
Non-Intrusive Load Monitoring with Low

Carbon Technologies

Linshuo Zhang

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2023



Abstract

With the increase of electric appliances usage in the home, the demand for electricity

has surged. In response, the Non-Intrusive Load Monitoring (NILM) method was intro-

duced to monitor individual appliances by analyzing a household’s overall electricity

consumption. In recent years, deep learning techniques, particularly the dilated Fully

Convolutional Network, have been harnessed to address this task, exhibiting state-of-

the-art disaggregation performance on the IDEAL dataset. Concurrently, with the rise of

low-carbon technologies, various low-carbon appliances have become prevalent among

households. However, the IDEAL dataset does not encompass data related to these

low-carbon appliances. To bridge this gap, our project incorporated electric vehicle

charging data into the original IDEAL dataset. Subsequent training and evaluation of

the aforementioned FCN on this augmented dataset revealed that the FCN architecture

retains its superior disaggregation performance for a majority of electric appliances.

However, for appliances that possess similar power usage features to EVC, particularly

those with consistent high power consumption like showers, the FCN’s performance

experiences a notable decline.

i



Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

The datasets used in this project are anonymized so that it did not involve any aspects

that required approval from the Informatics Research Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Linshuo Zhang)

ii



Acknowledgements

I would like to express my gratitude for the help and time of my supervisor, Dr. Nigel

Goddard. In addition, I am also deeply thankful to Dr. Elaine Farrow and Dr. Jonathan

Kilgour, who were very helpful with the usage of models and datasets. Furthermore,

I am indebted to the Sustin Lab for providing the model code and dataset. Finally, I

would like to thank my family for their moral and material support during this time.

iii



Table of Contents

1 Introduction 1

2 Background and Literature Review 4
2.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Dilated Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Fully Convolutional Networks . . . . . . . . . . . . . . . . . . . . . 6

2.4 Fully Convolutional Model . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Non-Intrusive Load Monitoring Task . . . . . . . . . . . . . . . . . . 7

2.6 Low Carbon Technology and Electric Vehicle Charging . . . . . . . . 8

2.7 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7.1 Intelligent Domestic Energy Advice Loop Project . . . . . . . 8

2.7.2 Electric Nation Project . . . . . . . . . . . . . . . . . . . . . 9

3 Methodology 10
3.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Method for Augmenting IDEAL Dataset . . . . . . . . . . . 10

3.1.2 Splitting Train and Test sets . . . . . . . . . . . . . . . . . . 12

3.1.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 Setting of Appliance Rules . . . . . . . . . . . . . . . . . . . 17

4 Results and Discussion 20
4.1 Dishwasher Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Cooker Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Kettle Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Washing Machine Prediction . . . . . . . . . . . . . . . . . . . . . . 26

iv



4.5 Shower Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Microwave Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.7 Electric Vehicle Charging Prediction . . . . . . . . . . . . . . . . . . 32

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusions and Future Work 35
5.1 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 37

v



Chapter 1

Introduction

The growing utilization of electricity applications has led to escalating demand for

electricity[24], particularly in residential settings, where energy consumption currently

constitutes between 20 and 40 percent of global energy usage[6]. As the number

of electric appliances and devices within households increases, the management and

efficient utilization of these resources demand greater attention and time. Nowadays,

the primary means of obtaining statistics on electrical appliances consumption are

monthly billing statements, which lack the granularity required to examine individual

applications comprehensively. To address this issue and allocate appliance usage more

accurately and efficiently, there is a pressing need for real-time power consumption

monitoring. One naı̈ve approach to achieve this is Intrusive Load Monitoring (ILM),

which involves the installation of dedicated sensors for each appliance to detect its

power usage. However, ILM proves costly due to equipment and installation expenses.

As an alternative, Non-Intrusive Load Monitoring (NILM) has been proposed. NILM

allows for the analysis of overall electricity consumption in a household, enabling

the tracking of power usage for individual appliances without the need for dedicated

sensors[24].

Furthermore, the phenomenon of population aging has resulted in a notable rise in

the number of elderly individuals living independently[20]. This demographic shift has

placed significant strain on socio-medical centers, which must now contend with an

increased demand for elderly care and support. To address this challenge, the concept

of remote supervision for the elderly has emerged as a potential solution. Smart meters

equipped with Non-Intrusive Load Monitoring algorithms offer a promising avenue for

achieving remote supervision. By leveraging the power consumption data collected by

these smart meters, caregivers and healthcare professionals can gain valuable insights

1



Chapter 1. Introduction 2

into the daily routines and activities of elderly individuals.[7] This real-time monitoring

facilitates the detection of anomalies or irregularities in their power usage patterns,

providing early indications of potential health issues or emergencies.

The progression of machine learning, specifically deep neural networks, has sig-

nificantly facilitated the implementation of Non-Intrusive Load Monitoring (NILM)

techniques[28, 4, 10]. In 2018, Brewitt and Goddard[2] introduced a cutting-edge

NILM methodology based on Fully Convolutional Networks(FCN). This approach

demonstrated exceptional effectiveness in accurately disaggregating the individual elec-

tricity consumption of appliances from the overall household power usage within the

IDEAL dataset.

Carbon emission stands as a primary contributor to climate change and global

warming. In a concerted effort to counteract these adverse effects and diminish reliance

on fossil fuels, several low-carbon appliances have been developed. These innovations,

including heat pumps, electric vehicles, and solar panels, are swiftly gaining traction in

domestic settings. Given this backdrop, our project elected to focus on electric vehicle

charging as a representative low-carbon appliance. The main objective was to ascertain

whether the aforementioned FCN model retains its exemplary performance when the

original IDEAL dataset is augmented with EVC data to simulate a household with an

electric vehicle that is charged at home.

