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Abstract

User account access graphs are an incredibly effective tool for visualising the con-

nections of accounts in the modern world. Arnaboldi et al. [2] provide theoretical

extensions that allow the manipulation of these graphs in a realistic manner. This

report provides an interpreter to process a subset of their defined tactic language which

automatically updates or produces an account access graph with state using Neo4j. The

automatic visualisation provided by said graph database management software elimi-

nates the greatest barrier to entry for utilising the aforementioned graphs - manually

producing them. The interpreter is shown to be effective at visualising situations as

diverse as a phone theft, leading to Twitter account compromise, to illustrating the

dangers associated with password reuse. These contributions offer a significant advance-

ment in the field of account access graphs, providing ease of use and groundwork that

future research can build upon.
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Chapter 1

Introduction

1.1 Motivation

The compromise of a journalist’s photographs and digital accounts resulting in per-

manent data loss [12], over 1 million dollars of cryptocurrency stolen [22, 24], and a

series of iPhone thefts that led to bank account drain and credit card fraud [25]. The

thread that connects each of these exploits is a severe lack of understanding regarding

the increasing interconnection of user accounts in the current world.

An individual’s digital identity is a web of accounts and access methods. Now, more

than ever [3], people rely on these accounts for every aspect of their personal and work

life. To take one example, large corporations like Apple may carry out tens of thousands

of account recoveries every day [1]. To make this process as painless as possible, every

aspect of an iPhone and Apple account can be recovered from just the respective PIN

number and device [25]. While this may enable frictionless account recovery, it equally

provides an Achilles heel for the user’s whole Apple ecosystem.

A malicious actor that is able to steal just a phone and corresponding PIN would

have complete control over every aspect of the victim’s Apple-related identity. This has

led to a growing problem where users have had all personal data wiped and substantial

fiscal losses [25]. Apple has complex incentives. While they want their platform to be

easier to use than any of their competition, they must also be careful that this does not

lead to excessive security vulnerabilities. This instance demonstrates how difficult it is

to balance these factors.

The overall state of account connections can be summarised in the following xkcd

comic on authorisation from 2013 that has been modified to reflect the current environ-

ment:

1
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Figure 1.1: Modified xkcd comic (Based on “Authorization” [15])

Fortunately, there is a formal visual representation that can illustrate these risks

which may help to understand, and perhaps avoid, them in system design: user account

access graphs.

Initially defined by Hammann et al. [11], these graphs represent accounts as vertices

and access methods as edges to provide a tool which highlights digital connection.

However accounts, by their very nature, are not static. Users can create, modify, and

delete their accounts which are requirements for these graphs if they are to accurately

represent and identify real-world vulnerabilities. This is the gap in research which a

draft paper by Arnaboldi et al. [2] seeks to fill. They extend user account access graphs

to include the access participants have to any given account, along with the definition of

atomic propositions and operations which are combined to create a language able to

describe changes representative of genuine accounts. Their graphs are manipulated by

short programs (“tactics”) in this language.

This report builds upon their work by visualising the extended user account graphs

using the graph database management system Neo4j [17]. To interact with and build

these graphs a simplified tactic language, complete with operational semantics, is

defined based on the original by Arnaboldi et al.

The overall outcome of this work is an interpreter that translates any tactic written

in the simplified tactic language into a Neo4j representation using the Neo4j query

language Cypher. The specialised graph visualisation associated with Neo4j is therefore
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immediately available after each tactic is carried out. These tactics can be used to build

an account access graph from scratch or to edit a pre-existing graph that conforms to

the necessary structure.

Ultimately, this line of work could provide benefit to a wide range of people. Large

companies like Apple can use it to investigate access methods in their vast ecosystem and

determine security trade-offs for individuals’ devices and their own systems. Security

researchers can make use of it to describe connections and weaknesses in systems of

interest and update their models automatically rather than manually recreate them for

changes. Finally, individual end-users can enter their own details to discover weaknesses

in their personal and work account networks and adjust them to better fit their risk

tolerance.

Through this dissertation, the reader will come to understand the design of the

interpreter, its integration with Neo4j, and the types of scenarios that can be effectively

described. However, a key benefit of the interpreter implementation is that detailed

knowledge is not required to use it. A basic understanding of the simplified tactic

language (defined at the start of Chapter 3) and an existing Neo4j database instance

(Neo4j Desktop and AuraDB both supported) are all that is required to make use of this

tool. Hence, the interpreter provides a very low barrier for entry as there is no need for

prerequisite knowledge about parsing or graph database management systems.

1.2 Aims and Objectives

The overall aim of this project is to create a system that can interpret tactics written in

a simplified language based on the tactic language formalised by Arnaboldi et al. [2],

producing or updating a visualisation of the relevant graph. To achieve this aim, the

following objectives were completed:

1. The creation of a simplified tactic language with precise definitions through an

operational semantics.

2. The development of a parser (including defining precise syntax) to analyse tactics

written in the simplified tactic language.

3. The development of appropriate Cypher queries to create, check and update the

state of an account access graph.
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4. The integration of the Cypher queries with the parser and a graph updates class to

interpret the defined tactic language into a Neo4j database with implicit visualisa-

tion.

5. Evaluation and testing of objectives 2, 3 and 4 to ensure appropriate functionality

and capability of the interpreter.

1.3 Project Structure

This dissertation is divided into the following sections: Chapter 1 has introduced the

topic, Chapter 2 shall provide further background on the underlying theory and graph

database to be utilised. Chapter 3 shall discuss the design choices and implementation

of the Interpreter. Chapter 4 shall go over multiple case studies showing the interpreter’s

applications and testing to make sure all aspects function as expected. Finally, Chapter

5 shall go over the relevant conclusions and potential future work.



Chapter 2

Background

2.1 Account Access Graphs

As mentioned in the introduction, Arnaboldi et al. [2] extend the account access graphs

defined by Hammann et al. [11]:

Let V be a countably infinite set of vertices, let L be a countably infinite set of

labels, and A be a set of participants, here A will contain the user (signified by the icon

g) and an adversary (signified by �).

Definition 1 (Account Access Graphs with State [2]). An account access graph with

state is a triple G = (V,E,A) where V ⊂ V is a finite set of vertices (representing

devices, accounts or credentials), E : (V ×V )→ 2L are edges labelled with finite sets

of access method names, and A : V → 2A is a map labelling each vertex with a finite set

of participants who have access.

This definition enables the observation of the access held by both users (g) and

adversaries (�). This access is illustrated in the graph by mapping a set A(v) to each

node v which can contain an individual user, an adversary, a combination of both or can

be empty. This mapping is critical as the accounts that a participant can gain access to

are directly dependent on which accounts they already have access to.

The term ‘account’ can lead to some confusion, in the context of user account

access graphs, a vertex can be either an account, device or credential. For the sake of

consistency with the definitions used by Arnaboldi et al. [2], throughout this report the

word ‘account’ shall be used to refer to any of these three entities.

Below is an example of this type of graph. It illustrates a situation where the

adversary has acquired access to the ‘Locked phone’ and the ‘Phone PIN’ but only

5
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the user has access to the ‘Face’ node. The adversary can then use the edges labelled

‘PIN’ to access the ‘Phone’ node (i.e. the phone in its unlocked state). This is possible

because the adversary controls all nodes that connect edges with that specific label to

‘Phone’. However, the adversary cannot access the phone by using ‘faceID’ as they do

not have access to the ‘Face’ node, despite having access to the ‘Locked Phone’ node.

Phone

Locked

Phone

�

Phone PIN

g �

Face

g

PIN
,fa

ceI
D

PI
N

faceID

Figure 2.1: Account Access Graph with State [2]

The key takeaway from this example is that edges and their labels allow the expres-

sion of both alternative access routes and multi-factor requirements, such as Multi-Factor

Authentication (MFA) and Two-Factor Authentication (2FA).

For instance, if there was an additional label on the edge from ‘Locked Phone’ to

‘Phone’ called “Swipe” and no other edges match this label, then one could access the

phone from just the locked phone using the swipe access method, bypassing the need

for ‘Phone PIN’ or ‘Face’ access. However, in the example above, access can only be

achieved from having access to at least two nodes. This principle can equally be applied

to nodes representing two or more devices to visualise multi-factor requirements which

shall be seen later.

2.1.1 Properties of Account Access Graphs with State

To help describe operations to manipulate access graphs, formal properties can be used

to describe states. A property of an account access graph G is a predicate over (V,E,A).

Atomic propositions and combinations are given by the subsequent grammar [2]:
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φ ::=

is account(v) account v exists in graph

|has accessa(v) user a is accessing account v

|could accessa(v) user a has way to access v

|uses methodl(u,v) v is accessible from u using label l

|φ1 ∧φ2 |φ1 ∨φ2 |¬φ | true

The inductive definitions showing validity of assertions can be found in Appendix

A.1.

