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Abstract

Mood state disorders such as depression and bipolar disorder significantly impact an

individuals ability to function and are prevalent across the world with depression alone

impacting 264 million people globally. Diagnosis of these disorders using the typical

patient interview process has substantial challenges such as long wait times to see appro-

priate healthcare professionals. Identifying mood state using patient physiological data

collected from wearable health devices and machine learning provides an opportunity to

reduce these challenges by aiding diagnosis in a cheap and scalable way. Most research

in this area mainly focuses on creating high performance machine learning models

capable of accurately identifying mood state model performance but often neglect to

focus on explainability of model prediction, particularly generating explanations for

specific patients. For mood state detection via machine learning to be widely adopted,

healthcare professionals must be able to trust the predictions being made. This project

puts model explainability at the forefront and presents the first (of our knowledge)

machine learning model capable of identifying mood state using data from wearable

health devices with capability to explain how model inputs contribute to individual

patient predictions.
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Chapter 1

Introduction

1.1 Motivation

iMood disorders are a group of medical diagnoses that impact general emotional state

or mood in a way which is inconsistent with the person’s circumstances and often

causes individuals to have an impaired ability to function [3]. These diagnoses include

depression and bipolar disorder and are prevalent across the globe, with depression

alone impacting 264 million people globally [41]. These mood disorders heavily

impact patients’ quality of life and are ranked as one of the top disease burdens

worldwide [11].

The typical process of patient diagnosis for mood disorder is through a mental health

professional conducting an interview, asking questions about symptoms, habits and

behaviours [1]. Psychometric scales are often used to help assess the severity of mental

health symptoms patients are experiencing. Two examples of these scales are the

Young Mania Rating Scale (YMRS) [42] which is a questionnaire used to measure the

presence and severity of mania symptom, and the Hamilton Depression Rating Scale

(HDRS) [19], another questionnaire to identify symptoms of depression. Each of these

ask patients a number of questions with responses given by patients on an ordinal scale.

These responses can then be used to measure the presence and severity of symptoms.

While the standard process of patient interview has been effective at diagnosing mood

disorders, the process of patients’ self-description of symptoms during a short interview

period can be sub-optimal [18]. Patients’ self-description of symptoms have been

shown to be inconsistent depending on factors such as mood, weather, and time of day.

iSection 1.1 is heavily influenced by the Informatics Project Proposal[23]
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Chapter 1. Introduction 2

Furthermore, the mental health professional conducting the interview is only observing

the patient for a short period of time, and waiting times to see specialists are often long,

leading to equally long wait times before diagnosis [30].

Machine learning models using patient physiological and behavioural data has shown to

be a potential alternative to the traditional interview-based diagnosis process [17][10].

The arise of easily accessible consumer grade wearable health devices such as ”fitbits”

allows for numerous physiological and behavioural data channels to be collected and

used as the basis for machine learning diagnosis [37][14]. Health devices and machine

learning models have the potential to be deployed at scale to aid diagnosis in a cheap

and effective manner and overcome many of the aforementioned issues facing the

traditional diagnosis process. Previous works in literature have shown the efficacy of

mood state diagnosis via machine learning models [32][2], however there are still a

number of challenges before their use can be widely deployed in a clinical environment.

While mood disorder diagnosis by machine learning provides a number of

opportunities, for it to be widely adopted models are often required to be “explainable”

[43]. Machine learning model explainability refers to the concept where humans are

capable of retaining intellectual insight over the model. That is, to take a machine

learning model and explain it in human terms. Many machine learning models such as

neural networks are very complex and struggle to allow the user to understand how a

decision was made by the model [44]. In sensitive industries such as healthcare, where

an incorrect decision can have severe and life changing consequences, healthcare

professionals often require insight into how a model makes its predictions, in order to

build trust and ensure the model is accurate, fair and transparent [43].

Many previous works within mood state classification have focused on creating high

performing machine learning models [17][32][2]. Model performance is an important

factor in the applicability of a machine learning model predicting mood state. However,

explainable machine learning models with a similar or even lower model performance

to that seen in literature could be more valuable in a clinical setting due to the need for

trust to be built by healthcare professionals for widespread adoption [43].

Few papers have focused on making mood state diagnosis models more explainable.

Whilst some have provided deeper insights into their models [10][34], none of these

works have specifically focused on generating a model that is designed to be

explainable from the start with a constant focus on explainability throughout

development. This important unexplored area of research is the focus of this project.
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1.2 Project Objective and Contributions

It is the opportunities and challenges outlined in section 1.1 that drives the main

research question of this project: can mood state be accurately identified with

explainable machine learning models using data from consumer-grade wearable health

devices? This project aims to answer the core research question by building machine

learning models using data collected from wearable health devices.

The objectives of this project can be summarised into the following:

• Extracted features from the patient time series data.

• Develop baseline models to benchmark and evaluate project developments.

• Develop explainable machine learning models to identify mania and depression

mood state.

• Identify and implement steps to improve model performance whilst retaining

model explainability.

• Apply techniques to the top performing models to further improve model explain-

ability.

Each of the project objectives were successfully completed within the project with the

best performing model generating an f1 score of 0.52, twice that of the baseline model

(see section 3.8.2 for f1 score definition). This project is also the first known mood

state classification model to generate explanations for individual patient predictions.

1.3 Structure of the Report

The remainder of the document is split into 4 sections. Section 2 discusses the

background surrounding this project, where a literature review critically reviews works

that are relevant to this project. Section 3 covers the methods undertaken to meet the

objectives of this project. This includes the conceptual design of the experiments, the

methods carried out and the challenges faced during their implementation. Section 4

critically discusses the results, their performance in context to relevant literature, and

their contributions to the research area. Finally section 5 will conclude the research

project summarising the work completed, the contributions made, and the potential

directions for future work.



Chapter 2

Background

To ensure the research discussed in this literature review is relevant to this project, the

research must meet three criteria. First, the data used to identify mood state or

disorders must be time series data collected from wearable health devices. It is the low

cost and easy use of these devices that enables the potential solution of large-scale

mood disorder diagnosis to be scaled to match the number of individuals impacted.

Second, mood state or mood disorder symptoms should be evaluated using the YMRS

and HDRS scales [42][19]. This criteria is set to be consistent with the data used in this

project and make more relevant comparisons. Thirdly, the types of models used to aid

mood disorder diagnosis should be from machine learning, again to provide direct

comparison to the work carried out in this project.

The relevant literature can be divided into two key categories, classification and

regression tasks. Regression tasks (i.e. predicting numerical scores) are limited within

literature, with only three known papers focusing on this area. The typical motivation

behind the regression-based tasks is to identify the level of symptomology experienced

by a patient.

