} (4.5)
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Besides, note that our definition of prompt preference bias also comprises the divergence

between subjected-masked bias and subject-unmasked bias, which indicates the degree

to which the output distribution is dominated by the prompts. We also employ the KL

divergence between raw and counterfactual inputs as a measurement:

KLDi =
1
ni

ni

∑
j=1
{

nvocab

∑
k=1

p(êik)log
p(êik)

pcounter(êik)
} (4.6)

, where nvocab is the vocabulary size of the model and pcounter(êik) is the output proba-

bility of entity eik from the subject-masked inputs.

4.3.3 Prompt verbalization bias measurement

Following [12], we measure prompt verbalization bias through the consistency among

different paraphrases. The Consistency measures the proportion of pairs of prompts

where the model makes the same prediction. Formally, given a set of unordered

paraphrase pairs Pi of relation ri, consisting of n distinct prompts. We then have totally
1
2n(n−1) number of permutations. For the j-th sample in the i-th relation, we define

the consistency between all paraphrases (All-Consist) as:

All-Consist(Top-1,Pi) j =
∑pm,pn∈Pi I[ê

m
i j = ên

i j]
1
2n(n−1)

(4.7)

, where I is the indicator function, êm
i j and ên

i j refer to the predicted entity given by

LLMs from prompt pm and pn respectively. For the reason of simplicity and intuition,

we also consider the combination of the unique raw prompt template from LAMA,

and templates from paraphrased LAMA pm ∈ Pi, getting n combinations in total. The

consistency between raw prompts and paraphrased prompts(Raw-vs-para-Consist)
will be degraded to:

Raw-vs-para-Consist(Top-1,Pi) j =
∑pm∈Pi,p I[êi j = êm

i j]

n
(4.8)

Besides, as mentioned in section 4.1, previous consistency does not require strict

factual accuracy. However, factual correctness remains a crucial attribute for KBs. We,

therefore, additionally measure the consistency over factual correct prediction and refer

to it as Acc-Consist. Formally:

Acc-Consist(Top-1,Pi) j =
∑pm,pn∈Pi I[ê

m
i j = ên

i j = ei j]
1
2n(n−1)

(4.9)

To sum up, we employ Raw-vs-para-Consist, All-Consist, and Acc-Consist as consis-

tency measurements to have a comprehensive evaluation of the consistency of LLMs.
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Methodology

In this chapter, we show the details of the comparison models and the architecture of

our proposed models. Our baselines include P-tuning [32] and MeCoD [53], which are

expounded upon in section 5.1. We will show the holistic framework of our proposed

method in section 5.2, encompassing two distinct components aimed at mitigating

prompt preference bias and prompt verbalization bias respectively.1

5.1 Comparision models

We choose the following two baselines because of their great contribution to improving

the accuracy of factual knowledge extractions and mitigating biases within the factual

knowledge extraction tasks respectively.

P-tuning [32] . P-tuning can be one of the most representative works of tuning

soft-prompt for extracting knowledge from LLMs. Unlike Prefix-tuning [29] and

prompt-tuning [47] which freezes part of the inputs embedding, P-tuning extends the

prompt searching space by making all embeddings of inputs tunable except the subject

and object mask. For instance, the traditional prompt template for probing capital

knowledge serves as “The capital of Britain is [MASK]” while the input of P-tuning

is “h0 h1 h2 capital Britain h3 · · · hi [MASK].”, where all hi is learnable prompts tuned

by an inherent bi-LSTMs. P-tuning shows significant improvements against other

prompting methods such as manual prompt or discrete prompt searching. However,

from our implementation, the performance of P-tuning still has a gap compared with

fine-tuning the whole LLMs. This inspires us to find a new tuning method

1In this chapter, some explanations are constructed using descriptions from the students’ Progress
Report and Informatics Project Proposal.
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MeCoD. [53] MeCoD was proposed for the purpose of mitigating object bias when

probing knowledge. They focus mainly on relieving prompt preference bias through

maximizing the entropy of the output distribution. Their key novalty is based on the

idea that only relevant object should be taken into consideration, such as the city objects

when asking for the capital. They inserted a tiny multiple-layer perceptron(MLP) as a

binary classifier for each output candidate and let it automatically decide whether the

object is relevant to the answer. After filtering irrelevant objects through MLP, they

use the following two methods to debias the prompt preference bias: (1) maximize the

entropy of the distribution of the remaining objects to force the distribution close to a

uniform distribution, (2) use contrastive learning loss to push the output embedding away

from the biased object and pull the embedding close to the ground-truth embedding.

Their method reaches the latest SOTA as well as significantly mitigating the prompt

preference bias. However, they do not relieve the prompt verbalization bias. In addition,

with our implementation, we find that the inserted MLP does not actually work for

classifying the relevant candidates. It picks only a tiny part of all relevant candidates.

Therefore, there still exists potential improvements based on MeCoDs.

5.2 Overall Framework of proposed models

Here we proposed a unified adapter-based framework that can alleviate both the prompt

preference bias and prompt verbalization bias within the factual knowledge extraction

tasks, named Uni-Arkex. Our goal is to (1) improve the accuracy of the extraction results

from LLMs and (2) make the model less suffer from the domination of prompt and its

inconsistency. The basic idea is simply to leverage augmented data on accomplishing

separate tasks so that our model no can perform well on both sides. We will explain our

methods in the following three parts. The overall architecture of our method is shown

in Fig 5.1.

5.2.1 Improve the accuracy of factual extraction

To make further improvments on the accuracy of factual extraction, we choose adapter-

based tuning methods, which is a more powerful parameter-efficient fine-tuning method

compared with prompt tuning. Adapter tuning is also shown to have better performance

over fully fine-tuning when we do not have access to a large scale of data [6]. More-

over, adapter-based tuning is also shown to have a good performance on multi-task
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(Raw inputs)
The capital of China is [mask] raw dist

(Paraphrased inputs)
[mask] is where the capital of 
China is situated .

para dist

(Augmented inputs)
It is true that the capital of China is 
<mask> 
It is false that the capital of China is 
<mask> 

true dist

false dist
-

+
output_dist

KL Divergence Loss

(Counterfactual inputs)
The capital of [mask] is [mask] ctf dist object 

filtering

Max
Entropy 

Loss

MLM 
Loss

LLM
(Frozen)

Adapter
(tuned)

Figure 5.1: Overall architecture of the proposed Unified Adapter-based framework of

unbiased and robust factual Knowledge Extraction (Uni-Arkex). In the figure, “dist” refers

to the output distribution of candidate objects from LLM. The dashed arrow means an

optional module when paraphrased inputs are not provided.

settings[11]. It also has other advantages such as preserving the internal knowledge

within LLMs by freezing all of the parameters. Here in our models, we simply insert an

adapter before each feedforward network (FFN) in each transformer layer. Specifically,

for each input h ∈ Rd , our adapters make the following transformation:

h← GELU(hWd)Wu +h (5.1)

where GELU[18] is a non-linear activate function, Wd ∈ Rd×k and Wu ∈ Rk×d are two

learnable parameter matrix in adapters. They are used for first down-projecting the

hidden states into dimension k<<d, and then projecting them back to d-dimension

spaces. Here k is a hyperparamter.