By employing the same FCN architecture and training and testing it on both the

original and the augmented IDEAL datasets, we embarked on a comparative analysis

of performance metrics among these configurations. Our findings indicated that apart

from appliances like showers, which have similar power consumption patterns of EVC,

the FCN framework demonstrated adaptability to the augmented dataset incorporating

electric vehicle charging data.

Among the contributions we made in this project are:

• By integrating electric vehicle charging data provided by the Electric Nation into

the raw IDEAL data, an augmented dataset of household electricity consumption

containing EVC data was generated.

• The FCN models were trained, and their disaggregated performances were evalu-

ated on the augmented dataset.

• Upon evaluating models trained on the original dataset with the augmented dataset,

it was discerned that the capability of the original model, when evaluated on the

original dataset, to disaggregate electric appliances was diminished.
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• Upon contrasting the performance disparities between models trained on the

original dataset and those trained on the augmented dataset, it was discerned that

the FCN architecture retained robust disaggregation efficacy on the augmented

dataset for the majority of electric appliances. Nonetheless, for appliances ex-

hibiting sustained high electrical power consumption, the disaggregated capacity

of the FCN architecture experienced a marked reduction.
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Background and Literature Review

2.1 Previous Works

The concept of Non-Intrusive Load Monitoring (NILM) was first introduced in 1985

by G. W. Hart[11], who proposed a methodology for identifying the operational state

of household appliances by checking transient changes in power consumption. This

approach hinged on the unique electrical ”signature” that each appliance shows upon

activation. Hart’s seminal work laid the groundwork for subsequent research in the

field of NILM. In recent years, the advent and development of machine learning

have prompted the application of numerous deep learning models within the realm of

NILM[28, 4, 10]. These advanced computational tools have expanded the capabilities

of NILM, enabling more sophisticated and accurate analyses of appliance usage patterns

and energy consumption.

Deep neural networks (DNNs) are available in a variety of structures and sizes

tailored to their specific use cases[18]. They continue to evolve, improving the accuracy

and efficiency of models. Representational networks possess the capability to render the

inputs of DNN more abstract and meaningful through analysis and manipulation[27].

The nature of these inputs can vary widely, contingent upon the specific task, such as

the pixels of an image[3, 13] and the amplitudes in an audio recording[1] and etc.

DNNs exhibit exemplary efficacy in processing unlabeled and unstructured data.

Two preeminent architectures within the DNN framework are the Convolutional Neural

Network (CNN)[15, 22, 12, 27] and the Recurrent Neural Network (RNN)[5, 23].

CNNs are typically delineated by three primary components: the convolutional layer, the

pooling layer, and the fully connected layer. The convolutional layer which is the core of

CNN, discerns intricate patterns within the data by executing convolutional operations

4
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on the input through one or more filters, culminating in a feature map. The pooling layer

diminishes the sizes of these feature maps, retaining only key information. This not only

reduces computational demands but also mitigates the potential for overfitting, thereby

enhancing the network’s efficiency. The fully connected layer is tasked with transposing

these feature maps into the label space, allowing the model to produce corresponding

outputs for different tasks[8]. Given the absence of a memory mechanism in this

DNN, its current outputs usually don’t depend on the sequence of previous inputs. To

address this limitation, RNNs have been introduced, specifically tailored for sequential

data processing. RNNs are characterized by an intrinsic recurrent architecture that

amalgamates the current input with the preceding time step’s hidden state, engendering

a new hidden state. This mechanism of state propagation and recurrence structure

equips the RNN with the capability to process sequential data, assimilating antecedent

information and integrating it into current computations[23]. Such an architecture is

adept at discerning temporal information and contextual interrelations within input

sequences. Owing to these properties, both CNNs and RNNs have garnered significant

attention and have found widespread applications in the fields of computer vision[12],

natural language processing[16], and speech recognition [1].

Kelly and Knottenbelt (2015) employed multiple deep neural networks to execute

the disaggregation of electricity consumption for various appliances, utilizing the UK-

DALE dataset[14]. The aggregated dataset was synthesized as an input to the model

through a sliding window technique, with the model subsequently predicting outputs

that corresponded in size to the aforementioned input window. For baseline compar-

isons, two non-artificial intelligence methodologies, namely combinatorial optimization

and the factorial hidden Markov model, were employed as well. Experimental findings

indicated that, in contrast to these conventional methodologies, all DNN approaches

achieved superior F1-score disaggregation performance. Notably, the most effective

approach was a CNN-based denoising autoencoder. Such findings underscored the

potential of DNNs as a promising avenue for future research in the realm of NILM

tasks. However, a limitation was observed: the sliding window technique led to mul-

tiple processing of identical segments across different input sequences, resulting in

computational redundancy and decelerated training. In a subsequent study, Brewitt

and Goddard(2018) introduced a fully convolutional network scheme invoking dilated

convolution[2]. This innovative approach circumvented the issue of overlapping out-

puts, thereby significantly enhancing training efficiency. Furthermore, their network’s

disaggregation performance was observed to surpass that of the Sequence to Point
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Model[28], whose performance was at the forefront during that period. The current

project employed this FCN model, and the following three sections provided a detailed

description of its network structure and related techniques.