2.1 Regression works

In 2017 a regression task was set up to predict the overall scores of the HDRS [17].

Data was collected using E4 wristbands to obtain physiological signals. However,

additional data was collected on how the participant was using their phone, including

meta-data of calls, text messages, location and app usage. 700 features were crafted

and used across 6 different machine learning models, including Random Forrest,

Gaussian Processes and a customized ensemble method that uses all 4 other methods to

4



Chapter 2. Background 5

generate a more robust prediction. The best performing model was the ensemble

approach with an average Root Mean Square Error (RMSE) of 4.5 on the test set.i

More recently in 2020, researchers were able to identify the HDRS total score with an

average RMSE of 5.35 when using physiological data collected from an E4 wristband

[29]. Additional data collected from smartphones such as number of calls, text and

activity patterns were used alongside the physiological data to train alternative models.

However, the performance of these models decreased generating an RMSE of 5.43.

The most recent regression-based work predicted both the overall and individual item

scores of the YMRS and HDRS scales [10]. The researchers were able to predict the

overall YMRS and HDRS using the same dataset used within this project. Using an

artificial neural network the overall YMRS and HDRS scores were predicted with an

average RMSE of 5.6 and 4.4 respectively. The authors also predicted the individual

scores for each item in the YMRS and HDRS questionnaire. Providing the item level

prediction gives a deeper level of understanding of the diagnosis as two identical

overall YMRS or HDRS scores can have very different symptomology.ii

2.2 Classification works

Patient mood state labels can be generated by converting the sum of the YMRS and

HDRS scales scores to a binary state (0 or 1), with scores crossing thresholds defining

an acute mood state. Across the literature different thresholds were used to identify

mood state.

In 2022 research was conducted to try and distinguish between two groups of patients:

those who are experiencing euthymic or mania mood states [2]. To achieve this,

patients wore wristbands on their dominant wrist for 24 hours to measure data

including 3-axis acceleration, EDA sensor data, skin temperature and

photoplethysmography (a method to detect blood volume changes) data to derive heart

rate. To obtain labels required for the machine learning approach, patient mood states

were established at regular intervals using the YMRS, with total scores ranging from 0

to 60 and scores below 10 being classified as euthymic. Data processing and feature

extraction are key aspects to the success of the research with features such as heart rate

iParagraph is taken verbatim from the Informatics Project Proposal[23]
iiParagraph is heavily influenced by the Informatics Project Proposal[23]
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variability, bipolar complexity-variability (BCV), and mean amplitude of the Skin

Conductance Response (SCR) used as inputs for the machine learning model. These

example features and others were used to develop a deep-learning approach with a

long-short ensemble network that achieved a classification accuracy of 91.59% for

euthymic/manic mood states [2].

A second paper attempted to use machine learning to identify patients with depression

symptoms. Data was collected from an “Silmee W20”, which is a wearable health

device that captures similar data to the E4 Empatic wristband, but with additional

channels including sleep time and ultraviolet light exposure [35]. The paper achieves a

0.76 accuracy of identifying symptomatic patients. Researchers found that skin

temperature and patient time spent asleep were important in identifying patient mood

state. Although positive results were achieved, there were several limitations with this

approach. There were 86 patients used in the study which may have weakened the

statistical significance of the results. Patients with illnesses other than depression were

not considered which simplified the task compared to real world scenarios. Patients

with multiple illnesses including depression could show additional symptoms which the

model would likely struggle to accurately model. The model accuracy would therefore

likely decrease in real world use.

Obtaining sufficient data with mood state labels is a significant challenge within the

research area. It should be noted across all works described in this literature review that

limited data and model overfitting is a common challenge in this field.

2.3 Model explainability

There are numerous techniques available to improve model explainability such as

LIME and counterfactuals [27][31]. However, the most commonly used is SHAP [24].

SHAP stands for SHapley Additive exPlanation and combines shapley values from

game theory with local explanations to explain the output of any machine learning

model. There are a number of SHAP visualisations which can give insight into feature

importance, feature relationships, and much more [25].

Throughout all the works discussed in this literature review, none have put model

explainbility as a core focus throughout. Many works have discussed feature

importance, and many have explained in depth the characteristics of their models
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[10][17]. One tangentially related paper (but was not part of the core literature review

as it did not use HDRS or YMRS scores) used SHAP to identify which model features

most impacted the model outcomes [34]. These are all examples of global

explainability, which aid the understanding of the data. However, none of these models

have generated local model explanations, that is, to explain individual decisions made

by a model.

2.4 Dynamic Time Warp

Dynamic Time Warp (DTW) is an algorithm used to identify similarity between two

temporal sequences. The approach works by minimizing the Euclidian distance

between aligned time series data. The efficacy of DTW comes from its ability to deal

with time series data that have different velocities or are shifted from one another [40].

This approach is not implemented in this project but is considered as one of the

potential solutions to the project objectives.



Chapter 3

Methods

3.1 Methods Introduction

The possible approaches to solving the key project objectives can be summarised into

three broad categories:

1. Train a deep learning model with the unprocessed time series data as input.

2. Compare similarity to other example data using dynamic time warping and apply

a similarity model to determine mood state.

3. Train a machine learning classification model using summary and descriptive

statistics extracted from the time series data.

Approach 1 is the most common approach seen in literature. Whilst this approach

yields good results due to the powerful deep learning models available, it also has poor

explainablility due to its complexity. Model explainablity techniques such as SHAP can

still be applied to these models to inform the user which input has the strongest

influence on the outcome. However, as the inputs to the model are unprocessed time

series data, it would not be interpretable to users, rendering this approach inappropriate

for this project.

DTW has not been used in the context of identifying mood state using wearable health

device data. This method has the potential to outperform other methods due to its high

performance on other time series classification tasks [26]. Using this method for this

project would consist of dynamic time warping comparing similarity between other

data points then using a model such as K Nearest Neighbours (KNN) [15] to classify

8



Chapter 3. Methods 9

mood state. This approach would not be appropiate for this project as the features

generated from dynamic time warp are not easily human interpretable and so again

would limit the explainability of the model.

Approach 3 uses a combination of feature extraction and a machine learning classifier

to identify mood state. The first step in this approach processes the time series data into

summary and descriptive statistics that ideally capture key information. The second

step requires a machine learning model to be trained on this processed data. To ensure

this approach generates an explainable model the features extracted need to

interpretable by non-technical users and the machine learning model needs to be

explainable. For example, taking the mean value of the acceleration data channel is

interpretable by non-technical users as it can be understood as an estimate of how much

the patient moved during that given recording segment. Using this data in a simple

model such as logistic regression can tell us how important the feature was in the

outcome. We require both steps to prioritise explainability to ensure the outcome is

explainable.

Approach 3 is the most appropriate of the possible methods and will be used for this

project.