The above definition can be illustrated with the following examples (that all evaluate

to true) based on Figure 2.1:

is account(Locked Phone)

has access�(Locked Phone)

could access�(Phone)

uses methodPIN(Phone PIN, Phone)

2.1.2 Operations on Account Access Graphs

Arnaboldi et al. [2] provide seven operations to update an account access graph. The

first three operations (GAIN, DISC, and LOSE) only update the access of participants,

modifying the mapping a ∈ A(v), and thus do not have an effect on the shape of the

graph. These three operations represent an actor gaining access to a vertex, an adversary

discovering access (without any necessary requirements) and an actor losing access

to a vertex, respectively. The following four operations (CREATE, DELETE, ADD,

REMOVE1, and REMOVE2) all update the structure of the graph. These operations

represent: the creation of a new account, the deletion of an existing account, the addition

of a specific account as an access method for another account, removing access for an

account by direct access, and removing access to an account through access to one of

its access methods. The formal definitions and rules for these operations are as follows:

Definition 2 (Account Access Graph Operations [2]). An account access graph with

state can be modified with the following seven operations. We use α to range over these

operations.
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⟨V,E,A⟩ |= could accessa(v)

⟨V,E,A⟩
gain accessa,v
⇝ ⟨V,E,A[v 7→ a]⟩ (GAIN)

⟨V,E,A⟩
disc accessa,v
⇝ ⟨V,E,A[v 7→ a]⟩ (DISC)

⟨V,E,A⟩
lose accessa,v
⇝ ⟨V,E,A[v\a]⟩ (LOSE)

The notation A[v 7→ a] means A updated to add a into the access set of v, i.e.

the updated map A′ given by:

A′(x) =

A(v)∪{a} when x = v

A(x) otherwise.

Similarly, A[v\a] means A updated to remove a from the set of accesses A(v).

⟨V,E,A⟩
create accounta,v

⇝ ⟨V ⊎{v},E,A[v 7→ a]⟩ (CREATE)

⟨V,E,A⟩ |= has accessa(v)

⟨V,E,A⟩
del accounta,v
⇝ ⟨V \{v},E \ v,A|V \{v}⟩ (DELETE)

⟨V,E,A⟩ |= has accessa(v) E ′(x,y) =

{l} if x ∈ {u1, ...,un} and y = v

{} otherwise.

⟨V,E,A⟩ add accessa,{u1,...,un}v,l
⇝ ⟨V,E ⊎E ′,A⟩ (ADD)

⟨V,E,A⟩ |= has accessa(v)

⟨V,E,A⟩
rem accessa,v,l
⇝ ⟨V,E[( ,v)\{l}],A]⟩ (REMOVE1)

⟨V,E,A⟩ |= has accessa(v) ⟨V,E,A⟩ |= uses methodl(v,u)

⟨V,E,A⟩
rem accessa,u,l
⇝ ⟨V,E[(,u)\{l}],A⟩ (REMOVE2)

Here the notation E \ v denotes the edge function E updated to remove any edges

that have v as a source or target, i.e., E ′ such that:

E ′(u1,u2) =

{} if u1 = v or u2 = v

E(u1,u2) otherwise.

Similarly, the notation E[( ,v)\{l}] means the update of E to remove the access

method l to vertex v from E.
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2.1.3 Tactics

The way in which account access graphs are updated is through a concise program

known as a ‘tactic’. They can be used to model attacks by an adversary, defences by a

user and the combination of both sequentially. These tactics make use of the operations

defined previously to achieve a specific goal. Tactics can also be comprised of ⊤, the

tactic for successful termination, and ⊥, the tactic for failure. The following grammar

defines a syntax for tactics, where α is an operation, b ∈ {⊤,⊥} and φ represents the

atomic propositions also defined previously:

t ::= α | b | t ; t | t || t | CHECK(φ)

2.1.4 Tactics for Account Access Graph Operations [2]

Arnaboldi et al. [2] define a big-step semantics to provide rules for tactic evaluation.

Let σ represent the state of an account access graph (V,E,A) and ⟨σ⟩ t ⇓ t ′ ⟨σ⟩ be a

relation that extends the previous transition relations. The execution of a tactic results

in either success (⊤) or failure (⊥) along with the account access graph with updated

state. Then, the following list of rules inductively defines tactic evaluation for account

access graphs [2]:

⟨σ⟩ α
⇝ ⟨σ′⟩

⟨σ⟩ α ⇓ ⊤ ⟨σ′⟩ (AX-T)

⟨σ⟩ b ⇓ b ⟨σ′⟩ (CONST)

⟨σ⟩ t1 ⇓ ⊥ ⟨σ′⟩
⟨σ⟩ t1 ; t2 ⇓ ⊥ ⟨σ′⟩ (SEQ-B)

⟨σ⟩ t1 ⇓ ⊤ ⟨σ′⟩ ⟨σ′⟩ t2 ⇓ b ⟨σ′′⟩
⟨σ⟩ t1 ; t2 ⇓ b ⟨σ′′⟩ (SEQ-T)

⟨σ⟩ t1 ⇓ ⊥ ⟨σ′⟩ ⟨σ′⟩ t2 ⇓ b ⟨σ′′⟩
⟨σ⟩ t1 || t2 ⇓ b ⟨σ′′⟩ (OR-B)

⟨σ⟩ t1 ⇓ ⊤ ⟨σ′⟩
⟨σ⟩ t1 || t2 ⇓ ⊤ ⟨σ′⟩ (OR-T)

⟨σ⟩ |= φ

⟨σ⟩ CHECKφ ⇓ ⊤ ⟨σ⟩ (CHECK-T)

¬⟨σ⟩ |= φ

⟨σ⟩ CHECKφ ⇓ ⊥ ⟨σ⟩ (CHECK-F)
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The above rules allow for the combination of operations, true or false values and

checks on the states of graphs.

2.2 Neo4j

Neo4j is a graph database management system employed by many notable companies,

such as NASA [14] and AstraZeneca [23]. It is a native graph database meaning that

data is stored as a graph, with nodes and edges (or relationships), which avoids needing

to search an index for relationships at query time. This makes it more efficient for

path queries than relational databases [28] and an appropriate choice for implementing

account access graphs, as the graphs can be stored exactly as they are defined. The use of

Neo4j therefore provides an excellent basis to represent large systems of interconnected

accounts and devices.

Neo4j supplies an integrated visualisation tool called ‘Neo4j Browser’ [8]. It is a

clear benefit of using the system as it can visualise all of the nodes and edges of a stored

graph or a specified subset of the graph. Control over what is visualised and the ability

to create and update graphs is provided by the Cypher query language, which has an

intuitive visual syntax for matching graph patterns [7]. The Cypher query language

shall be utilised extensively for the tactic language, to develop atomic propositions and

tactic operations equivalent to those specified by Arnaboldi et al. [2].

The standard syntax for Neo4j is to write labels with CamelCase and relationships

as all upper-case [10]. Hence the representations of account access graphs in the rest of

this report will follow this convention. There shall be only one diversion; whitespace

is perfectly acceptable for properties of nodes according to the Neo4j style guide but

the tactic language used in this report shall use underscores instead. This is to aid with

parsing which shall be discussed later.



Chapter 3

Interpreter Design

3.1 Changes To the Language

Given the time constraints imposed by the MSc project, it was decided to focus on

implementing a subset of the tactic language rather than the entirety of its features and

capabilities. Thus, in correspondence with the project supervisor Dr David Aspinall,

the design decision was made to simplify the language so that it did not make use of

backtracking. A typical problem with database updates, and graph updates in particular,

is the choice required for queries that update state continuously. The originally defined

tactic language [2] continuously updates state but reverts (backtracks) to a previous

point if the current branch is determined not to lead to a solution. To avoid this, the

choice was made to only update the state of the graph at the very end of the tactic, once

the whole parse tree has been walked. All individual components of the language shall

be implemented but, to avoid the backtracking problem, any queries on state will be

carried out on the initial state of the graph before the tactic was interpreted, rather than

some intermediate state.

This simplification was accomplished by splitting the interpreter into two stages:

checks and updates. The checks stage does not update the state of the graph but rather

carries out the logic of the language in relation to b ∈ {⊤,⊥}, checking the atomic

propositions (which result in either ⊤ or ⊥) and recording all the valid α (operations)

in relation to these in a list.

The updates stage then carries out the appropriate operations α in the list returned

by the checks stage, provided the premises for the operations pass.

Therefore, to represent this simplified tactic language, big-step semantics were

defined for the two stages. For the big step semantics, σ is a Neo4j account access graph

11
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(V,L,E,A) (defined in the next section) and the relation t ⇓ l, t ′ represents the execution

of a tactic which returns a list and another tactic. Executing a tactic initially results in a

list and ⊤ (success) or ⊥ (failure).

⟨σ⟩ ⊢ α ⇓ [α], ⊤ (AX-T)

⟨σ⟩ ⊢ b ⇓ [ ], b (CONST)

⟨σ⟩ ⊢ t1 ⇓ [ ], ⊥
⟨σ⟩ ⊢ t1 ; t2 ⇓ [ ], ⊥ (SEQ-B)

⟨σ⟩ ⊢ t1 ⇓ l1, ⊤ ⟨σ⟩ ⊢ t2 ⇓ l2, b
⟨σ⟩ ⊢ t1 ; t2 ⇓ l1 ++ l2, b (SEQ-T)

⟨σ⟩ ⊢ t1 ⇓ [ ], ⊥ ⟨σ⟩ ⊢ t2 ⇓ l2, b
⟨σ⟩ ⊢ t1 || t2 ⇓ l2, b (OR-B)

⟨σ⟩ ⊢ t1 ⇓ l1, ⊤
⟨σ⟩ ⊢ t1 || t2 ⇓ l1, ⊤ (OR-T)

⟨σ⟩ |= φ

⟨σ⟩ ⊢ CHECKφ ⇓ [ ], ⊤ (CHECK-T)

¬⟨σ⟩ |= φ

⟨σ⟩ ⊢ CHECKφ ⇓ [ ], ⊥ (CHECK-F)

For the second big-step semantics, the state of the graph is updated. The relation

⟨σ⟩α :: l ⇓ l ⟨σ′⟩ represents the execution of one operation in the list and that operation

being removed from the list, along with the updated state of the graph.

