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Abstract

The cross-border banking exposures are double-edged swords, which can improve

the efficiency of global capital and resource allocation, but may also cause cascading

contagions leading to a global financial crisis. Different from many traditional data

analysis methods based on mathematical statistics, this project aims to analyze cross-

border banking exposures by performing network analysis. In general, to investigate

research questions like the evolution of network properties, the risk level of each

country, and the community structures in financial networks, this project conducts

applied and exploratory research on global banking exposure data by applying network

science methodology. To be specific, this project first performs inspections on the raw

exposure data, which are then converted into temporal networks with banks as nodes and

exposures as links. Next, it adds new features on these networks to better represent the

inherent and propagated risks in each country. Finally, it performs comprehensive static

and dynamic analysis, including basic statistics, homogeneous statistics, heterogeneous

statistics, community detection by stochastic block models and even the simulation of

exogenous shocks on the networks. As a result, throughout the implementation of this

network analysis, a total of 8 insights or methodologies have been summarized and have

finally been used to adequately answer the research question. In the future, there are

still more details to be analyzed, more insights to be found, and more research strategies

to be attempted in this field.
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Chapter 1

Introduction

1.1 Motivation

According to the Cambridge Dictionary, the business meaning of exposure is, the

risk of losing money, for example through a loan when a borrower defaults or an

investment when it fails [11]. So cross-border banking exposures can also be expressed

as the financial risks arising from the cross-border borrowing and lending business of

international banks. While cross-border capital flows can facilitate a more efficient and

sustainable allocation of resources around the world [16], it would also cause systemic

risks [26]. For example, since the financial crisis in 2008, Europe as a whole had been

falling into a sovereign debt crisis for quite a long time, which was only caused by the

sovereign crisis of some countries [8].

Currently, there are many attempts to measure and regulate the potential systemic

risk in the financial system. For measurement, indicators like value at risk (VaR) and

expected shortfall (ES) are widely practised to quantify the potential loss risk of a

company or portfolio [38]. Further, systemic expected shortfall (SES), conditional

value at risk (CoVaR), and Granger causality are improved to measure systemic risk

[1, 2, 7]. In terms of regulations, for example, according to the requirements of the

Basel Accords, each bank must maintain a total risk-weighted capital ratio of at least

8% [12].

In order to focus more on analysis and pursue stronger interpretability, network

analysis models have begun to be applied. The cross-border risk exposure of banks can

be intuitively considered as a financial network, with banking institutions as nodes, and

the risk exposures between banks as edges. There are usually two main methods: the

first one is static network indicator analysis, and the second one is dynamic network

1



Chapter 1. Introduction 2

stress testing [22].

1.2 Problem Statement

This project seeks to investigate questions such as:

• How do the cross-border banking network properties / statistics evolve over time?

• What are the individual and global systemic risk levels of each country?

• Are there any non-obvious community structures in the network?

1.3 Research Objectives

For research objectives [34, 36], this project aims to conduct applied and exploratory

research on global banking exposure data by applying network science methodology.

Specifically, there are several sub-goals:

• By conducting static network analysis, we will analyze things like which countries

could be at risk of defaulting, or at risk of being defaulted.

• By conducting dynamic network analysis, we can do a stress test on the system,

and then analyze how the network could change after external shocks.

• Combining the results of network analysis, we will try to answer our research

questions.

• We also want to help banks optimize cross-border investment decisions. For

example, the banks may realize which other countries they need to pay attention

to when they have invested in some countries.

1.4 Timeliness and Novelty

Although graph theory has been established for a long time, the development of network

science started relatively late, at around 2000 [6]. Therefore, from the perspective of

timeliness, it would be very valuable to study the application of network science in the

financial field.



Chapter 1. Introduction 3

As to novelty, there have been some studies exploring the use of network science

and technology to solve similar problems [19, 29]. Based on these, this project will

attempt to apply their methodology to a new data set to solve real business problems

faced by enterprises. In addition, it will also explore combining community detection

and other methods to conduct a more in-depth analysis.

1.5 Outline

The following is the structure of the remaining part:

• Chapter 2 Background and Related Work introduces the basic knowledge of

network science and some application cases for static and dynamic analysis in

the cross-border banking business.

• Chapter 3 Methodology demonstrates the methodology in the project design

process, including research approaches and strategies, as well as the selection of

specific techniques, and the overview of the entire analysis.

• Chapter 4 Implementation, Results and Analysis implements the project and

analyzes the results. Besides, it continuously summarizes relevant insights during

the process.

• Chapter 5 Evaluation evaluates the results of the project by answering the

research question with all the insights.

• Chapter 6 Conclusions concludes the current work, and illustrates the limitations

on current project and suggestions for future work.



Chapter 2

Background and Related Work

2.1 Network Science

Network Science can be used to describe the system in a top-down analysis, where we

represent a system as a network / graph with distinct elements / entities as nodes, and

the connections / interactions between nodes as links. This can include social networks,

financial networks, etc [28].

Figure 2.1.1 is an example of a directed and weighted graph.

Figure 2.1.1: An example of a directed and weighted graph

2.1.1 Basic Statistics

Some main basic network properties are as follows:

• N represents the total number of nodes in a network, while L represents the total

number of links in a network.

4



Chapter 2. Background and Related Work 5

• According to whether the edge has direction and whether it has weight, the graph

can be classified into 4 types (i.e., undirected and unweighted graph, undirected

and weighted graph, directed and unweighted graph, directed and weighted

graph).

• Lmax tells the potential maximum number of links in a network with N nodes.

– For an undirected graph, Lmax =
N(N−1)

2 .

– For a directed graph, Lmax = N(N −1).

• Density d = L
Lmax

, and it is common that density is quite low in social networks.

• The degree k of a node is the number of links the node has. This is equivalent to

saying it is the number of neighbours a node has.

– For a directed graph, there are three types of degree, which are in-degree

kin, out-degree kout and total-degree ktotal .

– For a weighted graph, a node has a strength si = ∑i j wi j. And if it is also a

directed graph, there are three types of strength, which are in-strength sin,

out-strength sout and total-strength stotal .

For example, Figure 2.1.1 is a directed and weighted graph, with N = 6, L = 7,

Lmax = N(N − 1) = 30, d = L
Lmax

= 7
30 . For node A, kin = 2, kout = 1, ktotal = 3 and

sin = 30, sout = 100, stotal = 130.