3.2 Task Summary

The key focus of the project is to build machine learning models capable of identifying

mood state whilst retaining model explainability. This project does so by training

models on a dataset containing over 7000 hours of patient physiological data with

labels identifying patients depression and mania mood state. Before machine learning

models are trained features need to be extracted from the time series data, data needs to

be segmented and cleaned, evaluation methods and metrics need to be chosen, and

baseline models need to be implemented to benchmark performance. Each of these

steps are discussed in detail from section 3.3 to 3.12.

3.3 Data

In these experiments we used patient physiological and behavioural data recorded using

Empatica E4 devices worn on the patients’ non-dominant wrists. This data was

collected from 267 recording sessions from 140 individuals generating over 7000 hours
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Figure 3.1: Bar chart visualising the class imbalance of HDRS and YMRS mood states.

of times series data. Each session recording typically lasted 48 hours until the E4

device ran out of battery, with some subjects undertaking multiple monitoring sessions.

The wristbands collected 6 channels of information: 3D acceleration (ACC), blood

volume pressure (BVP), electrodermal activity (EDA), heart rate (HR), skin

temperature (TEMP), and interbeat intervals (IBI). These data channels were sampled

at a rate of 32, 64, 4, 1, and 1 Hz respectively with IBI sampled at non-regular intervals.

A subset of this data has been used in previous publication [10]. However, more data

has been collected since these previous experiments were carried out.

To generate labels, subjects were assessed using the HDRS and YMRS questionnaires

to understand the depression and mania symptoms present at the time. The

questionnaires generate a score, with values greater than 6 representing an acute mood

state and below or equal to this threshold showing a euthymic mood state. This

threshold was selected to be consistent with previous research undertaken on this

dataset [10]. Subjects that were recruited during an acute episode were assessed up to

four times, whilst subjects who were clinically stable were interviewed once.

There is a significant class imbalance between the euthymic and acute mood states for

both HDRS and YMRS scores with 75% and 71% of the datapoints having an euthymic

mood state label respectively. Figure 3.1 shows the class imbalance.

3.4 Classification Subtasks

The classification of mood state can be broken down into 4 subtasks. Firstly, there are

two different types of mood state (mania and depression) we are identifying. Secondly,

patient data behaves very different when awake or asleep. For instance, heart rate
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variability is not available when the patient is awake and acceleration is near zero when

patients are asleep. To manage these challenges data was segmented to identify if the

patient was awake or asleep (sleep state 0 and 1 respectively) using the van hees

algorithm [39]. As the data differed significantly, separate models were used for each

sleep state. This gives a total of 4 subtasks, YMRS classification with sleep state 0,

YMRS classification with sleep state 1, HDRS classification with sleep state 0, and

finally HDRS classification with sleep state 1.

It should be noted that a third possible patient state occured when the health device was

off body (sleep state 2). However, there were no instances of this occuring in our

dataset.

3.5 Segmentation

Recording sessions were split into non-overlapping segments with segment length a

variable parameter. Selecting segment length was a trade-off between maximising

segment length and maximising the number of datapoints available for models to learn

on. Starting segment length was set to 256 (seconds) as a reasonable midpoint. This

generated a total of 104,931 datapoints between all 4 subtasks where segmentation is

carried out on each sleep state independently.

3.6 Core features

The approach taken to solve the task of identifying mood state using wearable health

data begins by generating features from the time series data. The core features used in

these experiments were generated from the FLIRT library [16]. This python package is

capable of taking time series data such as IBI, HRV and ACC and generating

‘meaningful features’ which can be passed to machine learning models. The focus of

FLIRT is on processing and feature generation of data from wearable health devices

such as smart watches rather than medical-grade data recording devices. A total of 184

features were generated for each data segment from the FLIRT library. Table 3.1 shows

a handful of the features generated from the FLIRT library with the full list shown in

appendix A.1. The vast majority of these features are summary statistics of the time

series data with much of the functionality acting as a wrapper function around existing

numpy or scipy functions.
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Feature Name Description

acc x mean average acceleration in the x axis

acc y pct 95 95th percentile of the y axis acceleration

TEMP min minimum skin temperature

hrv peaks
number of peaks identified

in heart rate variability

Table 3.1: Example FLIRT features and their description.

3.7 Baseline Data Cleaning

Many of the models used within this project required removing or imputing invalid

values within the data. Many of the FLIRT outputs generate non-numeric values due to

missing data or invalid transformation (e.g. taking logarithm of negative number). To

overcome this issue, a data cleaning function was created to remove all columns with

more than 20% null values. Any remaining rows with null values would then be

removed. The column null threshold of 20% was selected after experimenting with the

threshold to maximise the number of datapoints kept whilst retaining sufficient

columns.

3.8 Task Evaluation

3.8.1 Model Evaluation

To evaluate the performance of our models, data for each of the 4 subtasks were

randomly split into train, validation and test sets according to a 70%, 15%, 15% split.

The random split and given ratios were chosen to ensure consistency with previous

research undertaken on this dataset [10].

The training set is used for the model to learn the relationship between the input

features and the labels. Model performance is evaluated on the validation set where

inputs are passed to the model but labels withheld. The predictions made by the model

on the validation set are then compared to the true values to evaluate its performance.

The test set is used at the very end when models have been developed to evaluate the

final generalisation performance of the model. This methodology is used to prevent

“sub-conscious” overfitting to the test set [7]. This phenomenon occurs when the model
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Figure 3.2: Figure to explain the relationship between predicted and true values. Original

image from [12].

developer frequently checks model performance on the test and can lead to the

developer subconsciously choosing model design decisions and parameter selection

that best fits the test set. This can give an overestimate of the generalisation

performance and mislead future expected performance.

3.8.2 Evaluation Metrics

When evaluating the performance of models on each data subset we can use a

multifaceted approach where multiple metrics and visualisations are used to gain a

more holistic understanding of model performance. As binary classification is the key

task, we can define many of our metrics through the number of true positives, false

positives, true negatives, and false negatives generated for each model. See Figure 3.2

for definitions of each of these terms. To summarise aspects of the model performance,

metrics including accuracy, precision, recall, and f1 score are used. See equation 3.1

through 3.4 for their formal definitions. Confusion matrices are an additional method

used in this project to visualise the number of true positives, false positives, true

negatives, and false negatives predicted from a model.

precision =
T P

T P+FP
(3.1)

recall =
T P

T P+FN
(3.2)

f 1 Score =
2× precision× recall

precision+ recall
(3.3)

accuracy =
T P+T N

T P+FN +T N +FP
(3.4)
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Beta Score = (1+β
2)

precision× recall
(β2 × precision)+ recall

(3.5)

The key metric used when evaluating the model performance will be f1 score (see

equation 3.3). f1 score is a metric where precision and recall are weighted equally and

combined into a single metric. Whilst this is a reasonable metric to use in an academic

setting, in real world environments beta score (see equation 3.5) may be more likely to

be used as this metric has a variable parameter to weight the importance of precision

against recall. For example, it may be more important to reduce false negatives in a real

world environment and this has a much less severe consequence than a false positive as

the first may result in a patient not receiving the care they need, whilst the latter would

only result in an unnecessary specialist appointment.