⟨σ⟩ [ ] ⇓ ⟨σ⟩ (LIST-E)

⟨σ⟩ α
⇝ ⟨σ′⟩

⟨σ⟩ α :: l ⇓ l ⟨σ′⟩ (LIST-A)

3.2 Neo4j Integration

The only deviation from the definitions set forth by Arnaboldi et al. [2] for this system

is the use of multiple edges rather than a single edge with multiple property labels. This

is because Neo4j is optimised for relationship based queries which are more efficient

than searching through a list of properties of a single relationship [16]. This deficiency

would be especially evident for a single account that acts as a joint access method for

many ways of entering another account. For instance, a phone node that can be used as
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part of a 2FA scheme with many other accounts. Properties require loading the entire

list to then filter out the irrelevant entries, whereas individual relationships automatically

filter out the irrelevant data with appropriate Cypher queries. Thus, the definition from

Chapter 2 can be slightly modified into one that shall be adhered to throughout the rest

of this project:

Definition 3 (Neo4j Account Access Graphs). A Neo4j account access graph is a

quadruple G = (V,L,E,A) where V ⊂ V is a finite set of vertices, L is a finite set of

access methods, E ⊆V ×V ×L are edges labelled with access methods, and A : V → 2A

is a map labelling vertices with a finite set of participants.

This is implemented in Neo4j as follows: each vertex has an ‘Account’ label, this

is required as vertices must have at least one label. They may also have a User and/or

Adversary label equivalent to the mapping of a ∈ A(v). Additionally, vertices are

assigned a name property equivalent to the name of the account and relationships are

equivalent to edges.

The example from Chapter 2, now adhering to the above definition, can be seen

represented in Neo4j below:

Figure 3.1: Neo4j Implementation of an Account Access Graph

3.2.1 Atomic Propositions

All of the atomic propositions from Arnaboldi et al. [2] were defined using the Cypher

query language. These can be seen in Appendix B.1. Here, only a single proposition

shall be covered to give an idea of the implementation.
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uses method l(u,v):

: params { l : ' l a b e l ' , u : ' v e r t e x u ' , v : ' v e r t e x v ' }

OPTIONAL MATCH ( u ) −[ l ]−>(v )

WHERE t y p e ( l ) = $ l AND u . name = $u AND v . name = $v

RETURN

CASE

WHEN l IS NOT NULL THEN t r u e

ELSE f a l s e

END AS ` u s e s m e t h o d l ( u , v ) `

For this proposition, optional match is used to allow the chance of failure. If a

pattern exists which matches a vertex ‘u’ connected to a vertex ‘v’ by an edge ‘l’ then

that relationship is stored in the variable ‘l’. The case statement then simply returns true

if such a relationship exists and false if it does not. This should provide the reader with

an understanding of the intuitive nature of the Cypher query language.

Parameterisation was used as this shall be important when implementing the inter-

preter.

3.2.2 Operations

Similarly to the atomic propositions, all of the operations from Chapter 2 were imple-

mented as Cypher queries. The premises for the operational semantics were all handled

separately from the conclusions.

3.2.2.1 Operational Semantics - Premises

Fortunately, the premises for the majority of the operations use the atomic propositions

that were already defined in the previous section. This means that, in most cases, said

propositions can be called to ensure that the operations are valid to be carried out. There

are two situations where this is not the case, a part of the premises for ADD and the

premise for REMOVE2.

Part of the condition for ADD specifies the way in which the additional edges must

connect the input vertices. This is already a requirement for the add access operation, as

it is defined in Neo4j, so this section of the rule does not need a specific Cypher query.
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While the premise for REMOVE2 uses both has accessa(v) and uses methodl(v,u),

the variable ‘v’ is not passed in through the rem accessa,u,l operation. Since ‘v’ is not

provided then the current implementation of the relevant propositions are not viable

for checking the condition to be satisfied. Thus a new Cypher query was developed

specifically for the REMOVE2 premise:

: params {a : ' User / Adversary ' , u : ' uVer tex ' , l : ' lEdge ' }

OPTIONAL MATCH ( v ) −[ l ]−>(u )

WHERE $a i n l a b e l s ( v ) AND t y p e ( l ) = $ l AND u . name = $u

/ / on ly r e q u i r e one node t o match

WITH v

LIMIT 1

RETURN

CASE

WHEN v IS NOT NULL THEN t r u e

ELSE f a l s e

END AS ` r e m 2 r u l e c h e c k `

This query matches any node for which the relevant a ∈ A(v) is a label and that

connects to vertex ‘u’ by edge ‘l’. There only has to be one such vertex for the premise

to be satisfied, so the variable ‘v’ with a limit of 1 is carried over for the final part of the

query. Then, if ‘v’ has a value, i.e. there is at least one ‘v’ that matches the pattern, true

is returned and the operation can be carried out. If ‘v’ has a null value then there is no

vertex that matches the pattern, so false is returned and the condition fails.

3.2.2.2 Operational Semantics - Conclusions

The Cypher queries for all of the operations can be found in Appendix B.2. As an

example, seen below is the code for lose access a,v, i.e. actor ‘a’ losing access to an

account ‘v’:

: params {v : ' v e r t e x ' , a : ' User / Adversary ' }

MATCH ( v )

WHERE v . name = $v AND $a i n l a b e l s ( v )

CALL apoc . c r e a t e . r emoveLabe l s ( v , [ $a ] )

YIELD node
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RETURN node

The above code matches a vertex with name ‘v’ that actor ‘a’ has access to and

then removes the label ‘a’ from that vertex. As with many of the operations, the

APOC (Awesome Procedures on Cypher) Core library [9] is utilised. The APOC Core

library is an extension of the Cypher query language that is also officially supported by

Neo4j. While not a requirement to carry out these operations, this library allows for

further parameterisation of the variables which would otherwise have to be entered into

the query manually. APOC was not initially a part of the operations, however when

implementing the interpreter it was found to be much more convenient if every variable

was parameterised so the design decision was made to go back and refactor the Neo4j

operations so that parameterisation was used.

3.2.3 Python

To incorporate the aforementioned queries into the interpreter the decision was made

to use the Python programming language with the Neo4j Python Driver. Java was

initially considered as Neo4j is a JVM-based database [29] and has wide support for

Java. However, the design choice of Python over Java was made because development

on Java required the use of the SDKMan package manager which did not run seamlessly

on Windows. Thus, the use of Python ensures future development is straightforward

and platform independent, and it is also one of the 5 officially supported Neo4j drivers.

The Neo4j Python Driver is quite straightforward to use. Instantiating the driver

is expensive so it is only connected to once per python file [13]. In contrast, sessions

using the driver are resource efficient and provide implicit error handling so these were

used for every query on the Neo4j database. Read and write sessions were both used,

atomic propositions and operational semantics premises are checked with read sessions

and operation conclusions are carried out with write sessions. The error handling is a

strong benefit of using multiple sessions as they will try to reconnect to the database if

their requests do not go through and they will provide details should the session fail for

some reason.

It was possible to reuse code to a greater extent but, where practical, each operation

and account property was given its own specific function in python. This improves code

readability and also ensures that future extensions to any of the pre-existing functions

do not require excessive refactoring of the code base.
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3.3 ANTLR

The previous section covered the creation of individual components in Neo4j but to

develop an interpreter these must be combined to process the tactic language.

The parser generator ANTLR (ANother Tool for Language Recognition) [20] was

used to produce a parser, lexer and visitor for the purpose of processing the tactic

language. A lexer splits input up into tokens and a parser processes combined tokens

into a parse tree. This can be demonstrated by the following example of lexing and

parsing the sum “437 + 734” from the ANTLR Mega Tutorial [26]:

Figure 3.2: Lexing and Parsing Visualisation [26]

ANTLR has two different methods of walking a parse tree that is produced: visitors

and listeners. Visitors are more complex but provide control over which branches of

the parse tree that they walk and can return values, whereas listeners are simpler to

implement but always walk every branch of the parse tree and cannot return values. The

choice of which was used for this interpreter shall be discussed in a subsequent section.

ANTLR is another tool that was originally created for Java but has a supported

Python implementation [20]. Similarly to Neo4j, the choice was made to implement all

of the ANTLR functionality using Python as it improves readability and compatibility

if the parse tree code and code for interacting with the database are both written in

Python. As it was originally Java based, all of the relevant keywords and functions in

ANTLR are written in CamelCase or camelCase. Therefore, to ensure code conformity,

all of the novel parsing and interpreting syntax written used this standard. The main

exception to this will be during the testing phase which makes use of pytest. Pytest uses

underscores for default features so this style was followed for the test scripts.