2.2 Dilated Convolutions

In conventional convolution operations, both the size and stride of the convolutional

kernel remain constant, dictating the size of the receptive field and the resultant output

feature map. However, the introduction of the dilation rate as an additional parameter

in dilated convolution offers a novel approach. This parameter permits the insertion

of gaps within the input feature map, thereby expanding the convolutional kernel’s

receptive field on the input feature map while maintaining the output feature map’s size.

As the dilation rate escalates, a filter of consistent size can encompass an expanded

segment of the input sequence. Unlike pooling layers, dilated convolution does not

lose information from the input, making it particularly advantageous for high-density

prediction tasks, such as hyperspectral image classification[25] and speech emotion

recognition[19], the dilated network can capture the contextual information in the input

very effectively.

2.3 Fully Convolutional Networks

Fully Convolutional Networks (FCNs) were first introduced by Long and Shelhamer in

2015 [17]. In their seminal work, they elucidated the concept of FCNs and demonstrated

its application to the domain of semantic image segmentation. Their methodology not

only achieved state-of-the-art segmentation results but also accelerated training speed

on the PASCAL VOC, NYUDv2 and SIFT Flow datasets. This pivotal contribution has

significantly advanced the field of image segmentation, cementing the role of FCNs as

an integral component within the realm of computer vision. The FCN, as a derivative

of the conventional convolutional neural network, supplants the fully connected layers

typically found in standard convolutional neural networks with convolutional layers.

Consequently, the output manifests as a feature map, which, owing to its translation in-

variance, renders the employment of sliding windows in the FCN model computationally

redundant.
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2.4 Fully Convolutional Model

The structure of the FCN model network proposed by Brewitt and Goddard[2] was

shown in Figure 2.1. All layers, with the exception of the final one, were configured

with 128 filters. This quantity was manually selected as the maximum number of

filters that would not significantly impede the training speed. The initial layer was a

convolutional layer with a filter width of 9. The larger filter widths employed in this

layer, relative to subsequent layers, served to balance the distribution of parameters

across the layers. Following the initial layer, the network architecture incorporated

a series of 9 dilated convolutional layers. Each of these layers was assigned a filter

width of 3, the smallest filter size capable of accounting for past, present, and future

information. The dilation rate for the first dilated convolutional layer was set to 2,

with each subsequent layer featuring a dilation rate twice that of its predecessor. This

configuration allowed for exponential growth of the network’s receptive field while the

number of layers increased linearly. Subsequent to the dilated convolutional layers, the

network employed an additional convolutional layer with 128 filters and a width of one

to further refine the output of the preceding layers. Finally, to condense the network

output to a single channel, the last layer was configured with a single filter of width 1.

This intricate architecture was designed to optimize the balance between computational

efficiency and model performance.

Figure 2.1: Fully convolutional network architecture[2]

2.5 Non-Intrusive Load Monitoring Task

NILM task is to deduce the energy consumption of individual household appliances

and their distinct energy consumption stages over temporal intervals by analyzing the

aggregated household electricity consumption.
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2.6 Low Carbon Technology and Electric Vehicle Charg-

ing

”Low-carbon technology” refers to a broad spectrum of techniques aimed at minimizing

carbon emissions and encouraging a shift to a low-carbon economy. Such technologies

encompass a variety of methods, such as carbon-neutral and carbon-free alternatives,

which significantly reduce greenhouse gas emissions, lessen the effects of climate

change, and support sustainable development[26].

Electric vehicles are categorized as low-carbon appliances due to their reliance on

electricity as the primary source of power. When compared with their conventional fuel-

powered counterparts, electric vehicles are responsible for significantly lower carbon

emissions, thereby contributing to a reduction in the overall environmental footprint.

As the popularity of EVs continues to rise, an increasing number of drivers are opting

for home-based charging solutions, caused by the considerations of cost efficiency

and convenience[29]. This emerging trend underscores the escalating significance

of domestic electric vehicle charging in household energy consumption. Hence, we

selected EV charging as a representative of LC technology to evaluate the adaptability

of the FCN-NILM model when the dataset was augmented with low-carbon technology

data.

2.7 Dataset Description

2.7.1 Intelligent Domestic Energy Advice Loop Project

The Intelligent Domestic Energy Advice Loop (IDEAL) project embarked on an ex-

haustive data collection endeavor, amassing electricity and gas consumption data from

a sample of 255 households within the United Kingdom. The temporal span of the data

acquisition extended from a minimum of 55 days to a maximum of 673 days, exhibiting

a mean duration of 286 days and a median of 267 days. It is of particular significance

to note that individual appliance usage data was meticulously gathered from 39 of the

participating residences, with measurements of electricity consumption documented at

intervals of either 1 second or 5 seconds[21].
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2.7.2 Electric Nation Project

The Electric Vehicle Charging dataset was derived from the Electric Nation Project,

an initiative that amassed data from 673 EV chargers over the course of January

2017 to December 2018. Two commercial entities, CrowdCharge and GreenFlux,

were responsible for monitoring the consumption of the EV charging, recording the

data at resolutions of 1 minute and 3 minutes, respectively. Within the scope of this

project, the data from CrowdCharge was selectively augmented into the IDEAL dataset.

This decision was predicated on the higher resolution of CrowdCharge’s data, which

consequently enhances the model’s ability to discern the characteristics of the EVC’s

power consumption more accurately. Furthermore, the utilization of Coordinated

Universal Time (UTC) for timestamps in both the CrowdCharge recorded data and the

IDEAL dataset facilitated the augmentation process, ensuring temporal consistency[9].