2.1.2 Homogeneous Statistics

Homogeneity, or homophily, can be considered as the tendency for nodes to be con-

nected with others which are similar to themselves [23].

For homogeneity, we may usually focus on several properties:

• Connectivity, shows the likelihood of a connection between any nodes.

– For an undirected graph, it is connected if there is at least a path between

any pair of nodes.

– For a directed graph, it is weakly connected if it is connected only disre-

garding the direction of links, and strongly connected if it is connected also

when considering the direction of links.
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• Average Shortest Path < l >, means average distance from one node to another.

• Diameter lmax, is the largest one within all the shortest paths between any 2 nodes.

• Clustering Coefficient, shows the probability that a node’s two neighbours can

have a link.

For example, Figure 2.1.1 is weakly connected, but not strongly. In directed graph,

only the strongly connected one can have the average shortest path and the diameter.

If we consider it as an undirected graph, < l >= 10+20+100+...+10+20+30
6∗5/2 = 80 and

lmax = lC,F = 140. For node A, its clustering coefficient is 1
3∗2 = 0.16.

2.1.3 Heterogeneous Statistics

Unlike homogeneity, which focuses on the common characteristics of the whole network,

heterogeneity pays more attention to the differences between nodes, especially hubs,

which can be considered as significantly large / important nodes [15].

For heterogeneity, we may use different centrality measurements to find hubs [25].

• Degree Centrality, ranks the nodes by their degrees.

• Closeness Centrality, measures how close a node is to the other nodes by the

average path length from the given node to others.

• Betweenness Centrality, calculates how many shortest paths need to go through a

given node.

2.1.4 Community Detection

Financial networks in the real world often have a large number of nodes and complex

structures. Therefore, classification is often required before in-depth analysis, and

community detection is a common method.

The most widespread method for community detection is Modularity Maximization,

which selects the classification with maximum modularity value [17]. However, sub-

sequent studies have demonstrated some of its flaws, one of which is that it is in fact

merely descriptive, which means it only tries to describe the network, not to explain

it. The difference between Description and Explanation can be seen in the example in

Figure 2.1.2, what we really need is for the model to recognize a mountain on Mars, not

a mountain that looks like a human face (i.e., over-fitting). To obtain the explanation,
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the non-parametric stochastic block models (SBMs) can be used, and have been shown

to outperform many other community detection methods [33, 37].

Figure 2.1.2: An example for description and explanation [33]

The idea of SBMs is a generative model based on the Bayesian formula [32].

To be specific, suppose a network is divided into B groups, and let bi ∈ [0,B−1] be

the group index for node i. Then we define this partition as bbb = {b1,b2, ...,bi, ...,bN},

and the probability that a model can generate a network A with this partition as P(AAA|bbb).
Thus, according to the Bayesian formula, we can obtain the posterior probability:

P(bbb|AAA) = P(AAA|bbb)P(bbb)
P(AAA)

(2.1)

Further, if we use θθθ to represent additional model parameters that control how the

node partition affects the structure of the network, the Equation 2.1 will transform like:

P(bbb|AAA) = P(AAA|θθθ,bbb)P(θθθ,bbb)
P(AAA)

(2.2)

So far, the task of community detection is equivalent to finding a partition b that can

maximize Equation 2.2.

In addition, we can transform the Equation 2.2 into the following form:

P(bbb|AAA) =exp(−Σ)

P(AAA)
,

Σ =−lnP(AAA|θθθ,bbb)− lnP(θθθ,bbb)
(2.3)

In Equation 2.3, Σ is called the description length of the network A. Therefore, the

task can also be considered to find a partition b that can obtain the minimum description

length.

In the stochastic block model, which is arguably the simplest generative process

[20], the additional parameters θθθ can be considered as edge counts eee. That means, the

model gives a partition of the nodes into groups bbb and a B×B matrix of edge counts eee,
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where ers is the number of edges between group r and s. Given these constraints, the

edges are then placed randomly until it obtains the minimum description length. Figure

2.1.3 is an example of stochastic block model.

(a) Matrix of edge counts between groups (b) Generated network

Figure 2.1.3: An example for stochastic block model

Based on this model, there had been many further optimization ideas. For example,

through the idea of recursion and hierarchy, the nested stochastic block model was

proposed later [31].

2.1.5 Network Robustness

Usually, the robustness of a network can be tested by continuously deleting nodes in the

network through a certain probability algorithm and observing some properties of the

remaining nodes in the network [9].

Figure 2.1.4: An example for network robustness analysis [9]

Figure 2.1.4 shows an example of network robustness analysis. The vertical axis
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represents the deletion of nodes according to the probability value, and the horizontal

axis represents the cluster size value of the remaining network under this probability.

2.2 Related Network Analysis for Banking Exposures

The applications for cross-border banking exposures include static analysis and dynamic

analysis. The former analyzes the network by calculating and interpreting different

indicators. While the latter contains network diffusion simulation or the stress test.

2.2.1 Static Network Analysis

In the research explored by Masazumi and Yuko, they treated the webs of the cross-

border bank exposures as networks which contained 16 countries and the time series

between 1985 and 2006. After that, they investigated the characteristics of the network

to draw a conclusion. Since the network had higher connectivity, a shorter average path

length, a higher average degree and a higher clustering coefficient in 2006 than in the

past, they concluded that the systemic risk in international financial markets was likely

to increase [19]. Similarly, Camelia and Javier A did the research with more countries

(184) and a longer time period (1978-2010) [29]. In general, their selection of indicators

and interpretation of trends were helpful to this project. However, there could be one

limitation that their analysis was not microscopic enough, such as a wide time range

and too many nodes, which might be optimized by focusing on a short time period of

specific economic events and community exploration.

2.2.2 Dynamic Network Analysis

For dynamic analysis, it mainly relies on the different strategies for simulation. One

example of the simulation in the financial system is that first there is a default or liquidity

shortage problem in one or several countries, and then it goes through a contagion

mechanism, such as the issuing mortgage loans between associated banks, finally the

risk spreads throughout the system [4]. By setting different contagion mechanisms, that

is, whether affiliated banks choose to share risks and in what way, a large number of

studies have proposed different analysis ideas [14, 10, 18, 13]. These studies used quite

detailed strategies to simulate real scenarios. Thus, they could obtain more quantitative

simulation effects. But they also increased the complexity of the entire project, which

might reduce the interpretability.