Originally, it was planned to have every aspect of the tactic language carried out

on a single walk of a parse tree for the language. However, this was decided to be

inefficient. The reason why can be seen with a simple example: if a full left branch of

the parse tree contained many functions and then at the very top there was “ ; ⊥” then,

by the defined rules for the simplified tactic language, none of those operations should

be carried out and any processing of them would have been for nought. Therefore, it
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makes more sense to keep a list of operations that need to be carried out which can

then be processed individually at the end of a parse tree walk, if it is not null. The

solution decided upon was to create an ANTLR grammar for the checks stage (which

was then used to created a parser and lexer) and a separate python script for the updates

stage. These two parts match the two big-step semantics defined previously. ANTLR

files create and then walk the parse tree provided by the tactic language, recording the

operations from the correct branches by ⊤ and ⊥ tactic rules. The updates file is then

run using the list of appropriate operations that was recorded in the prior stage.

3.4 Tactics Grammar

The tactics grammar draws extensively from the grammar provided by Arnaboldi et al.

[2] for the original tactic language. AND is the lexing rule for ‘;’, OR is the lexing rule

for ‘||’, and t single contains the rules for the rest of the grammar. The only notable

addition is brackets to ensure that a user can specify the order of operations.

t a c t i c : t EOF ;

t :

t AND t

| t OR t

| ' ( ' t ' ) '

| t s i n g l e ;

t s i n g l e : a l p h a | b | CHECK ' ( ' p h i ' ) ' ;

These are the topmost parser rules for the grammar, the rest of the parser and lexer

rules can be found in Appendix B.3. When defining the grammar, a design decision had

to be made about precedence. Arnaboldi et al. [2] are very abstract in their paper and do

not make a clear choice about the order of precedence. Therefore the choice was made

to interpret the language with ‘;’ (AND) binding more strongly than ‘||’ (OR). This is

similar to conjunction and disjunction which are already aspects of the language due

to the atomic propositions so it may cause confusion if these were defined otherwise.

Precedence is very straightforward to implement in ANTLR, it is decided by the order

in which rules are defined in the grammar. As AND is defined before OR above, then it

has higher precedence. Brackets still bind more strongly than AND and OR because
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the parser will match the open bracket before matching ‘t’.

The grammar is defined in a left recursive manner as the first non-terminal variable

is always on the left. This would not have been possible with ANTLR v3 but fortunately

ANTLR v4 handles this well. Left recursion is transformed and optimised behind

the scenes but the produced parse tree is still visualised as one would expect the left

recursive grammar to look [19].

Even though operations are not carried out by the parse tree that is produced by this

grammar there are still relevant lexer and parsing rules for them. This allows the content

to be easily recorded in a list that contains tuples of function names and inputs cleanly

separated for the updates to follow. This also provides a basis for future work if it is

decided to refactor the code so that everything is carried out using a single parse tree.

Using the defined grammar, parse trees can now be produced from any input that

conforms to the rules of the tactic language. For example the tactic:

disc access (Adversary,V Locked Phone);disc access (Adversary,V Phone);

CHECK(is account(V Phone))||TOP

Has the corresponding parse tree:

Figure 3.3: Example Tactic Parse Tree

3.5 Visitor

As mentioned, due to the structure of the simplified language, it is not possible to know

what operations should be carried out until one has reached the top of the parse tree.

This creates the interesting problem of how to store the operations found in different
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branches of the parse tree while walking it. Take the following example, say t 1, t 2, t 3

and t 4, are all α with relevant operations to carry out. Then if t 5 returns ⊥ this requires

the removal of the operations t 3 and t 4 from the data structure without removing the

operations t 1 and t 2:

t

t

t 1 ; t 2

; ( t

t

t 5

t 3 ; t 4

; BOT

|| TOP

)

Figure 3.4: Operations Storage Problem

Initially a stack was considered so that items could be popped as necessary, however

it is difficult (though not impossible) to process how many items should be removed

dependent on the depth of the current branch of the tree. The simpler solution that was

decided upon was to have each instance of a node in the parse tree return a function list

and a Boolean value. The function list stores the relevant operations from that branch of

the tree (often empty) and the Boolean value represents the overall tactic value of said

branch of the tree, be that “True” corresponding with ⊤ or “False” corresponding with

⊥. This means that each node has a list of functions and a Boolean, then based on its

sibling nodes there is logic to delete the list of functions or return it to the parent node.

This design choice is simpler than a global stack and allows for easier maintenance

as any bugs can be narrowed down much more easily with many individual return

statements than with a global stack that is constantly updated.

For this reason, and the following, a visitor was used for walking the parse tree,

despite being more complex to implement than a listener. Since the simplified tactic

language contains clauses that may be irrelevant depending on other parts of the tactic,

it is not necessary to visit every branch of the parse tree. Therefore, the efficiency of the

parse tree is greatly increased by using a visitor that includes logic to check whether a

branch of the tree needs to be visited before visiting it.
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The following simple example highlights this efficiency. One can see that multiple

large branches of the tree are not visited because it is known, based on the visited nodes,

that no values from those branches will be used.

Figure 3.5: Visitor Branching Example

3.6 Graph Updates

After completing traversal of the parse tree, the visitor returns a list of functions (or

operations) and a Boolean value. The graph updates class is only instantiated if the

functions list is non-empty and the returned Boolean value is true. This design decision

increases efficiency because always instantiating the class would cause the interpreter

to create an instance of the Neo4j Driver to attempt to update the graph in unnecessary

situations, which would be a waste of resources. When the function list is not empty

and the returned value is true, then the graph updates class is instantiated, with the

relevant database details, to execute the operations. The functions list is then passed to

a particular method within the produced graph updates object which iterates over each

tuple in the list invoking the stored function with the matching inputs.

3.7 Neo4j Parser Integration

Neo4j is integrated into both the visitor and graph updates class that have just been

covered. Both files start with opening a Neo4j driver which connects to the relevant

database. The visitor uses a read session for every visit to a ‘CHECK’ node and connects

using the python function which contains the relevant Cypher query. This query is
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carried out and a Boolean value is returned equivalent to the result. This value is then

used appropriately as the tactic value ⊤ or ⊥ for that node of the parse tree.

For the updates file, a read session is opened for checking any premises for the

operational semantics. If the premises for an operation fail then an error is printed and

the operation is not carried out, the program is not interrupted and moves on to the

next operation in the list. This is, again, another design decision that has been made to

avoid backtracking. Once the Neo4j database is written to, there is no inherent way to

revert updates so it was decided that greater functionality was provided by checking

premises individually and failing on a by-operation basis than failing the whole tactic.

If the operation premises pass, or there is not a relevant premise, then a write session

is opened and the operation is carried out. This is accomplished by calling a python

function containing a Cypher query that interacts with the Neo4j database.

With the integration of Neo4j, this report has now covered the complete implemen-

tation of the interpreter. It returns the tactic for success or failure (b ∈ {⊤,⊥}) in terms

of the entire tactic along with the list of operations that it tried to apply. Any errors

caused by the operational semantics premises failing are returned and it is specified

which operations were not carried out because of this. Feedback is also automatically

provided by ANTLR if the tactic input fails to be parsed in any way. Also, due to the

Neo4j sessions, feedback is provided for any database connection issues. These factors

ensure that a user is provided with detailed guidance should they encounter any issues

when trying to use the interpreter.
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Evaluation and Testing

4.1 Evaluation with Case Studies

The following case studies demonstrate that the interpreter, even using the simplified

tactic language, is effective at modelling a range of attacks. The studies provide formal

descriptions, using the tactic language, of the relevant attacks and defences but they also

provide intuitive visuals. These visuals effectively communicate the core concepts in a

simple manner, making them accessible even to a non-technical audience. All of the

graph visualisations (including colouring) were created automatically by Neo4j, the sole

manual part was rearranging the nodes to increase clarity. This is far less cumbersome

than the only prior option, creating the graphs by hand for every example. This provides

researchers, whose time is very limited, with a more efficient process.

4.1.1 Initial Success

During initial testing of the system, the examples provided by Arnaboldi et al. [2] were

processed to ensure correct functionality. However, upon carrying out the operations to

transition from Fig 2 (b) to Fig 2 (c) in their paper, the system repeatedly returned false

for the satisfaction of the operational semantics premises.

The tactic in question (translated into the syntax for the interpreter) is:

rem access 1Adversary,V SIM,E PHYS ; rem access 2Adversary,U SMS,E DISPLAY ;

add accessAdversary,{U Second Phone},V SIM,E PHYS ;

add accessAdversary,{U Second Phone,U SIM},V SMS,E DISPLAY

Entering the above tactic into the interpreter (and connecting to a Neo4j instance

23
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containing the relevant graph) provides the output:

“add access (Adversary, U Second Phone,U SIM, V SMS, E DISPLAY) premise

rule check failed, function not carried out.”

Upon close inspection it was discovered that the operational semantics premise of

the adversary having access to the SMS vertex was not satisfied and so the relevant

add access operation could not be carried out. This highlights the utility of this

interpreter and how it can aid researchers. Future novel tactics can be processed using

this system to ensure that they are valid and that no rules are accidentally broken.

