
Pixel-Base Auto-Regressive Language

Modeling

Xiyang Liao
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Data Science

School of Informatics

University of Edinburgh

2023

Abstract

Pixel-based language models are inspiring researchers of a new approach to represent

natural languages, and it is shown to perform similarly compared to subword-based

language models. By rendering the text as images, we could get rid of the previous

restrictions of model vocabulary and provide a more robust and generalizable embedding

channel of language scripts. However, it is under exploration how to generate new

content with pixel-based language models and what is the better configuration of

the rendered images. This paper introduces PIXAR, a pixel-based auto-regressive

language model. By rendering the text as images with binary pixel values, PIXAR

is trained to generate image patches auto-regressively in the decoder, based on the

corrupted encoder output. Pretrained on the same training set as PIXEL, PIXAR is

evaluate on predominantly English downstream tasks covering both token-level and

sentence-level understanding. We find that PIXAR outperform PIXEL in token-level

understanding tasks and similarly on sentence-level tasks at early pre-training steps.

Moreover, after trying different combination of pre-training settings from architecture,

masking and input representations, we find that the binary pixel values provide more

robust performance in task scores compared to grey-style pixel values. And PIXAR’s

encoder-decoder architecture with span masking reach consistently strong performance

among all the settings.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Xiyang Liao)

ii

Acknowledgements

This thesis is the culmination of a long and arduous journey-one that I have only been

able to make as a results of the dedicated support I have received from so many people

along the way.

The deepest and sincerest gratitude goes to my supervisor Antonio Vergari and

associate supervisor Suglia, Alessandro for their continuous and invaluable guidance

throughout my research. It is a great honor and privilege that I was given the opportunity

to under their supervision. I would like to thank them for the patience, support, empathy

and great sense of humor. The thoughts and comments I got from my supervisors

are so helpful in directing me to continue my research. I addition, I’m also thankful

to my partner Yintao Tai, who gave me great support in sharing me with his experi-

ences in conducting the experiments. I was inspired and impressed by his opinions

and advice greatly and it saved me a lot of work with his support. I really appreciate that.

Sincerely wishes to your, may everything be pleasant and pleasant to you.

iii

Table of Contents

1 Introduction 1

2 Literature Review 4
2.0.1 Denoising Auto-encoding Transformers 4

2.0.2 Vocabulary in Pre-trained Language Models 5

2.0.3 Generative language models 7

3 Approach 9
3.1 Text Rendering . 9

3.2 Architecture . 9

3.2.1 Span Masking . 11

3.2.2 Encoder . 11

3.2.3 Decoder . 12

3.3 Pre-training . 13

3.4 Finetuning . 16

3.5 Accelerate Training . 17

3.5.1 Reducing training capacity 17

3.5.2 Accelerate computing . 18

4 Experiments 20
4.1 Preliminary Sanity Check . 20

4.2 Tasks . 22

4.2.1 Token-level Understanding 22

4.2.2 Sentence-level Understanding 22

4.3 Baseline Model . 23

4.4 Results . 24

4.5 Ablation study . 26

iv

5 Conclusions 29
5.1 limitation . 29

5.2 Conclusion . 30

Bibliography 32

A Architecture and Training Details 38
A.1 Pre-training Details . 38

A.2 Finetuning Details . 39

v

Chapter 1

Introduction

The following section is modified from my IPP report.

Self-supervised representation learning has become a popular technique for enhanc-

ing the state-of-the-art performance in natural language processing tasks. In recent years,

there has been a tremendous increase in the size of large language models (LLMs), with

billions of parameters integrated into their architectures. Correspondingly, pre-training

these models requires millions or even billions of rows of data, which is often not

available through labeled data alone. By learning to reconstruct itself, self-supervised

representation learning enables models to leverage large unlabeled datasets, such as C4

(Raffel et al., 2020) and The Pile (Gao et al., 2021), contributing significantly to the

success of pre-trained language models (PLMs) like BERT (Devlin et al., 2019), GPTs

(Brown et al., 2020; OpenAI, 2023) and XLM-R (Conneau et al., 2020).

However, these language models operate on a finite set of inputs, such as words,

sub-words, characters or bytes. This results in a vocabulary bottleneck when attempting

to input units that are not included in the model’s vocabulary. This problem is exac-

erbated as the number of supported languages increases and the challenge of dealing

with noisy inputs becomes more complex. Inevitably, issues such as out-of-vocabulary

words and memory limitations in the embedding layer and output softmax layer arise

when implementing a finite vocabulary. As a result, a smaller and more generalized

vocabulary must be constructed to address this issue. While character or byte-based

vocabularies are smaller, they can lead to increased sequence length (Keren et al., 2022),

which will reduce the speed and efficiency for both training and inference.

1

Chapter 1. Introduction 2

To tackle the vocabulary bottleneck, current language models use sub-word units to

avoid the problem of extremely large vocabulary size, maintain an acceptable sequence

length, and support open vocabulary processing. However, while practical in a mono-

lingual context, sub-word segmentation poses challenges in a multilingual context. It

is computationally prohibitive to fully represent the vocabulary of each language, and

a mismatch between the vocabularies in pre-training and fine-tuning may lead to sub-

optimal segmentation, degrading performance in domain transfer. Consequently, this

results in degraded cross-lingual performance for languages that are underrepresented

in the training data.

A proposed solution to address the vocabulary bottleneck is to rethink language

modeling as a visual recognition task, given the orthographic similarities between char-

acters across language scripts and the potential for visually representing the meaning of

language in writing systems (Rust et al., 2022). This idea builds on the work of Salesky

et al. (2021), who trained a machine translation model with ”visual text representations”

in the encoder instead of sub-words. Rust et al. (2022) developed a pixel-based encoder

of language model (PIXEL) based on the masked auto-encoding visual Transformer

(ViT-MAE) (He et al., 2021) to reconstruct pixels in masked image patches. PIXEL

solves the vocabulary bottleneck by rendering text as a sequence of fixed-sized patches,

which are then processed by a Vision Transformer encoder (Dosovitskiy et al., 2020) to

get their latent embeddings. This approach also prevents the cost of longer sequences.

Compared to BERT with the same pre-training configuration, PIXEL achieves compa-

rable performance in many syntactic and semantic tasks and demonstrates excellent

robustness when transferring to unseen scripts.

However, similar to BERT, the bidirectional architecture of PIXEL prevent it from

doing generative tasks. Moreover, PIXEL renders the text in grey style, which is a 0

to 1 continuous space. This is contradictory to the idea of discrete word embeddings

used by sub-word based language models. Therefore, we propose to investigate the

following two research questions:

1. Can we build a pixel-based language model with generation ability?

2. Can we simplify the way to represent the texts with images?

In this paper, we present PIXAR, a PIXel-based Auto-Regressive language model.

PIXAR is a sequence-to-sequence denoising auto-encoder that can be adapted to various

Chapter 1. Introduction 3

downstream tasks. With a similar architecture to transformer-basd neural machine trans-

lation models, PIXAR is pre-trained by reconstruct the whole image sequence in the

decoder conditioned on the corrupted image in the encoder. We rethink the pixel-based

generation as image generation and adapt the success of ImageGPT(Chen et al., 2020)

with a adjustment to patch-wise instead of pixel-wise auto-regressive generation. This

prevent the extreme long sequence length and better preserve the positional information

for consecutive image patches. Predicted patch embeddings can be used for downstream

tasks at ease. Moreover, we render the text with binary pixel values with only one

channel, which is a much simplified and can provide discrete embeddings for different

image patches. PIXAR can be seen as combination of ViT (the bidirectional encoder)

and imageGPT (the auto-regressive decoder) as shown in Figure 3.3.

