
Data Orchestration in Connection

to Stock Fundamentals

Yuxuan Zhou

Master of Science

School of Informatics

University of Edinburgh

2023

Abstract

The modern financial market is characterized by an abundance of diverse data, such

that the time devoted to data preparation frequently outweighs other crucial duties,

particularly in the field of stock market fundamental analysis. This dissertation ad-

dresses this problem by introducing a comprehensive system for automatically orches-

trating stock fundamental data. The system aims to automate the complex process

involving the acquisition, updating, processing, and storage of data. The focus is on

collecting information from reliable financial sources. In light of a comprehensive

analysis of stock fundamentals, a curated list of influential factors concentrating on

valuation, performance, sensitivity, and geopolitics has been generated. The system

combines cutting-edge data-centric technologies, including a real-time engine for big

data processing(Flink) and message middleware(Kafka). The combination of these

technologies not only increases the system’s efficiency, but also highlights its potential

for improving stock market fundamental analysis.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics pol-

icy. It did not involve any aspects that required approval from the Informatics Research

Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

ii

Acknowledgements

Throughout this entire dissertation journey, I would like to express my deepest grat-

itude to my supervisor, Felipe Costa Sperb, for his consistent guidance, invaluable

feedback, and endless encouragement. His knowledge and insights were crucial to the

completion of this project. In addition, I am grateful to the team members for providing

the necessary assistance when I was in need, which greatly facilitated the completion

of my project. Furthermore, I would like to express my gratitude to the University of

Edinburgh, not only for providing me with a stimulating academic environment, but

also for instilling in me the values and principles that have guided my research activi-

ties. The school’s education, resources, and opportunities have had a significant impact

on my academic and professional development. Lastly, I am grateful to my parents for

their unwavering encouragement and support throughout this process. Their belief in

my abilities sustained me during the most challenging times.

iii

Table of Contents

1 Introduction 1
1.1 Background and Motivation . 1

1.2 Project Objective . 2

1.3 Dissertation Structure . 3

2 Related Works 4
2.1 Stock Fundamental Analysis . 4

2.1.1 Stock Fundamental Data . 5

2.1.2 Stock Fundamental Indicators 5

2.2 Distributed Message Oriented Middleware(MOM) 7

2.3 Data Stream Processing Framework 9

3 Methodology 11
3.1 Data Collection . 11

3.1.1 Stock Fundamental Factors 12

3.2 Data Processing . 12

3.2.1 Kafka Message Stream . 12

3.2.2 Apache Flink . 16

3.3 Data Storage and Updating . 18

4 Implementation 19
4.1 Requirements Specification . 19

4.1.1 Functional Requirements . 19

4.1.2 Non-functional Requirements 20

4.1.3 Constraints . 21

4.2 Data Flow Model . 21

4.3 Environmental Prerequisites . 21

4.4 Data Collection . 22

iv

4.5 Historical Data . 24

4.5.1 Batch Processing by pyFlink 25

4.6 Real-time Data . 26

4.6.1 Timing Mechanism for Updating 26

4.6.2 Data Ingestion into Kakfa 27

4.6.3 Stream Processing by pyFlink 27

4.7 Logging and Fault Tolerance Mechanism 28

4.8 Database Design and Storage . 29

5 Evaluation & Discussion 32
5.1 Execution and Output . 32

5.1.1 Data Acquisition . 32

5.1.2 Batch Processing and Storage of Historical Data 32

5.1.3 Real-time Updating Mechanism 35

5.1.4 User Interface . 35

5.2 Discussion . 36

6 Conclusions 38

Bibliography 40

Appendices 43
.1 Detailed List of Raw Data . 44

.2 Formulations of Stock Factors . 45

.3 Data Collection and Pre-Processing 55

.4 Batch Processing and Storage . 63

.5 Real-time Stream Processing and Storage 81

.6 User Interface . 84

v

Chapter 1

Introduction

1.1 Background and Motivation

In the fast-paced and ever-changing financial markets, access to reliable and timely

information is of great essence for making proper decisions and gaining a competitive

edge. Among the vast array of data sources available, stock market fundamental anal-

ysis, which involve the evaluation of companies’ balance sheets, income statements,

and cash flow statements, has been proved as a key driver for estimating companies’

value, understanding market trends, predicting stock performance, and supporting in-

vestment strategies[18], which prompts the finance industry to continuously seek ways

to leverage this crucial method and relevant data with great potential analytical value.

However, despite the acknowledged significance of stock fundamental analysis, ex-

ploiting its full potential remains a practical challenge. With the booming development

of machine learning and artificial intelligence in stock market analysis and prediction,

the technical obstacles is relates to the complex nature of data acquisition and ma-

nipulation in the critical stage of data preparation. Stock fundamentals data is often

scattered across a wide range of data sources, characterized by inconsistent, unstruc-

tured formats[18], and irregular update frequencies. Moreover, the analytical models

commonly utilized for analysing such data typically necessitate a dataset of sufficient

quality and quantity, along with timely data. Manual aggregation and pre-processing

of data, which might introduce inefficiencies, delays, and inaccuracies into analyti-

cal systems, are inadequate to fulfill the requirements of modern data preparation for

advanced analytical systems.

As a result, building an efficient, automated data pipeline system capable of ac-

quiring, updating, and handling the intricacies of data related to stock fundamentals

1

Chapter 1. Introduction 2

holds paramount importance in improving the accuracy and efficiency of model anal-

ysis and prediction, thereby further providing financial professionals, traders, and in-

vestors with more accurate and timely information to enhance their decision-making

capabilities and market competitiveness.

1.2 Project Objective

This project is a collaborative endeavor aimed at constructing a prototype for a stock

trading system, which aims to automate the core processes related to stock trading

analysis and prediction. The design of this trading system involved students engaging

in essential tasks such as data acquisition and orchestration, financial modeling, and

formulation of financial trading strategies. This project specifically concentrates on the

initial aspect of the system’s development, namely, data acquisition and orchestration.

To address the aforementioned challenges and fulfill the motivation of this disserta-

tion, the objective of this project is to create a stock fundamental data pipeline system

which is capable of acquiring, real-time updating, processing, formatting, and stor-

ing data. Therefore, the orchestration system could be seamlessly integrated with the

downstream analytical modelling components of prototyped the stock trading system

to support more efficient and intelligent and effective data-driven investment decision-

making. The key data focus of the project will be related to company valuation esti-

mates, metrics of company performance, key exogenous sensitivity factors, and geopo-

litical indicators (referred collectively as ’stock factors’ hereafter).

Specifically, the project includes the selection of data source APIs and database,

acquisition of raw data, identification and implementation of influential stock factors,

batch processing design and storage of historical data, automated stream processing

design and database updates for real-time data, and user-friendly interactive inter-

face. The data orchestration system adopts Kafka distributed messaging middleware,

Apache Flink distributed processing framework, and MySQL relational database. By

the combination of technologies, the system can leverage the strengths of each compo-

nent: Kafka’s high throughput and reliability in the aspect of data messaging, Apache

Flink’s real-time data processing capabilities, and MySQL’s stability and scalability in

the aspect of data storage. And this could help the system overcome the limitations

of existing ’off-the-shelf’ products such as latency, low-scalability, low-reliability, and

so on and empower the system to efficiently process data, conduct real-time analy-

sis, and effectively manage stock fundamentals data, providing a powerful solution for

Chapter 1. Introduction 3

financial market analysis.

1.3 Dissertation Structure

• Related Works: This chapter reviews the relevant literature from the conceptual

and technical aspects necessary to substantiate the design of the data orchestra-

tion framework to be developed. The conceptual part focus on the stock funda-

mental analysis and relevant influential factors. And the technical part concen-

trates on distributed data processing frameworks, distributed message oriented

middlewares.

• Methodology: This chapter provides a clear outline of the processes, methods,

and technologies of the project.

• Implementation: The chapter provides an in-depth description of the system de-

velopment process. This encompasses the requirements specification and com-

prehensive implementation procedure which includes system architecture and

designs.

• Evaluation and Discussion: This chapter describes the system’s execution sta-

tus and output results. In addition, it discusses the system’s efficacy, output

results, and other relevant aspects.

• Conclusions: This chapter provides a concise overview of the article and the

project, while also highlighting potential directions for further research.

Chapter 2

Related Works

2.1 Stock Fundamental Analysis

Stock fundamental analysis is widely recognised as a field of knowledge encompass-

ing principles and established methodologies aimed at evaluating the inherent value

of stocks in financial markets[26]. It utilises a comprehensive framework to assess

the expected economic factors, thereby identifying sectors which show the potential of

increasing in sales and profits. This analysis further enables the evaluation of the finan-

cial robustness of companies, the effectiveness of management, and the identification

of business prospects based on historical financial statements and prevailing market

conditions[26]. Therefore, the process involves assessing the expected fair value of

stocks and afterwards comparing them to market values that arise from the interplay of

supply (sellers) and demand (buyers) of stocks, facilitating the identification of poten-

tial investment opportunities.

According to Efficient Market Hypothesis(EMH)[14], all publicly available infor-

mation is already fully reflected in market prices. Put simply, the EMH postulates

that investors are unable to systematically extract additional information from pub-

lic sources or from historical stock price movements that is not already impounded

in stock prices and that would yield a return greater than the average market return.

However, for some markets, particularly emerging markets, the EMH is not entirely

effective and stock market prediction models using an array of public information and

historical price movements have been shown to produce better results than the aver-

age market returns[30]. Moreover, machine learning and artificial intelligence meth-

ods have been widely used for accurate prediction of stock market[9], including the

researches based on stock fundamental indexes[24, 8, 19]. In the period of data pre-

4

Chapter 2. Related Works 5

processing, [24] applied three famous feature selection methods, Principal Component

Analysis (PCA), Genetic Algorithms (GA) and decision trees (CART) to select in-

fluential factors and developed back-propagation neural network as prediction model.

Based on fundamental data, [8] proved that artificial neural networks (ANN) and deci-

sion trees perform better on stock price prediction than the hybrid model.

In summary, the literature reviewed in this section underscores the challenge of pre-

dicting stock market prices due to market efficiency, wherein much of the public in-

formation influencing buy and sell decisions is already incorporated into stock prices.