Chapter 3

Methodology

This part will make a discussion and analysis to choose the proper research strategies,

designs and methods for the project.

3.1 Reasoning Approaches

From a high level, among the three major reasoning approaches (i.e., deduction, induc-

tion and abduction) [34, 27], this project is more suitable for abduction and induction.

First of all, this project is more about the application of network science theory in

cross-border banking business analysis scenarios. It does not involve the verification

and development of original theories, so it is not suitable for deductive methods.

In general, starting from observation, the project analyzes the bank transaction

network and explores its potential risks based on some existing network science theories.

Therefore, it is a process of exploring the evidence and giving explanations, which is

more in line with the principle of abductive approach.

In addition, the entire analysis process of the project may become a conceptual

framework for a similar business, or draw some new insights, so it may also be applicable

to the inductive method.

In summary, the overall flow of the project at the abstract level will be like:

Observations Patterns Research Questions

Conclusions Insights / Theory

Figure 3.1.1: The flow of the project at the abstract level

10



Chapter 3. Methodology 11

3.2 Research Strategies

For research strategies [34], this project could be a mixed research, which collects quan-

titative data, but analyzes based on objective data / network and subjective perspective

to make a qualitative conclusion.

3.3 Design and Methods

The overview for the flow of the project at the design level is showing in Figure 3.3.1.

Figure 3.3.1: The flow of the project at the design level

3.3.1 Data and Pre-processing

The international banking data will come from project partner FNA.

According to the objectives the project pursues, The data should contain the basic

information of the national bank, risk exposure or related characteristic data like the

borrowing and lending amounts. In addition, the data needs to span a certain period of

time for more detailed analysis like the evolution over time.

Before data pre-processing, we need to make an inspection, such as:

• Fields and meanings, data units, time spans.
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• Data range, like mean, median, minimum and maximum values.

• The general trend of the data over time.

As to pre-processing [3], it may include:

• Removing outliers.

• Dealing with potential skewed distributions problem with log or atan function.

• Normalization of data.

Many practices have proved that Python’s toolkits like numpy and pandas can handle

data processing operations very well. In addition, Jupyter Notebook can provide a good

experience for interactive programming and analysis, and its B / S (Browser / Server)

architecture supports cross-platform online programming without encountering many

basic environmental problems. Therefore, the project can run on the Noteable platform

within the intranet of the school, so that on the one hand, the advantages of the above

tools can be used, and on the other hand, for the concern of data security, it is also

helpful for protecting the data privacy and reducing the risk of data theft.

3.3.2 Network Model

Among different types of networks, the temporal network can meet our needs, where

each layer represents the data of a year, and within the same layer, it should be a directed

and weighted graph, where nodes represent banks and links represent the borrowing

and lending values between each bank [21].

Similarly, we will conduct a network inspection first. This may include:

• Displaying the basic distribution of the network through the drawing function.

• Calculating some basic properties, such as whether it is a strongly connected

graph and the information for degrees.

• Calculating some homogeneous properties, like clustering statistics and paths.

• Exploring some heterogeneous properties, namely, the central nodes.

• Detecting the communities with stochastic block models.



Chapter 3. Methodology 13

Sometimes the dynamic generation of the network may be very time-consuming, so

it is also necessary to store the network as a common file such as ”.graphml” for direct

importing next time.

Python has many network operation toolkits to choose from, such as NetworkX,

igraph and graph-tool. In this project, we will mainly use NetworkX for static analysis

and graph-tool for dynamic analysis because the former provides more comprehensive

network operations, while graph-tool has stronger performance, better drawing ability

and most critically, enough support for SBMs operations.

3.3.3 Features and Visualization

So far, we should have a basic network. But one of the biggest challenges is how to

represent the abstract concept of risk exposure relationship between banks with concrete

data. This involves the need to transform the data into features and display it.

Features
As mentioned above, there are actually many data indicators such as VaR to quantify

the degree of risk. However, under this specific network, our target features need to

meet the following conditions:

• The value can be truly comparable, namely, the higher (or lower) value means

higher risk. For example, the borrowing and lending amount itself may not meet

this requirement, because the high value does not necessarily mean that the risk

is high since it ignores the country’s own economic strength.

• Calculations are simple and interpretable. As it has been pointed out in the

section on research strategies, the project would have some qualitative analysis.

Therefore, reducing the complexity of features is conducive to improving the

reliability of the entire project.

Specifically, in this project, the features mainly hope to quantify two kinds of

risks: inherent risk and propagated risk [35]. For the former, we will use the ratio of

borrowing to lending to estimate the ability of a country to repay its liabilities. For

another, it may be related to the degree of centralization in the network, so we can use

the PageRank value on the loan fraction of a lender to represent its ability of propagation.

Visualization
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In addition to features, another important task in the pre-processing stage of the

network is the visualization ability. In this project, we would mainly consider three

ways:

• Node Filtering: When the amount of nodes is too large, the visualization of

the network tends to ignore the details. Therefore, it is necessary to filter the

nodes that do not care according to the requirements, so as to achieve a better

visualization.

• Node Size: For the nodes that are more concerned, they are often the nodes with

large values, so we can set the larger size related with the value to highlight the

details.

• Node Color: Similar to node size, details can be highlighted through color

contrast, and colors can often highlight multiple details such as small values,

medium values, and large values at the same time.

Matplotlib provides strong drawing capabilities, and NetworkX and graph-tool also

have built-in network drawing capabilities, so the current selection of technology can

well support this task.

3.3.4 Analysis

In general, according to whether external shock simulation is performed, the project

can be divided into static analysis and dynamic analysis.

Static Analysis
For static analysis, similar to the network inspection, we focus on a series of

characteristics of the network itself, including the following indicators:

• Basic Statistics

• Homogeneous Statistics

• Heterogeneous Statistics

• Community Detection

On the basis of these data indicators, usually, the static analysis is then mainly

divided into cross-sectional analysis and time series analysis. The former refers to
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selecting the data of one or more representative time points, and then drawing some

conclusions by comparing the indicators of each node [30]; while the latter is to ob-

serve the trend of the indicators over time under the condition of fixing them, so as to

analyze and summarize. However, in this project, there is also a comparison between

the indicators after feature processing and the previous ones, which is also a way to

verify whether feature processing is effective.