3.9 Baseline Models

To generate a performance benchmark and put future performance developments into

context, 2 baseline models were implemented. These are the naı̈ve mode baseline and

naı̈ve binomial model.

The purpose of the two naı̈ve baseline models is to show expected performance from a

“random guess” model. Establishing these baselines allows to check two criteria. First,

that our models are “learning” from our data and not just making a “random guess”.

Second, we have established a lowerbound for our expected performance of our models.

For machine learning models to be applicable in a real world environment they must be

better than simple statistical models such as the two naı̈ve baseline models.

The first naı̈ve baseline model (naı̈ve mode model) simply predicts the class most seen

in the training set. The model only predicts the negative class and from the definitions,

precision, recall and f1 score will be zero. However, as we have a class imbalance the

model will maximise its accuracy score given it is a random guess. When evaluating

future models we can use the naı̈ve mode model as a baseline reference when

evaluating model accuracy.

The second naı̈ve baseline model (naı̈ve binomial model) samples from a binomial

distribution using the counts of euthymic and acute mood states to calculate sample

probabilities. Given the model is a “random guess” it maximises its precision, recall,
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and f1 score but has a worse accuracy compared to the naı̈ve mode model. When

evaluating future models we can use the naı̈ve binomial model as a baseline reference

when evaluating model precision, recall and f1 score.

3.10 Machine Learning Models

Once baseline models were implemented and appropriate evaluation methods are put in

place the next stage of experimentation can be undertaken. Machine learning models

can now be trained and evaluated.

When considering machine learning models there is typically a trade off between

interpretability and performance. Model interpretability refers to how transparent the

inner workings of a model are. Combining model interpretability with explanations of

model decision in human terms creates explainability. Typically, the higher performing

a model is the less interpretable it is.

Logistic regression and decision tree classifier models have been selected as the first

two machine learning models to be implemented on the FLIRT processed data. These

models were selected due to their natural explainability.

Logistic regression is a naturally interpretable model as all inputs are linearly weighted

and passed through a sigmoid function to generate the output. Equation 3.6 defines the

sigmoid function where x is the sum of the linearly weighted inputs. We can therefore

view the model prediction and understand which of the inputs contributed most to the

output. This natural interpretability can also help us to further develop our models by

understanding which features are most valuable to predict the mood state.

S(x) =
1

1+ e−x (3.6)

The decision tree classifier was also selected as one of the first machine learning

models as its output can be clearly visualized and also understood by non-technical

individuals [6]. We can also use feature importance functionality to again see which

inputs are most important to predict the outputs, which also aids the development of

future models.



Chapter 3. Methods 16

K Nearest Neighbours was selected as a midpoint between interpretability and

performance. The algorithm uses proximity to other datapoints to make predictions. If

we want to explain why a decision was made we can refer to the datapoints nearby that

influenced the prediction. This is useful if we have a good way to explain a single point,

which we do, as a core focus of this project is to generate interpretable features [15].

The final model selected was the XGBoost Classifier [9]. This is an ensemble technique

where multiple decision trees are trained sequentially, with data points weighted to

account for previous decision tree errors. XGBoost was selected as it has shown to be

very high performing in real world datasets [5]. XGBoost is not as explainable as the

three other models and provides a good comparison when evaluating the

performance/explainability trade off.

All of the machine learning models will be run with default hyperparameters to reduce

variability and establish the first machine models on the FLIRT processed data. The

default hyperparmeters are those set by sklearn [13].

3.11 Steps to Improve Model Performance

A key point in this project was the evaluation after the first machine learning models

were implemented. After this point, the machine learning models performance was

evaluated by comparing to baseline models and relevant results seen in literature. The

following steps were then identified and implemented with an aim to improve model

performance whilst retaining model explainability.

3.11.1 Hyperparameter Tuning

Typically machine learning models use a hyperparameter tuning step where models are

training multiple times with a range of model parameters. By selecting appropriate

hyperparameters, models typically generate a better loss function score and generalise

better [20].

The approach taken in this project was hyperparameter tuning via gaussian process

optimization. To complete hyperparameter tuning via gaussian process, possible

hyperparameter ranges are defined by the user along with a scoring metric (f1 score).

This method then trains a model, evaluates its performance and then uses past

evaluations to guide the next hyperparameter choice, providing a much more efficient
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Metric Name Feature Derivation

Patient Motion Average, Standard Deviation, and Fraction of Time in Motion

Number of SCR peaks N/A

Heart Rate Mean, Min, Max, Standard Deviation, Coefficient of Variance

Table 3.2: Summary of new metrics and features generated. Multiple features can be

generated by calculating statistics from metrics. e.g. standard deviation of heart rate

search per iteration compared to grid search or random search. During the project a

maximum of 20 iterations were chosen for the gaussian process optimization due to

computation restrictions.

3.11.2 Additional Feature Engineering

Additional features were generated with the objective of improving model performance

by capturing the most relevant information from the data. This was done by reviewing

previous literature that had used consumer-grade wearable health devices to predict

mood state classification from HDRS and YMRS questionnaires. A total of 22 features

were considered with potential features ranked based on their efficacy in previous

works and a qualitative review of how similar these features are to existing features

used in baseline models. 3 new metrics were introduced (patient motion, number of

SCR peaks, and heart rate) and a total of 9 features were derived from these metrics.

The final features developed can be seen in Table 3.2.

3.11.3 Imputing Missing Data

The baseline data cleaning process (as described in section 3.7) uses a process of

dropping columns and rows to remove non-numeric values which the model can’t

process. This causes a loss of data and a potential loss of performance. To overcome

this, we can impute the missing data to maximise the amount of data available to train

models. A basic approach to this would to be impute column mean, or mode if the

variable is categorical. However a more advanced technique uses an iterative imputer,

as was applied in this project [38]. The iterative imputer treats missing values as a

function of other features. For example, to impute values for a given column, a

regressor is fitted using all other columns as inputs, and the labels are the non-missing
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rows for our given column. This trained model then can be used to impute the missing

values.

This process was applied to impute missing data with a Bayesian Ridge model used as

the regressor [36]. This model was selected as it was computationally cheap compared

to other probabilistic models such as a gaussian process. It should be noted that

columns with more than 20% nulls were still dropped otherwise there was not sufficient

data to learn an appropriate imputation.