Nonetheless, the literature also highlights that predictive models can yield price fore-

casts that can support traders achieving above average returns. The key to achieving

such results lies in the capacity of predictive models to extract relevant insights from

stock market factors.

2.1.1 Stock Fundamental Data

In the current trend dominated by machine learning and artificial intelligence, data

preparation and processing plays an important role in the overall stock fundamental

analysis[18]. The fundamental analysis employs the company’s economic standing,

employees, board of directors, financial status, annual report, balance sheets, and in-

come statement, as well as special circumstances such as unnatural or natural disas-

ters and geopolitical or economic data, to analysis and forecast the stock price[18].

Moreover, information from the market environment such as national productivity ,

inflation rate, foreign currency exchange rate, or interest rates could also be influential

in stock fundamental analysis[17]. However, the such data comes from many differ-

ent sources and feature complex formats and structures, predominantly falling into

the categories of semi-structured or unstructured data[13]. Consequently, there exists

significant challenges in the data processing.

2.1.2 Stock Fundamental Indicators

Stock factors are the key measures that help to evaluate the economic state of market

and financial performance of a company[18]. These factors help investors and finan-

cial analysts estimate the intrinsic value of a company’s stock, forecast the market

trend, and thus make better investment decisions. Here are some typical categories of

fundamental factors:

• Valuation

Chapter 2. Related Works 6

These are the metrics used to evaluate the intrinsic value of a company. They

include indexes such as the Price to Earnings (P/E) ratio which comes from mul-

tiplier model[26] , Price to Book (P/B) ratio, Earnings per Share (EPS) and so

on. These indexes provide insight into how the market values a company rela-

tive to its earnings, book value, and many other fundamental influential factors

to determine whether a stock of the company is underpriced or overpriced. For

example, a higher value of P/E suggests that a stock is overpriced relative to its

earnings, but it can also indicate the market’s expectation of higher growth in the

future.

• Performance

The performance factors refer to the metrics used to evaluate the company’s

financial health and market performance, such as share price change, volume,

etc. Changes in the share price of a company over time can reveal how the

market’s perception of the company has evolved. In addition, trading volume

is a significant indicator of stock performance that can reveal information about

liquidity and investor interest. And sudden surges in volume may be indicative of

important news or events affecting the stock price. Based on the analysis on the

performance factors, investors and analysts can construct a picture of a stock’s

past performance and potentially gain insight into its future performance.

• Sensitivities

The factors are external elements to which a company’s performance is partic-

ularly sensitive. This can include changes in interest rates, foreign currency

exchange rates, or commodity prices. A company’s sensitivity to these factors

can significantly impact its future profitability and therefore its stock price. For

example, for multinational companies, changes in currency exchange rates can

have a significant impact on profitability and revenue in the cross-border busi-

ness involving payments in different currencies.

• Geopolitical

Geopolitical factors refer to the macroeconomic and geopolitical factors which

can include political stability, trade policies, and geopolitical tensions. These

factors can impact the broader economy and therefore have an indirect impact

on individual companies.

Chapter 2. Related Works 7

To summarize, stock fundamental analysis is an important part of analysis and forecast-

ing of financial market. However, current researches show high demand and standard

for data while fundamental data always has complex structures and comes from a wide

range of sources. Therefore, successfully and efficiently processing and generating

the important factors of stock fundamentals is the key to accurate stock fundamental

analysis.

2.2 Distributed Message Oriented Middleware(MOM)

Message Oriented Middleware(MOM), which consists of a message delivery mech-

anism or a message queue pattern[10], simplifies and enhances the consistency and

reliability of data exchange between systems. MOM enables two or more applications

to exchange data packaged as messages in a distributed system, in which Participants

are classified as either message producers or message consumers based on their meth-

ods of information management[28]. Producers transmit messages to the MOM. Once

a message arrives at the middleware, it is placed in a queue based on the message’s

control information. And then the MOM sends data to consumers via a peer-to-peer

or publish-subscribe model. Also, consumers can use the interface to designate the

message information they require by sending message queue names or subscription

conditions to the MOM. And the typical MOMs are as followed:

• Message Queuing Telemetry Transport(MQTT): MQTT[20] is a lightweight,

efficient, and reliable protocol that emphasises minimal network bandwidth con-

sumption and reduced memory footprint. It is widely used in Internet of Things

(IoT) applications, where it facilitates efficient and stable communication be-

tween a large number of devices with limited capabilities. Due to the issue with

throughput, MQTT is unsuitable for the transmission of large message payloads.

• RabbitMQ: RabbitMQ[25] is an open source messaging system that initially

implemented Advanced Message Queuing Protocol (AMQP) and has since been

expanded to support Streaming Text Oriented Messaging Protocol (STOMP),

MQ Telemetry Transport (MQTT), and other protocols via a plug-in architecture.

It is known for its robustness, ease of use, and platform independence, which

makes it the preferred option for enterprise-level development.

• ActiveMQ: ActiveMQ[12] is a an open-source message queue server which sup-

ports various user languages such as Java, C, C++, etc. It is suitable for systems

Chapter 2. Related Works 8

requiring stable, efficient, and flexibility. Nevertheless, ActiveMQ kernels were

developed earlier and the maintenance may not be guaranteed.

• RocketMQ: RocketMQ[15] is a widely adopted, high performance, non-logged

and reliable distributed messaging system. Considering its high throughput, re-

liability, and scalability, it is particularly useful in e-commerce transactions, big

data, and IoT. However, RocketMQ only offers development interfaces in Java,

C++, and Go.

• ZeroMQ: ZeroMQ[21] is a high-performance asynchronous messaging library

used widely in distributed and real-time scenarios, including finance and the

IoT. ZeroMQ has exceptional performance, but its costly development costs and

customization requirements make it a less common choice.

• Kafka: Kafka[27] is LinkedIn’s open-source distributed event streaming plat-

form. The architecture of Kafka enables it to process millions of messages per

second, providing the high throughput required to manage real-time data flows.

Due to its distributed nature, Kafka can be scaled horizontally by simply adding

more hardware. In addition, Kafka’s built-in storage system allows it to store

vast quantities of data for extended periods, enabling both real-time and batch

processing. Furthermore, Kafka’s fault-tolerant design prevents messages from

being lost due to individual node failures. In conclusion, Apache Kafka’s high

throughput, scalability, durability, and fault-tolerance make it an ideal choice for

distributed messaging middleware in systems requiring the processing of large

quantities of real-time data.

In summary, Message Oriented Middlewares, including MQTT, RabbitMQ, ActiveMQ,

RocketMQ, ZeroMQ, and Kafka, each possess distinct application scenarios. MQTT

is predominantly utilised within the context of the Internet of Things (IoT), RabbitMQ

is deemed appropriate for web applications, ActiveMQ is considered suitable for en-

terprise applications on a large scale, and RocketMQ is specifically tailored to cater

to big data scenarios. Conversely, ZeroMQ is better suited for distributed applications

that necessitate optimal performance and lowl latency. When considering the real-time

data part of the data orchestration system, Kafka is an ideal choice for the middleware

due to its ability to offer high throughput, persistence, distributed functionalities, and

stream processing capabilities. These features make Kafka particularly well-suited for

efficiently managing substantial volumes of real-time stock data.

Chapter 2. Related Works 9

2.3 Data Stream Processing Framework

Responding to an increasing need for huge amount real-time data processing in the

current data-driven world[16], data Stream Processing frameworks enjoy great popu-

larity. To serve the booming demands of streaming data processing, many computation

engines have sprung up[11], such as Apache Storm[4], Apache Spark Streaming[3],

Apache Flink[2].

• Apache Storm: Apache Storm[4] is a distributed real-time computation sys-

tem for processing high-velocity, high-volume data. It was initially developed

by Nathan Marz at BackType and was subsequently open-sourced after being

acquired by Twitter[23]. Storm consists of three primary elements: streams,

topologies, and nodes. The stream, which is an unbounded sequence of tu-

ples, is the fundamental data processing format. The topology functions as the

data graph, and Storm applications consist of topologies which form a graph of

data transformations[11]. In the data transformation graph, there are bolts and

spouts[23]. Spouts are accountable for receiving data from an external source

and sending it to the topology as a stream. Bolts, on the other hand, are respon-

sible for data processing and transformation. The distributed cluster for Storm

has two types of nodes: Master Node(Nimbus) and Worker Nodes(Supervisor).

Master nodes are responsible for distributing and managing topologies and worker

nodes execute the actual topology tasks.

• Apache Spark Streaming: Apache Spark Streaming[3] divides the live data

stream into micro-batches, which permits the use of the same code for both batch

and streaming processing.In the design of large-scale streaming computing sys-

tems, error management and straggler processing are two significant concerns.

Due to the real-time nature of streaming systems, it is crucial to recoup from

errors rapidly. Discretized Stream(DStream), the basic abstraction in Apache

Spark Streaming, provides a new recovery mechanism: parallel recovery[29]. In

the event of a node failure, the system promptly initiates the reconstruction of

the Resilient Distributed Dataset(RDD) of the failed node, using the resources

of the other nodes in the cluster. The current recovery mechanism has a higher

rate of speed compared to the replication and upstream replay methods of Storm.

In all, Apache Spark Streaming is a powerful tool for processing real-time data

streams, utilizing the convenience of batch processing, and ensuring high fault

tolerance and scalability.

Chapter 2. Related Works 10

• Apache Flink: Apache Flink[2] is an open-source platform for distributed pro-

cessing and computation, specifically designed for handling large-scale data

streams. It supports both batch and streaming processing jobs composed of

stateful interconnected tasks[7]. The architecture consists of three main com-

ponents: JobManager, TaskManager, and Client. JobManager is responsible for

coordinating and monitoring the execution of jobs, handling task scheduling, and

coordinating fault recovery. TaskManager executes data processing tasks and re-

turns the results to the Job Manager. Client is the user interface for submitting

jobs to the JobManager for execution. Flink is a powerful big data stream pro-

cessing framework that provides robust capabilities for handling large-scale data

streams, ensuring high throughput and low latency performance. It is widely

used in real-time data analysis like quality monitoring of Telco networks, large-

scale event-driven applications like fraud detction, or data pipeline applications

like real-time search index building in e-commerce[2].

In conclusion, each of the data stream processing framework possesses its own char-

acteristics. For instance, when the parallelism parameter for the number of processing

cores is adjusted, Storm shows a faster processing rate and shorter reaction time[11].