Dynamic Analysis
Dynamic analysis mainly studies the changes in the basic statistics and community

structure of the remaining network after randomly deleting nodes and strategically

deleting nodes. This can also be considered as repeated static analysis while performing

external simulations.

3.3.5 Evaluation

As mentioned above, this is not a deductive project, and the research strategy of this

project also includes subjective analysis, so it can be relatively difficult to conduct a

quantitative evaluation.

One of the effective qualitative evaluation strategies is the expert scoring method,

which evaluates the results by setting scoring items and calculating the average scores

of multiple experts [24].

In order to simplify the task, this project adopts special treatment. In the evaluation

part, we will use existing insights and network models to answer research questions.

After that, we may summarize current limitations and point out future work.



Chapter 4

Implementation, Results and Analysis

4.1 Environment

According to the design, based on Python and Noteable platform, we will import

numpy and pandas for data processing, Matplotlib for data visualization, NetworkX and

graph-tool for network operation.

4.2 Data Inspection

First, after importing the data, we can get 27 files ranging from 20150331.csv to

20210930.csv. This means that the time span is from 2015/01/01 to 2021/09/30, and it

is recorded every 3 months.

Fields
Then, we can focus on the first file (i.e., 20150331.csv) to study the columns / fields.

The results are shown like:

net id arc id from id to id borrower claims held claims held 10 change ... lender share of claims held ...

2015/3/31 AT-AU-0 AT AU Austria 5.220850e+08 NaN ... Australia 0.005037 ...

2015/3/31 AT-BE-0 AT BE Austria 1.750940e+09 NaN ... Belgium 0.016893 ...

... ... ... ... ... ... ... ... ... ... ...

Table 4.1: The sample for data fields

The shape of data in this file is (406,21), which means there are 406 records and 21

fields. The unique number of borrowers is 21, and that of lenders is 22. Furthermore,

the data is not large (about 406×21×27), but there are many original features. In order

to simplify the problem, we only care about and explain some of the fields:

16
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• ”net id”: The value is the same as the date shown in the file name, so we can use

the file name instead.

• ”arc id”, ”from id”, ”to id”: They mark the direction of the borrowing and lending

relationship, and the ”id” is the abbreviation of the country.

• ”borrower”, ”lender”: Corresponding to ”from id” and ”to id”, they are the full

names of the countries.

• ”claims held”: It is all the borrowing which hasn’t been repaid at that particular

point in time. In addition, the unit is USD and the values are kept at a large

magnitude.

Fortunately, the values of these fields we are concerned about are not missing or

abnormal, so we don’t need to do special processing.

Merged Information
Next, we use the filtered columns (i.e., ”arc id”, ”from id”, ”to id”, ”borrower”,

”lender”, ”claims held”) and merge all the files together, then we get the following table:

arc id from id to id borrower lender 20150331 20150630 ... 20210930

AT-AU-0 AT AU Austria Australia 5.220850e+08 5.084990e+08 ... 4.686770e+08

AT-BE-0 AT BE Austria Belgium 1.750940e+09 1.849885e+09 ... 2.712196e+09

... ... ... ... ... ... ... ... ...

Table 4.2: The sample for merged information

Now the shape of data is (417,32). Similarly, the unique number of borrowers is

still 21, and that of lenders is 22. The difference in the ”arc id” may indicate that at

different times, the total links between countries may be different.

Through the describe() function of pandas, we can get the indicators of the data

range:

count mean std min 25% 50% 75% max

20150331 406 3.896289e+10 1.150953e+11 3.400000e+04 4.332500e+08 3.905123e+09 2.505605e+10 1.402600e+12

20150630 404 3.901076e+10 1.145297e+11 3.500000e+04 4.781960e+08 4.170236e+09 2.512682e+10 1.367110e+12

... ... ... ... ... ... ... ... ...

20210930 407 4.882246e+10 1.614671e+11 4.000000e+03 5.060000e+08 4.564000e+09 3.294450e+10 2.062660e+12

Table 4.3: The description of merged information
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In the table 4.3, the mean and the median show that the average magnitude of the

data is around 109 and 1010, which means that we can use this as a unit to reduce the

absolute value of the data. In addition, the standard deviation is relatively large, and the

data magnitudes of the minimum and maximum values are also very different, which

means that we may need to filter the data or use the log() function to deal with skewed

distributions.

Time-trend graphs
Finally, we select the mean, median and max values to draw time-trend graphs,

which are shown in the following figure:

Figure 4.2.1: The time-trend graphs for data inspection

On the whole, the figure shows an upward trend, which means that the external

debts of all countries are increasing. However, the current data alone is not enough

to judge whether it is a natural increase in economic development or it represents an

increase in potential risks. When we take a closer look, the mean starts to show an

obvious upward trend in early 2020, while the median and maximum values remained

almost at the peak. All three figures are partially declining in 2021. In fact, this is the
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range of COVID-19, so our future research can pay special attention to this stage.

4.3 Network Generation and Inspection

4.3.1 Network Generation

Based on the information obtained from the data inspection, we use the following

strategies to generate the networks:

• We generate an array of 27 graphs.

• For each directed and weighted graph, nodes represent different countries, and

the link represents there is a debt between two countries with the direction from

the lender to the borrower. As for the weight, we divide the original ”claims held”

value by 109 to facilitate subsequent analysis and calculation, namely, the unit of

weight is 1 billion dollars. Unless otherwise specified, this is the default weight.

• For subsequent needs, here we also add the reciprocal of ”claims held” as another

weight of the edge.

Next, we select the first network (i.e., 2015/03/31) for a preliminary exploration:

Figure 4.3.1: The sample network
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The number of nodes in this graph is 22 and that of edges is 406. This can also be

reflected in Figure 4.3.1, the density of the graph is relatively large. As to connectivity,

it is a weakly connected network but not a strongly connected one. When we continue

to explore, we will find that there are actually 2 strongly connected components, one of

which is a single node, India. In Figure 4.3.1, we can indeed find that India only has

outward arrows, but no incoming arrows, which means that India only lends money to

other countries, but does not introduce funds.

4.3.2 Network Inspection by Basic and Homogeneous Statistics

To have a deep inspection, we will continue to calculate some properties, like basic

statistics and homogeneous statistics for all networks and obtain the description of the

statistics.

Figure 4.3.2: The description of properties of all networks

In Figure 4.3.2, we can try to make an understanding.