3.11.4 Feature Transformations

Exploratory data analysis was carried out to help understand the underlying data and

aid model development. One of the key aspects of the exploratory data analysis was

visualizing the distribution of the input variables. This was achieved through using a

kernel density estimate function which plots the estimated probability density function

for a given input and was applied to all features This visualization showed that a

number of features had very high skewness with many of the features having long

right-hand tails. This high skewness can make modelling the data more difficult

(particularly for the logistic regression model). To overcome these issues all input

features with a skewness metric (see Equation 3.7) greater than 10 and where all input

values are positive had a log transformation applied. These criteria were set to

transform high skew inputs and ensure that the transformation generated numeric

outputs (as taking logs of negative numbers is invalid). The skewness threshold of 10

was selected empirically after visualising the distribution of features after their log

transformation.

Skewness =
1
N

N

∑
i=1

(xi − x̄)3

σ3 (3.7)

Figure 3.3 shows two example changes in probability distribution function once

features were log transformed.

3.11.5 Removing Redundant Variables

A total of 193 features have been generated for machine learning models. Many of

these will be considered to have poor correlation to the target variable and generate
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Figure 3.3: Probability density functions of features before and after a log transformation

(blue and orange respectively)

more ‘noise’ to the model rather than ‘signal’. By removing redundant variables that do

not benefit the model there is potential to improve model performance. A number of

approaches were considered including Principal Component Analysis (PCA) and

Kernel Principal Component Analysis (KPCA) [28][33]. PCA and KPCA were not

selected as the output features from these processes are not as interpretable as the

original features which is in conflict with our objective of generating explainable

machine learning models. Instead, Boruta was selected as the feature selection method

[22]. Boruta is described an “all relevant” feature selection method that tries to find all

features carrying useable information. Boruta works by copying and shuffling the

columns of the dataset, training random forest classifiers, and then using feature

importance scores, and z scores to find the important features. This process is done

iteratively to robustly find the most important feature. Boruta has also shown to be

highly effective in real world data problems which drove most of the motivation for this

selection [21]. Boruta was applied to each of the 4 subtasks to ensure only the most

relevant features to be used for each task.

3.11.6 Class Imbalance

As shown in section 3.3, there is a strong class imbalance between segment labels. This

can cause bias toward to the majority class which is unfavourable. There are a number

of approaches to reduce this problem including undersampling, oversampling, and class

weighting. Undersampling of the majority class was not considered as it causes loss of

data. Typical oversampling can cause overfitting as we are duplicating datapoints.

Class weighting can also cause overfitting as well as create model instability if used

with a stochastic solver as the optimizer can sometimes struggles to converge. The
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chosen approach was Synthetic Minority Oversampling Technique (SMOTE) which is

a form of oversampling [8]. However, it attempts to lessen the impact of overfitting

seen in normal oversampling by generating plausible new minority class datapoints.

SMOTE was applied to training sets to help the model manage the class imbalance

while training. However, SMOTE was not applied to the validation or test set and this

would distort the dataset used for evaluation and would not give an accurate measure of

generalisation performance.

3.12 Final Model Evaluation & Shapley Values

Due to computational limitations the final model evaluation can not be applied to all

models and will be restricted to the two best performing models. Final results are

generated by evaluating the two best models on the test set. First, the two final models

will be trained using the default method but with 50 iterations of the gaussian process

hyperparmeter step. This will allow more of the parameter search space to be evaluated,

potentially finding a better performing model. Second, the best set of hyperparameters

will be used to train the model on a training and validation set combination to maximise

the data available. Model evaluation will then take place on the test set.

As an additional measure, SHAP will be applied to each of the final models to improve

their explainability [24]. The key visualisations used will be Force Plots. This was

motivated by the benefits it would provide in a real world environment. Healthcare

professionals would potentially gain trust in machine learning models if they can see

what has driven individual predictions. From current knowledge this is the first time

SHAP explanations at the datapoint level have been made for mania and depression

mood state classification using data collected from wearable health devices.
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Results

To set benchmarks and establish proper context for future model development, first

baseline results are introduced and discussed in context to the relevant literature. This

allows for proper context to be set for further model development and robustly evaluate

these developments.

As outlined in section 3.4 the original mood state classification task is divided into 4

sub tasks (YMRS with sleep state 0, YMRS with sleep state 1, HDRS with sleep state

0, HDRS with sleep state 1). Therefore, each modelling approach developed will be

evaluated on each of the 4 tasks.

4.1 Comparative Models From Literature

The main comparative result from literature for the HDRS task is from 2020 [35]. This

was selected due to the fact similar data channels were used to create input features for

the model. It should be noted that the literature results are based on a different dataset

and different data channels and so cannot be directly used as a target performance to

improve on. Rather, the results are to build context to the results generated from this

project. The paper presents mood state classification f1 score of 0.75 with an accuracy

of 0.76.

Literature on binary classification of acute vs euthymic mania mood state is very

limited and so direct comparison to results in literature cannot be made. The most

relevant research score with an accuracy of 91.29% was generated when predicting

mania (YMRS) mood state binary classification [2]. Precision, recall and f1 score were

not detailed in this paper. It should also be noted that the publication used leave-one-out

21
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Naive
Mode Model

HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

f1 Score 0.00 0.00 0.00 0.00 0.00

Accuracy 0.78 0.68 0.71 0.72 0.72

Table 4.1: Naive mode baseline model performance across each of the subtasks.

Naive
Binomial Model

HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

f1 Score 0.28 0.28 0.29 0.29 0.27

Accuracy 0.65 0.57 0.59 0.60 0.60

Table 4.2: Naive binomial baseline model performance across each of the subtasks.

validation which will also generate a higher score than the train/validation/test split

used in this project as leave-one-out provides more data for the model to train on.

The results of both the mode and binomial naı̈ve baseline models can be seen in Table

4.1 and 4.2 respectively. For all tasks, the naı̈ve mode baseline model has an f1 score of

zero which is expected as the model only predicts the negative class. The accuracy

across all 4 subtasks initially appears quite high, but this is a reflection the class

imbalance within the data.

The naı̈ve binomial model demonstrates baseline f1 scores across all the 4 subtasks.

The model generates similar f1 scores of around 0.28 with the exception of HDRS with

sleep state 0, where performance significantly drops. This drop in performance is likely

due to the stronger class imbalance within this specific subtask. Other subtasks have a

majority class 72%±2% while HDRS sleep state zero has a majority class 77% of the

time.