However, it also demonstrates a larger rate of message loss in the event of failures. To

choose an appropriate framework, the user should consider the application needs as

well as framework characteristics such as data processing rate and fault tolerance.

Chapter 3

Methodology

3.1 Data Collection

For this project, the fundamental stock data is collected from three primary sources:

Alpha Vantage[1], Yahoo Finance[6], and Wharton Research Data Service(WRDS)[5].

• Alpha Vantage

Alpha Vantage offers a comprehensive and reliable range of data, including

real-time and historical stock market data, foreign exchange rates, commodi-

ties prices, technical indicators, and other relevant financial information. Users

can access the data by calling the APIs that the company offers.

• Yahoo Finance

Yahoo Finance provides financial news, data, and commentary including stock

quotes, press releases, financial reports, and original content. However, in Septem-

ber 2021, the official Yahoo Finance API has been discontinued. The project

utilized the yfinance Python package, which allows users to download Yahoo

Finance data directly into Python, simplifying the data collection process.

• Wharton Research Data Service(WRDS)

Wharton Research Data Service(WRDS) is a research platform provided by the

Wharton School of the University of Pennsylvania. This platform offers diverse

financial datasets, catering to users with varying backgrounds. Users can not

only retrieve data via a user-friendly web-based interface, but also do data ex-

traction using programming languages such as Python, SAS, and R.

11

Chapter 3. Methodology 12

The detailed list of variables retrieved from Alpha Vantage, Yahoo Finance, and WRDS

is provided in Appendix ”1. Detailed List of Raw Data”.

3.1.1 Stock Fundamental Factors

The stock fundamental metrics are categorized as four aspects(Table 3.1).

Table 3.1: Category of Stock Fundamental Factors

Category Meaning

Valuation Intrinsic value of a company

Performance Financial health and performance of a company in the market

Sensitivities External elements to which company’s performance is sensitive

Geopolitical Macro-economic and geopolitical factors

Subsequently, a comprehensive description of the factors inside each category is

provided in the Tables 3.2, 3.3, 3.5, 3.4, 3.6 below. Their respective formulations can

be found in Appendix ”2. Formulations of Stock Factors”.

3.2 Data Processing

3.2.1 Kafka Message Stream

Apache Kafka is a distributed, high-throughput publish-subscribe messaging system

that supports partitioning, multi-copy, and multi-subscriber[27, 22]. It is extensively

used in scenarios including application decoupling, asynchronous processing, flow

limiting and peak shaving, and message-driven. The overall architecture of Kafka is

shown in Figure 3.1, which helps decouple data pipeline. And here are some important

components of Kafka:

Broker: Broker in Kafka cluster is the server node used to store topic data. The

higher the number of brokers, the higher the cluster throughput.

Topic: A Topic is a category of messages, similar to a database table name, and

messages from different Topics are stored separately on one or more brokers.

Partition: A topic is divided into one or more partitions (at least one), and the more

partitions there are, the greater the throughput, but the more resources are required,

which may result in greater unavailability.

Chapter 3. Methodology 13

Table 3.2: Valuation Factors(1)

Factor Description

Market Aggregate value of a company’s outstanding shares of stock

Capitalization

Enterprise Value Total value of a business, including not only equity holders but also

debt holders

EPS Portion of a company’s profit allocated to each outstanding share of

common stock, acting as a profitability indicator

EV/EBITDA Valuation metric that compares a company’s Enterprise Value (EV)

to its Earnings Before Interest, Taxes, Depreciation, and Amortiza-

tion (EBITDA)

EV/Sales Valuation metric that relates a company’s Enterprise Value (EV) to

its total sales or revenue

P/E Valuation metric that relates a company’s current share price to its

per-share earnings

PEG Valuation metric that relates a company’s P/E Ratio to its expected

earnings growth rate

Price/Sales Valuation metric that compares a company’s market capitalization to

its total sales or revenue

Book Value Net value of a company’s assets once all liabilities have been sub-

tracted

Price/Book
Value

Valuation metric that relates a company’s current share price to its

book value per share

Book Value Per
Share(BVPS)

Accounting value of a share based on the company’s equity available

to shareholders

Revenue Total monetary inflow for a company during a specific period

Cash/Share The amount of cash and cash equivalents a company holds, relative

to its total number of outstanding shares

P / FCF Valuation metric that relates a company’s current share price to its

per-share free cash flow

FCF Yield Valuation metric that relates a company’s annual free cash flow to

its market capitalization, offering insights into the relative value of a

company based on its ability to generate free cash flow

Graham Number stock’s maximum intrinsic value based on its earnings and book

value

Total equity/Total
liability

How much of company’s assets funded by equity versus funded by

liabilities

Chapter 3. Methodology 14

Table 3.3: Valuation Factors(2)

Factor Description

DuPont Analysis Decomposes Return on Equity (ROE) into its driving components to

provide a detailed understanding of a company’s performance

Total debt/Capi-
talization

Proportion of a company’s capital that is derived from debt (both

short-term and long-term) compared to the total capital (sum of debt

and equity)

Debt/EBITDA Company’s ability to pay off its incurred debt

FCF to Sales Firm’s ability to convert sales into cash

Interest Cover-
age Ratio

Company’s ability to meet its interest obligations from its operating

earnings

DFL Sensitivity of a company’s earnings per share (EPS) to fluctuations

in its operating income as a result of changes in its capital structure

Joel Greenblatts
Earnings Yield

Variation of the traditional earnings yield, where instead of using

market capitalization, the denominator is the enterprise value

CROIC Efficiency of a company in turning its invested capital into free cash

flow

Piotroski F-score Metric used to determine the financial strength of a company

Altman’s Z-
Score

Metric developed by Edward I. Altman in 1968 to predict the like-

lihood of a publicly traded manufacturing company going bankrupt

within the next two years

Table 3.4: Sensitive Factors

Factor Discription

Commodity prices Market prices for raw materials that are traded on national and

international commodity markets

Energy Prices Prices of different forms of energy

Foreign Currency Value of one country’s currency in relation to another

Exchange Rate currency

Interest Rates Rate a bank offers to its savers or investors

Inflation Rate of the general level of prices for goods/services is rising, and

subsequently, purchasing power is falling

Chapter 3. Methodology 15

Table 3.5: Performance Factors

Factor Description

Share price change Market’s expectations of a company

Trading volume Number of shares or contracts traded in a particular security or

market during a specific period

52 weeks low Lowest price at which the stock has traded during the previous 52

weeks

52 weeks high Highest price at which the stock has traded during the previous 52

weeks

Dividend Payment made by a corporation to its shareholders

Split Corporate action that increases the number of shares by dividing

its existing shares

Table 3.6: Geopolitical Factors

Factor Description

CBOE Brexit High 50 Performance 50 of UK companies least impacted by Brexit

CBOE Brexit Low 50 Performance of 50 UK companies most affected by Brexit

Figure 3.1: Overall Architecture of Kafka

Chapter 3. Methodology 16

Producer: Producer, data publisher, publishes the message to the relevant topic.

The broker containing the topic receives the message and appends it to the segment

file. And the user can specify a storage partition for the data.

Consumer: The consumer can read data from the broker and can consume data

from multiple topics subscribed. Each consumer belongs to a specific Group.

Some of the outstanding features of kafka make it a good choice for this project.

First of all, Kafka acts as an intermediate layer that can receive data from multi-

ple sources and distribute it to multiple consumers without requiring direct connec-

tions between sources and consumer, which means that data producers and data con-

sumers(such as Apache Flink) can scale and modify independently without affecting

the entire system. Furthermore, Kafka provides data durability so that data will not be

lost even in case of system failures. Moreover, there’s a good integration and compati-

bility between Apache Flink and Apache Kafka. Flink could read and write data from

and to Kafka with Kafka connector.

The project uses the publish-subscribe mode of Apache Kafka in the real-time data

part. In publish-subscribe mode, messages are persisted to the selected topic. Each

customer can subscribe to one or more topics and consume all data within the topic,

allowing the same data to be consumed by multiple customers without being promptly

deleted. According to different data types such as share prices, commodity prices,

the publishers publish the required data to the corresponding topics. And the con-

sumer(Flink) pull the data from the topics they subscribed.

To summarize, Kafka offers features such as data buffering, decoupling, fault tol-

erance, and the capacity to handle large-scale real-time data streams. When combined

with Flink, these characteristics enable the creation of a robust and scalable real-time

data processing framework.

Also, considering Kafka’s principle that data within the same partition is ordered

and data across different partitions is unordered, it is important to note that when con-

suming data from a topic with several partitions, the guarantee of data order cannot

be ensured. Hence, in this project, in order to ensure the sequential consumption of

real-time data collected, it is necessary to set the partition value to 1 in each topic.

3.2.2 Apache Flink

Apache Flink is a framework and distributed processing engine designed for stateful

computation of both unbounded and bounded data streams[2]. Flink could adapt to

Chapter 3. Methodology 17

all common cluster environments and can perform computations at memory speed and

at arbitrary scale. Currently, the prevailing streaming computing frameworks avail-

able in the market include Apache Storm, Spark Streaming, Apache Flink. However,

Apache Flink is the sole framework capable of concurrently supporting low latency,

high throughput, and Exactly-Once mechanism.

Flink is a stream processing system that is capable of performing batch processing

as well[7]. It achieves this by utilising its streaming computing engine to process

batch data, hence achieving a seamless integration of batch processing with stream

processing. In contrast to Spark’s strategy, Flink treats batch processing as a special

instance of stream processing. In the Flink framework, data is generally processed

as a stream, which aligns more closely with real-world scenarios. The project uses

flink’s batch processing mode for historical data part and stream processing mode for

real-time data part.

• Batch Processing for Historical Data

Considering the massive quantity of historical stock fundamental data(e.g., the

historical data collected for the duration of this project is SP500’s financial re-

ports for past 15 years, daily stock data for past 5 years, interest rates for past

70 years, etc.) and the capacity of Flink’s batch processing to effectively man-

age huge data volumes in a single operation, it is appropriate to employ Flink’s

batch processing mode for the historical data part. Raw data collected from

data sources undergoes pre-processing before being transferred to the batch pro-

cessing environment of Flink. Temporary tables are then created by employing

Flink’s Table APIs to receive the data. In addition, Flink offers some basic func-

tions like map() and customized methods to facilitate further data processing

tasks in the Flink environment[2]. The ultimate results are temporarily held for

the step of output or storage.