5.2.2 Alleviating prompt preference bias

According to the problem definition in section 4.1, for subject-masked prompts, the

unbiased output distribution should ideally satisfy the following two results (1) the

output probability of relevant candidates should be equal (2) the KL divergence of

distributions between subject-masked prompts and original prompt should not be too

small. For (2), we find that it can be hard to formally define a certain threshold of small

KL divergence. We also don’t want the KL divergence to be as large as possible because

it is not necessary to ignore all valuable prior knowledge brought by prompt templates.

We, therefore, choose to design an object only on optimizing problem (1). We also
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report the KL divergence when making an evaluation to see if the models work in the

way we expected. Specifically, similar to [53], we construct an additional loss Lme to

maximize the entropy over all relevant candidates in order to encourage the model to

assign equal probability to each relevant candidate. Here an object filtering process

is necessary since not all objects are related and need to be smoothed. For example,

suppose we have prompts:“The capital of [X] is [MASK]”, we prefer the model to have

an equal probability over output city entities but not stopwords like “and”. In practice,

we simply choose the top 300 candidates for BERT and 30 candidates for Roberta and

remove the stopwords among them. This is because, from our empirical observation,

the top k words include most of the relevant candidates except some common stopwords.

Formally, given the output probability of object i: p(i), i = 1,2, · · · ,k and the stopwords

set S, the max entropy loss is calculated by:

Lme =−
k

∑
i=1, i/∈S

p(i)log2(p(i)) (5.2)

It is worth noting that in [53], a simple multiple-layer perceptron is used as a classifier to

automatically choose the relevant candidates. However, based on our re-implementation,

we find that this MLP only picks a tiny part of all relevant candidates. Their neural

classifier lacks interpretability on the criteria for filtering objects. In addition, this

MLP will bring additional costs on both training and inference. We will show later that

simply removing stopwords instead neural classifier can have the same or even better

performance than [53]

5.2.3 Alleviating prompt verbalization bias

We mitigate prompt verbalization bias through paraphrased inputs and augmented inputs.

As for paraphrased inputs, we choose the same strategy as [12], which minimizes the kl

divergence of the distribution between the raw input and paraphrased input, specifically:

Lkld =
nvocab

∑
i=1

p(i)log
p(i)

ppara(i)
(5.3)

where ppara(i) is the probability of candidate object i from the paraphrased inputs. Here

in order to constraint the training and inference time, we randomly pick two paraphrases

among the in-domain paraphrased dataset and average their KL divergence loss when

training.

Although optimize the kl divergence explicitly through paraphrased input is helpful,

it’s worth noting that real-world applications may often suffer from a lack of diverse
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and high-quality paraphrases. That motivates us to propose a self-augmentation method

through the raw inputs. We augment our raw data with prefix “It is true that” and “It

is false that” and encourage the model’s self-consistency by combining there output

distribution to make final predictions. Specifically, the output probability pom(i) for

object candidate i and the masked language model(MLM) loss Lmlm are calculated by:

po(i) = Softmax(logit(i)+λaug(logittrue(i)− logit f alse(i))) (5.4)

Lmlm =−
nvocab

∑
i=1

y(i)logpo(i) (5.5)

where logit refers to the logit of output before softmax layer, logittrue and logit f alse are

logits from prompt with prefix ’It’s true’ and ’It’s false’. λaug is the hyperparameter

used for controlling the impact of augmented inputs.

During training, the model is optimized by jointly minimizing the following loss:

L = Lmlm−λmeLme +λkldLkld (5.6)

where λme and λkld are hyperparameters used for balancing the impact of three losses.

During the process of inference, we note that the input of paraphrased inputs is not

necessary(shown in the dashed arrow in Fig 5.1). This is designed to make our models

more general in cases lacking diverse and high-quality paraphrased queries.
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Experiment and results

This chapter introduces the experiment setups for comparison between models and

related results. In section 6.1, we first explain the details of our implementation of both

models and evaluation pipelines. For section 6.2, we show and discuss the main results

of the experiment. Section 6.3 displays our ablation study on each proposed module

in our models. In section 6.4, we perform a specific case study on our models, and in

section 6.5, we make discussions on other remaining problems and give a summary of

all experiments.

6.1 Experiment setup

We will introduce our preprocessing for background datasets introduced in section 4.2

and the detailed implementations and hyperparameters of our models in this section.

6.1.1 Datasets

We adopted the LAMA-TREx [39] as our main testing set using its official train-test

splits, comprising 41 relations and 29,500 testing triples in total. In addition, we

expand our experiments in LM-KBC challenge datasets [49], which totally includes

12 relations. It’s important to note that we exclusively use 6 out of the 12 relations

among LM-KBC official datasets within our experiment. This is driven by the fact

that most of the objects in other relations either exhibit in multiple terms, which is not

supported by the mask language models or cannot be properly tokenized with BERT

or RoBERTa tokenizers, which may potentially lead the model to overfit by predicting

“[UNK]” token regardless of inputs. Besides, as the testing sets remain private in the

27
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LM-KBC challenge, we split 50% of the development set to create test sets following

the work from [28], which shows the agreement between this splitting method and the

official testing set. For paraphrased version datasets, we use our proposed ParaTrex and

ParaRel[12] to train and measure the consistency of our models. We note that N-M

relations are omitted because measuring consistency when there are several correct

answers can be hard. Among the remaining 25 relations, we split 50% of paraphrased

templates as out-of-domain templates, which is not seen by models during the training

phases and constructing 3 settings: (1) In-Domain(ID): where all prompts and their

paraphrases are seen by models during training phases. (2) Out-of-Domain(OOD):

where all prompts are unseen by the models. This setting is designed for simulating

situations when LLMs receive unseen queries for factual knowledge by humans in real

life. (3) Pararel(PR): where we use Pararel datasets[12] as an out-of-domain datasets.