4.1.2 Twitter Compromise

(Twitter has recently re-branded to ‘X’ [5] but shall be referred to as Twitter throughout

this report as that was how it was initially written).

In the Mat Honan hack [12] multiple accounts were compromised solely for the

purpose of obtaining access to a Twitter account. This shows how valuable social

media access, and especially Twitter, can be to certain motivated adversaries. As an

example that is applicable to the majority of social media then, this report shall use

account access graphs to visualise some of the ways in which a Twitter account could

be compromised.

Seen below is an initial account access graph representing a Twitter user with the

Twitter app installed on their phone. The state of the graph is immediately after the user

has had their PIN observed and their locked phone stolen:

Figure 4.1: Stolen Phone with Twitter Account
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Similarly to the iPhone attacks [25], it was assumed that the adversary has been

close by to the user, observed them type in their PIN number and has subsequently

stolen their phone.

The adversary can now access the unlocked phone via the ‘PIN’ access method and

they are able to get into the Twitter app via the session access method. The ‘SESSION’

access methods (for Tweets and Mail) represent the fact that many applications do not

sign the user out automatically so the user can avoid the inconvenience of entering login

details. The following tactic represents this series of events:

gain accessAdversary,V Phone ; gain accessAdversary,V Tweets

Entering the above tactic into the interpreter and then using Neo4j visualisation we

can see the updated state of the graph:

Figure 4.2: Adversary Gained Access to Tweets Functionality

Now the adversary has the ability to send Tweets but they can’t yet alter security

settings, represented in this graph by ‘T Security’. At the current moment, the victim

could utilise another device, represented in the graph by ‘User Device’ and access the

security settings in order to remove the adversary from the Twitter account. However,

the assumption is made that the phone the adversary has stolen has a mail app connected

to the Twitter recovery email account. This can be used to recover the password

associated with the Twitter account, which then gives the malicious actor access to

the security settings. Security settings access can be used to modify the password and

remove the access of the old password. This is accomplished by the creation of a new

password account, the creation of the adversaries’ own device, the removal of the access



Chapter 4. Evaluation and Testing 26

previously held by the user’s password and device, and then finally adding the access

to the adversaries’ password and device. All of these steps can be described by the

following tactic:

gain accessAdversary,V Mail ; gain accessAdversary,V T Security ;

create accountAdversary,V Adv Password ; create accountAdversary,V Adv Device ;

rem access 1Adversary,V T Security,E TWITTER LOGIN ;

add accessAdversary,{U Adv Password,U Adv Device},V T Security,E TWITTER LOGIN

This was then entered into the interpreter, which produced no errors and updated

the Neo4j account access graph to the following:

Figure 4.3: Adversary Replaced Official Access Methods with Their Own

The malicious actor has now obtained complete control of the user’s Twitter account

security and its access methods. The only hope the user has of saving their account is

by signing into their recovery email. The user still has the appropriate access methods

to gain access to the relevant vertex (the password and device can be seen in the bottom

right of the graph). However, even this might not be enough, as the adversary has full

control of the Twitter account security settings. They have the ability to change the

email address (remove access to the user’s email) which would leave the user with no

access methods remaining and the adversary with uncontested control of the Twitter

account.

In contrast, if the user responds with haste from the beginning then they would be

able to prevent this account takeover. Consider the initial graph again, Figure 4.1, the
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user simply has to access the ‘Mail’ node with their backup device and mail password

(by gain access). They can then remove access for the phone node which protects their

mail and their Twitter security settings. This can be done by the following tactic:

gain accessUser,V Mail ; rem access 1User,V Mail,E MAIL SESSION

Which entering into the interpreter acting on Figure 4.1 gives:

Figure 4.4: User Maintains Control of Mail

The adversary is now unable to access the Mail vertex. As expected, if the tactic

gain accessAdversary,V Mail from above is entered then the interpreter produces the fol-

lowing output: “gain access (Adversary, V Mail) premise check failed, function not

carried out.”

The Twitter exploit covered above is equally valid for the vast majority of social

media applications. Even the addition of two factor authentication, either email or SMS,

would not be beneficial because both accounts are already in control of the adversary.

The underlying problem here is not limited to phone and PIN theft. There is growing

criticism that social media apps provide too much control to devices that are already

signed in to accounts. Take Linus Tech Tips, a YouTube channel with over 10 million

subscribers who had the session cookie for their account compromised earlier this year.

This led to a fraudulent cryptocurrency scheme being live-streamed and advertised to

their sizeable audience [21]. The relation is similar to the usability versus security

problem Apple is facing, mentioned in the introduction. All of these applications want

to provide as enjoyable a user experience as possible, but this comes with considerable

security risks that must be balanced.
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This is made exceptionally clear by the number of possibly open accounts on a single

device, especially considering this account access graph only investigated the damage

caused to a single account. A similar attack could be launched on multiple social media

applications simultaneously as soon as the phone is stolen. The critical point highlighted

by this case study is that not just a single account session/token must be considered, but

that the combination of sessions and tokens that a single compromised device has can

lead to immense control and exploitation.

Another critical takeaway from the above examples is that even if Apple resolve the

overwhelming power that an iPhone and PIN combination have on the Apple ecosystem,

the “improved” state shall still have some serious security concerns.

4.1.3 Banking App Compromise

While the banking app exploitation covered by the Wall Street Journal involved access to

Apple’s password management system [25], there is an equally dangerous problem that

is vastly more difficult to patch: human nature. Password reuse is incredibly common

[6], thus it is likely that a number of users make use of the same PIN for their phone as

they do for their banking application. Two banking apps were tested by this report and

they made use of 4 digit and 5 digit PIN protection respectively [27, 4]. The entry for

banking PINs used a very similar user interface to entering a phone PIN, reinforcing

the idea that password sharing is likely. This weakness can be modelled using account

access graphs:

Figure 4.5: Shared Password Mobile Banking
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Again, this graph has a similar setup as previously, in terms of the three access

methods for the phone and that the adversary has acquired the locked phone and the

user’s PIN. The distinction in this scenario is that the Banking App should be safe from

the attacker because it has a separate PIN from the phone. However, as can be seen

in the graph, the user of this device has used the same PIN for both the phone and the

bank. This is represented by a back and forth relationship with no joint access methods,

which means that if either PIN is compromised the other can be immediately gained

access to as well.

As before, the adversary can gain access to the phone, following which they can

easily gain access to the bank PIN due to the ‘SHARED PASS’ relationship. Using the

control of these two accounts, the adversary can then gain access to the mobile banking

application, this series of steps can be written as the following tactic:

gain accessAdversary,V Phone ; gain accessAdversary,V Bank PIN ;

gain accessAdversary,V Banking App

Interpreting this tactic provides the following Neo4j output:

Figure 4.6: Adversarial Access to Banking Application

Ironically, the safety mechanism intended to provide further security against un-

wanted transfers of money simply asks one to enter the relevant phone PIN or use

biometrics/faceID. However, it can be seen from the graph that this extra step provides

no further protection against an adversary that has been able to compromise the banking

app. This could be a case of security theatre where the bank app is trying to convince

users of extra security that is, in reality, meaningless. Designers of bank apps should
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be careful however, that they are not causing disruption to the user without purpose as

this may make users less likely to choose said app. If the use of biometrics is for safety,

rather than security, perhaps a warning and tick box would be more appropriate.

4.2 University of Edinburgh:

Multi-Factor Authentication

The University of Edinburgh provides managed laptops to staff and students that are

accessed by the federated single sign-on service MyEd. An example setup can be

represented with the following account access graph:

Figure 4.7: UoE Managed Laptop Setup

If the user needs to be able to access the education software (‘Ed Software’ in the

above graph) to continue their research then this encourages the connection of their

Apple ID to their university laptop. Since the user already has access to their Apple ID,

they can add an access method and then gain access to their required software through

their university managed laptop:

gain accessUser, V Laptop ; add accessUser, {U Laptop},V Apple ID,E LAPTOP TO APPLE ;

gain accessUser, V Ed Software

Entering this into the interpreter provides the visual representation:
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Figure 4.8: UoE Managed Laptop Apple ID Access

However, a critical vulnerability of this setup is if an adversary discovers access to

the locked laptop and the user’s UoE password then they can gain access to the AppleID

and thus the ‘Bank Card’ and ‘iCloud’ vertices through the following tactic:

disc accessAdversary, V UoE Password ; disc accessAdversary, V Locked Laptop ;

gain accessAdversary, V Apple ID ; gain accessAdversary, V iCloud ;

gain accessAdversary, V Bank Card

Even if there are security measures to prevent the comprise of iCloud in this method, if

the laptop has a signed in email address then a similar take over method to the Twitter

example could be possible.

The University of Edinburgh is introducing Multi-Factor Authentication [18] with

personal devices which should be able to prevent the above attack. The laptop connected

to the Apple ID would now have an extra device edge that shares a label with the UoE

password. The creation of this device and addition of this edge can be represented with

the tactic:

create accountUser, V Auth Device ; add accessUser,{U Auth Device},V Laptop,E UOE PASS

This way, if the adversary tries to perform the exact same tactic to compromise the

bank card and iCloud as above, then the interpreter outputs:

gain access (Adversary, V Apple ID) premise check failed, function not carried

out. gain access (Adversary, V iCloud) premise check failed, function not carried out.

gain access (Adversary, V Bank Card) premise check failed, function not carried out.
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The extra authentication method is preventing the adversary from gaining access

to the laptop so they can’t use that vertex to gain access to any further accounts. This

stresses the effectiveness of account access graphs. They are most powerful when

describing the weaknesses that come from a chain of access methods that could easily

be overlooked.