4.2 Machine Learning Models with Default Hyperparam-

eters

The predictions made by the linear regression model are identical to the naı̈ve mode

baseline model. This suggests the linear regression model is severely underfitting and is

unable to learn the underlying trend of the data as it has only predicted the “0” class for
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Figure 4.1: Confusion matrix comparing the logistic regression model predictions to their

true values.

all datapoints in the validation set. Figure 4.1 shows the confusion matrix for HDRS

sleep state 0, with similar results seen across all subtasks. This result also suggests that

there are non-linear relationships between the input and the target variables, and that

more complex models may perform better.

The decision tree model with default parameters performed much better than linear

regression, with f1 score outperforming the naı̈ve binomial model, suggesting that the

decision tree model is capable of learning the underlying trend of the data. Although

the decision tree performance is above the baseline models, it is still far below what has

previously seen in literature.

Both the XGBoost and KNN models are an improvement over the naı̈ve baseline

models with f1 scores that exceed these models in all tasks. This suggests that the

models are somewhat capable of learning the underlying trend of our data and could be

viable models if further performance gains are found using other techniques used in

this project. Although the KNN results are a 0.09 improvement over the naı̈ve baseline

f1 score, in a clinical setting, the performance gain may not be significant enough to

justify its use over simple statistical models such as the naı̈ve baseline models.

4.3 Hyperparameter Tuning

When applying hyperparameter tuning, all models except logistic regression improve

their performance on all tasks (Tables 4.5 and 4.6) compared to their default
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f1 Score
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.00 0.00 0.00 0.00 0.00

Decision Tree 0.42 0.41 0.44 0.37 0.41

KNN 0.35 0.35 0.39 0.35 0.36

XGBoost

Classifier
0.40 0.44 0.43 0.38 0.41

Table 4.3: Model f1 score of the 4 machine learning models using default hyperparame-

ters.

Accuracy
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.78 0.71 0.71 0.74 0.74

Decision Tree 0.73 0.66 0.67 0.67 0.68

KNN 0.78 0.71 0.71 0.73 0.73

XGBoost

Classifier
0.81 0.77 0.76 0.78 0.78

Table 4.4: Model accuracy of the 4 machine learning models using default hyperparame-

ters.
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f1 Score
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.00 0.00 0.00 0.00 0.00

Decision Tree 0.42 0.43 0.44 0.41 0.43

KNN 0.41 0.42 0.44 0.43 0.43

XGBoost

Classifier
0.40 0.44 0.43 0.40 0.42

Table 4.5: Model f1 score of the 4 machine learning models using tuned hyperparameters.

Accuracy
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.77 0.71 0.71 0.74 0.73

Decision Tree 0.36 0.41 0.41 0.41 0.39

KNN 0.70 0.66 0.65 0.68 0.67

XGBoost

Classifier
0.76 0.71 0.70 0.73 0.73

Table 4.6: Model accuracy of the 4 machine learning models using tuned hyperparame-

ters.

hyperparameter counterparts (Tables 4.3 and 4.4). This is expected as the

hyperparameters allow the models to fit the training better. The logistic regression

model did not improve compared to its non-tuned counterpart, which supports the

original evaluation that the model does not have sufficient complexity to model the task.

The model with greatest improvement was KNN with an average f1 score of 0.08 above

the default counterpart. This is likely due to the ”weights” hyperparameter selected to

be ”distance” for all tasks. This hyperparameter allows for the k nearest neighbours to

be inversely weighted according to their distance.
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f1 Score
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0 0 0 0 0

Decision Tree 0.40 0.46 0.44 0.41 0.43

KNN 0.40 0.42 0.44 0.40 0.42

XGBoost

Classifier
0.48 0.51 0.51 0.47 0.49

Table 4.7: Model f1 score of the 4 machine learning models using tuned hyperparameters

and additional features.

Accuracy
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.78 0.72 0.71 0.75 0.74

Decision Tree 0.74 0.69 0.67 0.70 0.70

KNN 0.78 0.71 0.71 0.73 0.73

XGBoost

Classifier
0.81 0.75 0.75 0.75 0.77

Table 4.8: Model accuracy of the 4 machine learning models using tuned hyperparame-

ters and additional features.

4.4 Additional Columns

All experiments up to this point have used the core features generated from FLIRT

which were a total of 184 features. An additional 9 features were generated by

comparing high importance features from relevant literature and the core FLIRT

features. For a more detailed motivation and methodology see section 3.11.2.

The most significant change comes from the XGBoost classifiers where on average the

model f1 improves by 0.08. This f1 score improvement demonstrates that the additional

features provide useful information to the model (Tables 4.7 and 4.8). A strong

improvement from the decision tree model is also observed with an average f1 score

improvement of 0.07 across all tasks.
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f1 Score
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.00 0.00 0.00 0.04 0.01

Decision Tree 0.41 0.43 0.42 0.44 0.43

KNN 0.39 0.41 0.41 0.42 0.41

XGBoost

Classifier
0.46 0.49 0.49 0.48 0.48

Table 4.9: Model f1 score of the 4 machine learning models using tuned hyperparameters,

additional features, and imputing missing data.

KNN, the logistic regression model and the decision tree have a near zero change in

model f1 score. This suggests that the new features do not simplify the tasks, rather

provide additional information to the models. A possible intuition to these performance

changes are that the features provide more information to the models but at the cost of

noise.

4.5 Imputing Missing Data

The original hypothesis around imputing null values was that it would cause less rows

to be dropped therefore giving more data to the model to learn on. However, it is almost

always the case that model performance dropped across all tasks (Tables 4.9 and 4.10).

This is likely because although the iterative imputer is an advanced approach to impute

missing data, we have used a linear model to impute the data and as shown by the

logistic regression model the relationship between variables is likely to be non-linear.

We therefore have likely imputed unrealistic values and added noise to the data. This

hypothesis is supported by the results as all model performances have either a near

equivalent or reduced performance with the imputation of missing data.

It should be noted that the logistic regression model has slightly improved in f1 score

but dropped in accuracy. The change in performance is negligible and conclusions

cannot be drawn with confidence.
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Accuracy
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.77 0.72 0.71 0.72 0.73

Decision Tree 0.72 0.70 0.67 0.69 0.70

KNN 0.76 0.71 0.70 0.70 0.72

XGBoost

Classifier
0.82 0.78 0.74 0.75 0.77

Table 4.10: Model accuracy of the 4 machine learning models using tuned hyperparame-

ters, additional features, and imputing missing data.

4.6 Feature Transformations

Logistic regression was the model which was expected to benefit from this data

transformation. By taking the log transform of highly skewed variables the hypothesis

was that some of the non-linear relationships that need to be modelled would be

reduced to linear relationships. However, the results showed very little/no improvement

(Tables 4.11 and 4.12). The only task with improvement was the HDRS tasks with

sleep state 1 (awake). The improvement is so small that similarly to previous steps, we

cannot robustly make conclusions from the change seen in model performance.