We apply three consistency evaluation matrices (explained in section 4.3) for each

setting.

6.1.2 Model implementation details

For LLMs in our experiments, we employ BERT-large[10], and RoBERTa-large[33] as

our based models. We discuss the scalability of our methods through the comparison

between BERT-base/RoBERTa-base and BERT-large/RoBERTa-large. Due to the time

and computing constraints in this project. We leave larger models such as GPT-2[43]

and Llama [51] for future works. For P-tuning[32], we follow their default setting in

Liu’s paper. For our proposed method, we use Adam optimizer [25] with its default

configuration and set the learning rate to 1e-5 to optimize the adapters. We set the

hidden dimension of adapters to 256 and optimize it freezing all pretrained parameters

in LLMs. We set λaug, λme, λkl to be 0.5, 0.2 and 0.2 respectively.

6.2 Main results

In this section, we provide the results of experiments and show the effectiveness of

our proposed method by comparing with SOTA models P-tuning [32] and MeCoD[53],

which has good performance on accuracy and mitigating prompt preference bias respec-

tively. We compare them in both soft prompt settings and manually designed prompt

settings. We evaluate the accuracy, prompt preference bias and prompt verbalization

bias(consistency) in LAMA benchmark in section 6.2.1. Notably, we do not evaluate
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BERT-Large RoBERTa-Large
Accuracy&PP bias

Accuracy Prompt preference bias Accuracy Prompt preference bias

Prompt Method hit@1 MRR ct entropy ct hit@1 KLD hit@1 MRR ct entropy ct hit@1 KLD

P-tuning [32] 0.529 0.624 1.7812 0.1618 2.9546 0.4286 0.5143 1.6798 0.1625 2.0157

+Adapters 0.5334 0.6309 1.719 0.14 3.3961 0.5085 0.6085 1.786 0.1582 2.7552

+MeCod [53] 0.5303 0.6288 2.2386 0.0092 8.884 0.47 0.5713 2.0721 0.0567 5.2588
Soft

Prompt
+Uni-Arkex

(w/o aug/para)
0.53 0.6249 2.2932 0 13.618 0.5024 0.6021 2.2863 0.017 11.0267

LAMA [39] 0.3445 0.4106 1.8408 0.0419 3.5449 0.2255 0.2709 1.9661 0.0523 1.7514

Fine-Tune 0.5351 0.6293 1.3957 0.1338 5.063 0.5109 0.6096 1.6507 0.1736 3.1701

Adapters 0.546 0.6411 1.6027 0.142 4.129 0.5257 0.6233 1.8021 0.1833 2.5435

+MeCod(OI) 0.5432 0.6389 2.2969 0.0087 6.1119 0.5195 0.6173 2.2801 0.0128 4.5231

Manual

Prompt

Uni-Arkex 0.5439 0.6381 2.2698 0.0023 13.3672 0.5246 0.6223 2.1119 0.0403 10.5302

Table 6.1: Main results for accuracy and prompt preference bias on LAMA benchmarks.

We use P-tuning [32]’s soft prompts as initialization in the soft prompt settings. In this

setting, we do not add augmentation and paraphrase modules in our proposed model

since all prompts are automatically optimized. In manual prompt settings, MeCoD(OI)

is our adapter-based re-implementation of [53] based on the manual prompt. In each

group, the best score is marked bold and the second-best result is underlined.

the consistency for LM-KBC benchmark because of lacking the paraphrased datasets.

So we only provide results for accuracy and prompt preference bias of the LM-KBC

benchmark in section 6.2.2. For both benchmarks, we report soft prompt settings and

manual prompt settings. We note that for soft prompt settings, we use our proposed

Uni-Arkex without the augmenting and paraphrasing module since all prompts here are

learnable continuous vectors, which is to some extent different from natural language.

Besides, in the manual prompt settings, we use our implemented adapter-based version

of MeCoD [53] because (1) we want to make a fair comparison among adapter-based

models and (2) the implementation in [53] is based on the pre-trained soft-prompts,

which does not support manual prompt inputs well.

6.2.1 Results for LAMA

Table 6.1 shows the experiment results for average accuracy and prompt preference bias

among all relations. Full results including all relations are provided in Appendix B.

We first focus on the comparison between four different downstream tuning methods:

P-tuning, adapter-tuning, manual prompt(LAMA), and fine-tuning. We conclude that

(1) adapters outperform all other tuning methods in accuracy and (2) all traditional

tuning methods suffer from prompt preference bias. Firstly, observing the columns
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Consistency ID raw ID all ID acc OOD raw ood all ood acc PR raw PR all PR acc

BERT

-Large

LAMA 0.3358 0.2837 0.1576 0.2764 0.253 0.1449 0.5494 0.4661 0.2504

Adapters 0.6092 0.5341 0.3909 0.5296 0.4903 0.3576 0.7212 0.6523 0.4581

+MeCod (OI) 0.6339 0.5648 0.4124 0.5648 0.5276 0.3847 0.735 0.6733 0.4715

Uni-Arkex 0.6841 0.6222 0.4443 0.6185 0.5796 0.4188 0.7642 0.7098 0.4957

RoBERTa

-Large

LAMA 0.2393 0.2061 0.008 0.1965 0.1709 0.0059 0.33 0.2828 0.0047

Adapters 0.6185 0.5524 0.0132 0.564 0.5029 0.0116 0.6691 0.6044 0.0064

+MeCod (OI) 0.6166 0.5482 0.0131 0.5641 0.5025 0.0115 0.679 0.612 0.0065
Uni-Arkex 0.6614 0.6106 0.0099 0.6137 0.5654 0.0088 0.7168 0.6596 0.0045

Table 6.2: Main results for Consistency on ParaTrex(Ours) and ParaRel[12] benchmarks.