These case studies have demonstrated the strength of the interpreter’s ability to

process tactics and update graphs in different situations. They have also displayed the

strong advantage given by the automatic visualisation provided by Neo4j which allows

for an understanding of complex access method relationships at a glance.

4.3 Testing

Testing was carried out using the pytest framework to ensure the system functioned as

expected in a diverse range of situations. The visitor and graph updates were tested

individually to allow for modular testing and verify that each file operates independently.

All tests were carried out using the tactic language; this supported testing the parser’s

ability to process syntax while simultaneously checking the Neo4j component, all

within the same Python script.

4.3.1 Testing the Visitor

A visitor test script was created and partitioned into different sections to carry out

different tests for each aspect of the language.

First, the environment for running the tests had to be initialised. To ensure appropri-

ate Neo4j query execution, the setup for the test module involves wiping and creating a

new Neo4j database from scratch, every time tests are run. The basis for this database

is a simple account access graph defined in the setup portion of the test script. The

database must be wiped regardless of which test or tests are run. This is to ensure the

correct conditions for any test, or combination of tests, being run in the module. This

creates the interesting quandary of how to guarantee that a test database only contains a

simple user account access graph, no matter which test is run but also avoid having to

wipe and build such a database for every test when running the full module. Fortunately,

pytest fixture functions contain an optional setting to set the scope to be module wide.

This results in a function that will only be run once per module but can be called many

times. Once it is run, it saves state and does not run again but provides the expected
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output to any functions that call it. Therefore, each individual test can call this function

but the driver will only be created once for each module run. This greatly increases

performance, as shall be shown subsequently.

Each test constituted setting up the lexer, parser, visitor and environment in the

same manner as they would be within the interpreter. A helper function was defined

that accomplished this. Other than calling this helper function, all that comprised each

test was using the produced visitor on the produced tree, both from the helper function,

and then verifying the results that were produced by the visitor. To verify the results of

many different inputs, the parameterisation features of pytest were heavily utilised for

these tests. For each test, a series of inputs were run which were then compared to the

expected outputs. Pseudocode for the test file can be seen below (the test inputs were

handled using pytest parameterisation rather than a loop):

# g raph s e t u p i s run once p e r module ,

# d e s p i t e b e i n g c a l l e d by e v e r y f u n c t i o n

s e t u p g r a p h :

Neo4j w r i t e que ry t o wipe d a t a b a s e i n s t a n c e and

s e t u p a t e s t g raph

s e t u p v i s i t o r ( d e t a i l s ) :

C r e a t e v i s i t o r based on i n p u t d e t a i l s

t e s t i n p u t s :

l i s t o f t e s t i n p u t s and e x p e c t e d o u t p u t s

t e s t a t o m i c s :

s e t u p g r a p h

f o r t e s t i n p u t i n t e s t i n p u t s :

t r e e , v i s i t o r = s e t u p v i s i t o r ( d e t a i l s )

r e s u l t , f u n c t i o n s = v i s i t o r . v i s i t ( t r e e )

a s s e r t r e s u l t = e x p e c t e d r e s u l t

a s s e r t f u n c t i o n s = e x p e c t e d f u n c t i o n s

. . .

# m u l t i p l e t e s t i n p u t s and t e s t s , a s above and below

. . .

t e s t i n p u t s :

l i s t o f t e s t i n p u t s and e x p e c t e d o u t p u t s
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t e s t a l l c o m b i n e d :

# as f o r t e s t a t o m i c s

The outputs that were tested, equivalent to that of the visitor in the interpreter, were a

Boolean value and a list of functions. The outputs were compared to the list of expected

output Booleans and function lists which were associated with the relevant input (all

contained within the pytest parameterisation) to decide whether a test passed.

While the test functions are, in reality, identical and it would have been possible

to have all the tests called by a single parameterised list on a single function, this

would make it extremely complex to debug if there was an issue. Instead, as tests

were segmented into specific subsets of the language, if tests were to fail, the person

debugging could easily tell exactly what aspect of the language was causing the problem.

The first aspect to be tested were the atomic propositions, these were wrapped in the

CHECK() syntax of the tactic language. Each proposition was ran in a situation where

it should return true and a situation where it should return false. It was also confirmed

that the visitor returned an empty list of functions for each of these checks.

Then the atomic propositions were combined with the AND and OR features of the

tactic language along with b ∈ {⊤,⊥} to confirm successful tactic combinations.

The list of α (operations) of the language were tested in a similar manner but with a

non-empty expected output function list, unless functions should be cancelled out in

the tactic. Edge cases, including the one visualised in Figure 3.4, were tested to ensure

that the appropriate functions were always returned. Tests that incorporated all tactic

aspects: atomic propositions, b ∈ {⊤,⊥}, and α, all combined using AND and OR,

were also carried out to conclude the testing.

As covered in Chapter 3, the visitor does not implement any of the operations in the

graph but rather returns the relevant list of functions for the updates phase. Consequently,

no updates to the graph were tested in this module, which helps the separation and

maintainability of the code as the testing has modularity built in.

Overall, 74 individual tactics were written to test normal functionality and edge

cases for the visitor alone, all of which passed.

As previously mentioned, instantiating Neo4j Driver instances is known to be

resource intensive [13]. This can be measured by the fixture function scope optimisation

addressed in the beginning of this section. If the part of code that changes the scope

is removed and the module of tests is run, it takes 482 seconds or 8:02 minutes to

complete. Whereas with the specification in place, running the entire test module takes

181 seconds or 3:01 minutes. This is a 62.45% performance increase. This highlights
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the importance of the effort made to minimise new driver sessions throughout the

interpreter and the efficiency obtained by doing so.

The visitor testing verifies that the interpreter is fully functional at parsing the tactic

language and that the AND and OR logic is correct. It also shows that the Neo4j

language can be interacted with successfully with read queries while walking the parse

tree to return a Boolean which allows for an accurate interpretation. Additionally, it

has been verified that the correct list of functions is returned to the system based on

the parse tree. The following section shall finalise the testing by confirming the write

operations are functional.

The overall visitor aspects tested are represented in the following table: (A few

additional test cases did not fit so were not included in the tables in this chapter but all

of which passed and every tick (check mark) in the table represents a genuine successful

test).
Aspect of Language Subsection Tests

1 2 3 4

Atomic Propositions

is account(v) ✔ ✔

has access a(v) ✔ ✔ ✔

could access a(v) ✔ ✔

uses method l(u,v) ✔ ✔ ✔

φ1 ∧φ2 ✔ ✔ ✔ ✔

φ1 ∨φ2 ✔ ✔ ✔ ✔

¬φ ✔ ✔ ✔ ✔

Mixed Atomics ✔ ✔ ✔ ✔

b ∈ {⊤,⊥}

TOP ✔

BOT ✔

Mixed ✔ ✔ ✔ ✔

b with Atomics ✔ ✔ ✔ ✔

α List

Operations (1-4) ✔ ✔ ✔ ✔

Operations (5-8) ✔ ✔ ✔ ✔

Multiple Operations ✔ ✔ ✔ ✔

Operations with Atomics ✔ ✔ ✔ ✔

Operations with b ∈ {⊤,⊥} ✔ ✔ ✔ ✔

Operations with Atomics and b
✔ ✔ ✔ ✔

✔ ✔ ✔ ✔
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4.3.2 Testing the Graph Updates

The graph updates testing followed a similar principle to the visitor testing but the

implementation had some major differences.

The critical tasks for the graph updates testing involve updating the access of partic-

ipants and the shape of an account access graph. To confirm that this was successful,

these factors require checking in some way. To accomplish this, the CHECK() aspect of

the tactic language was used. This means that for the graph updates testing to be valid,

all of the tests for the visitor must first succeed.

Since the state of the graph was not updated in the visitor testing, the pytest script

only had to write to the Neo4j database once, at the very start of testing. This is not

the case for the graph updates, as to allow for functions to be called independently it is

essential that there is a standard tactic graph for each test. This was accomplished by

two pytest fixture functions: the first is run once per module whereas the second is run

before every function. Both are defined to run automatically. The first function defines

the Neo4j driver instance which remains open while the module testing is happening

and is closed after all testing is finished. The second function uses the driver that was

initiated by the prior function to open an (efficient) Neo4j write session which wipes

the test database and then creates a new account access graph before each test is run.

There were less variations of combination for this testing as only tuples containing

functions and their inputs are contained in the functions list and they are separated

by commas, not logical operators like AND and OR. This meant that only two tests

were written, one to test each operation individually and another to test longer lists of

functions. As with the visitor testing, pytest’s parameterisation features were heavily

utilised here. For each of the two tests a series of different inputs and expected outputs

were entered, covering all possible operations and a wide range of possible combinations,

as can be seen in the table below.