PIXAR is pre-trained on the same corpus as PIXEL. We evaluate PIXAR on a

variety of token-level and sentence-level understanding tasks. Benchmarked with the

intermediate checkpoints of PIXEL, the results show that PIXAR performs better in

token-level understanding and comparable in sentence-level understanding tasks at early

pre-training steps. Also to explore the effect of different pre-training configuration, we

conduct ablation analysis to study how the architecture, masking and input represen-

tation will impact PIXAR’s performance on the downstream tasks. We find that the

model with encoder-decoder architecture and binary pixel values provides consistently

strong and stable performance compared to other configurations.

Chapter 2

Literature Review

The following section is taken from my IPP report.

2.0.1 Denoising Auto-encoding Transformers

Auto-encoding neural networks are a type of self-supervised feature extraction tech-

nique used to compress input vectors into a lower-dimensional space in the encoder,

followed by reconstruction of the original vectors in the decoder. After sufficient

pre-training steps, the hidden states from the encoder can be considered as a dense

representation of the input vectors and can be combined with task-specific neural net-

works to fine-tune the model for downstream tasks. To increase the robustness of

the model, various types of noise, such as dropout, masking or swapping words, are

often added to corrupt the input vectors. By learning to reconstruct the uncorrupted

vectors, the models can improve their understanding of the unseen vectors. This idea is

reflected in denoising auto-encoders (DAEs)(Vincent et al., 2008). In natural language

processing, auto-encoding architecture is widely used as pre-trained language models

for word embedding, which uses a dense vector to capture the semantic meaning of

each word in a fixed vocabulary. The auto-encoding pre-training technique has achieved

great success after the introduction of BERT(Devlin et al., 2019), which is a bidirec-

tional encoder representation from Transformers(Vaswani et al., 2023). BERT uses

masked language modeling and next sentence prediction as pre-training formulation

to construct a task-agnostic word embedding solution and improves the state-of-art

performance for a range of natural language processing tasks. There are many derived

models, such as Roberta(Liu et al., 2019), T5(Raffel et al., 2020), BART(Lewis et al.,

2019), XLM(Lample and Conneau, 2019), and ALBERT(Lan et al., 2020), that demon-

4

Chapter 2. Literature Review 5

strate the great generalization ability of auto-encoding pre-training on downstream tasks.

Although originally developed for natural language processing, the Transformer

architecture has also been applied to computer vision tasks(Dosovitskiy et al., 2020)

through a supervised pre-training scheme. He et al. (2021) proposed to use a masked

auto-encoder (MAE) architecture to learn pixel representations in a self-supervised

manner using pixel reconstruction loss. This framework involves a combination of a

Vision Transformer with a lightweight decoder and has been found to perform well on

other modalities such as video(?Feichtenhofer et al., 2022), audio(Baade et al., 2022),

and even in multi-modal settings(Geng et al., 2022).

2.0.2 Vocabulary in Pre-trained Language Models

Vocabulary construction directly determines the granularity of text units represented

by the language models. Traditional models based on word-level representation and

closed-vocabulary suffer from limitations in dealing with rare and novel words, which

can result in the out-of-vocabulary problem. To address this issue, modern neural

networks use sub-word segmentation techniques(Sennrich et al., 2016) to break down

entire sentences into sub units and extend closed-vocabulary models to open-vocabulary

models. This allows for more robust and flexible language modeling, as it can handle

words that are not presented in the training data.

Sub-word segmentation strikes a balance between what can be represented in the

embedding layers and the sequence length after segmentation. The breakthrough for

sub-word tokenization was achieved with Byte-Pair-Encoding (BPE;(Sennrich et al.,

2016)). Originally developed as a data compression technique(Gage, 1994), BPE is now

used as a vocabulary construction technique by PLMs. When creating a new vocabulary,

BPE replaces the most frequent adjacent character pair with a new symbol representing

that pair. This process is repeated iteratively until all frequent occurrences of character

pairs are identified. During testing, merging is executed by looking up all the recorded

merges from the training. BPE has also been adapted by GPT-2(Radford et al., 2019),

where it merges bytes instead of characters. A similar algorithm used by BERT with

different merging rule on characters is ’WordPiece’(Schuster and Nakajima, 2012).

WordPiece uses a per-word left-to-right longest-match-first strategy, computing scores

for character pairs to prioritize the merging of pairs whose components are less frequent

Chapter 2. Literature Review 6

in the vocabulary. Following the idea of evaluate the sub-word segmentation by their

performance in the language model, a simple uni-gram language model (UnigramLM)

was proposed by Kudo (2018) to remove sub-word units with the lowest probability

on every iteration from a starting inclusive sub-word vocabulary until the expected

vocabulary size is reached.

In multilingual pre-trained language models such as mBERT(Devlin et al., 2019),

XLM-R(Conneau et al., 2019), and mT5(Xue et al., 2020), the vocabulary bottleneck

prevents us from fully representing the vocabulary of each individual language. Addi-

tionally, Rust et al. (2020) pointed out that BERT-based Transformers exhibit a bias

towards high-resource languages, leading to degraded cross-lingual performance for

underrepresented languages. Therefore, there is a pressing need to build ”tokenization-

free” language models. While character-level models are robust to noise and out-of-

vocabulary problems, they often result in longer sequence lengths. One alternative

approach is to represent text using the byte sequences obtained from the UTF-8 encod-

ing library, rather than relying on linguistic and statistical features. Although the byte

code was developed to cover all characters in all writing systems, ByT5(Xue et al., 2022)

demonstrated that byte-level models exhibit the same characteristics as character-level

models in terms of the benefits of robustness and the drawbacks of longer sequence

lengths.

Driven by the way human readers perceive and process text, a new approach has

been proposed that utilizes visual text representation instead of byte codes to represent

text. This approach involves creating embeddings through convolutions of the character

images with shared components, which enables generalization to unseen characters

(Wang et al., 2020; Meng et al., 2020; Sun et al., 2021). Recent work has introduced the

concept of ”visual text representation” (Salesky et al., 2021; Mansimov et al., 2020),

which involves rendering text into images and decomposing pixels for translation. This

novel technique not only circumvents the limitations of character-level and byte-level

models, but also performs competitively across writing systems by incorporating both

topological and logo-graphic features. Pixel-based models exhibit greater robustness to

noisy inputs.

Chapter 2. Literature Review 7

2.0.3 Generative language models

Generative models learn to create new data based on their knowledge from the dataset.

Unlike discriminative models that predict the conditional distribution P(Y |X), genera-

tive models aim to compute the joint distribution P(X ,Y) of the target Y and observation

X . This makes generative models naturally enjoy the abundant resources of unlabeled

data used in unsupervised algorithms. Variational Auto-encoders (VAEs)(Kingma and

Welling, 2022) are notable architectures for probabilistic generative models whose

encoders map the input into a distribution over the latent space and then the model

samples latent representations to reconstruct the input sequence in the decoder. Since

the advent of Transformers(Vaswani et al., 2023), auto-regressive models, such as

sequence-to-sequence models, have shown outstanding effectiveness in many natural

language processing tasks. Original developed for neural machine translation, sequence-

to-sequence model(Lewis et al., 2019; Raffel et al., 2020) is a branch of generative

models that compresses the information of the input sequence in the encoder output and

let the decoder to generate conditioned on it. The decoder of is simply a feed-forward

network that uses past values to predict future values in a unidirectional manner (usually

left-to-right). For example, BART(Lewis et al., 2019) leverages both the bidirectional

representation of BERT and generative ability of GPT to achieve state-of-art perfor-

mance on both discriminative tasks and generation tasks.