All other models on average across the 4 tasks had a decrease in validation set

performance. However, their change in performance is very small and not significant

enough to clearly identify that it worsens the model performance, as there are a number

of stochastic processes within the evaluation performance including the gaussian

processes optimization of the model hyperparameters.

4.7 Dropped Columns

In this step, Boruta is applied to identify the columns that should be dropped. Boruta

was applied individually to each of the 4 tasks which gives a total of 4 exclusion lists.

Table 4.13 shows the columns dropped consistently across all 4 tasks and Table 4.14

shows the number of columns dropped for each tasks. Appendix A.2 contains the full

list of features dropped.
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f1 Score
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.00 0.02 0.00 0.04 0.02

Decision Tree 0.40 0.41 0.43 0.42 0.42

KNN 0.38 0.41 0.41 0.40 0.40

XGBoost

Classifier
0.45 0.49 0.49 0.47 0.48

Table 4.11: Model f1 score of the 4 machine learning models using tuned hyperparame-

ters, additional features, imputing missing data, and log transformation of highly skewed

variables.

Accuracy
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.78 0.73 0.71 0.72 0.74

Decision Tree 0.72 0.70 0.67 0.68 0.69

KNN 0.76 0.71 0.70 0.70 0.72

XGBoost

Classifier
0.79 0.77 0.77 0.75 0.77

Table 4.12: Model accuracy of the 4 machine learning models using tuned hyperparame-

ters, additional features, imputing missing data, and log transformation of highly skewed

variables.

Dropped Columns for All Tasks

tonic perm entropy tonic skewness acc y iqr 5 95

phasic min tonic kurtosis l2 n sign changes

phasic n sign changes tonic peaks BVP cv

acc x n above mean tonic n above mean BVP cv

acc x n below mean tonic n below mean

acc y n above mean tonic n sign changes

Table 4.13: Names of the columns consistently dropped across all subtasks when using

Boruta.
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Number of Columns Dropped

HDRS Sleep State 0 HDRS Sleep State 1 YMRS Sleep State 0 YMRS Sleep State 1

23 28 29 39

Table 4.14: The number of columns dropped for each subtask when using Boruta.

As can be seen in Table 4.15 and 4.16, with features dropped both the tree based models

improve. The intuition behind this result is that by removing redundant columns, noise

is also removed from the data, making the tasks easier for the models. However, the

logistic regression and KNN approaches have no improvement in model performance.

4.8 Class Imbalance

SMOTE was applied to all models to manage the class imbalance seen in the training

set. Using this technique along with all previous improvement steps generated the best

performing model with XGBoost averaging an f1 score of 0.51 (Table 4.17) . This

improvement also holds true when evaluating accuracy (Table 4.18). XGBoost averages

an accuracy of 0.78 across the 4 tasks which is the best performing model.

KNN had a significant improvement and outperformed the decision tree. An average f1

score of 0.45 improves the model by 0.05 compared to the previous improvement step.

This is the second best model seen (after XGBoost) and is a considerable improvement

over the baseline models.

Logistic regression generated an average f1 score of 0.36 which appears to be a

significant improvement. However, this change is not an increase in performance but

rather a change from predicting a single class (similar to the naive model model) to now

randomly selecting a class (similar to our binomial model). When comparing the

logistic regression to our naive baseline models we can see there has been no

significant change in performance.

The decision tree model performance dropped in comparison to previous improvement

steps. This may be due to noise generated from the additional datapoints from SMOTE.

Overall the best performing decision tree model was when additional columns and

hyperparameter tuning was applied.
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f1 Score
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.00 0.02 0.00 0.04 0.02

Decision Tree 0.41 0.43 0.45 0.43 0.43

KNN 0.38 0.41 0.41 0.40 0.40

XGBoost

Classifier
0.48 0.51 0.52 0.50 0.50

Table 4.15: Model f1 score of the 4 machine learning models using tuned hyperpa-

rameters, additional features, imputing missing data, log transformations, and dropped

columns.

Accuracy
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.77 0.73 0.71 0.72 0.73

Decision Tree 0.73 0.70 0.68 0.68 0.70

KNN 0.76 0.71 0.70 0.71 0.72

XGBoost

Classifier
0.80 0.78 0.78 0.78 0.79

Table 4.16: Model accuracy of the 4 machine learning models using tuned hyperpa-

rameters, additional features, imputing missing data, log transformations, and dropped

columns.
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f1 Score
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.35 0.39 0.35 0.37 0.37

Decision Tree 0.37 0.38 0.40 0.36 0.38

KNN 0.42 0.45 0.46 0.46 0.45

XGBoost

Classifier
0.48 0.51 0.52 0.53 0.51

Table 4.17: Model f1 score of the 4 machine learning models using tuned hyperparame-

ters, additional features, imputing missing data, log transformations, dropped columns,

and class balancing using SMOTE.

Accuracy
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

Logistic

Regression
0.55 0.52 0.55 0.55 0.54

Decision Tree 0.70 0.50 0.48 0.54 0.56

KNN 0.68 0.61 0.62 0.61 0.63

XGBoost

Classifier
0.78 0.74 0.75 0.78 0.76

Table 4.18: Model accuracy of the 4 machine learning models using tuned hyperparame-

ters, additional features, imputing missing data, log transformations, dropped columns,

and class balancing using SMOTE.
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f1 Score
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

KNN 0.41 0.46 0.46 0.44 0.44

XGBoost

Classifier
0.47 0.56 0.53 0.52 0.52

Table 4.19: Model f1 score of the two final machine learning models on the test set with

all previous improvements steps applied. Additional training data was provided via the

validation set and 50 iterations of the gaussian process hyperparameter optimization

process was applied.

4.9 Final Results

Final results are generated by evaluating the final models on the test set (Tables 4.19

and 4.20). The two final models are the best performing models (KNN and XGBoost

from section 4.8). See section 3.12 for a detailed methodology of how these final

models were trained to maximise performance.

The best performing model is the XGBoost classifier with an average f1 score of 0.52.

This is an improvement over any other previous score and could be expected due to the

addition data used during training alongside extra tuning iterations. The mania

classification performance is very consistent across sleep states. However the

depression mood state performance significantly drops between sleep states, which has

been consistent with all other results. The suspected intuition behind this is that in sleep

state 0 there is near zero acceleration data to be used and literature had previously

shown the importance of patient movement when identifying depression [4].

The XGBoost classifier has shown an f1 score twice that of the naive binomial model

with many of the improvement steps contributing to this increase in performance. In

comparison to the literature, this performance is still below state of the art performance.

However as the dataset is different the results can not be directly compared.