• Stream Processing for Real-time Data

In the real-time data section, Apache Flink builds a connection with Apache

Kafka through the Kafka Connector and reads the latest data from the Kafka

topics, which are continuously updated at specific intervals. Due to the pres-

ence of duplicate and irrelevant information, as well as historical data that has

already existed in the database, it is necessary to preprocess real-time data in

order to ensure its suitability and effectiveness. The preprocessing stage en-

compasses many tasks including as data purification, data format conversion,

Chapter 3. Methodology 18

and feature extraction, all aimed at preparing the data for the next step. Af-

ter that, the data would be sent to the Flink stream processing environment for

computational or analytical procedures. Furthermore, Apache Flink offers a di-

verse selection of pre-existing connectors designed for different types of sinks,

including databases, filesystems, and messaging queues. Consequently, it is a

straightforward process to direct the final results to the desired sink.

3.3 Data Storage and Updating

Data storage and updating uses MySQL, an open-source relational database manage-

ment system(RDBMS) that uses Structured Query Language(SQL) to add, access,

and manage the contents of a database. MySQL offers high-performance database

interactions and can efficiently manage large volumes of data. Furthermore, ACID-

compliant(Atomicity, Consistency, Isolation, Durability) of MySQL ensures that all

transactions are processed reliably, and in the event of a system failure, the database

could recover to a consistent state. Also, MySQL is easy to integrate with various

software and platforms, including Apache Flink, Visual Studio Code. Due to its robust

features, high reliability, and excellent performance, it is a good choice for the data

orchestration system in connection to stock fundamentals.

Chapter 4

Implementation

This section provides an in-depth description of the requirements specification, envi-

ronment prerequisites, architecture, and implementation details of the project. And

the detailed code content can be found in the appendix(”3. Data Collection and Pre-

Processing”, ”4. Batch Processing and Storage”, ”5. Real-time Stream Processing and

Storage”).

4.1 Requirements Specification

The data orchestration system is specifically created to have the capability of obtaining,

updating in real-time, processing, formatting, and storing data with a primary emphasis

on firm Valuation, Performance, Sensitivities, and Geopolitics. As a result, the system

can autonomously produce the required data set and serve as the upstream component

of stock trading systems, thereby enhancing the efficacy and effectiveness of data-

driven investment decision-making. The following are the requirements for the system.

4.1.1 Functional Requirements

1. Data Collection

The system should be able to collect data of various sources, including compa-

nies’ balance sheets, income statements, statements of cash flow, real-time stock

data, commodity and energy prices, interest rates and so on.

The system should be able to use APIs of Alpha Vantage, Yahoo Finance, and

Wharton Research Data Service(WRDS) to fetch the accurate and sufficient his-

torical and real-time data, which will be used as inputs to the subsequent stages

19

Chapter 4. Implementation 20

of the system..

2. Data Processing

The system should possess the capability to perform pre-processing and filtering

on the raw data in order to ensure that the data meets the input criteria of the met-

ric functions, if the raw data is used as an intermediate operand. Alternatively,

the system should ensure that the raw data is transformed into its final format.

The system should be able to generate the influential fundamental factors by

computation or prediction on the basic elements from raw data.

The system should be able to realize the automatic process of processing real-

time data with the combination the kafka and flink.

3. Data Storage and Updating

The system should be able to store all the data in a scalable and reliable data

storage system and handle the data in the database.

The system should be able to automatically update the content of the database to

ensure the data is latest.

4. User Interface

The system should provide easy user interfaces for both the downstream of stock

trading system and analysts. Users can have access to the datasets(Json/CSV) via

APIs which is designed with the parameters based on the desired data categories,

companies, time periods, and factor names. The flexible combination of param-

eters allows the user to access the datasets according to their unique needs.

4.1.2 Non-functional Requirements

1. Performance: The system should be able to handle a high volume of incoming

data and provide low latency processing.

2. Scalability: The system should be capable of scaling up to handle increased

workloads. Also, the system could be easy to add more factors or functions if

needed.

3. Security: The system should be able to ensure data privacy and confidentiality.

4. Usability: The interfaces created of the system should be user-friendly, intuitive,

and accessible.

Chapter 4. Implementation 21

4.1.3 Constraints

1. Budget: The system ought to be designed and executed within the designated

budgetary constraints, such as the exclusion of paid resources and reliance solely

on resources provided by the university.

2. Technology Stack: The system should be built on open-source software or

framework.

3. Data Source: The system should fetch the data from public data source or use

data source APIs with official permission.

4.2 Data Flow Model

The project collects raw data on stock fundamentals from data sources via APIs and

separates it into historical and real-time data segments. For historical data, the final

result is stored in the database after batch processing. For the real-time data part,

real-time data is subscribed via Kafka, then delivered into the Flink environment for

stream processing, and then the database contents are updated. Finally, the user can

acquire the data sets required for various later stock trading analysis via the system’s

interactive interface. The data flow model is shown as Figure 4.1.

4.3 Environmental Prerequisites

The project is developed by Python and utilises the technologies like kafka, Apache-

flink, and MySQL. The Table 4.1 shows the specific environment prerequisites.

Table 4.1: Environmental Prerequisites

Environmental Prerequisites

Python 3.9.16

open-jdk 11.0.13

MySql 8.0.33

kafka 2.12-3.5.0

apache-flink 1.17.1

Chapter 4. Implementation 22

Figure 4.1: Data Flow Model

4.4 Data Collection

The project employs the APIs of Alpha Vantage, yfinance and WRDS to gather stock

fundamental data, ensuring sufficient coverage and complementarity of data.

Alpha Vantage is a provider of APIs for historical and real-time financial data of

various types. The project uses the APIs to get historical and real-time data like finan-

cial reports of companies that compose the S&P500 index, commodity prices, foreign

exchange, inflation rates, interest rates and some other required data in the format of

Json. The API provided by Alpha Vantage allows for customization like functions,

intervals, and other relevant parameters according to the requirements(Figure 4.2).

Figure 4.2: API of Alpha Vantage

Yfinance is a Python library that provides users with the capability to retrieve fi-

Chapter 4. Implementation 23

nancial data from Yahoo Finance. This includes a wide range of information such

as stocks, cryptocurrencies, currencies, options, commodities, and other relevant data.

This system uses APIs of yfinance to get historical and real-time stock data, financial

reports of S&P500. The Figure 4.3 is an example of collecting historical stock data by

yfinance API.

Figure 4.3: API of Yfinance

However, the fundamental data provided by Alpha Vantage and yfinance is not

sufficient for the fundamental analysis. The time range available in these APIs for

financial reports of S&P500 is only 5 years, which can limit the training capabilities

of most machine learning models and trading simulations typically employed in stock

trading systems(e.g., 5 years of stock fundamentals that are published on a quarterly

basis would provide 20 data points per company). As a result, the project utilizes

WRDS as a main source of historical financial reports which provides past annual

financial reports for about 15 years. And the financial reports from the other sources

serve as the main raw data of real-time part

Given that the valuation part requires various basic items from the financial reports

and the data queries are complex, data extraction is done by Python(Figure 4.4).

Figure 4.4: API of WRDS

And the raw data collected from the data sources(Table 4.2) includes:

Chapter 4. Implementation 24

Table 4.2: Raw Data List

Alpha Vantage Yahoo Finance WRDS

Income Statement Income Statement Income Statement

Balance Sheet Balance Sheet Balance Sheet

Cash Flow Cash Flow Cash Flow

FX Exchange Rates Stock Data

Commodity Price CBOE Brexit

Energy Price

Inflation

Interest Rate

4.5 Historical Data

For the historical data part, the types of the raw data crawled, intervals, and their

corresponding time ranges are shown in the table 4.3 below.

Table 4.3: Historical Data (Type, Interval, Time Range)

Type Interval Time Range

Financial Reports Yearly Past 15 years

Inflation Yearly Past 64 years

Financial Reports Quarterly Past 5 quarters

FX Exchange Rates Monthly Past 20 years

Commodity/Energy Price Monthly Past 38 years

Interest Rate Monthly Past 70 years

Stock Data Daily Past 5 years

Geopolitical Data Daily Past 5 years

Prior to sending the data set into a batch processing environment, it is imperative

to do basic pre-processing on the raw data.

1. Data Cleaning: For certain instances of the S&P500 symbol list, it is possible

that there can be a lack of data that meets the specified criteria. Under these

circumstances, the project chooses to assign a value of 0 to the rows and columns

that have missing values.

2. Format Conversion: The data obtained from Alpha Vantage is in the Json format.

Chapter 4. Implementation 25

In order to ensure consistency in formatting, it is necessary to transform the data

into a standardised format of Dataframe, which can make the further processing

more easier.

3. Data Filtering and Aggregation: It is necessary to perform a filtering procedure

in data pre-processing. Useless or replicated items are removed while preserv-

ing the important components. Afterwards, according to the project target, some

distinct datasets are merged and combined in order to facilitate the subsequent

phases of data processing. For example, for financial reports, the essential ele-

ments necessary for generating fundamental valuation metrics in the following

phase are retained, while extraneous components are eliminated. Furthermore,

it is important to acknowledge that financial reports consist of a balance sheet,

income statement, and statement of cash flow, which are derived from three dis-

tinct data sources. Therefore, the process of aggregation is a crucial step that

cannot be disregarded.

4.5.1 Batch Processing by pyFlink

Given the significant amount of historical data, it is preferable to do the main process-

ing operation within the Flink framework. The initial stage in batch processing is the

selection of the execution mode, which enables the configuration of the settings for

the batch processing operation. By implementing this functionality, Flink could ac-

knowledge the limited scope of the dataset it is manipulating, thereby facilitating the

use of optimization strategies that are specifically tailored for datasets with restricted

boundaries. Subsequently, a Table Environment is instantiated, serving as the main

mechanism for accessing the functions of the Table API. The implementation of this

phase would guarantee that all operations are in accordance with batch processing

techniques. Additionally, the Table Environment offers an interface to set the configu-

rations, including parallelism, the number of task slots, memory allocation, and other

related parameters. The typical example of code snippet is shown in Fig 4.5.