Generative Pre-trained Transformers (GPTs) are a set of large language models that

have gained significant attention due to their remarkable text generation quality. These

models employ the transformer architecture’s ability to process sequential data for text

generation and are pre-trained on large unlabelled datasets, allowing them to generate

human-like text. Despite functioning as an auto-regressive decoder, the GPT-3 model,

with 175 billion learnable parameters, can perform both natural language understanding

and generation tasks with exceptional proficiency. ImageGPT(Chen et al., 2020) adapt

the framework of GPT to do image generation by re-configuring the RGB style pixel

values into one channel and let the GPT decoder to predict the pixel values at the raster

order. The reconfiguration of pixel values is further refined by DALLE(Ramesh et al.,

2021) to learn a discrete variational auto-encoder that can compress the 256× 256

RGB images into 32×32 grid image tokens, each element of which can assume 8192

possible values. As a consequence, the context size of the model is reduced without a

degradation in visual quality. Although we do not adapt their code book of mapping

Chapter 2. Literature Review 8

pixel values into a latent space with lower resolutions, their methods are still beneficial

for further simplifying the input representations of rendered text.

Chapter 3

Approach

3.1 Text Rendering

To train PIXAR, we need to first render the texts to images as the input to the encoder

and the target to the decoder during the pre-training. Following (Rust et al., 2022)’s

work, we use their text renderer which can covert one or more pieces of text into an

RGB images x ∈ RH×W×C. PIXEL’s text renderer creates the images in a grey style,

where the pixel values are in the continues space between 0 and 1. We build a channel

to transform it into binary pixel values with only 0s and 1s, which can provides discrete

embeddings for image tokens. We set the height H = 8, the width W = 4232 and the

input channels C = 1. In this setting, the rendered image is equal to a sequence of

529 image patches of size 8 x 8 pixels, which is smaller than the 16 x 16 patch size of

PIXEL. To fit the font on the 8 x 8 grid, we choose the PixeloidSans-mLxMm font type,

which is designed over the 8 x 8 grid map. Similar to text tokenizers, the text renderer

supports the common ultilizations that are required for natural language processing

tasks, such as using black patches as end-of-sequence (EOS) markers and white patches

as padding. The text with longer sequence than the maximum length are truncated.

3.2 Architecture

PIXAR is a denoising auto-encoder that maps a corrupted image to its source image. We

adapt the architecture of sequence-to-sequence model with a bidirectional encoder over

corrupted image sequence and a left-to-right auto-regressive decoder. The encoder is a

12-layer ViT encoder(Dosovitskiy et al., 2020) with 86M parameters and the decoder is

a 12-layer GPT decoder(Radford et al., 2018) with 113M parameters. PIXAR differs

9

Chapter 3. Approach 10

Figure 3.1. An overview of PIXAR’s architecture. We use a sequence-to-sequence

framework with a bidirectional encoder and a left-to-right auto-regressive decoder for

pre-training. For finetuning, the last decoder hidden states is fed into the task-specific

classification head.

Chapter 3. Approach 11

with PIXEL in the following settings: (1) PIXAR use a auto-regressive generative

decoder compared to the bidirectional lightweight decoder of PIXEL. Although both

decoders are conditioned on the encoder output, generative decoder outputs predicted

logits once a time without the knowledge of future logits while bidirectional decoder

output predicted logits with the comprehensive knowledge of the previous and future

logits; (2) PIXAR uses smaller patch size and channel size and binary pixel values when

rendering the text; (3) PIXAR is trained on the binary classification loss on the whole

sequence, while PIXEL is trained on the mean squared error on the masked image

patches only. The overview of the PIXAR architecture is illustrated as Figure 3.3, with

more details in Appendix A.1.

3.2.1 Span Masking

We follow the practice of PIXEL in using span masking to add noise into the encoder

input. Proposed by T5(Raffel et al., 2020) and SpanBERT(Joshi et al., 2020), span

masking is developed to mask contiguous random spans, rather than random tokens, to

makes the masked units of text more meaningful and contain more information because

full words or phrases are usually masked. Therefore, PIXAR is able to gain more

abstractive inference ability. We also tried use random masking and the comparison

of these two masking procedure is demonstrate in the ablation studies. Due to the

lack of computational resources, we do not construct a comprehensive hyper-parameter

search and just follow the configuration of PIXEL to use the masking ratio of 0.25 and

maximum span length of 6.

3.2.2 Encoder

The bidirectional transformer encoder takes an input image with the shape of [num channel,

patch size, seq len×patch size]. The input image is first fed into the embedding layer

with a 2D convolution layer using patch size as both kernel size and stride to produce

one d-dimensional patch embeddings for each image patch. Following PIXEL(Rust

et al., 2022), we add fixed sinusoidal positional embeddings to these patch embeddings.

Then, the patch embeddings are fed into a stack of L blocks, with each block produces

an intermediate embedding with the same dimension as patch embeddings. Given

input tensor hl , we use the ViT(Dosovitskiy et al., 2020) formulation of the transformer

encoder block as follows:

nl = layer norm(hl)

Chapter 3. Approach 12

al = hl + multi-head-attention(nl)

hl+1 = al + mlp(layer norm(al))

Following PIXEL and ViT-MAE(He et al., 2021), PIXAR encoder only processes

unmasked patches instead of including masked tokens during pre-training. This can

not only lead to smaller memory usage used during training, but also can accelerate

the training speed. Moreover, the mismatch between pre-training and fine-tuning is

eliminated since mask tokens will not be inserted during fine-tuning. Unlike PIXEL and

ViT-MAE, we do not add the special CLS embeddings to the beginning of the sequence

and the encoder output is only used for the cross-attention computation in the decoder.

3.2.3 Decoder

The left-to-right decoder uses sequence-to-sequence architecture from (Vaswani et al.,

2023). The decoder block formulation is similar to that is used in encoder with addi-

tional cross-attention over the encoder output. We first build a dummy head with the

same dimension as decoder model hidden size. This is used during both training and

inference as the start of sequence. The source image is patchified into the shape of

[seq len, num channel×patch size×patch size] to get our label for training. To ensure

that the prediction at next step is only conditioned on the previous steps, standard

triangular casual mask is implemented to the n×n matrix of logits.

We made a adjustment from the pixel-wise to patch-wise auto-regressive generation,

where the last decoder hidden state is linearly projected into the same size as the label.

Instead of adding a softmax layer and get the predicted token index with the highest prob-

ability, we just keep the output with the size of [num channel×patch size×patch size]

as our prediction, which is then unpatchfied into the size of image patch [num channel,

patch size, seq len×patch size] and then pass through the shared 2D convolution layer

from the encoder to get the decoder input embedding for next step. Unlike in the encoder

where the whole sequence is transformed into a sequence of patch embeddings at the

same time, in the decoder the image patches is transformed into patch embeddings once

at a time in a auto-regressive manner. PIXAR is trained with a binary classification loss

between the prediction image patches and target. The loss is computed for the whole

sequence except the padding blank image patches.