LAMA here refers to the manual prompt template given by LAMA benchmark [39]. Here

MeCoD is our implementation of the manual prompt. In each group, the best score is

marked bold and the second best result is underlined.

of accuracy, we find that adapter tuning performs significantly better than any other

tuning methods evaluated by top 1 precision and MRR in both soft prompt and manual

prompt cases. Fine-tuning and P-tuning get similar scores and outperform manual

prompts significantly. This shows that tuning is necessary for extracting specific

knowledge from LLMs. Adapters stand out possibly because of their advantages in both

preserving the internal knowledge of LLMs and accessing the reasoning process between

LLM’s internal layers. In contrast, fine-tuning may potentially suffer from catastrophic

forgetting due to modifying all parameters within LLMs. P-tuning merely learns optimal

prompts before embedding layers and it is not able to improve the model’s reasoning

process by optimizing the reasoning process through the layers between LLMs. We

then report the prompt preference bias over these traditional tuning methods. We find

that all of these traditional tuning methods suffer from prompt preference bias. Their

low counterfactual entropy and high counterfactual hitting rate indicate that LLMs have

the ability to guess certain objects even though they are not given the corresponding

subject. The low KL divergence value also denotes that the prediction distribution is

dominated by the prompt template instead of the true knowledge within LLMs. Here

we find that all tuning methods except manual prompt have obvious lower value at

counterfactual entropy and larger value at counterfactual hitting rate, this shows that

model tends to link specific prompt templates to some favored objects. In addition,

we argue that this bias may come from the tuning process instead of prompt types or

pretraining steps. This is based on the observation that the value of prompt preference

bias matrices is close to each other across both prompt settings and both BERT and

RoBERTa models. This observation motivates our trial on debiasing through additional
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loss function during the training process.

We then work on mitigating the bias through our proposed method Uni-Arkex. For

soft prompt settings, our method has significant improvements on all prompt preference

biases, outperforming current SOTA MeCOD [53]. Notably, it is surprising that the kl

divergence over subject-masked counterfactual inputs and raw inputs is not explicitly

optimized when training our models, nonetheless, it demonstrates a pronounced increase

together with the improvements of counterfactual entropy and counterfactual hitting

rate. These synchronous improvements indicate that while maximizing the entropy, the

model also tends to learn to make predictions less constrained to the prior distribution

given by the prompt templates. Although we still need concrete evidence to show that

LLMs employ their inherent knowledge to make predictions, we take a first step to show

that LLMs have the ability to make correct factual answers unconstrained by the prior

distribution given by the prompt template. Besides, the performance drop in the hit rate

is less than 0.005 in all settings, which can be neglectable. In manual prompt cases,

our proposed Uni-Arkex can even perform better than the SOTA model MeCoD [53],

with both less prompt preference bias and substantially better consistency on prompt

verbalization (Table 6.2), which shows the effectiveness of our proposed methods.

The final finding from Table 6.1 is that the trend of accuracy and prompt preference

bias are consistent across BERT-Large and RoBERTa large, both showing that Uni-

Arkex reduces the prompt preference bias while maintaining good performance from

adapter-tuning, which shows that our methods can generalize well between different

models.

Table 6.2 shows the prompt verbalization bias measurements. Less prompt verbal-

ization bias means better consistency. Overall for different settings, we can observe

the trend: “Out of domain consistency of ParaTrex (OOD) < in domain consistency of

ParaTrex (ID) < ParaRel consistency (PR)”. These observations precisely agree with

our expectations as we show in section 3.3 that ParaTrex is more diverse than ParaTrex.

That also explains why on unseen ParaRel paraphrases, the model has better consistency

over in-domain settings, which is seen by models during the training process. Within

each setting, we can observe the trend: “consistency over accurate predictions(acc)

< consistency between all input permutations (all) < consistency between raw inputs

and paraphrased inputs (raw)”. This is because the difficulty of these three tasks is

increasing. As for the results, it is shown that our method performs consistently better

in an average 4% percent over other methods, which shows that together with debiasing

on prompt preference bias our method does well in relieving prompt verbalization bias
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and producing robust results. Note that the consistency among accurate predictions

of RoBERTa is abnormally slow, we argue that this is because we do not search for

appropriate hyperparameters such as specific learning rate for Roberta. However, we

can still observe the same trend in the (all) and (raw) settings.

6.2.2 results for LM-KBC

Table 6.3 shows our extended experiments over LM-KBC [49] datasets. We do not

report the measurement of prompt verbalization bias and the Uni-Arkex framework

with the paraphrased module due to the lack of paraphrased datasets. Overall, we can

observe a similar tendency as in LAMA benchmarks. Specifically, all traditional tuning

methods such as P-tuning, fine-tuning, and adapter-tuning suffer from prompt prefer-

ence bias since we can observe high counterfactual hit rates. Among them, adapters

perform relatively better at retrieving accurate answers than P-tuning and LAMA. Our

proposed method is capable of both maintaining the accuracy performance of adapters

and alleviating the prompt preference bias as all of three prompt preference bias mea-

surements are significantly improved with our Uni-Arkex method. This tendency shares

with both two LLMs. However, there exist some differences such as here fine-tuning

achieves good scores in Roberta-Large and the accuracy performance of Roberta is

considerably greater than BERT-large. We conjecture that this is because of the lack of

enough training data since we omit a lot of relations and bad samples during the training

process. Despite these differences, it is still obvious that our proposed method is able to

effectively mitigate prompt preference bias or even improve the accuracy performance

in some cases such as our Uni-Arkex by BERT-Large.

6.2.3 Scaling results for models with different sizes

After analyzing the effectiveness of our model, we then try to investigate whether our

model can scale well among different sizes of models. We perform experiments on our

proposed Uni-Arkex using BERT-base, RoBERTa-base, and BERT-Large. We compare

our results with the adapter-tuning-only results to see whether Uni-Arkex can still

have good performance under different scales of models. We report the bar chart of

the comparison outcomes in Fig 6.1. Firstly, comparing the results among the same

base models such as BERT-base-cased and RoBERTa-base-cased, we can conclude

that the trend of performance of accuracy and consistency remains the same. The

larger models always get better accuracy and consistency under both adapter-tuning and
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LM-KBC
RoBERTa-Large BERT-Large

Accuracy Prompt Preference Bias Accuracy Prompt Preference Bias

Prompt Method hit@1 MRR ct entropy ct hit@1 kld hit@1 MRR ct entropy ct hit@1 kld