• All networks are very dense, which is consistent with our observations.

• Considering the degree, the average in-degree and the average out-degree are

equal to about 18, which is actually reasonable, because overall, the in-degree of

a node is actually the out-degree of another node, and the data value may mean

that on average, each country has a loan relationship with 18 other countries.
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• Since they are also weighted graphs, so we will take a look at the strength. The

maximum out-strength is twice as large as the maximum in-strength, indicating

that overall, the lending amount is greater than the borrowing amount, which may

indicate that the risk of default is controllable.

• The network has a high clustering coefficient, that is, there are trading links

between almost any three countries. And this can also be seen in the shortest

path and diameter data of the largest connected component (i.e., according to

the previous analysis, that is, the network after removing the node Indian). The

shortest path is 1, which means that almost any two countries have transactions,

and the diameter is 2, which indicates that any three countries should have a

transaction link.

Further, we can analyze from the perspective of time series by drawing line charts.

Figure 4.3.3: The time-trend graphs for network inspection

From Figure 4.3.3, the average strength, the maximum in-strength and the maximum

out-strength all show an upward trend. This shows that, similar to the conclusion of

the previous data inspection, the country’s overall borrowing and lending amounts have

increased, but there is no way to intuitively analyze whether it indicates an increase in

risk, because the natural growth of the economy will also bring some inflation.

4.3.3 Network Inspection by Heterogeneous Statistics

For heterogeneous statistics, we focus on the difference between nodes / edges. There-

fore, firstly we try to filter the edges according to the weight in the network of

2015/03/31.

Filter loan amount >= 1e+00:

270 of 406 edges remain.
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Density: 0.584

Weakly connected: True

Filter loan amount >= 1e+01:

160 of 406 edges remain.

Density: 0.346

Weakly connected: True

Filter loan amount >= 1e+02:

40 of 406 edges remain.

Density: 0.0866

Weakly connected: False

Filter loan amount >= 1e+03:

1 of 406 edges remain.

Density: 0.00216

Weakly connected: False

We use 1, 10, 100, and 1000 as thresholds, and find that even with a limit of 1

billion, nearly half of the edges were filtered out. When the limit was increased to 100,

the graph was no longer weakly connected. And only 1 edge’s weight is greater than

1000.

This shows the existence of heterogeneity in the network, so we consider simply

using the histogram to observe the distribution of node strength.

Figure 4.3.4: The distribution for total lending and borrowing amounts

As shown in the figure, the distribution reflects an obvious long-tail effect [5], and

the amount in the United States is much higher than that in other countries. Next, we

will calculate the strength centrality, closeness centrality and betweenness centrality
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separately and obtain the top 10 countries. It should be noted that we are relatively more

concerned about nodes with relatively large absolute values (although as mentioned

before, absolute values and risks may not necessarily have a positive relationship), so

strength centrality will continue to use ”claims held” as the weight, while closeness and

betweenness will use the reciprocal of ”claims held” as the weight, because the core of

these two algorithms is to calculate the shortest path, and we hope that the node with a

larger value of ”claims held” appears on the shortest path.

Figure 4.3.5: The top 10 central nodes

The result is shown in Figure 4.3.5. Combined with Figure 4.3.4, the total amount

of borrowing and lending in the United States is greater than that of all other countries,

and it also appears in the top five in all centrality data, so it is a well-deserved hub. The

United Kingdom, France, Germany and Japan followed closely behind. What needs

special attention is that Japan ranks first in the in-strength centrality, indicating that

it has a large amount of borrowing, and it may not maintain a reasonable ratio to the

amount of lending. In closeness, France and Germany surpassed the United States.

Closeness describes the overall short distance between this node and other surrounding

nodes. In this example, it shows that the transaction volume between these two countries

and other countries is generally large. In short, these countries deserve special attention

in the subsequent analysis.

4.3.4 Network Inspection by Community Detection

We can use graph-tool for community detection, or simply put, to classify nodes.

The simplest function it provides to implement the stochastic block model is mini-

mize blockmodel dl(). Here we use an optimized version, minimize nested blockmodel dl(),

to obtain multi-level community recognition effects. In addition, when we explore the

community, we need to add weight factors (i.e., ”claims held”), because it can be seen

from the previous analysis that each edge is not equivalent, and in fact, there is a lot of

difference. When we run it many times, we may get the following distribution:
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(a) community detection result 1 (b) community detection result 2 (c) community detection result 3

Figure 4.3.6: The unstable results of community detection

Obviously, there is a problem that the result is not stable. This may be due to the

fact that there are alternative partitions with similar probabilities, or that the optimum is

difficult to find. To solve this problem, we can use the idea of obtaining the minimum

description length in Equation 2.3. In practice, we can run it multiple times and get the

description length each time through the entropy() function. Finally we select the best

classification.

After running 10 times, we can obtain the minimum description length of 1941 (and

the maximum is 2051), and draw the distribution shown in the figure below:

Figure 4.3.7: The stable result of community detection

In addition, we can get the summary for this partition:

<BlockState object with 22 blocks (4 nonempty), degree-corrected,

with 1 edge covariate, for graph <Graph object, directed,

with 22 vertices and 406 edges, 1 internal vertex property, 3
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internal edge properties>>

<BlockState object with 4 blocks (2 nonempty), with 1 edge

covariate, for graph <Graph object, directed, with 22

vertices and 16 edges, 2 internal vertex properties, 1

internal edge property>>

<BlockState object with 2 blocks (1 nonempty), with 1 edge

covariate, for graph <Graph object, directed, with 4 vertices

and 4 edges, 2 internal vertex properties, 1 internal edge

property>>

<BlockState object with 1 blocks (1 nonempty), with 1 edge

covariate, for graph <Graph object, directed, with 2 vertices

and 1 edge, 2 internal vertex properties, 1 internal edge

property>>

In this partition, the total number of levels is 4. Excluding the 22 blocks of the first

layer, in general, the network is divided into 4 main communities. We can find that the

United Kingdom, France, Germany and the United States are in the same community,

in consistent with what we find in the centrality analysis. In addition, Chile, Greece

and Turkey are in the same small communities, which can be reasonable since in Figure

4.3.4, they are all in the last position.

4.3.5 Summary

So far, before the next feature processing, based on current data and networks, we can

give a summary of our insights:

• Insight 1: The data range from 2015/01/01 to 2021/09/30, and they are recorded

every 3 months. Within this range, the borrowing and lending amounts generally

keep increasing, and special attention is required for the period of COVID-19

(from 2020 to 2021).