Chapter 3. Approach 13

Figure 3.2. Comparison of the font type used by PIXAR and PIXEL. By setting the

same patch size and font size we find that for the same number of image patches, PIXAR

will cover smaller number of words.

3.3 Pre-training

Following PIXEL(Rust et al., 2022) and BERT(Devlin et al., 2019)’s pre-training setup,

PIXAR is pre-trained on a rendered version of the English Wikipedia and the BookCor-

pusZhu et al. (2015). We use different configuration for text rendering compared with

PIXEL. In total. PIXAR is pretrained for 0.1M steps with batch size 128. Our rendered

Wikipedia are converted into 23.5M examples and the Bookcorpus has 6.7M examples.

This is larger than PIXEL’s rendered dataset, which has only 11.4M Wikipedia examples

and 1.1M Bookcorpus examples. This is because that the adjusted font type will flatten

the words and can only fit smaller number of tokens into the same number of image

patches. The examples of rendered text with the font type used by PIXEL and PIXAR

are shown in Figure 3.4. Therefore, for a fixed number of documents, the adjusted

rendering configuaration will generate more samples. This also means that for the same

number of training steps, our model might cover less word tokens compared the PIXEL.

We select AdamW(Loshchilov and Hutter, 2019) as our optimizer, warming up the

learning rate linearly over the first 5K steps, peaking at 1.5e-4, then decaying via a

cosine function to a minimum learning rate of 1e-5. In average, training PIXAR takes

20 hours on 16×16 GB Tesla V100 GPUs.

The choice of pre-training objective is crucial since it offers the mechanism through

which the model acquires generic knowledge to use in downstream tasks. PIXEL is a

masked auto-encoder with the objective to reconstruct the masked image patches given

the unmasked input. This objective was modified from (Devlin et al., 2019), which

is designed for encoder-only models and the loss is computed only on the masked

tokens during training. To make it suitable in our encoder-decoder setup, we make

Chapter 3. Approach 14

Figure 3.3. PIXAR image reconstruction with different masking types. The first two

rows are random masking and the last two rows are span masking. The prediction

column is the next-patch generation where given the previous golden image patch, we

generate only the next image patch. The inference is generated from the start of sentence

auto-regressively without seeing any golden image patch in the decoder. We apply a

span masking with a ratio of 0.25. We find that PIXAR can learn to reconstruct image

patches given either previous image patch or encoder hidden states of that specific

position.

Chapter 3. Approach 15

a modification in that we mask out 25 pre cent of the input image patches and the

model is trained to reconstruct the whole uncorrupted image sequence. Similar masking

objective was used by text-to-text models like MASS(Song et al., 2019) and T5(Raffel

et al., 2020) as a simple variant of the BERT-style objective. The loss is computed over

the whole sequence instead of the masked image patches only. This formulation of

pre-training objective is proved to perform similarly but more efficiently compared with

other variants of BERT-style objective.

Inspired from the auto-regressive pre-training objective of GPT(Radford et al., 2018)

and imageGPT(Chen et al., 2020), our formulation of objective is demonstrated as fol-

lows: Given an dataset with the data as a sequence of image patches x = (x1, ...,xn)

where n is the maximum sequence length, each image patch xi has a dimensionality of 64

(the total pixel amount that equals to the value of [num channel×patch size×patch size]).

The input sequence x is first fed into the encoder with a specified mask ratio to get the

encoder hidden states he, then the decoder predict the density of each image patch p(x̂i)

auto-regressively conditioned on he as below:

p(x̂i) = p(x̂i|x1, ...,xi−1,θ,he) (3.1)

where θ indicates the parameters of the decoder. Here the model is trained to predict

the next image patch x̂i only given all the previous gold image patches (x1, ...,xi−1) in a

teacher-forcing manner. For binary pixel values, we define the density of each pixel xi j

of the image patch xi as:

p(x̂i jt) =


p(x̂i j), i f xi j = 1

1− p(x̂i j), otherwise

(3.2)

We train PIXAR by minimizing the focal loss(Lin et al., 2018) between the pre-

dictions and targets. Focal loss is used by many modern vision models(Kirillov et al.,

2023; Cheng et al., 2021) for pre-training objectives and is proved to be more efficient

than cross entropy loss.

Loss =
n

∑
i=0

64

∑
j=0

−αt(1− p(x̂i jt))
γlog(p(x̂i jt)) (3.3)

Focal loss is a improved version of cross entropy loss. It introduces a modulating

factor (1− p(x̂i))
γ to assign larger importance to the less confident samples and make

Chapter 3. Approach 16

the model focus more on the harder samples. Also, α is a balancing variant to deal with

class imbalance issues. γ is set to 2 following the best practice of Lin et al. (2018) and

α is set to 0.3 for positive class according to the distribution of the binary values from

the dataset.

3.4 Finetuning

PIXAR follows the practise of similar language models with encoder-decoder architec-

tures to use the last hidden states of their decoders as the representations of the input

sentences(Lewis et al., 2019; Raffel et al., 2020). Due to the restriction of computational

resources, we do not construct a search of the best representation quality among the

hidden states within the decoders. For discriminative downstream tasks, task-specific

classification heads are implemented on top of the representations of inputs. Positional

embeddings can be either truncated to accelerate training or interpolated to enable larger

input sequence length. Following PIXEL’s work, we demonstrate three settings of

fine-tuning as follows to support various needs of downstream tasks:

Figure 3.4. Examples of how we render text for different tasks. For token-level tasks,

we render the next token on the next empty image patch. Single sentence rendering is

what we use during pre-training. Sentence pair rendering is used for tasks with bi-text.

Token Classification For token-level understanding tasks, each word is rendered to

the start of a next new image patch so that each word can be mapped with a unique

index of the image patch and word boundary is enabled to avoid that multiple words

are overlapped on a single image patch. A linear classifier with dropout is placed

on top of these images and the label of each word is assigned only to the first corre-

sponding image patch and cross-entropy loss with softmax is computed on this only

during training. Similar fine-tuning formulation is also applied over subword-based

Chapter 3. Approach 17

and character-based models to assign the label of each word only to is first segmentation.

Sentence Classification For sentence-level understanding tasks, we render the text in

the same way as we do in pre-training without adding spaces like in token classification.

For bi-text tasks with a hypothesis and a sentence, we concatenate both sentence into one

image sequence with a black patch as a separating point. To aggregate the information

of the whole sequence, different pooling strategies is applied over the representations

of all patches to get the sequence representations, including (1) mean-pooling: com-

pute the mean value of all patches; (2) max-pooling: compute the max value of each

dimension of all patches; (3) multi-head attention pooling: average over all patches

using the multi-head attention weights. In this paper we mainly focus on the results of

method (1), which is proved to be useful in image classification tasks(Liang et al., 2022).

Question Answering For extractive Question Answering tasks like SQuAD(Rajpurkar

et al., 2016), the question and the context are rendered in the same way of sentence-

pairs as do in sentence classification tasks. Moreover, for overflowing text, we do not

truncate the context, instead new examples is created with a stride using sliding window

approach. A linear classifier is applied to predict the start and end patches of the answer

span.

3.5 Accelerate Training

It took Rust et al. (2022) about 8 days with 8X40GB Nivida A100 GPUs to pre-train

PIXEL from scratch for 1 million steps, which is unachievable given the restriction of

time and computational resources. Therefore, several techniques that are used to speed

up the training time are demonstrated mainly in the following two directions.