Initially, it was considered to import just the functions that check atomic propositions

rather than using the visitor. However, this would have led to another series of tests

to ensure that these functions were operating as expected. Additionally, use of the

visitor allows for the testing to be carried out using the tactic language which maintains

the consistency of the code. For these reasons it was decided to create an instance of

the visitor and use the tactic language for testing. This requires further instances of

the driver for testing than the alternative, creating further overhead for the tests. If

future work requires the tests to be carried out as efficiently as possible then this is an
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important area to be modified. However, when designing the tests the choice was made

that greater benefit would be found through the use of the visitor to check the state of

the graph. Thus, for each graph update function test, a visitor is also created to check it.

Overall, 37 lists of functions were run through the tests and all of them passed. The

first set of inputs tested that all of the operations update state successfully when the

operational semantics premises are satisfied and that they do not update state when

these conditions are not satisfied. The second set of inputs tested the same points but

additionally that the graph updates class can handle multiple operations being called

consecutively. All of the relevant tests passed, the results and breakdown can be seen in

the table below: (As remove access 2 has the most complex premise to be checked, it

underwent the most individual tests to ensure it was failing and passing appropriately.)

Operations Subsection Tests

1 2 3 4

Individual Operations

gain accessa,v ✔ ✔

disc accessa,v ✔

loses accessa,v ✔

create accounta,v ✔

del accounta,v ✔ ✔

add accessa,{u1,...,un},v,l ✔ ✔

rem access 1a,v,l ✔ ✔

rem access 2a,u,l ✔ ✔ ✔ ✔

Multiple Operations

(GAIN, DISC, LOSE) Mixed Testing ✔ ✔ ✔ ✔

(CREATE, DEL) Mixed Testing ✔ ✔ ✔

(ADD) Mixed Testing ✔ ✔ ✔

(REMOVE1, REMOVE2) Mixed Testing ✔ ✔ ✔ ✔

All Operations Mixed Testing
✔ ✔ ✔ ✔

✔ ✔ ✔

This chapter has shown that the interpreter is functional for a wide range of possible

tactics using the simplified tactic language. It is able to parse the relevant grammar in

normal circumstances and edge cases. It is also able to update the graph with all of the

operations defined by Arnaboldi et al. [2] while adhering to their premises.

The defined tests provide an advantage for future work and extensions. As, now

that the unit tests have been created, they can be run any time the source code for the

interpreter is modified to ensure that no bugs have been introduced.
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Conclusion

5.1 Conclusion and Critical Evaluation

Overall, this project has effectively designed and implemented an interpreter capable of

interpreting a simplified tactic language. This interpreter carries out short programs,

referred to as ‘tactics’, in this language on user account access graphs. It subsequently

checks, produces, or updates a visualisation of the relevant graph using Neo4j. This

was accomplished through:

1. The creation of a simplified tactic language with precise definitions through an

operational semantics.

2. The development of an ANTLR grammar (including defining precise syntax) for

the simplified tactic language.

3. The development of appropriate Cypher queries to create, check, and update the

state of an account access graph.

4. The implementation of an ANTLR visitor and a graph updates class to carry out

the ‘checks’ and ‘updates’ stage respectively of the simplified tactics operational

semantics.

5. The integration of the Cypher queries with the visitor and the graph updates

class to interpret the defined tactic language into a Neo4j database with implicit

visualisation.

6. Evaluating the interpreter through numerous case studies.

7. Writing a comprehensive test suite for the interpreter.

38
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The testing showed that the interpreter can process all of the components of the sim-

plified tactic language, individually and combined, without any errors. Additionally,

the interpreter effectively used the simplified tactic language to: catch errors in graphs,

model attacks on account networks and model potential defences against attacks. In

summation, the above achievements are clear indicators of the success of the project.

5.2 Challenges Faced in the Project

The completion of this project required overcoming multiple challenges, predominantly

stemming from areas that I was previously unfamiliar with. These areas included:

• Graph databases and databases in general

• Query languages

• Logic and operational semantics

• Parsing and parser generators

• The Python programming language

• Pytest and software testing

• Interpreters

Despite my initial lack of experience in these domains, I was motivated to select this

project by the current relevance of account security and a strong passion for security

overall. Tackling the steep learning curve, I defined an operational semantics for a

simplified tactic language, devised a way to parse it, provided integration with a graph

database using the Cypher query language, and combined these aspects to create an

interpreter that was implemented and tested in Python. The success of this project

proves that the choice of topic was appropriate and that the many challenges were

effectively overcome.

5.3 Limitations and Future Work

One limitation that time constraints prevented this report for incorporating is shorthand

notation for the tactic interpreter. Arnaboldi et al. [2] suggest letting IF φ THEN t1 ELSE t2
stand for (CHECKφ ; t1) || (CHECK¬φ ; t2) along with other useful shorthand notation.
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Due to time constraints and the fact that the language is able to address all relevant

graphs without this shorthand, it was omitted. Future work could extend the interpreter

to provide this enhanced usability.

Another limitation of the work is the speed of the tactic processing. Despite

the optimisations of minimising the creation of a new Neo4j Driver, the speed of

communication with the database is still slow. Future work could investigate this and

see if implementation in another programming language, using one of the other officially

supported languages, leads to an increase in performance.

The creation of a compiler which automatically compiles a tactic into Cypher code

is another avenue that future work could investigate. This report initially considered

compiling instead of interpreting but it was decided that the use of a higher level

language, like Python or Java, that runs multiple individual queries would be simpler

and more readable than compiling a tactic into one very long Cypher query. Error

handling and testing is also much simpler to implement in an interpreter than a compiler

which is a strong benefit of this implementation. Additionally, this interpreter could be

used in conjunction with any future work to create a compiler as it provides a basis for

the parsing and error handling. It may also be the case that compiling is not a useful

extension for this domain as the main resource cost is associated with establishing

the connection to the Neo4j database, something a compiler would also have to do.

In addition, interpreters not only allow for simpler testing but also provide increased

usability compared to compilers, a very important aspect considering one of the goals

of this project was to reduce the effort involved with producing graphs.

Finally, a key limitation is the fact that only a simplified tactic language was

implemented for this interpreter. Future work could build upon this and investigate

ways to implement backtracking so that this interpreter could be extended to interpret

the full language defined by Arnaboldi et al. [2]. The atomic propositions as well as the

individual functions to carry out each operation (all of the Cypher queries) can be taken

and are fully equivalent to the original language defined by Arnaboldi et al. [2].

This means that, while this work does not provide an interpreter for the full language,

it does provide much of the work required to develop one, and thus provides a strong

foundation to build this in the future. Furthermore, the case studies have proven that the

simplified tactic language is already powerful enough to describe a range of attacks (as

not all attacks rely on backtracking) showing that the interpreter is already useful in its

current state.
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Appendix A

Account Access Graph Background

A.1 Account Access Graphs Properties (Validity) [2]

The validity of assertions is defined inductively, starting from atomic propositions [2]:

−⟨V,E,A⟩ |= is account(v) if v ∈V.

−⟨V,E,A⟩ |= has accessa(v) if v ∈V and a ∈ A(v)

−⟨V,E,A⟩ |= could accessa(v) i f v ∈V and ∃l,u . l ∈ E(u,v)∧∀x ∈V . l ∈

E(x,v) =⇒ a ∈ A(x)

−⟨V,E,A⟩ |= uses methodl(u,v) i f u,v ∈V and l ∈ E(u,v)

−⟨V,E,A⟩ |= φ1 ∧φ2 i f ⟨V,E,A⟩ |= φ1 and ⟨V,E,A⟩ |= φ2.

−⟨V,E,A⟩ |= φ1 ∨φ2 i f ⟨V,E,A⟩ |= φ1 or ⟨V,E,A⟩ |= φ2.

−⟨V,E,A⟩ |= ¬φ i f it does not hold that ⟨V,E,A⟩ |= φ.

−⟨V,E,A⟩ |= true always.
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Neo4j Code

B.1 Properties of Account Access Graphs Code

B.1.1 is account(v)

: param v : ' v e r t e x '

OPTIONAL MATCH ( v : Account )

WHERE v . name = $v

RETURN

CASE

WHEN v IS NOT NULL THEN t r u e

ELSE f a l s e

END AS ` i s a c c o u n t ( v ) `

B.1.2 has access a(v)

: params {a : ' User / Adversary ' , v : ' v e r t e x v ' }

OPTIONAL MATCH ( v )

WHERE v . name = $v AND $a IN l a b e l s ( v )

RETURN

CASE

WHEN v IS NOT NULL THEN t r u e

ELSE f a l s e
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END AS ` h a s a c c e s s a ( v ) `

B.1.3 could access a(v)

The proposition could access a(v) was more complex to implement than expected.

There is no set minus function in Cypher and an alternate version that was in develop-

ment was roughly equivalent to the initial code below.