Soft

Prompt

P-tuning 0.4148 0.4813 1.4923 0.3666 1.2922 0.3663 0.5377 1.7696 0.149 2.4417

+Adapters 0.6485 0.741 1.3019 0.4612 1.2013 0.3768 0.543 1.8043 0.1882 2.8659

Uni-Arkex

(w/o aug/para)
0.6347 0.7411 2.2815 0.0088 8.5797 0.3697 0.5367 2.2989 0 13.0276

Manual

Prompt

LAMA 0.1535 0.2341 1.9261 0.0152 1.3608 0.3054 0.4395 1.9733 0.0741 3.781

Fine-Tune 0.6391 0.7548 0.8604 0.3035 2.3351 0.3644 0.5436 1.6981 0.1829 2.7415

Adapters 0.6098 0.7293 1.2258 0.4735 1.3473 0.3708 0.539 2.2554 0.0246 4.3199

+MeCod 0.5877 0.7105 2.2612 0.1181 4.3556 0.3735 0.545 1.9598 0.1784 2.5762

Uni-Arkex

(w/o para)
0.607 0.7298 1.9422 0.0667 7.9745 0.3744 0.5464 2.2726 0 13.5184

Table 6.3: Main results for accuracy and prompt preference bias on LM-KBC benchmarks.

We use P-tuning [32]’s soft prompts as initialization in the soft prompt settings. In manual

prompt settings, MeCoD(OI) is our adapter-based re-implementation of [53] based on

the manual prompt. In each group, the best score is marked in bold and the second-best

result is underlined.

Uni-Arkex. However, for prompt preference measurements including KL divergence

and counterfactual hit rate of the Uni-Arkex model, we observe the inverse trend.

This represents that our method tends to work relatively better for smaller models. A

potential reason behind this is that smaller models are less robust in extracting factual

knowledge, and thus it can be easier for us to modify their extraction results through

additional loss functions. Secondly, comparing all results between adapter-tuning and

Uni-Arkex, it is possible to conclude that our proposed Uni-Arkex can generalize well

among all different sizes of models. Specifically, the bar chart indicates that we have the

same or even better accuracy performance compared with adapter-tuning while having

incredibly less prompt preference bias and prompt verbalization bias.

6.3 Ablation Study

In this section, we perform an ablation study to test which module of our proposed

framework contributes most to improving accuracy, mitigating prompt preference bias

or prompt verbalization bias.

Table 6.4 presents the result of our ablation on accuracy and prompt preference

bias. We do not ablate the adapter-tuning module here since we have already compared

it with other tuning methods and shown its effectiveness in Table 6.1 and Table 6.2.

From the accuracy measurements, it is shown that each of our modules does not have
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Figure 6.1: Bar chart of our results for both accuracy and bias measurements on models

with different scales. Here we want to test whether our previous results can scale as the

parameter of models grows. We use BERT-base-cased, BERT-large-cased, Roberta-

base, and Roberta-large to simulate the scaling of the model sizes. The take-away

message is that our methods remain effective when the size of the model grows. We

maintain the accuracy performance while significantly reducing prompt preference bias

and prompt verbalization bias.

a significant impact on the probing accuracy. Similarly, for prompt preference bias,

our paraphrased and augmentation modules do not make a negative effect on prompt

preference bias. This meets our expectations since they are not designed for mitigating

prompt preference bias. In contrast, when the max entropy loss is removed, a significant

decrease in counterfactual entropy and KL divergence is witnessed. At the same time,

the counterfactual hit rate boosts a lot. This represents that the max entropy module is a

crucial part of debiasing prompt preference bias

The ablation study for prompt verbalization bias is shown in Table 6.5. We make

the following three conclusions based on the results in Table 6.5. (1) The paraphras-

ing module helps relieve the prompt verbalization bias, but not in the dominant rule.

Comparing the first row vs. the second row and the third row vs. the fourth row, we can

observe actual but not significant drops in consistency scores. The drops are consistent

in out-of-domain settings, representing that the paraphrased inputs module can help

models generalize more on unseen data. However, the improvement is not so significant

and that’s why we make this module an optional choice both for training and inference.

(2) The augmentation inputs module takes a crucial role in improving the consistency
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Accuracy Prompt preference bias

Method test hit@1 MRR ct entropy ct hit@1 KLD

Uni-Arkex 0.5439 0.6381 2.2698 0.0023 13.3672
w/o aug & para 0.5448 0.6392 2.2499 0.0014 13.2938

w/o me & aug & para 0.546 0.6411 1.6027 0.142 4.129

Table 6.4: Ablation study of the effects of each our module on accuracy and prompt

preference bias.

Consistency ID raw ID all ID acc OOD raw ood all ood acc PR raw PR all PR acc

Uni-Arkex 0.6841 0.6222 0.4443 0.6185 0.5796 0.4188 0.7642 0.7098 0.4957
w/o para 0.686 0.623 0.4433 0.6128 0.5767 0.4143 0.7631 0.7113 0.4957
w/o aug 0.6376 0.5673 0.4132 0.5712 0.5232 0.3823 0.7325 0.6668 0.4677

w/o

aug & para
0.6305 0.5602 0.4092 0.5595 0.5191 0.3792 0.7284 0.6633 0.4656

w/o me &

aug & para
0.6092 0.5341 0.3909 0.5296 0.4903 0.3576 0.7212 0.6523 0.4581

Table 6.5: Ablation study of the effects of each our module on prompt verbalization bias

of our models. This conclusion can be found by comparing the first row vs. the third

row and the second row vs. the fourth row, which presents a significant decrease when

removing the augmentation module. (3) The max entropy module, which is designed

for mitigating the prompt preference bias, is able to help relieve the prompt verbaliza-

tion bias as well. By observing the last two rows, we notice a considerable drop in

performance of consistency when we ablate the max entropy module. This shows that

our modules do not take effect separately. They can have synergistic contributions to

relieving a certain type of bias.