3.5.1 Reducing training capacity

First, we used the latest checkpoints of PIXEL-base to initialize our PIXAR’s encoder

and we only choose to pre-train our model for 0.1 million steps, which is much smaller

than 1 million steps. Second, since we only have 16GB Tesla V100 GPUs, we need to

first feed the machines with possibly large batch size per device to ensure the converge

of gradients used for updating the parameters. The main consumption of machine

memory is the weight matrix during the computation of multi-head attentions, but we

Chapter 3. Approach 18

can still lower the memory cost by reducing the patch size from 16x16 to 8x8 when

rendering the text. Also Rust et al. (2022) rendered the text in an RGB style with

3 channels, which we think is unnecessary for representing the text. We choose to

render the text with binary pixel values and reduce the channel size from 3 to 1. In

combination with these two adjustments, we reduce the rendered pixel values from (3,

16, 8464), indicating (num channel, patch size, seq len×patch size), to (1, 8, 4232).

After preliminary test we found that the maximum batch size per device is now 25

compared to 14 for the original configuration. Therefore, we can use a larger total batch

size during pre-training.

3.5.2 Accelerate computing

As proposed by the community to speed up the training of the neural network, mixed

precision training is implemented in this project to reduce the computation cost by

switch the floating-point values from single precision to half precision for part of the

training iterations, which can maximally retain the information with a large speedup

in training time. Also, since our model is trained using multiple GPUs on multiple

nodes, we implemented distributed data parallel, which is a multiprocessing training

scheme that copy the model to each GPU, assign a process to each GPU and gather the

gradients together to update the model parameters. This enables us to have a larger batch

size with less communication cost within GPUs. Finally, Zero Redundancy Optimizer

(Zero) (Rajbhandari et al., 2020) is developed by DeepSpeed to lower the memory and

compute demands of each device (GPU) utilized for model training. ZeRO makes use

of the aggregate computing and memory resources of data parallelism by distributing

the different model training states (weights, gradients, and optimizer states) among the

available devices (GPUs and CPUs in the distributed training hardware) to lower the

memory usage of each GPU. Zero is developed in three incremental stages, where the

latter stages can integrate the ultilisation of the former stages. This project leverage the

stage 2 of ZeRo, which partition both the optimizer stage (e.g., for Adam optimizer,

32-bit weights) and 32-bit gradients across the processes. After initial estimation, the

batch size per device is almost doubled after the implementation of Zero Stage 2 and

also the training time is slightly shorter.

All the training schemes mentioned above are implemented using the hugging-

face(Wolf et al., 2019) Trainer, which provides an end-to-end training framework for

Chapter 3. Approach 19

training neural models and a comprehensive storage of model checkpoints and datasets.

Chapter 4

Experiments

4.1 Preliminary Sanity Check

The first step of our experiment is to adjust the font type used by the text renderer. To

investigate how this adjustment will affect the performance of PIXEL and also how

we can make the full use of the PIXEL’s checkpoints, we construct a series of initial

experiments to explore the following two questions:

1. Will changing the font type affect PIXEL’s performance in image reconstruction

and downstream tasks?

2. How to retrain the model to retain the performance? Can we freeze the transformer

blocks and only retrain the embedding and projection layers?

For the convenience of later experiments, we first pre-render the BookCorpus and

Wikipedia dataset with the new font type. Then, base on the PIXEL-base checkpoint, we

retrain the model in 2 setups: (1) freeze the transformer blocks and only retrain the patch

embedding layer in the encoder and linear projection layer in the decoder; (2) retrain the

whole model. For simplicity we only retrain the model for 10000 steps. To control the

variables for model comparison, we also render the text in grey style and train the model

using mean squared error in the same way as (Rust et al., 2022). The reconstruction

ability of PIXEL-base and retrained models on the same sample are shown in Figure 4.1.

We find that retrain the embedding and projection layers only is not sufficient in

retaining the image reconstruction ability, and that only retraining the whole model can

model learn to reconstruct the image patches with the new font type. Then we select

two downstream tasks (part-of-speech tagging and Sentiment classification) to evaluate

20

Chapter 4. Experiments 21

Figure 4.1. Comparison of PIXEL-base and retrained models on the reconstruction

ability.

the performance of retrained models. We choose to skip the model with setup (1) for

its poor performance in reconstructing image patches. The results of PIXEL-base and

retrained model with setup (2) are shown in Table 4.1.

Model POS SST2

Acc F1

PIXEL-base 96.8 88.5

Retrain the model 92.8 82.1

Table 4.1: Comparison of PIXEL-base and retrained model on the performance in

part-of-speech tagging and sentiment classification.

The results show that the retrained model still preserve the performance on down-

stream tasks. Since both the reconstruction ability and performance in downstream

tasks are reasonablely good by retraining the whole model for only 10000 steps, we

can reach the initial conclusion that changing the font type will not affect PIXEL’s

ability and we need to retrain the whole model to make the full use of the PIXEL-base

checkpoint. This initial experiments also validate the finding of PIXEL that pixel-based

language models can transfer to other writing systems.

Chapter 4. Experiments 22

4.2 Tasks

For comparison, we mainly select the tasks that is used by PIXEL as our downstream

tasks. We fine-tune PIXAR on common natural language processing tasks mainly to

evaluate its performance in aspects of token-level and sentence-level understanding.

Due to the limitations of computational budget and time, we mainly focus on English

tasks.

4.2.1 Token-level Understanding

POS We evaluate PIXAR on Part-of-speech (POS) tagging using data from Universal

Dependencies V2.10 treebanks (Nivre et al., 2020) for its English subsection. Each

word in a sentence is tagged as Noun, Verb , Adjective and so on based on its context

and linguistic meaning. The model learns to predict the target tag for each word. The

unidirectional way of generating last decoder hidden states make it hard for us to build

a root logit and capture bidirectional dependencies for dependency parsing, therefore

we neglect it.

NER Also, we evaluate PIXAR’s monolingual (ENG) word-level understanding on a

named entity recognition (NER) benchmark in ConLL-2003 dataset (Sang and Meulder,

2003). Each word in the dataset is tagged as B-the beginning of a entity, I-the inner of a

entity and O-the outside of entities.

We compare how well PIXAR performs on these tasks compared to PIXEL, which

allows us to explore the extent to which the auto-regressive way of embedding can

retrain the token representation ability.

4.2.2 Sentence-level Understanding

We select several tasks in GLUE, which is a multi-task benchmark for sentence level

natural language understanding, for this part of evaluation. We also select a extractive

question answering tasks.

SST2 The Stanford Sentiment Treebank(Socher et al., 2013) is a binary classification

corpus with fully labeled parse trees that allows for a complete analysis of the effects of

sentiment in language.

Chapter 4. Experiments 23

MNLI Multi-Genre Natural Language Inference(Williams et al., 2018) is a bi-text clas-

sification task to determine if a sentence entails, contradicts or is unrelated to a given

hypothesis. Both the premise and hypothesis are concatenated into one sequence and be

fed into both the encoder and decoder. We present PIXAR to both MNLI-matched, with

the validation and test set coming from the same distribution, and MNLI-mismatched,

where the validation and test use out-of-domain data.

RTE Recognizing Textual Entailment(Poliak, 2020) is a binary classification task to

predict whether a sentence entails a given hypothesis or not.