Figure 4.5: Flink Batch Mode Environment

Chapter 4. Implementation 26

Once the environment has been initialized, the subsequent step involves the pro-

cessing of data. Most factors in the aspect valuation need to be calculated and gener-

ated according to their respective formulas while Flink’s inbuilt operations are not able

to meet these needs. However, Flink provides extensibility by allowing users to define

their own functions according to their needs through User-defined functions(UDF).

Through UDF, data processing can be conducted more flexible in the environment

of the Flink. Using the generation of the Graham Number as an illustrative exam-

ple(Figure 4.6), the entire procedure includes the definition, registration, and applica-

tion stages. UDFs can only be utilised in subsequent SQL queries or DataStream/-

DataSet APIs once the registration process has been completed.

Figure 4.6: UDF of Graham Number

Additionally, in the Flink environment, the final outcome should be stored in a tem-

porary sink prior to its output. And the schema of the sink should be strictly consistent

with that of the result query.

4.6 Real-time Data

4.6.1 Timing Mechanism for Updating

Considering the differing frequency of updates for different data types, the project

employs a scheduling mechanism(schedule) to make certain functions to execute at

specified times (.at() method) or at regular intervals (.every() method). For financial

reporting, the update date is consistently positioned at the end of each quarter and year.

This arrangement allows for the convenient scheduling of automated data collecting

tasks, which can be scheduled at the initial day of each quarter and year. In the case of

stock data, the update frequency is significantly higher, necessitating a daily execution

interval. Furthermore, it is crucial to acknowledge that schedule only executes the

predetermined jobs upon explicit invocation of the run pending() function. Hence, it is

Chapter 4. Implementation 27

imperative to realize an automation process by incorporating a loop design with a sleep

mechanism to mitigate the program’s excessive frequency in checking for pending

tasks.

4.6.2 Data Ingestion into Kakfa

To ensure efficient, orderly, and reliable collection of a significant amount of real-time

financial data, as well as to establish a stable buffer and persistence for the data, the

real-time part of the project utilises the Kafka messaging middleware to subscribe and

deliver newly updated data in real time.

Given the variety of data sources and types involved in this project, it is crucial

to build different Kafka topics based on the data types and storage architecture. This

approach will ensure more efficient listening and subsequent processing for real-time

data. Once the topics have been set up, the primary task is to write the real-time

messages obtained from the data sources into the Kafka topics. The first step of the

task is to define the type information(type info()) based on the nature and structure

of the input data. And then the Flink stream execution environment generates a data

stream from the input data set and converting the data into the Json format. This

serialisation process facilitates the transfer and storage of the data by enhancing its

accessibility and compatibility. Subsequently, the data stream is written to Kafka by

choosing the correspondig topic, serialization setting, and other relevant configuration

details through the Flink connector(FlinkKafkaProducer) intended for connecting with

Kafka.

4.6.3 Stream Processing by pyFlink

The initial stage in Flink’s stream processing framework is consuming the real-time

data from the Kafka messaging platform. The starting point is to create the deserial-

ization schema and constructing the deserialization builder, which enables the conver-

sion of the serialized format into a data structure that can be manipulated by Flink.

Subsequently, it is necessary to initialize the Kafka consumer(FlinkKafkaConsumer)

in Flink, wherein the topic of the data to be retrieved, the deserialization pattern, and

the related configuration are specified. Once the configured consumer is integrated into

Flink’s stream processing execution environment, the real-time data in Kafka could be

seamlessly consumed by Flink. Moreover, real-time data is substantially less than his-

torical data, thus processing it before sending it to Kafka or reading and then processing

Chapter 4. Implementation 28

it in Flinks by techniques similar to those in batch mode has a similar effect. The data

processing in this project employs the first method, wherein the data is processed prior

to being transmitted to kafka. Consequently, subsequent to the consumption of data

from Kafka, Flink could efficiently store and output real-time data through straightfor-

ward processes.

By concurrently executing the tasks of subscribing data in Kafka and consuming

and processing data in Flink on the Flink’s server, it becomes feasible to automate the

process of obtaining, processing, and storing real-time data.

4.7 Logging and Fault Tolerance Mechanism

Given the special nature of financial data, even after carefully selecting reliable data

sources, the data we acquire from the sources frequently has defaults or is not available

for specific symbol. Furthermore, the values of the same factors may vary due to the

adoption of different computational and quantitative criteria by different data sources

and firms. Hence, in situations involving missing data, the implementation of a sim-

ple substitution of information from other sources of data is not feasible. In general,

when dealing with a significant quantity of data, the significance of fault tolerance and

logging systems cannot be overstated. These techniques play a crucial role in error

management and ensuring the uninterrupted execution of the script.

Logging Mechanism: The present project employs module logging combined

with the function print() as a logging mechanism, which is extremely effective in the

stages of development and debugging. This approach enhances logging context by

providing additional details and enables increased flexibility in terms of output options

and more precise control.

Fault Tolerance Mechanism: (1) Exception Handling: In the process of data ac-

quisition and processing, try-expect statements is used to mitigate the risk of a com-

plete system failure resulting from a singular error occurrence. This is especially im-

portant given the substantial volume of data and the long process of the procedure.

Hence, during the acquisition or processing of data, it is imperative to promptly catch

and throw faults or exceptions, such as the incapacity of a single object to acquire data

or exceptions related to data format, in order to ensure the smooth running of the pro-

gramme. (2) Integrity of Data and Enforceability of Calculations: The project has the

mechanism whereby the default value is set to zero. Furthermore, given the metric cal-

culations play an important role in the project, conditional judgements are commonly

Chapter 4. Implementation 29

employed to prevent the circumstances such as an empty dataset, negative values under

the square root, zero denominators. (3) Track Record of Tasks Performed: Considering

the intricacy and huge volume of the data and the diversity of tasks, I implemented a

procedure of tracking and recording executed tasks. This approach aimed to guarantee

the successful completion of all data acquisition and task execution, hence mitigating

the occurrence of duplicate or missing tasks.

4.8 Database Design and Storage

The design of the tables in the MySQL database for this project is based on the cate-

gories of fundamental factors as well as the elements and structure of different kinds

of datasets.

Valuation: The factors of valuation include fundamental variables and valuation

metrics. The fundamental variables are derived from the quarterly and yearly financial

reports of the S&P 500 index over a span of 15 years. The metrics are obtained through

the following utilisation of computations and operations on the fundamental variables.

The design of the table for the valuation factors is shown in Figure 4.7.

Performance: The factors of performance are mainly the daily stock data of S&P500.

The design of the table for performance factors is shown in Figure 4.8.

Sensitivities: Sensitivities include multiple factors such as commodities prices,

energy prices, inflation rates, interest rates, and foreign currency exchange rates. Nev-

ertheless, the structure of foreign currency exchange rates diverges from other factors.

Consequently, two distinct tables have been designed to accommodate the sensitive

factors. The design for foreign currency exchange rates is depicted in Figure 4.9,

whereas the design for other factors(commodities prices, energy prices, inflation rates,

interest rates) is displayed in Figure 4.10.

Geopolitical: Geopolitical factors are composed of CBOE Brexit indexes. Based

on the structure of the factors, the design of the table is shown as Figure 4.11.

In the context of data storage, Flink, in both its batch and stream processing en-

vironments, establishes a connection with the database by utilising a connector that

facilitates interaction between Flink and JDBC. The final outcome is preserved within

the temporary table provided by Flink. It is imperative that the structure of the tem-

porary table closely matches with the corresponding table in the receiving database.

Subsequently, the data is stored in the database by manipulating the temporary table

using SQL statements in Flink.

Chapter 4. Implementation 30

Figure 4.7: Design of Valuation Table

Chapter 4. Implementation 31

Figure 4.8: Design of Performance Table

Figure 4.9: Design of Fx Table

Figure 4.10: Design of Sensitivities Table

Figure 4.11: Design of Geopolitical Table

Chapter 5

Evaluation & Discussion

5.1 Execution and Output

5.1.1 Data Acquisition

The project collected data on corporate valuations, performance, sensitivity, and geopo-

litical factors from three reliable data sources, namely Alpha Vantage, Yahoo Finance,

and WRDS. Figure 5.1 depicts a representative sample of the actual data collected(Symbol:

IBM, Data Type: Financial Report). Upon conducting the data quality assessments, it

has been concluded that the data exhibits a notable level of accuracy and completeness,

while also being regularly updated. The content of the raw dataset for each category is

list as follows:

Valuation: quarterly and yearly financial reports of S&P500

Performance: stock data of S&P500

Sensitivities: Commodity/Energy Prices(West Texas Intermediate(WTI) crude oil,

Brent crude oil, natural gas, copper, aluminum, wheat, corn, cotton, sugar, coffee,

global price index of all commodities), interest rates, inflation rates, foreign currency

exchange rates(EUR to USD, GBP to USD, USD to JPY, AUD to USD, USD to CAD,

USD to CHF, NZD to USD, GBP to EUR, USD to CNY, EUR to JPY)

Geopolitical: CBOE Brexit Low 50 index and CBOE Brexit High 50 index

5.1.2 Batch Processing and Storage of Historical Data

The process of batch processing and storage of historical data involves three main com-

ponents: pre-processing of raw data , data processing in the Flink’s batch environment

of Flink, and data storage. The efficiency of the execution of the whole process is

32

Chapter 5. Evaluation & Discussion 33

Figure 5.1: Raw Data from Data Sources

shown in Table5.1, which reveals gaps between the actual data volume and the antic-

ipated data volume. These differences arise from the unavailability of data for some

companies or specific time periods. And the throughput of the valuation factors is quite

poor in comparison to that of others, mostly because of the extensive computation of

numerous metrics during data processing. Moreover, the final form of the data saved

in the database is illustrated by the instances depicted in Figure 5.2, 5.3, 5.4, 5.5.