Chapter 3

Methodology

3.1 Data Preparation

3.1.1 Method for Augmenting IDEAL Dataset

Initially, the preprocessing of the EVC data was necessitated due to the temporal dispar-

ities in the installation of charging posts. To ensure the richness and comprehensiveness

of the EVC data, the datasets with time intervals exceeding one year were selectively

retained. This filtering process aimed to focus on the EVC data that provides a more

extended and meaningful duration of charging activity, allowing for more appropri-

ate integration into the IDEAL and more insightful analysis. Consequently, several

charging data comprising 365 days of charging consumption for each were obtained,

with each data point representing a time resolution of 1 minute. To align the data

resolution with that of the IDEAL dataset (which maintains a resolution of 1 second),

an upsampling technique was applied to the EVC dataset. This method allowed for

the transformation of 1-minute resolution EVC data to 1-second resolution, ensuring

compatibility with the IDEAL dataset. Finally, the year information was anonymized.

By adopting this comprehensive approach, it was guaranteed that each timestamp in the

IDEAL dataset corresponds uniquely to a counterpart in the EVC dataset, thus ensuring

seamless integration and preserving the integrity of the dataset.

The data captured by sensors in the Electric Vehicle Charging (EVC) dataset delin-

eates the amperage utilized during the charging process of electric vehicles. According

to [9], a simple method for computing power was proposed. This method determines

power consumption by multiplying a default voltage (240 Volt) with the current amper-

age. Such a methodology was employed in the present study. However, it’s imperative

10
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to note that this approach may not yield precise absolute energy consumption values,

primarily because it operates under the presumption of a unity power factor. An alter-

native and potentially superior method would involve the utilization of instantaneous

apparent root mean square (RMS) power usage, which could offer a more accurate

representation of absolute energy consumption. Nevertheless, this alternative was not

adopted in the current project.

The primary objective of this project is to scrutinize the capability of the Non-

Intrusive Load Monitoring Fully Convolutional Network (NILM-FCN) model to sustain

its superior disaggregation performance when applied to datasets that incorporate EVC

data. Consequently, we postulated the presence of an electric vehicle in each residential

unit. For each home in the IDEAL dataset, data from a randomly selected charger was

amalgamated into the household electricity consumption by aligning the parameters

of month, day, minute, and second. Table 3.1 provided the structured outline of the

process.

However, our method exhibited a limitation in that corresponding weeks are likely

to differ across various years, even when the dates remain identical. For instance, the

first of July in 2023 falls on a Saturday, whereas the same date in 2022 is a Friday. This

temporal discrepancy may engender a divergence between the augmented dataset and

the actual data, as individuals’ electricity consumption behavior tends to vary between

weekends and weekdays. Such variations could introduce biases or inaccuracies in the

analysis.

Table 3.1: Steps to augment the dataset

Step Description

1 Filtering out charging data from the original EVC dataset with a duration

exceeding one year.

2 Restricting the obtained data to a duration of one year, ensuring a consis-

tent time frame.

3 Upsampling the EVC data to a 1-second resolution to align it with the

IDEAL dataset’s resolution.

4 Integrating the EVC data into the IDEAL dataset by matching timestamps

based on month, day, hour, and minute.
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3.1.2 Splitting Train and Test sets

The homes selected in the study referenced in [2] were partitioned into two distinct

subsets: 18 homes were allocated to the training set and 8 to the test set. These 26

homes were characterized by the presence of at least one of the specified appliances and

a data collection period exceeding 30 days. Table 3.2 shows the division of the dataset.

Indeed, the k-fold cross-validation methodology is deemed superior. This technique

partitions the original dataset into k subsets, subsequently amalgamating them into

diverse training and validation sets based on a specified ratio for multiple training and

evaluation models. Through this methodology, potential discrepancies arising from

suboptimal selection of training and validation sets are mitigated. Consequently, the k-

fold cross-validation offers a more precise assessment of performance. For this project,

we adhered to the aforementioned division configuration to maintain consistency with

the literature[2].

For each specific electrical appliance, the corresponding number of households

possessing such appliance was systematically recorded and presented in Table 3.3.

In the augmented dataset, electric vehicle charger was incorporated as an additional

appliance category.

Table 3.2: Home IDs for training and test sets

Dataset Home IDs

Training 62, 65, 96, 105, 106, 128, 136, 145, 162, 168, 169,

175, 228, 231, 238, 255, 263, 328

Test 73, 171, 212, 227, 242, 249, 264, 266

3.1.3 Data Preprocessing

To enable the training of the FCN-NILM model, the raw data need to undergo a process

of cleaning and resampling, following the approach delineated in [2]. The IDEAL

dataset captured instantaneous apparent root mean square (RMS) power usage for the

entire household at a 1-second resolution, utilizing two distinct sensors: a 30A sensor

and a 100A sensor. When the power consumption was below 4 kW, the reading from

the 30A sensor was employed; otherwise, the reading from the 100A sensor was used.

Gaps in the readings might occur due to signal propagation issues or system downtime,

and these were addressed through three distinct strategies:
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Table 3.3: The counts of homes for each appliance category for the training and test

sets.

Appliance Type Training Test Total

Washing Machine 13 6 19

Microwave 12 5 17

Dishwasher 10 4 14

Electric Kettle 8 4 12

Electric Shower 6 3 9

Electric Cooker 5 2 7

Electric Vehicle Charger 18 8 26

• Substitution with Alternate Sensor:

If a reading from the 30A sensor is missing and a corresponding reading from the

100A sensor was available for the same timestamp, the latter reading was used to

fill the gap.