• Insight 2: The banking network is quite dense since the numbers of nodes and

edges are 22 and around 400 separately. India is a special node which only has

outward arrows (i.e., only lends money to others). In addition, when excluding

India, for any 3 countries, there is at least 1 transaction path that can link to each

other.

• Insight 3: In the network of 2015/03/31, there are significant differences in the
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size of transactions between countries, and there is an obvious long tail in this

distribution. Japan is a special central node which has the highest in-strength

value. Besides, the United States, the United Kingdom, France and Germany are

the central nodes of the network, and they are also in the same community, one of

the 4 communities we find so far.

As mentioned before, all the above conclusions are based on the unprocessed

borrowing and lending amount, which is not equivalent to the level of risk. For example,

it is quite reasonable for countries with more developed economies to have higher

borrowing or lending amounts.

4.4 Feature: Inherent and Propagated Risks

Now, we need to perform feature processing, aiming at finding a reasonable indicator

of a country’s exposure risk.

We suppose that there are mainly 2 things to consider when estimating the risks

in these networks. First is each country’s own risk of default, namely, inherent risk.

Second is the propagated risk, which means the risk of a country’s debtors’ default-

ing. In addition, from the Insight 3 in network inspection, we know that there are

significant differences in the size of transactions, so we can normalize it before feature

transformation.

4.4.1 Normalization

To normalize the edge weight, we will use the total lending amount of the node as the

denominator to obtain the ”claims held norm”. For example, if a node has 3 outward

arrows with ”claims held” value [1,2,3], then the ”claims held norm” value should be

[1
6 ,

2
6 ,

3
6 ]. Similarly, this time we also store the reciprocal value for later calculation. The

core pseudocode for this part of the logic should be like:

in_strength = G.in_degree(weight = ’claims_held’)

out_strength = G.out_degree(weight = ’claims_held’)

# add norm

for src, tar, wgt in G.edges.data(’claims_held’):

G.edges[src, tar][’claims_held_norm’] = wgt/out_strength[src]

G.edges[src, tar][’claims_held_norm_reciprocal’] =

1/G.edges[src, tar][’claims_held_norm’]
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4.4.2 Inherent Risk

Generally speaking, we believe that a country’s own ability to prevent default is related

to its own economic strength. So, in the absence of each country’s GDP data, we try to

estimate the inherent risk by using the ratio of borrowing to lending. As a result, we

add an attribute ”inherent risk” to the node. The core pseudocode for this part of the

logic should be like:

# add inherent risk

for node in list(G.nodes(data=False)):

G.nodes[node][’inherent_risk’] =

in_strength[node]/out_strength[node]

4.4.3 Propagated Risk

To measure the propagated risk, we have to consider the node and its edges. That means,

if a country lends a lot of money to others, the default of the debtor countries may

reduce the country’s ability to solve its debts, and the degree of this weakening is also

related to the size of the country’s own inherent risks. Therefore, similar to the idea

of the PageRank algorithm, we can use the number of links connected to this node to

measure its importance or propagated risk. Besides, in the algorithm, inherent risk can

be used as the initial state of each country, and ”claims held norm” can represent the

normalized importance of each edge. The core pseudocode for this part of the logic

should be like:

# add propagated risk

propagated_risk = nx.pagerank(

# The lender has higher risk, so change the arrow direction

G = G.reverse(),

nstart = dict(G.nodes.data(’inherent_risk’)),

weight = ’claims_held_norm’)

for node in list(G.nodes(data=False)):

G.nodes[node][’propagated_risk’] = propagated_risk[node]
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4.4.4 Summary and Visualization

After feature processing, there are now 2 node attributes (”inherent risk”, ”propa-

gated risk”) and 4 edge attributes (”claims held”, ”claims held reciprocal”, ”claims held norm”,

”claims held norm reciprocal”) in a network.

For visualization, we can use disparity filtering to filter edges rather than a single

threshold. Then, use the color from blue to red to represent the increasing value for

log(”claims held”), ”inherent risk” and ”propagated risk”.

The core pseudocode for disparity filtering should be like:

def disparity_filter(G, alpha):

s = G.out_degree(weight = ’claims_held’)

k = G.out_degree(weight = None)

def pij(i, j):

w = G.edges[i, j][’claims_held’]

return ((1 - (w / s[i])) ** (k[i] - 1)) < alpha

return nx.subgraph_view(G, filter_edge = pij)

After filtering, there are only 60 edges left. And the result of the visualization is

shown in the below figure:

(a) Sample for inherent risk (b) Sample for propagated risk

Figure 4.4.1: The sample for inherent and propagated risks

Next, we will explore the new network through static analysis and dynamic analysis.
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4.5 Static Analysis

4.5.1 Different insights from previous networks

Compared with previous networks, the only difference is the weight of nodes and

edges. Therefore, the new network only needs to recalculated in some parts, with the

related analysis. For the analysis of a single network, we would still use the network of

2015/03/31 as a sample.

Distribution for total normalized lending and borrowing amount

Figure 4.5.1: The distribution for total normalized lending and borrowing amount

Comparing Figure 4.5.1 and Figure 4.3.4, we will find that the ranking of countries is

almost the same, but the differences between countries have been significantly reduced,

especially that the United States is no longer much higher than other countries, and

the long tail phenomenon has also improved. This is because, after normalization, all

countries’ total lending is 100%. Besides, normalized borrowing can be considered as

this country’s aggregated importance for its creditor countries. In other words, if a high-

ranking country has high inherent risks, it will have a stronger propagating effect. For

example, combined with Figure 4.4.1, Japan has relatively high normalized borrowing

value, and its inherent risk is relatively high, so the United States, the Netherlands, and

Sweden that lend money to it are affected to varying degrees, resulting in increasing

the propagated risk. Although Switzerland also has a relatively high inherent risk,

compared to Japan, the impact on the entire economic system is limited.

Central nodes
Similar to before, we use ”claims held norm” for strength centrality, but for close-

ness and betweenness, we will use ”claims held norm reciprocal”.
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Figure 4.5.2: The top 10 central nodes

According to Figure 4.5.2, it can be found that the ranking is not much different

from before. Comparing it with the nodes in Figure 4.4.1, central nodes usually have

high propagated risks. This also shows that a country with a large absolute value of

transaction volume usually has a large risk of being propagated.