Data Type Target Actual Throughput

Valuation 10000rows 9684rows 1.24rows/s

Performance 630000rows 613158rows 466.3rows/s

Sensitivities 8560rows 8440rows 109rows/s

Geopolitical 2350rows 2348rows 242row/s

Table 5.1: Efficiency of Historical Data Part (Approximately)

Chapter 5. Evaluation & Discussion 34

Figure 5.2: Valuation

Figure 5.3: Performance

Figure 5.4: Sensitivities

Figure 5.5: Geopolitical

Chapter 5. Evaluation & Discussion 35

5.1.3 Real-time Updating Mechanism

To begin, the ZooKeeper and Kafka services must be started. Following this, it would

be helpful to create distinct Kafka topics based on the various databases and the update

frequency of the data. The subsequent step is to initiate the Flink server and execute

scripts on the Flink platform(Figure 5.6). These scripts utilise the schedule mechanism

so that tasks can be executed at the same frequency as data updates. This enables the

automatic retrieval of real-time data from the data source, processing, and storage in the

appropriate tables. Consequently, the objective of implementing an automatic update

function for real-time data is met.

Figure 5.6: Stream Processing Tasks

5.1.4 User Interface

To accomplish a seamless connection with large-scale stock trading analysis systems,

this project provides some interfaces for automatic generation of datasets(Json/CSV)

and charts. By accessing the APIs(Table 5.2) designed with the parameters based

on the desired data categories, companies, time periods, and factor names, users can

obtain the required data sets. The outcome and log of calling one API is shown as

Figure 5.7 and Figure 5.8.(Code details are shown in Appendix ”6. User Interface”)

Chapter 5. Evaluation & Discussion 36

Table 5.2: User Interface

Category API(Flexible Parameters)

Valuation http://127.0.0.1:5000/valuation dataset?symbol=xx&interval=xx&

start data=YYYY-MM-DD&end data=YYYY-MM-DD&format=xx

Performance http://127.0.0.1:5000/performance dataset?symbol=xx&start data

=YYYY-MM-DD&end data=YYYY-MM-DD&format=xx

FX http://127.0.0.1:5000/fx dataset?from symbol=xx&to symbol=xx&

start data=YYYY-MM-DD&end data=YYYY-MM-DD&format=xx

Sensitivities http://127.0.0.1:5000/sensitivities dataset?name=xx&

start data=YYYY-MM-DD&end data=YYYY-MM-DD&format=xx

Geopolitical http://127.0.0.1:5000/geopolitical dataset?name=xx&start data=

YYYY-MM-DD&end data=YYYY-MM-DD& format=xx

Figure 5.7: Outcome of Calling API

Figure 5.8: Log of Calling API

5.2 Discussion

The project builds a stock fundamental data pipeline system that effectively automates

the processes of acquiring, processing, updating, and storing relevant data. This data

orchestration system offers application programming interfaces (APIs) that are de-

Chapter 5. Evaluation & Discussion 37

signed to be easily navigable by users. These APIs facilitate the integration of the sys-

tem with downstream analysis and decision-making modules inside large stock trading

systems. Consequently, the system is able to supply the necessary datasets for later

analyses conducted within the whole system.

With regards to data collection, it is important to acknowledge that although the

chosen data sources are generally regarded as reliable and trustworthy, there may be

instances where they lack the requisite reliability and fail to give clients with the com-

prehensive data they need. Moreover, when it comes to data processing, the efficiency

of valuation part is hindered by the heavy computational tasks, leading to low through-

out. However, overall, the system successfully deploys an automated framework to

coordinate the pipeline of acquiring, updating, processing, and storing stock funda-

mental data. To some extent, the system meets the requirements of a large-scale stock

trading system in terms of data volume, efficiency, and the functioning of upstream

data module. The system could handle vast data volumes efficiently and meet the de-

mands of large-scale stock trading. As an upstream data module, the system stands out

in its role, processing and verifying data from diverse sources accurately and in real-

time. This combination of volume handling, efficiency, and data accuracy positions

the system well for large-scale stock trading systems.

Chapter 6

Conclusions

In the contemporary financial industry landscape, data assumes a pivotal role within

stock trading analysis systems. Through the autonomous provisioning of requisite

datasets for subsequent model analysis, an automated data orchestration system holds

the potential to enhance efficiency and productivity, affording investors the ability to

remain informed about market dynamics and capitalize on emerging opportunities in a

timely and informed manner.

This dissertation reveals the feasibility and potential of some data-related technolo-

gies such as big data real-time processing frameworks as well as messaging middle-

ware for enhancing the efficiency and accuracy of data-related tasks in stock trading

systems. By designing and implementing an automated data orchestration system, this

project successfully resolves the issues of tedious, inefficient, time-consuming data ac-

quisition, processing, update, and storage tasks, satisfying the requirements of a large-

scale stock trading system in terms of data volume, efficiency, and the functioning of

upstream data module.

Nevertheless, the project still has limitations. Firstly, with regards to data sources,

it should be noted that while the three data sources are generally considered reliable

and trustworthy, there may still be instances where certain data is unavailable. Fur-

thermore, the impact of the network and other related factors can potentially result in

instability in the functioning of data acquisition. In the context of missing data, due to

the inconsistency in the criteria employed by various data sources and companies for

generating financial reports and related content, it becomes challenging to seamlessly

substitute one data source with another. As a result of time constraints to develop and

implement the data orchestration system, the default issue in this project can only be

addressed by setting the value to zero. It is necessary to make enhancements to the

38

Chapter 6. Conclusions 39

error mechanism in future iterations. Furthermore, the list of variables lacks compre-

hensiveness in terms of fundamental factors. There exist more fundamental factors that

influence decisions relating to stock analysis. In the future, the list of factors may be

expanded through additional exploration, thereby enhancing the comprehensiveness of

the system. Meanwhile, it is better to employ machine learning algorithms to enhance

the accuracy of predictive variables. In relation to the volume of data, an increase

in data volume could lead to a more accurate and dependable system. Furthermore,

there exists potential for additional enhancement in the throughput rate of the system,

particularly in parts involving considerable amounts of calculation tasks, such as the

valuation part. It is essential to significantly enhance the throughput rate in order to

enhance the overall efficiency of the system.

In conclusion, this dissertation presents a robust and efficient prototype of an auto-

mated data orchestration platform tailored for stock fundamental analysis, with appli-

cations that were aimed to be extended to data-driven stock trading systems at wide.

Moreover, it holds promise as a pivotal data-driven instrument for researchers engaged

in model analysis within the realm of finance. The findings contribute substantial in-

sights into the viable integration of real-time data tools by analysts and investors to

amplify decision-making efficacy in stock trading systems. Furthermore, this work

points toward an auspicious avenue for forthcoming research at the crossroads of fi-

nance, technology, and data-driven decision making.

Bibliography

[1] Alpha vantage. https://www.alphavantage.co/.

[2] Apache flink project. http://flink.apache.org/.

[3] Apache spark project. http://spark.apache.org/.

[4] Apache storm project. http://storm.apache.org/.

[5] Wharton research data service. https://wrds-www.wharton.upenn.edu/.

[6] Yahoo finance. https://finance.yahoo.com/.

[7] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas.

Lightweight asynchronous snapshots for distributed dataflows.

[8] Tsung Sheng Chang. A comparative study of artificial neural networks, and de-

cision trees for digital game content stocks price prediction. Expert Systems with

Applications, 38:14846–14851, 11 2011.

[9] Yingjun Chen and Yongtao Hao. A feature weighted support vector machine and

k-nearest neighbor algorithm for stock market indices prediction. Expert Systems

with Applications, 80:340–355, 9 2017.

[10] Yuting Chen, Ting Mao, and Bo Yu. A reliable messaging middleware for fi-

nancial institutions. ACM International Conference Proceeding Series, pages

108–112, 11 2017.

[11] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,

Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry

Peng, and Paul Poulosky. Benchmarking streaming computation engines: Storm,

flink and spark streaming. Proceedings - 2016 IEEE 30th International Parallel

and Distributed Processing Symposium, IPDPS 2016, pages 1789–1792, 7 2016.

40

Bibliography 41

[12] Manuel Dı́az, Cristian Martı́n, and Bartolomé Rubio. State-of-the-art, challenges,

and open issues in the integration of internet of things and cloud computing.

Journal of Network and Computer applications, 67:99–117, 2016.

[13] Adanma Cecilia Eberendu. Unstructured data: an overview of the data of big

data. International Journal of Computer Trends and Technology, 38:46–50, 8

2016.

[14] Eugene F Fama. Efficient capital markets: Ii. The journal of finance, 46(5):1575–

1617, 1991.

[15] Fu Ge, Zhang Xinhua, and Li Chao. Study of message data subscription based

on multi-application big data analysis. Netinfo Security, (11):44–49, 2017.

[16] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri

Heiskanen, and Volker Markl. Benchmarking distributed stream data processing

systems. Proceedings - IEEE 34th International Conference on Data Engineer-

ing, ICDE 2018, pages 1519–1530, 10 2018.

[17] Mahinda Mailagaha Kumbure, Christoph Lohrmann, Pasi Luukka, and Jari Por-

ras. Machine learning techniques and data for stock market forecasting: A liter-

ature review. Expert Systems with Applications, 197:116659, 7 2022.

[18] Isaac Kofi Nti, Adebayo Felix Adekoya, and Benjamin Asubam Weyori. A sys-

tematic review of fundamental and technical analysis of stock market predictions.

Artificial Intelligence Review 2019 53:4, 53:3007–3057, 8 2019.

[19] Fagner A. De Oliveira, Cristiane N. Nobre, and Luis E. Zárate. Applying artificial

neural networks to prediction of stock price and improvement of the directional

prediction index – case study of petr4, petrobras, brazil. Expert Systems with

Applications, 40:7596–7606, 12 2013.

[20] Bruce Snyder, Dejan Bosnanac, and Rob Davies. ActiveMQ in action, volume 47.

Manning Greenwich Conn., 2011.

[21] P Sommer, Florian Schellroth, M Fischer, and Jan Schlechtendahl. Message-

oriented middleware for industrial production systems. In 2018 IEEE 14th In-

ternational Conference on Automation Science and Engineering (CASE), pages

1217–1223. IEEE, 2018.

Bibliography 42

[22] KHIN ME ME THEIN. Apache kafka: Next generation distributed messaging

system khin me me thein. 12 2014.

[23] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-

ham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm @twitter. 2014.

[24] Chih Fong Tsai and Yu Chieh Hsiao. Combining multiple feature selection meth-

ods for stock prediction: Union, intersection, and multi-intersection approaches.

Decision Support Systems, 50:258–269, 12 2010.

[25] Alvaro Videla and Jason JW Williams. RabbitMQ in action: distributed messag-

ing for everyone. Manning, 2012.