• Short Interval Gap Filling:

For remaining gaps where the time interval of the missing data was less than 1

minute, the previous valid readings were employed to fill the gap.

• Long Interval Gap Ignorance:

For gaps that spanned longer time intervals, they were disregarded during the

testing and training phases of the model.

Electric appliance readings were measured by individual appliance monitors (IAMs)

with a resolution of 1 second or 5 seconds. To minimize the data volume, readings were

taken from the IAMs only when there was a change in appliance power usage or, at a

minimum, once per hour if there was no change in power usage. Consequently, the gaps

in the readings lasting for an hour or less were interpreted as periods during which the

power consumption of the appliance remained constant, and these gaps were forward

filled. Any gaps lasting longer than one hour were treated as missing data and were

disregarded during the training and testing of the models.

Finally, prior to the initiation of model training, all sensor readings were conducted

to a downsampling process. Each data point was resampled at 10-second intervals,

with the resultant value representing the mean of the readings recorded within those
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ten seconds. This preprocessing step served to reduce the data’s granularity while

preserving its essential characteristics, thereby facilitating more efficient computation.

3.2 Experimental Design

To effectively evaluate the different performances of the models, the experiments

were divided into three distinct groups. All sets of experiments employed the same

FCN-NILM model architecture illustrated in Chapter 2, but they differed in terms of

the datasets used for training and testing. Firstly, the models trained on the original

IDEAL dataset and tested on the original IDEAL dataset served as the baseline. The

purpose of building this baseline was twofold. One was that it ensured that the FCN-

NILM model demonstrated robust disaggregation performance on the original IDEAL

dataset, and the other was that it provided a comparative benchmark against which

the performance of the new models could be evaluated. Secondly, the models were

trained on the original dataset and tested on the augmented dataset, which incorporated

Electric Vehicle Charging data. The purpose of this set of experiments was to simulate

a situation in life. When a family that previously did not have an electric vehicle buys

one, is it necessary to update the model of the original electrical appliances? Thirdly,

the models were trained on the augmented dataset and tested on the augmented dataset.

This experimental suite constituted the primary focus of this project’s request. Since

these experiments provided the performance of the FCN-NILM model architecture

when trained on the augmented dataset. By comparing the first and third groups, we

could discern the disparities in the performance of the FCN-NILM architecture when

trained on the original and augmented datasets.

For the assessment of models trained on the original IDEAL dataset, we trained

distinct models for each of the six electrical appliances: microwaves, electric showers,

electric cookers, dishwashers, kettles, and washing machines. In the context of the

augmented dataset, beyond these six electrical appliances, we also trained models

specifically tailored for electric vehicle consumption patterns.

3.2.1 Experimental Setup

3.2.1.1 Hardware and Software

Four Nvidia Titan X GPUs were used to train the models in two groups of experiments.

The processor was a CPU Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz. The
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operating system on which the program ran was Ubuntu 20.04.6 LTS. The deep learning

library used was Tensorflow-gpu v2.4.1.

3.2.1.2 Hyper-Parameter Setting

ADAM optimizer was employed for training NILM-FCN models. The learning rate

was initially set to 1× 10−3. This rate was subsequently reduced by a factor of 10

whenever the loss did not improve over a span of 10 epochs. The training process was

terminated under two conditions: either when the validation error rate had not shown

improvement for 15 consecutive epochs, or after the completion of a total of 200 epochs.

Furthermore, a batch size of 256 was consistently used throughout the training process.

This configuration of hyperparameters was chosen to optimize the balance between

computational efficiency and model accuracy.

3.2.2 Evaluation Metrics

To assess the performance of the model within this project, three distinct metrics were

employed: Mean Absolute Error (MAE), Signal Aggregate Error (SAE), and the F1

score. Both MAE and SAE are conventional evaluation metrics[2] utilized for Non-

Intrusive Load Monitoring (NILM) tasks, concentrating on the discrepancies between

the predicted values(i.e., power consumption) and the ground truth. Mathematically,

MAE is defined as the average of the absolute differences between the predicted and

actual values, while SAE may involve a more complex aggregation of errors. Conversely,

the F1 score serves a different evaluative purpose, focusing on the classification aspect

of the problem. Specifically, it assesses the model’s ability to accurately determine

whether the electrical appliances are in an active state or not. By employing these

three metrics in tandem, a comprehensive and multifaceted evaluation of the model’s

performance can be achieved, encompassing both regression accuracy and classification

precision.

3.2.2.1 Mean Absolute Error(MAE)

The mean absolute error (MAE) symbolizes the discrepancy between the actual value

and the predicted value of appliance consumption at each time instance. It can be

computed using Equation 3.1:

MAE =
1
T

T

∑
t=1

|yt − xt | (3.1)
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In this equation, xt refers to the real consumption of an electrical appliance, while yt

represents its predicted consumption at time t[2].

3.2.2.2 Normalized Signal Aggregate Error(SAE)

Along with tracking the electrical consumption at individual moments in time, it’s vital

to account for the error in the cumulative electrical consumption over a specific duration.

The overall precision of the consumption estimate might be acceptable, even if there

are inaccuracies in the predictions at particular time steps. The metric for this can be

expressed using Equation 3.2:

SAE =
|∑t yt −∑t xt |

∑t xt
(3.2)

Here, ∑t xt signifies the total of the true values of the electrical appliance’s consump-

tion within a defined period, while ∑t yt denotes the total of the predicted values for that

same interval[2].