Communities

Figure 4.5.3: The result of community detection

Compared with the previous results, there are still some differences in the results of

the community. The community where the United Kingdom is located has added the

Netherlands and Switzerland now. In Figure 4.4.1, if we look at the inherent or propa-

gated risks alone, these nodes are not prominent at the same time, but if we consider

the two together, it can be approximately considered to be similar to the distribution of

community exploration. So the current community can represent the classification of

the financial system under the comprehensive consideration of countries’ inherent risks

and propagated risks.
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Summary
To sum up, there are several different insights:

• After feature processing, Insight 1 and Insight 2 are still retained, while Insight
3 has some changes.

• Insight 4: After feature processing, the normalized borrowing can be considered

as this country’s aggregated importance for its creditor countries. In the network

of 2015/03/31, from the node strength distribution and central node ranking,

countries with high importance (i.e., United States, United Kingdom, France,

Germany, Spain...) usually have high propagated risks. Also, if a country with

high importance has a high inherent risk (i.e., Japan), it can cause quite large

effects on the whole financial system. In addition, a country with a large absolute

value of transaction volume usually has a large risk of propagation.

• Insight 5: After feature processing, in the network of 2015/03/31, the number of

communities decreases from 4 to 3. Under the comprehensive consideration of

countries’ own risks and propagated risks, the community where the United States,

the United Kingdom, France and Germany are located has added Netherlands

and Switzerland.

4.5.2 Cross-Sectional Analysis

In this part, we will select a network at another point in time, and focus on the inherent

and propagated risks. From Insight 1, we know that the period of COVID-19 is a

special time span, so we select the network of 2021/03/31 for analysis.

After disparity filtering, there are only 64 edges left. Then, we calculate the top 10

risk nodes and visualize inherent and propagated risks in the following figures:

Figure 4.5.4: The top 10 risk nodes of 2021/03/31
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(a) Inherent risk of 2021/03/31 (b) Propagated risk of 2021/03/31

Figure 4.5.5: The inherent and propagated risks of 2021/03/31

First, we try to do a statistical summary of the risk (i.e., red/orange) nodes:

• There are 5 inherent risk nodes: Canada, Spain, Japan, Switzerland and Nether-

lands.

• There are 8 propagated risk nodes: the United kingdom, Spain, Greece, Germany,

France, Finland, Netherlands and the United States.

Second, we can explain the connection between inherent and propagated risks. For

example, Spain has a high inherent risk while this value of the United Kingdom is quite

low, but the United Kingdom has a quite high investment on it because the color of

its edges to Spain is quite warm, so when we explore the propagated risk, the United

Kingdom can have quite a large value.

Finally, we can also use this theory to help banks to optimize cross-border investment

decisions. For example, Portugal will need to pay special attention to the economic

situation of Spain, because almost 70% of its investment is in Spain, and Spain itself

has high internal risks. Therefore, we will find that although Portugal itself has a low

risk, it has a higher propagated risk. Although the color of Portugal is not the most

obvious in the map of propagated risks, this is partly due to the long-tail effect where

countries like UK, France and Germany, as major economic participants, have a very

high propagated risk value.

To sum up, we now have a new insight:

• Insight 6: Based on the inherent and propagated risk networks, combined with

the analysis of network connection information, we can obtain more insights to
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help banks make investment decisions.

4.5.3 Time Series Analysis

In the previous section, we selected the network during COVID-19 for analysis. Next,

we will select one before the epidemic (i.e., 2019/03/31, we choose the same quarter to

reduce the impact of differences between quarters), and then compare them to gain new

insights. This time, we mainly want to know the changes in the communities.

(a) Communities of 2019/03/31 (b) Communities of 2021/03/31

Figure 4.5.6: The communities before and within the COVID-19

In Figure 4.5.6, it can be seen that the overall layers and structure of the community

have not changed, but the composition of each community has changed. We can use the

table to show the comparison:

same 2019/03/31 2021/03/31

Community 1 United States, United Kingdom, France, Spain, Germany, Italy, Japan, Netherlands, Switzerland Canada -

Community 2 Austria, Australia, South Korea, Belgium, Sweden, Finland, India - Portugal, Canada

Community 3 Ireland, Turkey, Greece, Chile Portugal -

Table 4.4: The comparison for two communities

So we can see the main difference is between Portugal and Canada. More specifi-

cally, Canada has been relegated from Community 1 to Community 2 in 2021, while

Portugal has been promoted from Community 3 to Community 2. Next, we will analyze

the investment information of their debtor countries and creditor countries to try to

explain this phenomenon.
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For Canada, its related information is shown in the figure below:

(a) Information for Canada’s lending

(b) Information for Canada’s borrowing

Figure 4.5.7: The information for Canada’s lending and borrowing

From 2019 to 2021, Canada has increased its lending to the UK, Japan, and the

US, and has also increased its borrowings from the UK and the US, especially the

US, which is close to 300 billion, accounting for 20% of the US loans. Therefore, in

general, Canada is a net inflow of funds. Similarly, when we carry out the corresponding

operation on Portugal, we will find that its main capital change is the increase of lending

to Spain, and finally, nearly 70% of the funds are invested in Spain.

In summary, we can speculate the following new insights:

• Insight 7: The detection of communities, in a physical sense, is the result of

comprehensive consideration of the country’s economic volume, its inherent risks

and propagated risks. When a large proportion of capital flows into the country, it

may cause it to drop to other communities (i.e., low total risks); conversely, if a

large proportion of capital flows out, it may rise to other communities (i.e., high

total risks).
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4.6 Dynamic Analysis

In the dynamic analysis, we will select the network of 2021/03/31 for processing and

compare it with the previous results. In the simulation strategy, we adopt the following

scheme:

1. Selecting nodes to delete: in the previous analysis, we know Canada, Spain,

Japan, Switzerland and Netherlands have high inherent risks, so we will delete

these 5 nodes.

2. Recalculating attributions: we assume that after a country is deleted, the rest of

the countries will lose their lending to this country, but still retain borrowings from

this country. That is, ”in strength” will use the data of the original network, while

”out strength” will use the data of the current network. Then we recalculates

”claims held norm”, ”inherent risk”, ”propagated risk” and other values.