SQuAD The Stanford Question Answering Dataset(Rajpurkar et al., 2016) is a extrac-

tive question answering tasks based on Wikipedia articles. The answer to each question

is a segment of text from the corresponding context passage.

These generic tasks provides us with basic knowledge of how Well PIXAR can

captures major semantic inference needs across many natural language processing

applications, such as Information Retrieval and Question Answering.

4.3 Baseline Model

We compare our results to PIXEL(Rust et al., 2022), a bidirectional masked auto-encoder

for language modelling with pixels. PIXEL is a Transformer-based encoder-decoder

model trained to reconstruct the masked image patches. Following the work of ViT-

MAE, which is designed for computer vision tasks, PIXEL make it suitable for natural

language tasks by rendering the text as images for both model input and target. Previ-

ous work(Salesky et al., 2021) has demonstrated that the rendered pixels have similar

representation power than the text itself. PIXEL is trained by first compressing the

unmasked image patches in the dense vector of encoder output and let the decoder to

reconstruct the masked image patches based on the encoder output. This is similar to

the objective of masked language modelling but in the pixel space. The last encoder

hidden states are concatenated with task-specific classification heads to do downstream

tasks in the same way as we discussed in section 3.4. Compared with BERT for the

same amount of pre-training capacity, PIXEL has shown to perform similarly in both

semantic and syntactic tasks but more robust to the text scripts that is not covered in

Chapter 4. Experiments 24

pre-training data, such as multi-lingual texts and noise input.

Due to the restriction of computational cost, we can not try different pre-training

configurations for 1 million training steps, which would take us around 8 days according

to the estimation. Therefore, our final number of training steps is 0.1M, which is far

smaller than PIXEL-base, which makes them less comparable. Our early comparison

shows that there is significant performance gap between PIXEL-base and PIXAR. Since

PIXEL’s author also uploaded their intermediate checkpoints to the huggingface hub

for explicit benchmarking, our final baseline model would be PIXEL-base pre-trained

for only 0.1M training steps.

Newer monolingual English language models like ROBERTA(Liu et al., 2019) and

T5(Raffel et al., 2020) are not included as our baseline models due to their longer pre-

training steps and much larger corpus. BART(Lewis et al., 2019) is not included because

its intermediate checkpoints are not open-sourced. We follow the same fine-tuning

protocols used by Rust et al. (2022) with some adjustments to fit them with the encoder-

decoder architecture of PIXAR. The fine-tuning details are listed in AppendixA.2.

4.4 Results

We present the fine-tuning results for both token-level and sentence-level understanding

tasks in Table 4.2.

Token-level Understanding We find that PIXAR consistently outperform PIXEL on

token classification tasks, especially in NER, where the performance gap is more sig-

nificant compared to that of POS. This might due to the reason that Named Entity

Recognition task has unidirectional nature, the labels of the latter tokens are only de-

pendent on the former tokens, therefore the left-to-right decoding of PIXAR is more

efficient here compared to the bidirectional encoding of PIXEL.

Sentence-level Understanding Since our generation unit is image patch instead of

token index used by GPT, we can not use either ’CLS’ pooling method as PIXEL, nor

’EOS’ pooling method as BART. In our early protocol of fine-tuning, we tried differ-

ent pooling methods, including mean-pooling, max-pooling and multi-head attention

pooling. There is not significant performance gap between pooling methods, so we use

Chapter 4. Experiments 25

Token-level Sentence-level

Model POS NER SST2 MNLI-M/MM RTE SQuAD

Acc F1 Acc Acc Acc F1

PIXEL-base 93.8 81.2 82.2 69/69.5 56.3 69.1

PIXAR 94.2 82.7 77.1 68.5/68.9 57.1 60.1

Table 4.2: Results for PIXAR and PIXEL fine-tuned for token-level understanding

tasks(POS, NER) and sentence-level understanding tasks (SST2, MNLI, RTE, SQuAD).

We report test set results over all the tasks. For NER, we report F1-scores due to

the serious class imbalance issues among the labels. Over 80 percent of the tokens

are labelled with ’O’, which makes it meaningless to use accuracy as the metric. For

sentence-level classification tasks, mean pooling is used for both models. For the tasks

besides SQuAD, both models are fine-tuned for 15000 steps with early stopping. In

SQuAD, the fine-tuning step is increased to 20000 due to lower converge speed.

mean pooling here for sentence-level understanding tasks, which is also consistent with

the results reported in the PIXEL’s paper.

We find that PIXAR reaches contradictory performance on sentence classification

tasks. While PIXAR gets comparable or even better results on entailment detection

tasks like MNLI and RTE, PIXAR gets much lower scores on SST2 and SQuAD. In our

early fine-tuning configuration of SQuAD, we find that PIXEL converges faster than

PIXAR at 15000 steps, where PIXEL reaches its minimal training loss and validation

loss but PIXAR is still learning towards its converge points. This explains PIXAR’s

pooer performance on SQuAD. Therefore, we increase the training steps for SQuAD

from 15000 to 20000, similar to the configuration of (Rust et al., 2022).

Overall, PIXAR performs similarly or even better in some tasks compared to

PIXEL. But PIXEL has significant advantage over PIXAR on SST2 and SQuAD. Since

PIXEL was pre-trained on the same corpus with even more seen tokens, we suggest

that the encoder-decoder architecture and all the previous adjustments of rendering

configurations can retrain or even improve the natural language understanding ability

compared to encoder-only architecture of PIXEL at early pre-training steps.

Chapter 4. Experiments 26

4.5 Ablation study

To further exploit the difference between pre-training configurations, we design a

ablation study to evaluate the impacts of model architecture, masking and input repre-

sentations on the pre-training and downstream tasks.

For model architecture, we compare the encoder-decoder architecture of PIXAR,

which use the last decoder hidden states for downstream tasks, to the encoder-only

architecture of PIXEL, which use the last encoder hidden states for downstream tasks.

However, our encoder-only models are pre-trained in the same way as PIXAR instead

of the PIXEL-like pre-training. So in practise, the encoder-only models are just the

encoder of their encoder-decoder counterparts. For masking, we compare the span

masking and random masking. We also tried to not include any masking at all so that

the whole architecture is more like a auto-encoder without any denoising objective. For

input representation, we compare the original grey style pixel values of PIXEL, which

is a 0 to 1 continuous space, and the binary pixel values of PIXAR, which is a 0 or

1 discrete space. Theoretically, the binary pixel values of a 8× 8 grid can represent

264 different inputs, which is definitely larger than the vocabulary size of any existing

tokenizers of language models. We tried all the possible combinations of different

components and test their performance on the downstream tasks.

The results are shown in Table 4.3. Several findings are clear:

Span masking is crucial for better language understanding Pre-training without

masking performs poorly. In our early model protocols, we do not introduce any mask-

ing in the encoder to hopefully make use of all the information passed to the encoder.

This turns out to be misleading that the model relys too much on the encoder hidden

states and just learns to reconstruct the image patches given the encoder hidden states

of that specific position instead of predicting new image patches. The best performance

is achieved by either random masking or span masking. Generally, span masking

outperforms random masking in the downstream tasks.