6.4 Case Study

We perform a case study on the BERT-Large model to make a qualitative analysis of

our proposed methods. Firstly, we focus on specific cases on how the models make

the correct prediction due to the prompt preference bias. We show two specific cases

from relation ’P37’, which asks for the official language of a specific item. The prompt

template used is: “The official language of [sub] is [obj].”. The detailed results are

shown in table 6.6.
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Method Inputs Top-5 candidates/logits from (subject: Rwanda, object: French)

Uni-Arkex

raw inputs
French Rwanda English Portuguese Italian

21.2631 21.1482 19.3928 16.6334 16.1467

subject

masked

Georgian Azerbaijan Portuguese Turkish Myanmar

11.2759 11.2169 11.172 11.1536 11.1424

MeCoD

raw inputs
Rwanda Congo English Georgian Cameroon

15.2095 10.3738 10.119 10.0667 10.0087

subject

masked

Armenian Georgian Azerbaijan Myanmar Turkish

11.9405 11.0925 10.9124 10.7832 10.5903

LAMA

raw inputs
English French Rwanda Latin Mon

13.9086 13.1605 12.3816 10.0265 10.016

subject

masked

French Spanish English Portuguese German

13.5287 13.1813 13.0275 12.4855 12.4292

Table 6.6: Case study on top-5 objects and their logits extracted by LLMs through original

prompt template: “The official language of Rwanda is [MASK].” and subject-masked

prompt: “The official language of [MASK] is [MASK].”. The bold candidates are the

ground truth objects.

The last row in Table 6.6 indicates that for the vanilla LLMs without tuning, the

LLM suffers from prompt preference bias on objects such as French and English make

predictions based on this prior distribution. The specific logits of object French and

English of LAMA methods are close to each other, which means that the model is

not confident with their predictions, which potentially shows that probably the vanilla

model is, to some extent, guessing from the prior distribution. MeCoD [53] is the SOTA

model developed for relieving this problem. However, since they apply a neural gate

to automatically classify which object to be debiased, the gate may force the model

to underfit some objects, which may be harmful. For instance, French has a relatively

high logit from the vanilla model with subject-masked prompts. MeCoD successfully

smooths this high counterfactual logit but causes the model to underfit this object so

that it cannot recall the correct object French. In contrast, our proposed Uni-Arkex is

capable of making accurate predictions while having an unbiased prediction distribution

under subject-masked inputs. Moreover, we can observe that our model has far larger

logits for prediction than other baselines, possibly meaning that our model makes

the prediction more confidently after excluding biased objects through the debiasing

process. We, therefore, conclude that our unified unbiased framework is able to debias
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Inputs (Subject: Vesanto, Object: Finnish) Predictions

Type Prompt template Adapter-Tuning Uni-Arkex

raw The official language of [X] is [MASK]. Finnish Finnish

paraphrased

[X] designates [MASK] as the official language . Italian Finnish
[X] has [MASK] as its official language . It Finnish
[MASK] has been declared as the recognized language in [X] . Finland Finnish
In [X], [MASK] is acknowledged as the prescribed language by the government. It Finland

The officially recognized language in [X] is [MASK] . Italian Italian

[X] recognizes [MASK] as its official language . Italian Finnish

Table 6.7: Case study on top-5 objects and their logits extracted by LLMs through original

prompt template: “The official language of Rwanda is [MASK].” and subject-masked

prompt: “The official language of [MASK] is [MASK].”. The bold candidates are the

ground truth objects.

on specific objects while not letting the model underfit them, which helps the model

output knowledge based on truly understanding relationships between objects and

subjects.

Table 6.7 gives a specific example of the consistency study. We provide an instance

where adapter-tuning and Uni-Arkex are both correct on original prompts. We sample

several cases where our models make correct predictions while adapter-tuning cannot

investigate why our models perform better. Based on the shown results, we conclude

that our proposed model is more robust over both syntactically and lexically diverse

prompt templates. For example, from the second and fourth rows of paraphrased prompt

templates, we can observe the different syntax over the raw templates. Our model

maintains well on outputting language objects instead of stopwords like ’it’. In addition,

for the first and the last rows of paraphrased templates, new terms such as ’designates’

and ’recognized’ are added to the templates, which are more diverse from the raw inputs.

Our model still outputs consistent outputs in this case. Although our model may still

make mistakes such as retrieving wrong answers or wrong lexical forms, overall we

can observe that it provides consistent and correct results under most circumstances.

Therefore, based on these cases, we can speculate that our framework makes the model

provide more robust results over syntactical and lexical diverse paraphrases of queries.

6.5 Discussion

In this thesis, we propose a unified adapter-based framework for unbiased and robust

factual knowledge extraction. Our ablation study shows that each of our proposed
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modules has positive effects on mitigating potential bias when retrieving factual knowl-

edge from LLMs. The maxing extropy module takes a crucial role in relieving prompt

preference bias while the self-augmentation module has a vital impact on mitigating

the prompt verbalization bias. Surprisingly, we also observe a synergizing effect of

maxing entropy modules and self-augmentation modules on prompt verbalization bias,

showing the effectiveness of our unified framework. We then carry out a specific case

study, qualitatively showing how prompt preference bias and prompt verbalization bias

harm the quality of the extracted knowledge. Specifically, we find that our methods

improve the model to be (1) more robust among both syntactically and lexically diverse

prompt paraphrases and (2) more unbiased in favoring specific objects from the prior

distribution from prompt templates. Meanwhile, we do not see any drops in the accu-

racy performance, which shows that those potential biases can be mitigated without

having much impact on the model’s performance. This can be explained by the good

compatibility of adapters for muti-task learning settings [11]. Despite these improve-

ments, we note that our work is still not performed on larger LLMs such as Llama[51]

and GPT [37], which has proved to have emerging capabilities over BERT-large and

RoBERTa-large. We will leave them as future works.

Compared with other existing baselines, as far as we know, our framework is the

first proposed framework trying to reduce both prompt preference bias and prompt

verbalization bias. In addition, there are also no related works on investigating adapter-

tuning for factual knowledge extraction. Regarding each module within our framework,

our maxing entropy module is similar to MeCoD [53] but we choose a different strategy

for filtering the object candidates. In MeCoD, they employ a simple MLP layer to

automatically learn to filter the objects. However, we suspect that the black-box MLP

layer may not work as we expect since we found that the classification results only

choose a small portion among all valid candidates. We also give an example in the

case study when MeCoD makes the model underfit the ground truth objects so that the

model cannot extract the correct knowledge. Therefore in our methods, we choose to

merely remove common stopwords instead of using a neural classifier, which is easier

to interpret and simpler to implement. As for the paraphrasing module, we apply the

same idea as [12] to minimize the KL divergence between paraphrases. However, this

is an optional choice within our proposed framework and we also show in ablation that

this method does not contribute to the main improvements of our experiment results.
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Conclusions

In this project, we focus on the factual knowledge extraction tasks that regard large

language models(LLMs) as knowledge bases and extract specific knowledge triples

<subject, relation, object> via prompt-based methods. We aim to improve the accuracy

of existing knowledge probing methods and mitigate two potential biases existing in

prompt-based models, which are prompt preference bias and prompt verbalization bias

respectively. We summarise the following conclusions we reached in this project:

• We propose an extended large-scale paraphrasing dataset ParaTrex based on

LAMA benchmarks in order to make a more comprehensive evaluation of prompt

verbalization bias on the existing models. Automatic evaluations show that

ParaTrex is more diverse than the existing benchmark ParaRel both lexically

and syntactically. We hope that ParaTrex can make valuable contributions as a

resource for future research.