3.2.2.3 F1-Score

The F1 score is a widely recognized metric for evaluating the performance of classifica-

tion models, particularly in scenarios where the distribution of classes is imbalanced.

It is a harmonic mean of precision and recall, providing a balanced model accuracy

assessment. The mathematical expression for the F1 score is given as Equation 3.3

F1 = 2× Precision×Recall
Precision+Recall

(3.3)

In the context of a binary classification problem, the four possible classifications of

prediction results are:

• True Positive (TP): The instance is positive, and the prediction is correct.

• False Positive (FP): The instance is negative, and the prediction is incorrect.

• True Negative (TN): The instance is negative, and the prediction is correct.

• False Negative (FN): The instance is positive, and the prediction is incorrect.

Precision is the ratio of the number of true positive predictions, and the number

of all predicted positive samples. It measures how many positive class predictions are

correct. The formula for the calculation can be represented as Equation 3.4

Precision =
T P

T P+FP
(3.4)
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Recall is a metric that evaluates the ability of a classification model to identify the

positive class instances correctly. It is defined as the ratio of the number of true positive

predictions and the number of actual positive samples, representing the proportion of

actual positive class instances that the model correctly predicted. Mathematically, recall

is expressed as Equation 3.5:

Recall =
T P

T P+FN
(3.5)

Within the scope of our project, household appliances are classified as the positive

class when activated and the negative class when deactivated. By establishing specific

rules for different appliances, the operational state of an appliance could be inferred

from the model’s output. These rules delineated the maximum and minimum durations

for which an appliance is active, the interval between two consecutive activations, and

the minimum power consumption required to ascertain that an appliance is active.

3.2.3 Setting of Appliance Rules

Table 3.4 provided descriptions of the rule parameters, while Table 3.5 enumerated the

predefined values for each appliance rule. A critical aspect of this project involved the

determination of appropriate rules for electric vehicle charging.

For the parameter setting of the EV charging, the value will depend on a variety of

factors, including the battery capacity of the EV, the maximum power of the charger,

the capacity of the power grid, and the user’s demand. With the information from [9],

we had the following settings for the EVC rules:

• min on duration: 600 seconds

In everyday scenarios, the power of an electric vehicle charger may experience

transient fluctuations due to regular variations in the electrical grid or interference

from other electronic devices. Such fluctuations could erroneously lead to the

assessment that the charger is in an active state. To mitigate this potential source

of error, a minimum activated time threshold can be established. By setting this

min on duration to 10 minutes, brief and inconsequential fluctuations can be

effectively disregarded, enhancing the accuracy of the charger’s operational state

determination.

• min off duration: 900 seconds

Analogous to the parameter max off duration, the setting of min off duration

prevents a brief reduction in power from leading to an incorrect assessment that
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the charger has transitioned to an inactive operational state. This consideration is

vital in accurately capturing the true behavior of the charging process, particularly

in the presence of transient power fluctuations. Furthermore, to protect the electric

vehicle battery, it is essential to allocate a cooling-down period prior to engaging

in the next charging behavior. By stipulating 15 minutes to min off duration, the

model can more accurately distinguish whether a given scenario represents one

fluctuating charge or two distinct consecutive charges.

• max on duration: 18000 seconds

For the majority of electric vehicles, a charging duration of approximately 5 hours

is typically sufficient to replenish the battery to its full capacity.

• on power threshold: 1500 Watts

In the context of electric vehicle charging, a threshold value of 1.5 kW is set to

ascertain whether the charger is activated. This value serves as a reasonable and

broadly applicable benchmark, alignable with the capabilities of most contem-

porary EV chargers. If the power consumption of the charger falls below this

threshold, it may suggest that the battery has reached its full charge capacity, or it

could signal the presence of some underlying issues.

Table 3.4: Rule parameters descriptions

Rule Parameters Description

min on duration The minimum duration for which an appliance is active.

min off duration The interval between two consecutive activations of the ap-

pliance.

max on duration The maximum duration for which an appliance is active.

on power threshold The minimum amount of power consumption of the appli-

ance during an activation.
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Table 3.5: Rule parameters setting for household appliances[2]

appliance min on duration min off duration max on duration on power threshold

microwave 10s 15s 10000s 200W

electric shower 20s 30s 5000s 300W

electric cooker 10s 120s 10000s 200W

dishwasher 600s 400s 15000s 50W

kettle 10s 10s 600s 1000W

washing machine 1200s 600s 30000s 50W

electric vehicle charger 600s 900s 18000s 1500W



Chapter 4

Results and Discussion

In this chapter, the model performance of the seven appliances was stated individually.

Moreover, six appliances selected from the original dataset were analyzed for the per-

formance difference between the models trained on the original dataset and the models

trained on the augmented dataset. This comparison aimed to elucidate the ramifications

of training the FCN model on the augmented dataset in terms of disaggregation efficacy

for the original appliances. With respect to the EVC, the discourse explored the model’s

proficiency in disaggregating this specific low-carbon technology. In subsequent delin-

eations and figures, the notations ”ori ori,” ”ori aug,” and ”aug aug” were employed to

respectively signify the first, second, and third experimental sets as outlined in Section

3.2.