KNN also generated the best performing model of its type with an average f1 score of

0.44. f1 scores across each subtasks followed similar trends to the XGBoost classifier

where HDRS sleep state 0 was lower than all other subtasks.
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Accuracy
HDRS

Sleep State 0

HDRS

Sleep State 1

YMRS

Sleep State 0

YMRS

Sleep State 1
Average

KNN 0.67 0.62 0.62 0.62 0.63

XGBoost

Classifier
0.78 0.79 0.76 0.78 0.78

Table 4.20: Model accuracy of the two final machine learning models on the test set with

all previous improvements steps applied. Additional training data was provided via the

validation set and 50 iterations of the gaussian process hyperparameter optimization

process was applied.

4.10 SHAP Visualisations

To aid explainability of the top 2 performing models, SHAP was applied at the

individual patient prediction level. Force plots have been generated for the XGBoost

and KNN models and can be seen in Figure 4.3 and 4.2.

Figure 4.2 shows an example force plot on the XGBoost model for patient 1424331

(patient number is anonymized) with the red and blue segments indicating the impact

each feature had on the model. Firstly, this plot shows us that the sum of the

contributing factors (labeled as f(x)) is below the base value and so will predict an

euthymic mood state. We can also see that a large number of features are considered

when generating the prediction. Each red segment represents a feature that provides a

positive influence on the outcome (i.e. influences the predicted mood state to be acute)

and the blue segments influence the prediction negatively. We can see the biggest

influence on the outcome is from the feature ”TEMP median”. This feature is

interpretable to non-technical users and easily provides insight into what is driving the

model output. Some of the more obscure feature can be clarified by a simple data

dictionary with explanations of what the features refer to.

Figure 4.3 shows a force plot for patient 1656030 (patient number is anonymized)

using the KNN model. We can immediately see that the model is much simpler with

many fewer features influencing the outcome. The feature ”acc y energy” is the largest

contributor to the outcome, and driving an euthymic state.

Applying force plots to explain model outcomes significantly improves model

explainability. The force plot is just one of the visualisations available from SHAP,
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Figure 4.2: Example force plot generated using SHAP and an XGBoost Classifier.

Figure 4.3: Example force plot generated using SHAP and an KNN Classifier.

with others including summary and dependence plots that summarise different aspects

of the model. However, this is outside the scope of this project and should be

considered in future work.



Chapter 5

Conclusions

The aim of this project was to answer the question: can mood state be accurately

identified with explainable machine learning models using data from consumer-grade

wearable health devices?

A clear methodology was outlined identifying the steps that needed to be undertaken to

answer the key project question. During the implementation of this methodology, 4

types of machine learning models were trained using data collected from wearable

health devices. The dataset was cleaned, processed, segmented and summarised into

interpretable features. Model training and evaluation steps were put in place with

appropriate evaluation metrics and throughout the project model explainability was

kept as a key consideration.

The key results generated from this project include:

• 184 features extracted on the time series data using the FLIRT python package.

• Developed baseline models to benchmark model performances.

• Developed appropriate training and evaluation steps with suitable metrics.

• Developed 4 types of machine learning models to identify mania and depression

mood state.

• Identified and implemented 6 steps to improve model performance whilst retaining

model explainability.

• Generated SHAP force plots to explain how model inputs contributing to an

individual prediction.

36
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The most significant result from this project is the high performing XGBoost classifier

that had good levels of model explainability. The XGBoost classifier scored an average

f1 score of 0.52 across the 4 subtasks, which is twice that of the naı̈ve binomial

baseline model. From our knowledge this is the first time mood state classification has

been undertaken with a focus on model explainability throughout. The results show

that mood state can be accurately identified with machine learning models using data

from consumer-grade wearable health devices.

Very good results were generated from this project, however there is still scope for

future work in this area. Firstly, SHAP provides a number of visualisations to inspect

different aspects of the model. Future work could continue investigating how to make

models more explainable by leveraging this functionality. Secondly, many of the

features used as model inputs were easily interpretable. However, some of the features

are not as easily understandable (e.g. “I2 IQR”). Further work could be taken to make

some of the more complex features more accessible to a non technical audience.

Thirdly, the approach used to impute missing data did not improve model performance.

Researching more effective ways to impute the missing data may have a positive impact

on classification of mood state via machine learning.
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Figure A.1: List of all features used in baseline models. For full description and definitions

see FLIRT python package [16].
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Column Names Dropped

HDRS Sleep State 0 HDRS Sleep State 1

tonic skewness tonic skewness

tonic kurtosis tonic kurtosis

tonic peaks tonic peaks

tonic n above mean tonic n above mean

tonic n below mean tonic n below mean

tonic n sign changes tonic n sign changes

tonic perm entropy tonic perm entropy

phasic min phasic min

phasic skewness phasic peaks

phasic n sign changes phasic n above mean

acc x n above mean phasic n sign changes

acc x n below mean acc x skewness

acc x iqr acc x kurtosis

acc y ptp acc x n above mean

acc y n above mean acc x n below mean

acc y n below mean acc y std

acc y iqr acc y ptp

acc y iqr 5 95 acc y skewness

acc z n sign changes acc y kurtosis

acc z iqr acc y n above mean

l2 n sign changes acc y n below mean

BVP mean acc y iqr

BVP cv acc y iqr 5 95

acc z n sign changes

acc z iqr

l2 peaks

l2 n sign changes

BVP cv

Table A.1: Features dropped using the Boruta package for depression mood state tasks.
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Column Names Dropped

YMRS Sleep State 0 YMRS Sleep State 1

tonic skewness tonic skewness

tonic kurtosis tonic kurtosis

tonic peaks tonic peaks

tonic n above mean tonic n above mean

tonic n below mean tonic n below mean

tonic n sign changes tonic n sign changes

tonic perm entropy tonic perm entropy

phasic min phasic min

phasic skewness phasic skewness

phasic peaks phasic peaks

phasic n above mean phasic n above mean

phasic n below mean phasic n sign changes

phasic n sign changes phasic perm entropy

acc x skewness acc x ptp

acc x kurtosis acc x skewness

acc x n above mean acc x kurtosis

acc x n below mean acc x n above mean

acc x n sign changes acc x n below mean

acc x iqr acc x n sign changes

acc y skewness acc x iqr

acc y n above mean acc x iqr 5 95

acc y n below mean acc y std

acc y iqr 5 95 acc y skewness

acc z skewness acc y kurtosis

acc z n sign changes acc y n above mean

l2 n above mean acc y n below mean

l2 n below mean acc y iqr

l2 n sign changes acc y iqr 5 95

BVP cv acc z skewness

acc z n above mean

acc z n below mean

acc z iqr

l2 peaks

l2 n above mean

l2 n below mean

l2 n sign changes

Table A.2: Features dropped using the Boruta package for mania mood state tasks.