• We prove that simple adapter-tuning has a competitive performance on probing

factual knowledge and is able to outperform all existing tuning methods such as

fine-tuning and P-tuning [32]. This is possibly due to the fact that (1) additional

adapters can have access to the feed-forward process, thus may help LLMs reason

when making inferences; (2) freezing parameters within original LLMs preserves

the learned knowledge from pre-training when tuning with adapters.

• We propose a simple but effective unified adapter-based framework for unbiased

and robust factual knowledge extraction (Uni-Arkex). For retrieval accuracy,

Uni-Arkex outperforms the current state-of-the-art(SOTA) model MeCoD [53]

on BERT-large and RoBERTa large-settings. Meanwhile, intensive experiments

demonstrate that our proposed method significantly mitigates both prompt pref-
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erence bias and prompt verbalization bias. In addition, we show that these

improvements remain consistent when scaling the size of LLMs.

• We provide analysis and conclude that the success of our framework is mainly

because (1) adapter-based tuning is compatible with multi-task settings; (2)

mitigating prompt preference bias and prompt verbalization bias are not two

separate tasks. They may have a positive synergizing effect on each other when

we try to optimize these two biases simultaneously.

Limitations and future works: Despite the achievements above, there are still limi-

tations in this project. Firstly, the human evaluation of our proposed dataset ParaTrex

is based on merely 5 bilingual speakers. More judgments with diverse backgrounds

are necessary to further prove the high quality of our proposed datasets. It is worth

inviting more people to evaluate our proposed datasets. Secondly, due to the constraints

of time and computing resources, we do not perform experiments on super large LLMs

such as Llama [51] and GPT-4 [37], which is more popular among real applications. It

is worth extending our experiments on these LLMs to further investigate whether the

improvements of our proposed modules such as maxing entropy and self-augmentation

are scalable among larger LLMs. Thirdly, we just take a straightforward step to propose

a unified framework in order to ensure that it generalizes well across various scenar-

ios. This framework has the potential to be further optimized. For example, in our

self-augmentation modules, we simply make mathematical addition and minus between

output distributions. Other methods such as a contrastive learning framework may yield

additional enhancements. These improvements and experiments also present a practical

direction for future works.
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Appendix A

Data Extension details for ParaTrex

A.1 Details of generated templates for an example rela-

tion

We provided a full example in ParaTrex for relation ’P1376’: ’CapitalOf’ in Table A.1.

A.2 Human evaluation

We give a screenshot of our questionnaire for human evaluation on ParaTrex. The

questionnaire includes 40 questions in total and we show 2 examples of the questions.

47
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Templates inhouse split paraphrase type

The capital of [Y] is [X] . test short paraphrase

[X] is [Y]’s capital . test short paraphrase

[X] serves as [Y]’s capital . test short paraphrase

[Y]’s capital city is [X] . test short paraphrase

[X] acts as [Y]’s capital . test short paraphrase

[X] is the administrative division where the municipality of [Y] serves as the capital . test long paraphrase

The governmental seat of [Y] is located in [X], which is the capital city . test long paraphrase

[X] holds the status of being the capital city and administrative center of [Y] . test long paraphrase

The capital of [Y] is none other than [X], where the government operates . test long paraphrase

The administrative hub of [Y] is [X], which holds the position of being the capital cit . test long paraphrase

[X] is the official capital of [Y] . test normal paraphrase

The capital city of [Y] goes by the name of [X] . test normal paraphrase

[X] is the designated capital city of [Y] . test normal paraphrase

[X] serves as the principal capital city of [Y] . test normal paraphrase

[X] is the administrative capital and governmental seat of [Y] . test normal paraphrase

[X] is the principal administrative center of [Y] . test normal paraphrase

[X] serves as the capital city and governmental hub of [Y] . test normal paraphrase

[X] holds the official status of being [Y]’s capital city . test normal paraphrase

[X] acts as the administrative capital of [Y] . test normal paraphrase

[X] serves as the capital city of [Y] . test normal paraphrase

[X] is the primary governing capital and administrative center of [Y] . test normal paraphrase

[X] is the primary political center of [Y] . test normal paraphrase

[X] holds the title of being [Y]’s capital . test normal paraphrase

[X] serves as the seat of government for [Y] . test normal paraphrase

[X] is the city that serves as [Y]’s capital . test normal paraphrase

The government of [Y] is headquartered in [X], its capital . test normal paraphrase

[X] acts as the political center of [Y] . test normal paraphrase

[X] holds the official position of being [Y]’s capital . train normal paraphrase

[X] serves as the governing center of [Y] . train normal paraphrase

The capital city of [Y] is [X] . train normal paraphrase

[X] is the administrative center of [Y] . train normal paraphrase

The seat of administration in [Y] is [X] . train normal paraphrase

The designated capital city of [Y] is [X] . train normal paraphrase

The governmental headquarters of [Y] is located in [X] . train normal paraphrase

[X] holds the status of being [Y]’s capital . train normal paraphrase

The government of [Y] is headquartered in [X] . train normal paraphrase

[X] is where the governing body of [Y] is located . train normal paraphrase

[X] holds the position of being [Y]’s capital city . train normal paraphrase

[X] holds the official governmental seat and capital status of [Y] . train normal paraphrase

[X] serves as the governing capital of [Y] . train normal paraphrase

The capital city of [Y] is none other than [X] . train normal paraphrase

The political center of [Y] is [X] . train normal paraphrase

The administrative capital of [Y] is [X] . train normal paraphrase

The government headquarters of [Y] can be found in [X] . train normal paraphrase

[X] is where the government of [Y] is based . train normal paraphrase

Table A.1: A specific example of relation ’Capital of’ in our proposed ParaTrex. The

original prompt template in LAMA is “[X] is the capital of [Y] .”
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Figure A.1: Examples of questions for human evaluation on ParaTrex