[26] Ahmed. S. Wafi, Hassan Hassan, and Adel Mabrouk. Fundamental analysis

models in financial markets – review study. Procedia Economics and Finance,

30:939–947, 1 2015.

[27] Zhenghe Wang, Wei Dai, Feng Wang, Hui Deng, Shoulin Wei, Xiaoli Zhang, and

Bo Liang. Kafka and its using in high-throughput and reliable message distribu-

tion. In 2015 8th International Conference on Intelligent Networks and Intelligent

Systems (ICINIS), pages 117–120. IEEE, 2015.

[28] Jiang Yongguo, Liu Qiang, Qin Changshuai, Su Jian, and Liu Qianqian. Message-

oriented middleware: A review. Proceedings - 5th International Conference on

Big Data Computing and Communications, BIGCOM 2019, pages 88–97, 8 2019.

[29] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, and Scott Shenker.

Discretized streams: Fault-tolerant streaming computation at scale.

[30] Xiangzhou Zhang, Yong Hu, Kang Xie, Shouyang Wang, E. W.T. Ngai, and Mei

Liu. A causal feature selection algorithm for stock prediction modeling. Neuro-

computing, 142:48–59, 10 2014.

Appendices

43

44

This section only includes the code for some of the functions. For detailed code,

please refer to the code files.

.1 Detailed List of Raw Data

• Alpha Vantage

Balance Sheet: ’symbol’, ’fiscalDateEnding’, ’totalAssets’, ’totalCurrentAs-

sets’, ’shortTermInvestments’, ’totalLiabilities’, ’totalCurrentLiabilities’, ’longTer-

mDebt’, ’totalShareholderEquity’, ’treasuryStock’, ’retainedEarnings’, ’common-

StockSharesOutstanding’

Income Statement: ’symbol’, ’fiscalDateEnding’, ’ebit’, ’ebitda’

(Financial Reports for real-time part)

FX rate: EUR to USD, GBP to USD, USD to JPY, AUD to USD, USD to CAD,

USD to CHF, NZD to USD, GBP to EUR, USD to CNY, EUR to JPY

Commodity/Energy Price: West Texas Intermediate(WTI) crude oil, Brent

crude oil, natural gas, copper, aluminum, wheat, corn, cotton, sugar, coffee,

global price index of all commodities

Interest Rate

Inflation Rate

• Yahoo Finance(Yfiance)

Balance Sheet: ’ShareIssued’, ’TotalDebt’, ’CommonStockEquity’, ’Stockhold-

ersEquity’, ’CommonStock’, ’CashAndCashEquivalents’,’InvestedCapital’

Income Statement: ’InterestExpense’, ’InterestIncome’, ’TotalExpenses’, ’Di-

lutedEPS’, ’BasicEPS’, ’NetIncome’, ’OperatingIncome’, ’OperatingExpense’,

’CostOfRevenue’, ’TotalRevenue’

Statement of Cash Flow: ’FreeCashFlow’, ’FinancingCashFlow’, ’Investing-

CashFlow’, ’OperatingCashFlow’

(Financial Reports for real-time part)

Stock Data

CBOE Brexit High/Low 50

45

• WRDS

Financial Statement: tic, datadate, ebit, ebitda, at, act, ivst, lt, lct, dltt, teq,

tstk, re, csho, cshi, dt, ceq, seq, cstk, chech, icapt, xint, idit, xt, epsfi, ep-

spx, ni, oiadp, xoprar, cogs, revt, capx, fincf, ivncf, oancf(’symbol’, ’fiscal-

DateEnding’, ’ebit’, ’ebitda’, ’totalAssets’, ’totalCurrentAssets’, ’shortTermIn-

vestments’, ’totalLiabilities’, ’totalCurrentLiabilities’, ’longTermDebt’, ’total-

ShareholderEquity’, ’treasuryStock’, ’retainedEarnings’, ’commonStockShare-

sOutstanding’, ’ShareIssued’, ’TotalDebt’, ’CommonStockEquity’, ’Stockhold-

ersEquity’, ’CommonStock’, ’CashAndCashEquivalents’, ’InvestedCapital’, ’In-

terestExpense’, ’InterestIncome’, ’TotalExpenses’, ’DilutedEPS’, ’BasicEPS’,

’NetIncome’, ’OperatingIncome’, ’OperatingExpense’, ’CostOfRevenue’, ’To-

talRevenue’, ’FreeCashFlow’, ’FinancingCashFlow’, ’InvestingCashFlow’, ’Op-

eratingCashFlow’)

.2 Formulations of Stock Factors

1. Market Capitalization

Market Capitalization = P×Q

Where:

• P = Current share price of the company’s stock.

• Q = Total number of outstanding shares of the company.

Typically:

• Large-Cap: $10 billion.

• Mid-Cap: $2 billion to $10 billion.

• Small-Cap: $300 million to $2 billion.

• Micro-Cap: $50 million to $300 million.

• Nano-Cap: $50 million.

2. Enterprise Value

EV = Market Capitalization+Total Debt−Cash and Cash Equivalents

46

Where:

• Market Capitalization: The total value of all of a company’s outstanding

shares of stock.

• Total Debt: The sum of a company’s long-term and short-term debt.

• Cash and Cash Equivalents: Assets that are cash or can be converted into

cash swiftly.

3. Earnings Per Share (EPS)

EPS =
Net Income−Preferred Dividends

Weighted Average Number of Common Shares Outstanding

Where:

• Net Income: The company’s total earnings after deducting all expenses and

taxes.

• Preferred Dividends: Dividends paid to preferred shareholders.

• Weighted Average Number of Common Shares Outstanding: The average

number of shares over a certain reporting period, considering any changes

in the number of shares over that period.

Typically:

• Positive EPS: Indicates profitability.

• Growing EPS: Can be a sign of financial health and potential future prof-

itability.

4. EV/EBITDA

EV/EBITDA=
Enterprise Value (EV)

Earnings Before Interest, Taxes, Depreciation, and Amortization (EBITDA)

Typically:

• 7x: Might be considered undervalued.

• 7x - 12x: Typically seen as a fair range.

• 12x: Could suggest overvaluation.

47

5. EV/Sales
EV/Sales =

Enterprise Value (EV)
Total Sales (Revenue)

Typically:

• A low EV/Sales ratio might indicate potential undervaluation relative to the

company’s sales.

• A high EV/Sales ratio can suggest potential overvaluation.

6. P/E(Price-to-Earnings Ratio)

P/E Ratio =
Current Share Price

Earnings Per Share (EPS)

Typically:

• A high P/E ratio might suggest that investors are expecting higher future

earnings growth.

• A low P/E ratio could indicate lower expectations for future growth or per-

ceived higher risk.

7. PEG

PEG Ratio =
P/E Ratio

Annual EPS Growth Rate (expressed as a percentage)

Typically:

• A PEG ratio of 1 suggests the stock may be fairly valued given its growth

rate.

• A PEG ratio less than 1 could indicate potential undervaluation relative to

the company’s growth prospects.

• A PEG ratio greater than 1 can suggest potential overvaluation given the

expected growth rate.

8. Price-to-Sales (P/S)

P/S Ratio =
Market Capitalization
Total Sales (Revenue)

Typically:

48

• A low P/S ratio might indicate potential undervaluation or challenges fac-

ing the company.

• A high P/S ratio could suggest potential overvaluation or high expected

growth.

9. Book Value

Book Value = Total Assets−Total Liabilities

Typically:

• The book value provides an accounting-based perspective on a company’s

intrinsic value.

• Stocks trading below their book value might be seen as undervalued, though

there could be reasons such as expected losses or operational challenges.

10. Price/Book (P/B)

P/B =
Total Number of Outstanding Shares

Book Value

Typically:

• A P/B ratio below 1 might indicate the stock is undervalued relative to its

book value, or there might be underlying challenges with the company.

• A P/B ratio above 1 typically suggests the market perceives additional value

not captured in the book value, possibly due to expected growth or other

strategic assets.

11. Book Value Per Share(BVPS)

BVPS =
Book Value

Total Number of Outstanding Shares

12. Revenue

Revenue = Quantity of Goods or Services Sold×Selling Price Per Unit

49

13. Cash/Share

Cash Per Share =
Total Cash and Cash Equivalents

Total Number of Outstanding Shares

Where:

• Total Cash and Cash Equivalents include money market securities, bank

accounts, and short-term marketable securities that can be easily converted

into cash.

• Total Number of Outstanding Shares represents all the shares that have

been authorized, issued, and purchased by investors.

Typically:

• A higher Cash Per Share can be a positive indicator of a company’s strong

liquidity position.

• A lower value might hint at potential liquidity challenges or signify that

the company is investing its cash back into the business or returning it to

shareholders.

14. P/FCF

P/FCF Ratio =
Share Price

Free Cash Flow Per Share

Where the Free Cash Flow Per Share is given by:

Free Cash Flow Per Share =
Total Free Cash Flow

Total Number of Outstanding Shares

And the Free Cash Flow is determined by:

Free Cash Flow = Operating Cash Flow−Capital Expenditures

Typically:

• A lower P/FCF ratio might indicate that the stock is undervalued based on

its cash-generating abilities.

• Conversely, a higher P/FCF can suggest potential overvaluation unless the

market expects significant future growth in free cash flow.

50

15. FCF Yield
FCF Yield =

Free Cash Flow
Market Capitalization

×100%

Typically:

• A higher FCF Yield might suggest the company is undervalued and pro-

ducing substantial free cash flow relative to its market value.

• A lower FCF Yield could indicate a potentially overvalued company or

one generating a smaller amount of free cash flow in relation to its market

capitalization.

16. Graham Number

Graham Number =
√

22.5×EPS×BV PS

Typically:

• If the stock’s current market price is below the Graham Number, it might

be undervalued.

• If the stock’s market price is higher than the Graham Number, it might

suggest overvaluation.

17. Total Equity/Total Liability

Equity to Liability Ratio =
Total Equity

Total Liability

Where:

• Total Equity is the residual interest in the assets of the company after de-

ducting liabilities. It typically includes common stock, retained earnings,

and additional paid-in capital.

• Total Liability represents all the debts and obligations the company owes,

both in the short-term and long-term.

Typically:

• A ratio greater than 1 implies that the company has more equity than lia-

bilities, indicating a potentially stronger financial position and less risk for

creditors.