Last decoder hidden states is a better representation in this pre-training con-
figuration compared with last encoder hidden states Generally, the models with

encoder-decoder architecture performs better than the models with encoder-only ar-

Chapter 4. Experiments 27

Token-level Sentence-level

Model Architecture Masking Input type POS NER SST2 MNLI-M/MM RTE SQuAD

Acc F1 Acc Acc Acc F1

PIXEL Enc Span Grey 93.8 81.2 82.2 69/69.5 56.3 69.1

PIXAR Enc Random Binary 93.3 81.4 74.2 65/65.3 53.8 59.7

PIXAR Enc Span Grey 90.1 52.9 57 65.1/65.4 50.9 16.3

PIXAR Enc Span Binary 93.4 81.5 75.7 66.3/67.6 54.5 61.1

PIXAR Enc-Dec - Binary 92.2 73.1 72.5 57.3/58 49.5 24.1

PIXAR Enc-Dec Random Binary 93.5 79.7 78.9 67.9/68.6 53.8 33.6

PIXAR Enc-Dec Span Grey 44.6 45.5 78.4 66.8/67.4 49.1 15.5

PIXAR Enc-Dec Span Binary 94.2 82.7 77.1 68.5/68.9 57.1 60.1

Table 4.3: Results of models with different pre-training configurations. The comparisons

are made between architectures (encoder-decoder or encoder-only), masking (span

masking, random masking or no masking) and input type (grey-style or binary). All

models are pre-training using the same corpus for 0.1M steps. We report their test set

results over all the downstream tasks.

chitecture. Since our encoder is initialised from the PIXEL-base checkpoints that is

pre-trained for 1M steps, the encoder-only models are theoretically pre-training longer

than their PIXEL counterpart and are expected to reach better performance. In practise,

the adjustment of the pre-training objective and input representation, i.e. changing the

font type, makes them fail to outperform PIXEL. However, there are several outliers

like model with span masking and grey-style input type, whose encoder-only models

performs better than its encoder-decoder counterpart in some of the tasks.

Binary pixel value leads to more stable performance In the framework of PIXAR,

the models with grey-style input performs much poorly than the binary models in some

of the tasks. We consider it as a stuck in the local minima during training and tried

other random seeds and larger learning rates, only to find that it still performs poorly

somehow, especially in SQuAD and NER. On the other hand, binary models perform

consistently good in all the tasks.

Encoder-only architecture is cruial for SQuAD In the column of SQuAD, we find

that encoder-only models always outperform their encoder-decoder counterparts with a

large advantage in the F1-scores. This might explain the reason why PIXAR fails to

reach similar results as PIXEL in SQuAD.

Chapter 4. Experiments 28

PIXAR pre-training configuration achieves the most consistently strong perfor-
mance Among all the models with the framework of PIXAR, the model with encoder-

decoder architecture, span masking and binary input type performs well on all tasks

with the exception of SST2.

Chapter 5

Conclusions

5.1 limitation

This paper adjust the architecture of PIXEL(Rust et al., 2022) to explore the possibility

of generative decoding and also simplifying the input representation. While PIXAR

shows promising results for the early pre-training step, there are limitations that are

listed for the directions of future works:

• The preliminary objective of this paper is to the realize the generative ability

of pixel-based language models, but there is still a long way to go before using

pixel-base language models for generative tasks like summarization or abstractive

question answering.

For model architecture, besides the encoder-decoder architecture used by PIXAR,

some other frameworks are under exploration. For example, decoder-only models

like GPT might be adapted to model pixel-based language modeling by use the

conditioned image patches as prefix to predict the following patches. Li et al.

(2023) tried to leverage the diffusion framework to model the conditional genera-

tion tasks as high-quality image generation condition on the text embeddings.

Moreover, we are still finding a suitable way to ground the generated images back

to the texts. There are out-of-shelf optical character recognizers (OCR) that can

be used to do text grounding, but the generation performance might be degraded

since OCRs can only detect characters and can not generate fluent texts. Li et al.

(2023) develops a solution to this issue by adding a text-grounding block, which

is consisted of some transformer layers, above the generate images to mapping

them back to the whole sentences. Also we might skip the image generation to

directly generated texts in the decoder to avoid the loss that is incurred by both

29

Chapter 5. Conclusions 30

image generation and text generation.

Eventually, for generation strategy, we usually apply bean search or top K filtering

to increase the quality of text generation. However, such strategies are difficult

to be implemented for image generation, where their is not a distribution over

discrete tokens. Therefore, our implementation of patch-wise image generation is

more like a greedy search, which might be bad for generative tasks.

• To simplify the input representation, we use the 8×8 grid and binary pixel values,

which is much easier than the 16×16 grid and grey style pixel values used by

Rust et al. (2022). However, since we can not redo the pre-training of PIXEL due

to the restriction of computational resources, it is still under estimation how the

rendering configuration will affect the performance of language models. In the

architecture of PIXAR, binary pixel values outperform others, the adjustment of

font type is not taken into consideration because the original font type used by

PIXEL is not designed over the grid of 8×8, and it is not recognizable when it is

fit into a smaller grid. Also, we can use vector quantization(van den Oord et al.,

2018) to transform the high resolution images into latent space to further simplify

the input representation.

5.2 Conclusion

Pixel-based language model is a new research direction for people to find out whether

we could dig out the latent representation power of visual writing system. This could

be a alternative to text-based tokenizers with stronger robustness to noisy inputs and

more generalization ability to multi-lingual tasks. Theoretically we could embed any

scripts that could be rendered as a image. The representation power of pixel is validated

by (Rust et al., 2022), but we are still unknown how to do generative tasks with pixel-

based language model. Both text and image generation methods should be taken into

consideration.

This paper introduced PIXAR, a pixel-based auto-regressive language model. It

is a sequence-to-sequence transformer with a bidirectional encoder and a left-to-right

decoder. PIXAR is a vocabulary-free model that uses the rendered image of text as

input, and produce representational embeddings in the decoder auto-regressively. Also

to simplify the input representation, PIXAR choose a smaller patch size and use a

Chapter 5. Conclusions 31

different font type that is designed over the 8×8 grids. Initial experiments show that

the adjustment of font type won’t ruin the performance of PIXEL. This also indicates

that pixel-based language model can transfer to new writing systems easily. PIXAR

is pre-trained on the rendered version of Bookcorpus and Wikipedia and evaluated

on the token-level understanding tasks (POS, NER) and sentence-level understanding

tasks(SST2, MNLI, RTE) and extractive question answering tasks (SQuAD). Compared

to PIXEL with the same amount of pre-training steps, PIXAR are shown to achieve

stronger performance in token-level understanding tasks and similarly or slightly worse

in sentene-level understanding tasks. This demonstrates that the encoder-decoder

architecture has the same representational power as the encoder-only architecture. The

unidirectional way of generating decoder logtis enables PIXAR with stronger ability to

represent tokens but slightly poor ability to represent sentence when the comprehensive

knowledge of the whole sequence is needed. We also conduct ablation study to validate

that the model performs better with span masking and encoder-decoder architecture in

our pre-training formulation. And the binary pixel values make the model get stably

better scores in the downstream tasks compared to grey-style pixel values. In future

work, we will keep working on developing the path for PIXAR to do generative tasks.

Bibliography

A. Baade, P. Peng, and D. Harwath. Mae-ast: Masked autoencoding audio spectrogram

transformer, 2022.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,

R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,

M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,

I. Sutskever, and D. Amodei. Language models are few-shot learners. CoRR,

abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative

pretraining from pixels. In International conference on machine learning, pages

1691–1703. PMLR, 2020.

B. Cheng, A. Schwing, and A. Kirillov. Per-pixel classification is not all you need for

semantic segmentation. Advances in Neural Information Processing Systems, 34:

17864–17875, 2021.