20
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4.1 Dishwasher Prediction

Figure 4.1: The predictions of dishwasher

For the dishwasher, each of the three models indicated activation in several instances as

depicted in Figure 4.1. Concurrent with the peak of the ground truth curve, all three

models exhibited a pronounced elevation. However, a discernible disparity existed

between some of the predictions and the ground truth. As illustrated in Figure 4.2, the

metrics of ”ori ori” and ”aug aug” were almost similar, while ”ori aug” displayed a

marginal decline in performance. Consequently, post the incorporation of EVC data, the

FCN-NILM architecture retained its robust disaggregation capability for the dishwasher,

and retraining the dishwasher model on the augmented dataset was imperative.
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Figure 4.2: The metrics of dishwasher

4.2 Cooker Prediction

Figure 4.3: The predictions of cooker

Within the quartet of instances presented in Figure 4.3, all three models exhibited an

upward bulge during the operation of the cooker. Nonetheless, several substantial
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gaps were observed between the predicted and actual values. Notably, the curves for

”ori ori” and ”ori aug” were perfectly overlapped during these instances, indicating

that the integration of EV data had a negligible impact on the performance of the

models trained on the original dataset. The evaluation metrics for the three models

were delineated in Figure 4.4. Both SAE and MAE had large values, attributable to the

pronounced deviation between the predicted and actual values. The cooker’s prediction

was characterized by a high recall yet diminished precision, likely stemming from the

cooker’s intricate power consumption pattern, influenced by its diverse operational

states. This complexity might have led the model to overlook numerous transient states.

Among the three models, the metrics remained relatively stable. Thus, the integration

of EVC data exerted minimal influence on the cooker’s disaggregation performance for

the models trained on the original dataset or the augmented dataset. Consequently, the

FCN-NILM architecture remained viable for the cooker on the augmented dataset.

Figure 4.4: The metrics of cooker
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4.3 Kettle Prediction

Figure 4.5: The predictions of kettle

In Figure 4.5, the predicted outcomes from both ori ori and aug aug demonstrated

commendable accuracy across the three sampled homes. However, the ori aug model

showed a deficiency in accurately detecting the kettle’s activation state in home 249.

This discrepancy might arise from the kettle’s distinctive features being overshadowed

by the incorporation of the EVC data. As observed from the metrics presented in

Figure 4.6, while ori ori and aug aug exhibited close similarities, the ori aug indicated a

marginal decline in the model’s performance. Consequently, post the integration of EVC

data, the FCN-NILM architecture retained its robust performance in disaggregating

the kettle’s consumption. What’s more, it underscored the imperative of retraining the

kettle model on the augmented dataset.
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Figure 4.6: The metrics of kettle
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4.4 Washing Machine Prediction

Figure 4.7: The predictions of washing machine

In Figure 4.7, all three models aptly predicted the activation state of the washing

machine. However, gaps observed in certain instances between the predicted values

and the actual ones. Analyzing the metrics presented in Figure 4.8 for the washing

machine model, it was evident that the performances of ori ori and aug aug were closely

aligned. In contrast, the ori aug model introduced a minor decline in performance.

Consequently, following the integration of the EVC data, the FCN-NILM architecture

maintained its efficacy in disaggregating the washing machine’s consumption. This

observation underscored the importance of retraining the washing machine model using

the augmented dataset.
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Figure 4.8: The metrics of washing machine
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4.5 Shower Prediction

Figure 4.9: The predictions of shower

In Figure 4.9, during the active periods of the shower, all three models exhibited

an upward trend. However, notable gaps were observed between the predicted and

actual values. However, the discrepancies among the predicted values across the three

models were relatively minor. Analyzing the metrics presented in the subsequent

Figure 4.10 for the shower model, the ori ori model demonstrated superior recall,

precision, and F1 score. In contrast, models evaluated on the augmented dataset(i.e.

ori aug and aug aug) manifested a pronounced decline in both precision and F1 score

metrics. This degradation in performance might be attributed to the similar high

power consumption characteristics of both the shower and EVC. Such property could
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potentially diminish the model’s capacity to discern the unique features of the shower,

leading to misclassification of non-shower patterns as shower-related. Consequently,

the integration of EVC data appeared to significantly influence the disaggregation

performance of the shower model. This suggested a potential need for optimization

strategies tailored for the FCN-NILM architecture when applied to the shower.

Figure 4.10: The metrics of shower
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4.6 Microwave Prediction

Figure 4.11: The predictions of microwave

In Figure 4.11, the three models aptly forecasted the activation state of the microwave.

Nonetheless, certain instances revealed the gaps between the model’s predictions and

the ground truth. Analyzing the metrics delineated in Figure 4.12 for the microwave

models, one could discern that despite the existence of some differences in the metrics

among the three models, these deviations were inconsequential. Consequently, post the

integration of the EVC data, the FCN-NILM architecture persevered in upholding its

intrinsic efficacy in the disaggregation task of the microwave.
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Figure 4.12: The metrics of microwave
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4.7 Electric Vehicle Charging Prediction

Figure 4.13: The predictions of electric vehicle charging

In Figure 4.13, the FCN-NILM model’s predictions for electric vehicle charging closely

aligned with the actual values. The metrics presented in Figure 4.14 for the electric
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vehicle charging model exhibited the exceptional performance of the FCN-NILM

architecture in the disaggregation task for this specific application. The prolonged

duration and high power consumption associated with electric vehicle charging, in

contrast to other household appliances, likely rendered its pattern more distinguishable

and thus more readily learned by the model. Consequently, the FCN-NILM architecture

adeptly handled the disaggregation task for electric vehicle charging, a representative of

low-carbon electrical appliances.