: params {a : ' User / Adversary ' , v : ' v e r t e x v ' }

MATCH ( ) − [ r ]−>(v )

WHERE v . name = $v

/ / t y p e ( r ) i s used as a g r o u p i n g key f o r c o u n t ( * )

WITH t y p e ( r ) AS accessMethod , c o u n t ( * ) AS r e q u i r e d C o u n t , v

MATCH ( n a ) −[ r a ]−>(v )

WHERE $a IN l a b e l s ( n a )

/ / t y p e ( r a ) i s used as a g r o u p i n g key f o r c o u n t ( * )

WITH accessMethod , r e q u i r e d C o u n t , t y p e ( r a )

AS accessMethod a , c o u n t ( * ) AS aCount

/ / c r e a t e s a t a b l e o f t h e number o f a c c e s s methods and

/ / t h e number t h a t ' a ' has a c c e s s t o

WITH c o l l e c t ({ r e q u i r e d : r e q u i r e d C o u n t , aMethods : aCount } ) AS

a c t u a l A n d R e q u i r e d

/ / compares number o f each a c c e s s method t h a t ' a ' has a c c e s s t o by

/ / t o t a l f o r each method and i f any a r e e q u a l t h e n

/ / r e t u r n s t r u e e l s e i t r e t u r n s f a l s e

RETURN any ( r e l a t i o n IN a c t u a l A n d R e q u i r e d WHERE

r e l a t i o n . aMethods = r e l a t i o n . r e q u i r e d ) AS ` c o u l d a c c e s s a ( v ) `

B.1.4 uses method l(u,v)

: params { l : ' l a b e l ' , u : ' v e r t e x u ' , v : ' v e r t e x v ' }

OPTIONAL MATCH ( u ) −[ l ]−>(v )

WHERE t y p e ( l ) = $ l AND u . name = $u AND v . name = $v

RETURN
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CASE

WHEN l IS NOT NULL THEN t r u e

ELSE f a l s e

END AS ` u s e s m e t h o d l ( u , v ) `

B.2 Operations

B.2.1 gain access a,v

: params {v : ' v e r t e x ' , a : ' User / Adversary ' }

/ / F i r s t run c o u l d a c c e s s a ( v ) and check t h a t i t r e t u r n s t r u e

MATCH ( v )

WHERE v . name = $v

CALL apoc . c r e a t e . a d d L a b e l s ( v , [ $a ] ) YIELD node

RETURN v

B.2.2 disc access a,v

: params {v : ' v e r t e x ' , a : ' User / Adversary ' }

MATCH ( v )

WHERE v . name = $v

CALL apoc . c r e a t e . a d d L a b e l s ( v , [ $a ] )

YIELD node

RETURN node

B.2.3 lose access a,v

: params {v : ' v e r t e x ' , a : ' User / Adversary ' }

MATCH ( v )

WHERE v . name = $v AND $a i n l a b e l s ( v )

CALL apoc . c r e a t e . r emoveLabe l s ( v , [ $a ] )
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YIELD node

RETURN node

B.2.4 create account a,v

: params {v : ' v e r t e x ' , a : ' User / Adversary ' }

CALL apoc . c r e a t e . node ( [ ' Account ' , $a ] , {name : $v } )

YIELD node

RETURN node

B.2.5 del account a,v

: params {v : ' v e r t e x ' , a : ' User / Adversary ' }

/ / check t h a t h a s a c c e s s a ( v ) r e t u r n s t r u e

MATCH ( v )

WHERE v . name = $v AND $a IN l a b e l s ( v )

DETACH DELETE v

B.2.6 add account a,{u 1, ..., u 2},v,l

In this implementation the Python function calls the following Cypher query for each

element in the list of u vertices.

/ / check h a s a c c e s s a ( v ) r e t u r n s t r u e

/ / f o r u i n u l i s t

: params {v : ' v e r t e x ' , l : ' a cc e s s m e th o d ' , u : ' u i ' }

MATCH ( u )

WHERE u . name = $u

MATCH ( v )

WHERE v . name = $v

CALL apoc . c r e a t e . r e l a t i o n s h i p ( u , $l , {} , v )



Appendix B. Neo4j Code 49

YIELD r e l

RETURN r e l

B.2.7 rem access 1 a,v,l

: params { l : 'ACCESS METHOD' , v : ' v e r t e x ' }

/ / f i r s t check h a s a c c e s s a ( v ) r e t u r n s t r u e

MATCH ( ) − [ l ]−>(v )

WHERE v . name = $v AND $ l = t y p e ( l )

DELETE l

B.2.8 rem access 2 a,u,l

The following is almost identical to rem access 1, a separate version was only included

for readability purposes when designing the interpreter and for possible future exten-

sions. The code could be easily modified to only make use of a single remove query

and retain all functionality.

: params {u : ' v e r t e x ' , l : 'ACCESS METHOD' }

/ / f i r s t check h a s a c c e s s a ( v ) i s t r u e

/ / t h e n check u s e s m e t h o d l ( v , u ) i s t r u e

MATCH ( ) − [ l ]−>(u )

WHERE u . name = $u AND $ l = t y p e ( l )

DELETE l

B.3 Tactics Grammar

grammar T a c t i c s ;

/ *
P a r s e r Ru les

* /
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t a c t i c : t EOF ;

/ / Ru les a r e i n o r d e r o f p r e c e d e n c e so

/ /AND has h i g h e r p r e c e d e n c e t h a n OR

t :

t AND t

| t OR t

| ' ( ' t ' ) ' / / h i g h e s t p r e c e d e n c e as b r a c k e t matched f i r s t

| t s i n g l e ;

t s i n g l e : a l p h a | b | CHECK ' ( ' p h i ' ) ' ;

a l p h a : (

g a i n a c c e s s

| d i s c a c c e s s

| l o s e a c c e s s

| c r e a t e a c c o u n t

| d e l a c c o u n t

| a d d a c c e s s

| r e m a c c e s s 1

| r e m a c c e s s 2

) ;

b : (TOP | BOT ) ; / / s u c c e s s o r f a i l u r e

p h i :

p h i CON p h i

| p h i DIS p h i

| NEG ' ( ' p h i ' ) '

| ' ( ' p h i ' ) '

| NEG p h i s i n g l e

| p h i s i n g l e ;

p h i s i n g l e : (

i s a c c o u n t

| h a s a c c e s s
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| c o u l d a c c e s s

| u s e s m e t h o d

) ;

i s a c c o u n t : IS ACCOUNT ' ( ' V ' ) ' ;

h a s a c c e s s : HAS ACCESS a ' ( ' V ' ) ' ;

c o u l d a c c e s s : COULD ACCESS a ' ( ' V ' ) ' ;

u s e s m e t h o d : USES METHOD L ' ( ' U ' , ' V ' ) ' ;

a : (USER | ADVERSARY) ;

g a i n a c c e s s : GAIN ACCESS ' ( ' a ' , ' V ' ) ' ;

d i s c a c c e s s : DISC ACCESS ' ( ' a ' , ' V ' ) ' ;

l o s e a c c e s s : LOSE ACCESS ' ( ' a ' , ' V ' ) ' ;

c r e a t e a c c o u n t : CREATE ACCOUNT ' ( ' a ' , ' V ' ) ' ;

d e l a c c o u n t : DEL ACCOUNT ' ( ' a ' , ' V ' ) ' ;

a d d a c c e s s : ADD ACCESS ' ( ' a ' , ' U L i s t ' , ' V ' , ' L ' ) ' ;

r e m a c c e s s 1 : REM ACCESS 1 ' ( ' a ' , ' V ' , ' L ' ) ' ;

r e m a c c e s s 2 : REM ACCESS 2 ' ( ' a ' , ' U ' , ' L ' ) ' ;

/ *
Lexer Ru les

* /

AND: ' ; ' ;

OR: ' | | ' ;

TOP : 'TOP ' ;

BOT: 'BOT ' ;

USER : ' User ' ;

ADVERSARY: ' Adversary ' ;

CHECK: 'CHECK ' ;

/ / a t om ic p r o p o s i t i o n s

IS ACCOUNT : ' i s a c c o u n t ' ;

HAS ACCESS : ' h a s a c c e s s ' ;

COULD ACCESS : ' c o u l d a c c e s s ' ;
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USES METHOD: ' u s e s m e t ho d ' ;

CON: ' CON ' ;

DIS : ' DIS ' ;

NEG: ' NEG ' ;

/ / o p e r a t i o n s

GAIN ACCESS : ' g a i n a c c e s s ' ;

DISC ACCESS : ' d i s c a c c e s s ' ;

LOSE ACCESS : ' l o s e a c c e s s ' ;

CREATE ACCOUNT: ' c r e a t e a c c o u n t ' ;

DEL ACCOUNT: ' d e l a c c o u n t ' ;

ADD ACCESS : ' a d d a c c e s s ' ;

REM ACCESS 1 : ' r e m a c c e s s 1 ' ;

REM ACCESS 2 : ' r e m a c c e s s 2 ' ;

f r a g m e n t LOWERCASE: [ a−z ] ;

f r a g m e n t UPPERCASE : [A−Z ] ;

/ / A l l v e r t i c e s v w i l l have a V b e f o r e them

V: ' V ' LETTER+;

/ / A l l v e r t i c e s u w i l l have a U b e f o r e them

U: ' U ' LETTER+;

/ / l i s t o f U and z e r o o r more o t h e r members o f U

U L i s t : ' { ' U ( ' , ' U)* ' } ' ;

L : ' E ' LETTER+;

/ / A l l edges / r e l a t i o n s h i p s w i l l have a E b e f o r e them

LETTER : (LOWERCASE | UPPERCASE | ' ' ) ;

WS: [ \ t \ r \n ]+ −> s k i p ; / / I g n o r e w h i t e s p a c e