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave,

M. Ott, L. Zettlemoyer, and V. Stoyanov. Unsupervised cross-lingual representation

learning at scale. arXiv preprint arXiv:1911.02116, 2019.

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave,

M. Ott, L. Zettlemoyer, and V. Stoyanov. Unsupervised cross-lingual representation

learning at scale, 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding, 2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16

32

Bibliography 33

words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929,

2020.

C. Feichtenhofer, H. Fan, Y. Li, and K. He. Masked autoencoders as spatiotemporal

learners, 2022.

P. Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, 1994.

L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He,

A. Thite, N. Nabeshima, S. Presser, and C. Leahy. The pile: An 800gb dataset

of diverse text for language modeling. CoRR, abs/2101.00027, 2021. URL

https://arxiv.org/abs/2101.00027.

X. Geng, H. Liu, L. Lee, D. Schuurmans, S. Levine, and P. Abbeel. Multimodal masked

autoencoders learn transferable representations, 2022.

K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are

scalable vision learners, 2021.

M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. Spanbert:

Improving pre-training by representing and predicting spans. Transactions of the

association for computational linguistics, 8:64–77, 2020.

O. Keren, T. Avinari, R. Tsarfaty, and O. Levy. Breaking character: Are subwords good

enough for mrls after all?, 2022.

D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2022.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,

S. Whitehead, A. C. Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint

arXiv:2304.02643, 2023.

T. Kudo. Subword regularization: Improving neural network translation models with

multiple subword candidates. arXiv preprint arXiv:1804.10959, 2018.

G. Lample and A. Conneau. Cross-lingual language model pretraining, 2019.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite

bert for self-supervised learning of language representations, 2020.

Bibliography 34

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov,

and L. Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural

language generation, translation, and comprehension, 2019.

J. Li, W. X. Zhao, J.-Y. Nie, and J.-R. Wen. Glyphdiffusion: Text generation as image

generation, 2023.

F. Liang, Y. Li, and D. Marculescu. Supmae: Supervised masked autoencoders are

efficient vision learners, 2022.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object

detection, 2018.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,

and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

E. Mansimov, M. Stern, M. Chen, O. Firat, J. Uszkoreit, and P. Jain. Towards end-to-end

in-image neural machine translation, 2020.

Y. Meng, W. Wu, F. Wang, X. Li, P. Nie, F. Yin, M. Li, Q. Han, X. Sun, and J. Li. Glyce:

Glyph-vectors for chinese character representations, 2020.

J. Nivre, M.-C. de Marneffe, F. Ginter, J. Hajič, C. D. Manning, S. Pyysalo, S. Schuster,

F. Tyers, and D. Zeman. Universal dependencies v2: An evergrowing multilingual

treebank collection, 2020.

OpenAI. Gpt-4 technical report, 2023.

A. Poliak. A survey on recognizing textual entailment as an nlp evaluation, 2020.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language

understanding by generative pre-training. 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models

are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,

and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text

transformer, 2020.

Bibliography 35

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory optimizations toward

training trillion parameter models, 2020.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for

machine comprehension of text, 2016.

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.

Zero-shot text-to-image generation, 2021.

P. Rust, J. Pfeiffer, I. Vulić, S. Ruder, and I. Gurevych. How good is your tokenizer?

on the monolingual performance of multilingual language models. arXiv preprint

arXiv:2012.15613, 2020.

P. Rust, J. F. Lotz, E. Bugliarello, E. Salesky, M. de Lhoneux, and D. Elliott. Language

modelling with pixels, 2022.

E. Salesky, D. Etter, and M. Post. Robust open-vocabulary translation from visual text

representations, 2021.

E. F. T. K. Sang and F. D. Meulder. Introduction to the conll-2003 shared task: Language-

independent named entity recognition, 2003.

M. Schuster and K. Nakajima. Japanese and korean voice search. In 2012 IEEE

international conference on acoustics, speech and signal processing (ICASSP), pages

5149–5152. IEEE, 2012.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words with

subword units. In Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany,

Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.

URL https://aclanthology.org/P16-1162.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts.

Recursive deep models for semantic compositionality over a sentiment treebank. In

Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing, pages 1631–1642, Seattle, Washington, USA, Oct. 2013. Association for

Computational Linguistics. URL https://aclanthology.org/D13-1170.

K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu. Mass: Masked sequence to sequence

pre-training for language generation, 2019.

Bibliography 36

Z. Sun, X. Li, X. Sun, Y. Meng, X. Ao, Q. He, F. Wu, and J. Li. ChineseBERT:

Chinese pretraining enhanced by glyph and Pinyin information. In Proceed-

ings of the 59th Annual Meeting of the Association for Computational Linguis-

tics and the 11th International Joint Conference on Natural Language Process-

ing (Volume 1: Long Papers), pages 2065–2075, Online, Aug. 2021. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.161. URL

https://aclanthology.org/2021.acl-long.161.

A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation

learning, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin. Attention is all you need, 2023.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing

robust features with denoising autoencoders. In W. W. Cohen, A. McCallum, and S. T.

Roweis, editors, Machine Learning, Proceedings of the Twenty-Fifth International

Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008, volume 307 of ACM

International Conference Proceeding Series, pages 1096–1103. ACM, 2008. doi:

10.1145/1390156.1390294. URL https://doi.org/10.1145/1390156.1390294.

H. Wang, P. Zhang, and E. P. Xing. Word shape matters: Robust machine translation

with visual embedding, 2020.

A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for

sentence understanding through inference, 2018.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,

R. Louf, M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural

language processing. arXiv preprint arXiv:1910.03771, 2019.

L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, and

C. Raffel. mt5: A massively multilingual pre-trained text-to-text transformer. arXiv

preprint arXiv:2010.11934, 2020.

L. Xue, A. Barua, N. Constant, R. Al-Rfou, S. Narang, M. Kale, A. Roberts, and

C. Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte models,

2022.

Bibliography 37

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler.

Aligning books and movies: Towards story-like visual explanations by watching

movies and reading books, 2015.

Appendix A

Architecture and Training Details

A.1 Pre-training Details

PARAMETER VALUE

Image size (8, 4032, 1)

Patch size 8

Encoder hidden size 768

Encoder intermediate size 3072

Encoder num attention heads 12

Encoder num layers 12

Decoder hidden size 768

Decoder intermediate size 3072

Decoder num attention heads 12

Decoder num layers 12

Layer norm 1e-12

Span masking ratiro 0.25

Span masking max length 6

Dropout probability 0.1

Hidden activation GeLU

Optimizer AdamW

Weight decay 0.05

Peak learning rate 1.5e-4

Learning rate schedule Cosine Decay

Minimum learning rate 0.05

Training steps 0.1M

Batch size 256

Table A.1: PIXAR pre-training settings

38

Appendix A. Architecture and Training Details 39

A.2 Finetuning Details

PARAMETER POS NER SST2 MNLI RTE SQuAD

Rendering backend PyGame PyGame PyGame PyGame PyGame PangoCairo

Pooling Head - - Mean Mean Mean -

Weight decay 0

Learning rate 3e-5

Learning rate schedule Linear decay

Max sequence length 256 256 256 256 256 400

Batch size 256 256 256 256 256 64

Max steps 15000 15000 15000 15000 15000 20000

Early stopping True

Dropout 0.1

Table A.2: PIXAR finetuning settings