Figure 4.14: The metrics of electric vehicle charging

4.8 Discussion

In Table 4.1, the MAE and SAE metrics were presented, aggregated across all house-

holds for each appliance. Table 4.2 delineated the Recall, Precision, and F1-score

metrics, also aggregated across all households for each respective appliance. The opti-

mal evaluation results for each metric and appliance were emphasized in bold within

these tables. Given that the primary objective of the model was to monitor the activation

status of electrical appliances, the metrics in Table 4.2 had greater significance.

Upon analysis, the models trained on the augmented dataset incorporating EVC data

exhibited marginal variations in their disaggregation capabilities for the five non-low-
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carbon appliances, with the exception of the shower. Specifically, for the shower, there

was a substantial reduction in accuracy by 38.5% compared to the original, leading

to a 22% decrease in the F1-score. This deviation might have been attributed to the

analogous high power consumption patterns possessed by both the EVC and the shower.

Furthermore, the performance metrics of the aug aug models predominantly surpassed

those of the ori aug models, indicating the necessity for model updates whenever

electric vehicles as a new appliance were introduced into a household.

Remarkably, the EVC achieved a recall of 89%, a precision of 98%, and an F1-

score of 0.93 when trained and tested on the augmented dataset. This underscored the

FCN-NILM’s robust performance in disaggregating EVC power consumption from the

overall power usage. In conclusion, barring the shower, the FCN-NILM architecture

demonstrated commendable adaptability when trained and tested on augmented datasets

that incorporated EVC data.

Appliances MAE(watt) SAE

ori ori ori aug aug aug ori ori ori aug aug aug

Dishwasher 11.11 13.28 11.34 0.06 0.02 0.03

Cooker 50.56 56.98 51.46 0.89 1.06 0.91

Kettle 5.56 6.87 6.42 0.17 0.13 0.02

Washing Machine 10.83 18.22 12.99 0.30 0.03 0.24

Shower 38.17 40.35 35.19 0.02 0.02 0.19

Microwave 4.92 5.08 6.21 0.17 0.14 0.24

Electric Vehicle Charging 54.67 0.21

Table 4.1: Comparison of Original and Augmented Models for MAE and SAE

Appliances Recall Precision F1

ori ori ori aug aug aug ori ori ori aug aug aug ori ori ori aug aug aug

Dishwasher 0.95 0.94 0.94 0.37 0.29 0.39 0.53 0.44 0.55

Cooker 0.93 0.93 0.77 0.10 0.13 0.10 0.19 0.18 0.22

Kettle 0.85 0.80 0.88 0.88 0.86 0.90 0.87 0.83 0.89

Washing Machine 0.78 0.79 0.84 0.83 0.83 0.76 0.81 0.81 0.80

Shower 0.98 0.97 0.98 0.70 0.48 0.46 0.81 0.64 0.63

Microwave 0.44 0.41 0.52 0.39 0.37 0.28 0.42 0.39 0.36

Electric Vehicle Charging 0.89 0.98 0.93

Table 4.2: Comparison of Original and Augmented Models for Recall, Precision, and F1
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Conclusions and Future Work

5.1 Conlusions

In this research, the extant IDEAL dataset was enriched by incorporating electric vehicle

charging data, as sourced from Electric Nation. Subsequent to this augmentation, the

dilated Fully Convolutional Network (FCN) architecture was employed to train and

evaluate models for six prevalent electric appliances including dishwasher, cooker,

kettle, washing machine, shower and microwave, and a new low-carbon appliance,

electric vehicle charging. The efficacy of these models was determined through a

quintet of metrics: MAE, SAE, Recall, Precision, and F1. The salient outcomes of this

investigation were delineated in the following:

• By comparing the performance of the models trained on the original dataset and

tested on the original dataset with the models trained on the original dataset and

tested on the augmented dataset, empirical findings elucidated that to preserve the

robustness of the FCN architecture in executing the NILM task when a residence

devoid of an electric vehicle subsequently procures one, it becomes imperative to

recalibrate the antecedent models. Specifically, this necessitates the substitution

of the models, which were trained on the original dataset, with their counterparts

trained on the augmented dataset.

• By comparing the performance of the models trained on the original training

set and tested on the original dataset with that of the models trained on the

augmented dataset and tested on the augmented dataset, our observations revealed

that barring the appliance ’shower’, the FCN-NILM architecture consistently

upholds its strong disaggregation capability for the remaining five electrical

35
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appliances when the augmented dataset is employed for training.

• Finally, the FCN-NILM architecture exhibited exemplary efficacy in the disag-

gregation task specific to electric vehicle charging, achieving 89% recall, 98%

precision, and an F1-score of 0.93.

Thus, employing the dilated FCN scheme for the NILM task of most appliances on

augmented household electricity consumption datasets, inclusive of EVC data, is indeed

viable. However, it has to exclude electric appliances that manifest energy consumption

patterns analogous to EVC, such as showers.

5.2 Future Work

In this study, we exclusively utilized electric vehicle charging as a representative of

low-carbon appliances to investigate the efficacy of the FCN framework in addressing

NILM tasks on datasets inclusive of low-carbon data. Consequently, assessing the

performance of FCN models in handling NILM tasks on datasets that encompass data

of multiple low-carbon appliances emerges as a compelling avenue for future research.

Contemporary low-carbon appliances such as heat pumps and solar panels are gaining

traction. Notably, solar panels present a unique challenge; unlike conventional electrical

appliances, they contribute to a reduction in overall household electricity consumption

due to their electricity generation capability. Moreover, the performance of the model

for the shower when trained on the augmented dataset suffered from a significant decline.

Therefore, determining strategies to mitigate this impact is another valuable orientation

for future investigation.
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