3. Displaying: we consider using tables to show the comparison of relevant data

before and after deleting nodes. Besides, we use network diagrams to more

conveniently display the current network distribution.

4. Detecting communities: similar to before, we will re-perform the community

detection and compare the previous results for analysis.

5. Iterating: we will try more node selection and data recalculation strategies, and

continue to repeat the above steps to get more insights.

Firstly, after deleting nodes, the number of edges in the remaining network is 241,

nearly half of before. And the comparison between risks is shown in the figure below:

Figure 4.6.1: The comparison for inherent and propagated risks
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In Figure 4.6.1, we can see that although the rankings of the corresponding countries’

own risks are nearly the same, the corresponding values have risen significantly, and

the propagated risks also show a similar trend.

Next, we demonstrate these 2 risks in the network:

(a) Inherent risk of 2021/03/31 after deletion (b) Propagated risk of 2021/03/31 after deletion

Figure 4.6.2: The inherent and propagated risks of 2021/03/31 after deletion

From Figure 4.6.2, we can draw a similar conclusion that the ranking of the country’s

risk level has not changed.

Finally, we explore the changes in the community:

Figure 4.6.3: The communities after deletion
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Also, we want to use a table to show the comparison:

same before deletion (ignore deletions) after deletion

Community 1 United States, United Kingdom, France, Germany, Italy - -

Community 2 Austria, Australia, South Korea, Belgium, Sweden, Finland, India Portugal Ireland

Community 3 Turkey, Greece, Chile Ireland Portugal

Table 4.5: The comparison for two communities before and after deletion in 2021/03/31

After ignoring the deleted nodes, the only difference is that in the new network,

Portugal is further down to community 3, while Ireland rises to community 2. For

Portugal, this may be because after deleting the node Spanish, its largest venture capital

is no longer there, so compared to other countries, the risk of being propagated is

relatively low. While France and the United Kingdom, where Ireland mainly invested,

became new high inherent risk nodes after the node was deleted, so the risk of Ireland

being propagated began to rise.

To sum up, our last insight in this project should be:

• Insight 8: When an external shock is added, that is, when high inherent risk nodes

are unable to repay their debts, the entire network will be reorganized to generate

a new round of risks, and the risk coefficient will increase compared to before.

Besides, the community will also produce corresponding changes according to

the differences in the relative rankings between countries.
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Evaluation

For evaluation, here we will use insights to answer our research questions.

How do the cross-border banking network properties/statistics evolve over
time?

In Section 4.3 (Network Inspection), we studied the evolution of network properties

over time. As concluded in Insight 1 and Insight 2, and shown in Figure 4.3.3, most

indicators showed an upward trend and fluctuated during the period of COVID-19.

However, we explained that this indicator cannot determine whether it means risk. Next,

we conducted a more detailed analysis through feature processing and visualization.

What are the individual and global systemic risk levels of each country?
After feature processing, we solved this question in Section 4.5 (Cross-Sectional

Analysis) and concluded this methodology as Insight 6. Through visualization, we can

intuitively see the inherent risk and propagated risk of each country. At the same time,

we can obtain more insights to help banks make investment decisions.

Are there any non-obvious community structures in the network?
We have used stochastic block models to do many community detections during

the analysis. For each detection, we ensured the stability of the result by performing

multiple times and selecting the one with minimum description length. Insight 3,

Insight 5, Insight 7 and Insight 8 show that usually, the number of communities in

the network is kept at 3. With the evolution of time or stress tests from the external

shock, changes in borrowing and lending amounts between countries will also affect

the composition of members in each community.
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Conclusions

6.1 Conclusions

In conclusion, based on the knowledge of network science, this project conducted a

network analysis to investigate cross-border banking exposures. This should be an

applied and exploratory research, consisting of inductive and abductive methods.

In the design and implementation, we divided the process into 6 parts: environment,

data, network, transformation, analysis and evaluation.

For environment, based on Python and Noteable platform, we imported numpy and

pandas for data processing, Matplotlib for data visualization, NetworkX and graph-tool

for network operation.

As to data, We gained and inspected the data from the aspects of fields, description

of merged information, and time-trend analysis. In Insight 1, we pointed out that

although the claim amounts kept increasing, special attention should be required for the

period of COVID-19.

After generating the networks, we did a detailed inspection of them, including

their basic statistics, homogeneous statistics, heterogeneous statistics and community

structures. We concluded the findings into Insight 2 and Insight 3, such as India is a

special node which only has outward arrows while Japan is a node that has the highest

in-strength value.

During transformation, to better understand the risk of each country, we made some

assumptions like the lending amount can represent the economic strength of a country,

and then we added 2 new features: inherent risk and propagated risk. Finally, we

displayed these features in the network graph by setting different node colors.

Since analysis is the core part, we subdivided it into static analysis and dynamic
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analysis, according to whether the simulation operation is performed.

• Static Analysis: After feature processing, in the comparison with previous net-

works, we obtained Insight 4 and Insight 5, which try to explain the meaning of

normalized borrowing value and the meaning of different communities. Next, in

the cross-sectional analysis, we concluded Insight 6, which is a methodology to

explore the risk level of each country. For example, in 2021/03/31, we found 5

high inherent risk countries (e.g., Canada, Spain, Japan...) and 8 high propagated

risk countries (e.g., United Kingdom, Spain, Greece...). As to time series analysis,

we compared the distributions of communities in 2 networks before and within

COVID-19, and got the Insight 7, linking the capital flows to the changes in the

community structure.

• Dynamic Analysis: When we deleted the high inherent risk nodes and observed

the consequence, we found the Insight 8, where most countries’ inherent and

propagated risks are increasing, and their risk rankings also have changed due to

the changes in edges.

Finally, in evaluation, we simply tested our findings by using these 8 insights to

answer our research questions.

6.2 Limitations and Future work

Limited by time and resources, the analysis in this project has not achieved complete

coverage, and it can still be optimized in the future:

• We only focused on the network at 3 time points (2015/03/31, 2019/03/31,

2021/03/31) for analysis. In such a long time range, there must be other in-

teresting points to obtain more meaningful insights.

• There is still room for optimization in the feature processing, especially in the

transformation of propagated risk. We can try more ranking algorithms and

hyperparameter adjustments in the future.

• In dynamic analysis, we can try more strategies for node deletions and conse-

quence simulation. In addition to risk analysis and community analysis, we can

also do a complete static analysis.
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