Appendix B

Full results for LAMA

B.1 Specific results for all relations of our proposed

method

We show the full results of all relations for our proposed Uni-Arkex on the LAMA

dataset based on the BERT-large model.
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Relation Test acc MRR CT Entropy CT Hit1 KLD

P159 0.4257 0.5099 2.2999 0 13.0318

P138 0.7714 0.7962 2.2982 0 14.482

P20 0.4015 0.5081 2.3015 0 13.0068

P361 0.5503 0.649 2.3 0 13.347

P495 0.4486 0.5733 2.3022 0 13.6849

P413 0.4485 0.618 2.3017 0 14.7436

P190 0.0477 0.1343 2.3011 0 11.7378

P108 0.119 0.2201 2.3007 0 13.2785

P103 0.8966 0.9359 2.3021 0 14.6807

P178 0.6871 0.767 2.3018 0 15.0095

P937 0.5217 0.6245 2.2998 0 14.2565

P27 0.5313 0.6594 2.3019 0 14.7093

P176 0.9195 0.9424 2.3008 0 15.6398

P740 0.1886 0.2925 2.3011 0 12.0164

P39 0.7052 0.8095 2.2956 0 14.6951

P136 0.7253 0.8196 2.3006 0 14.9541

P131 0.4735 0.5791 2.302 0 13.9597

P276 0.5392 0.5987 2.3 0 13.5306

P30 0.9468 0.9694 2.301 0 15.5741

P140 0.8433 0.8991 2.2997 0 15.2921

P364 0.5847 0.7114 2.299 0 13.4268

P449 0.4196 0.6232 2.301 0 12.9184

P37 0.6989 0.797 2.3011 0 14.0201

P127 0.5735 0.6436 2.2989 0 13.409

P530 0.0379 0.1142 2.3001 0 11.9911

P1303 0.4815 0.6911 2.2936 0 14.1848

P19 0.2577 0.3508 2.2528 0 10.0559

P463 0.7389 0.8149 2.2976 0 15.1337

P36 0.6773 0.7073 1.6855 0 7.4246

P264 0.0189 0.1685 2.3004 0 11.9502

P106 0.4275 0.5829 2.3017 0 13.8305

P101 0.2059 0.3465 1.7977 0.089 2.1489

P407 0.7515 0.8204 2.2978 0 13.1364

P279 0.7087 0.7713 2.3014 0 14.7263

P1376 0.8 0.8426 2.2833 0 13.8507

P47 0.3113 0.4927 2.3002 0 13.5657

P17 0.6294 0.7196 2.3016 0 14.1329

P1001 0.8795 0.9048 2.296 0 15.0948

P1412 0.8193 0.8757 2.3016 0 14.6903

Average 0.5439 0.6381 2.2698 0.0023 13.3672

Table B.1: Full results of accuracy and prompt-preference bias for our Uni-Arkex methods.



Appendix B. Full results for LAMA 52

relation ID consist ID all consist ID acc consist OOD consist ood all consist ood acc consist PR consist PR consist PR consist

P159 0.5786 0.4855 0.2428 0.4126 0.3512 0.1738 0.5913 0.4734 0.247

P138 0.8225 0.7977 0.6658 0.8296 0.805 0.6755 0.8935 0.8734 0.7194

P20 0.5199 0.4387 0.2146 0.492 0.3689 0.1796 0.6388 0.5416 0.2567

P361 0.5967 0.4988 0.3319 0.547 0.5403 0.3617 0.9405 0.9206 0.5322

P495 0.521 0.4067 0.2239 0.5654 0.5154 0.2856 0.7643 0.7398 0.3878

P413 0.4173 0.2933 0.1692 0.4753 0.3009 0.1793 0.7092 0.6105 0.3721

P103 0.8607 0.8133 0.7519 0.8202 0.7126 0.6614 0.9557 0.9456 0.8762

P176 0.9248 0.9117 0.8766 0.9294 0.9368 0.8969 0.9415 0.924 0.884

P740 0.5603 0.4538 0.1099 0.4321 0.3424 0.0945 0.6877 0.5952 0.134

P136 0.755 0.8341 0.609 0.6827 0.7559 0.5599 0.6589 0.5521 0.4354

P131 0.6005 0.5501 0.3378 0.5467 0.4875 0.3117 0.8327 0.7882 0.4295

P276 0.5515 0.4644 0.3121 0.5055 0.4224 0.3034 0.8832 0.8442 0.5191

P30 0.9387 0.9333 0.8966 0.9267 0.9192 0.8841 0.9666 0.9615 0.9278

P140 0.8367 0.7792 0.6848 0.8234 0.8087 0.7131 0.9159 0.8903 0.7783

P364 0.7392 0.7039 0.4779 0.7687 0.7388 0.4968 0.8505 0.8352 0.5583

P449 0.6358 0.5415 0.2419 0.5736 0.4858 0.2161 0.427 0.2737 0.1261

P37 0.8846 0.8566 0.6251 0.8671 0.8571 0.6334 0.916 0.9047 0.656

P127 0.6567 0.629 0.4619 0.6094 0.6055 0.4419 0.538 0.3956 0.3013

P19 0.3338 0.1999 0.0678 0.3467 0.2563 0.0722 0.2793 0.198 0.0406

P36 0.7862 0.7539 0.5828 0.722 0.6697 0.5245 0.833 0.7844 0.6049

P264 0.5649 0.4837 0.026 0.1161 0.3174 0.0182 0.3596 0.2962 0.009

P407 0.8536 0.8206 0.6491 0.6689 0.7165 0.5672 0.8042 0.7236 0.57

P279 0.705 0.586 0.4572 0.3917 0.3324 0.1903 0.9316 0.9157 0.6825

P1376 0.8293 0.8291 0.7223 0.8406 0.8136 0.7071 0.8659 0.8489 0.7361

P17 0.6294 0.4905 0.3675 0.5695 0.4308 0.3225 0.9207 0.9075 0.6076

Average 0.6841 0.6222 0.4443 0.6185 0.5796 0.4188 0.7642 0.7098 0.4957

Table B.2: Full results of prompt verbalization bias for our Uni-Arkex methods
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