51

• Conversely, a ratio less than 1 suggests more liabilities than equity, which

might indicate financial risk if not managed appropriately.

18. DuPont Analysis

(a) Net Profit Margin (Profitability):

Net Profit Margin =
Net Income

Sales

(b) Total Asset Turnover (Efficiency):

Total Asset Turnover =
Sales

Total Assets

(c) Equity Multiplier (Leverage):

Equity Multiplier =
Total Assets

Shareholder’s Equity

Combining these components, the DuPont Analysis represents ROE as:

ROE = Net Profit Margin×Total Asset Turnover×Equity Multiplier

19. Total Debt/Capitalization

Debt to Capitalization Ratio =
Total Debt

Total Debt+Shareholder’s Equity

Where:

• Total Debt includes both short-term (current) and long-term debts.

• Shareholder’s Equity represents the owners’ residual interest in the assets

after deducting liabilities.

Typically:

• A higher ratio implies that the company is more leveraged, which might be

riskier, especially during economic downturns or periods of rising interest

rates.

• A lower ratio indicates that the company might have a conservative capital

structure, potentially meaning less financial risk, but also suggesting that it

may not be capitalizing on the financial benefits of leverage.

52

20. Debt/EBITDA

Debt to EBITDA Ratio =
Total Debt
EBITDA

Where:

• Total Debt includes both short-term (current) and long-term debts.

• EBITDA represents Earnings Before Interest, Taxes, Depreciation, and

Amortization.

Typically:

• A higher Debt to EBITDA Ratio can suggest that the company may face

challenges in servicing its debt, especially if earnings decline.

• Conversely, a lower ratio indicates that the company is generating a com-

fortable level of earnings relative to its debt, implying a potentially stronger

financial position.

article

21. Free Cash Flow to Sales Ratio

FCF to Sales Ratio =
Free Cash Flow (FCF)

Sales

Where:

• Free Cash Flow (FCF) is the cash generated after deducting capital expen-

ditures from operating cash flow.

• Sales represents the company’s total revenue.

Typically:

• A higher ratio indicates that a company is more efficiently converting its

sales into cash, which can be used for various corporate activities like

growth investments or shareholder returns.

• A lower ratio may imply operational inefficiencies or significant capital

expenditures relative to the cash generated from sales.

53

22. Interest Coverage Ratio

Interest Coverage Ratio =
Earnings Before Interest and Taxes (EBIT)

Interest Expense

Where:

• Earnings Before Interest and Taxes (EBIT) represents the company’s oper-

ating profit.

• Interest Expense refers to the total interest payable on debts.

Typically:

• A higher Interest Coverage Ratio suggests that the company can easily meet

its interest obligations using its operating profit.

• A low ratio may indicate potential difficulties in covering interest pay-

ments, especially if there are significant fluctuations in earnings.

23. Degree of Financial Leverage(DFL)

DFL =
EBIT

EBIT− Interest Expense

Where:

• EPS stands for Earnings Per Share.

• EBIT represents Earnings Before Interest and Taxes.

• Interest Expense is the cost of debt for the period under consideration.

Typically:

• A DFL greater than 1 means financial leverage magnifies the effect of EBIT

changes on EPS.

• A DFL of 1 implies that changes in EBIT have a direct proportional effect

on EPS.

• A DFL less than 1 suggests that financial leverage dampens the impact of

EBIT changes on EPS.

54

24. Joel Greenblatt’s Earnings Yield

Earnings Yield =
Earnings Before Interest and Taxes (EBIT)

Enterprise Value (EV)

Where:

• EBIT stands for Earnings Before Interest and Taxes, representing the com-

pany’s operating earnings.

• Enterprise Value (EV) encompasses the market capitalization, minus cash

and cash equivalents, plus total debt, minority interest, and preferred shares.

Typically:

• A higher Earnings Yield suggests that the company might be undervalued,

indicating a potentially attractive investment opportunity.

25. Cash Return on Invested Capital(CROIC)

CROIC =
Free Cash Flow (FCF)

Invested Capital

Where:

• Free Cash Flow (FCF) represents the net cash generated by the company’s

operations after accounting for capital expenditures.

• Invested Capital typically includes the sum of equity and debt, subtracting

cash and cash equivalents.

Typically:

• A high CROIC value signifies that the company efficiently converts its in-

vestments into cash returns.

26. Piotroski F-Score

(a) Positive net income for the current year.

(b) Positive Return on Assets (ROA) for the current year.

(c) Positive operating cash flow for the current year.

(d) Cash flow from operations greater than net income.

55

(e) Decrease in long-term debt compared to the previous year.

(f) Increase in the current ratio compared to the previous year.

(g) No issuance of new shares in the last year.

(h) Increase in gross margin compared to the previous year.

(i) Increase in the asset turnover ratio compared to the previous year.

Typically:

• An F-Score between 7-9 denotes a strong financial position.

• An F-Score between 4-6 indicates average financial health.

• An F-Score between 0-3 suggests potential financial weaknesses.

27. Altman’s Z-Score

Z = 1.2A+1.4B+3.3C+0.6D+1.0E

Where:

A =
Working Capital

Total Assets

B =
Retained Earnings

Total Assets

C =
Earnings Before Interest and Tax (EBIT)

Total Assets

D =
Market Value of Equity

Total Liabilities

E =
Sales

Total Assets

Typically:

• Z > 2.99: Company is in the ”Safe” zone.

• 1.81 < Z < 2.99: Company is in a ”Grey” zone.

• Z < 1.81: Company is in the ”Distressed” zone, with a high risk of bankruptcy.

.3 Data Collection and Pre-Processing

56

1 #collect data from alpha vantage

2 def fetch_data_from_alpha(function , index):

3 url = f’https://www.alphavantage.co/query?function={

function}&symbol={index}&apikey=74OYDHNMV1Q7Y2A9’

4 r = requests.get(url,verify=False)

5 data = r.json()

6 return data

1 #get S&P500 index list

2 def get_lists()

3 sp500=pd.read_html(’https://en.wikipedia.org/wiki/

List_of_S%26P_500_companies’)[0]

4 symbols = sp500[’Symbol’].tolist()

5 return symbols

1 def income_statement_process(isdf , symbol):

2 isdf.insert(0, ’symbol’, symbol)

3 df = isdf[[’symbol’, ’fiscalDateEnding’, ’ebit’, ’ebitda’]

]

4 return df

5 def balance_sheet_process(bsdf , symbol):

6 bsdf.insert(0, ’symbol’, symbol)

7 df = bsdf[[’symbol’, ’fiscalDateEnding’, ’totalAssets’,’

totalCurrentAssets’,

8 ’shortTermInvestments’, ’totalLiabilities’, "

totalCurrentLiabilities",

9 ’longTermDebt’, ’totalShareholderEquity’, ’

treasuryStock’,

10 ’retainedEarnings’, ’

commonStockSharesOutstanding’]]

11 return df

12 def cash_flow_process(cfdf , symbol):

13 cfdf.insert(0, ’symbol’, symbol)

14 df = cfdf[[’symbol’, ’fiscalDateEnding’]]

15 return df

1 def AF_financial_report_collect(symbol):

57

2 is_data=fetch_data_from_alpha(’INCOME_STATEMENT’,symbol)

3 bs_data = fetch_data_from_alpha(’BALANCE_SHEET’, symbol)

4 cf_data = fetch_data_from_alpha(’CASH_FLOW’, symbol)

5 is_adf = pd.DataFrame(is_data[’annualReports’])

6 is_qdf = pd.DataFrame(is_data["quarterlyReports"])

7 bs_adf = pd.DataFrame(bs_data[’annualReports’])

8 bs_qdf = pd.DataFrame(bs_data["quarterlyReports"])

9 cf_qdf = pd.DataFrame(cf_data["quarterlyReports"])

10 cf_adf = pd.DataFrame(cf_data[’annualReports’])

11 annual_df = pd.merge((pd.merge(income_statement_process(

is_adf , symbol),

12 balance_sheet_process(bs_adf , symbol), on=[’symbol’,’

fiscalDateEnding’], how=’outer’)),

13 cash_flow_process(cf_adf , symbol), on=[’symbol’, ’

fiscalDateEnding’], how=’outer’)

14 quater_df = pd.merge((pd.merge(income_statement_process(

is_qdf ,symbol),

15 balance_sheet_process(bs_qdf ,symbol),on=[’symbol’,’

fiscalDateEnding’],how=’outer’)),cash_flow_process(

cf_qdf ,symbol), on=[’symbol’, ’fiscalDateEnding’], how=

’outer’)

16 annual_df[’fiscalDateEnding’] = pd.to_datetime(annual_df[’

fiscalDateEnding’])

17 quater_df[’fiscalDateEnding’] = pd.to_datetime(quater_df[’

fiscalDateEnding’])

18 columns_to_convert = [’ebit’,’ebitda’,’totalAssets’,’

totalCurrentAssets’,

19 ’shortTermInvestments’,’totalLiabilities’,"

totalCurrentLiabilities",

20 ’longTermDebt’, ’totalShareholderEquity’, ’treasuryStock’,

’retainedEarnings’, ’commonStockSharesOutstanding’]

21 for col in columns_to_convert:

22 quater_df[col] = pd.to_numeric(quater_df[col], errors=

’coerce’)

23 annual_df[col] = pd.to_numeric(annual_df[col], errors=

’coerce’)

24 return annual_df , quater_df

58

1 def annual_financial_report_YF(symbol):

2 #yearly balance sheet yahoo

3 yf_balance_sheet = yf.Ticker(symbol).get_balance_sheet()

4 yf_balance_sheet_filter = yf_balance_sheet.loc[[’

ShareIssued’, ’TotalDebt’,

5 ’CommonStockEquity’,’StockholdersEquity’, ’CommonStock

’,

6 ’CashAndCashEquivalents’,’InvestedCapital’]].

transpose()

7 yf_balance_sheet_filter = yf_balance_sheet_filter.

reset_index(drop=False)

8 yf_balance_sheet_filter = yf_balance_sheet_filter.rename(

columns={yf_balance_sheet_filter.columns[0]: ’

fiscalDateEnding’})

9 yf_balance_sheet_filter.insert(0,’symbol’,[symbol ,symbol ,

symbol ,symbol])

10 #yearly income statement yahoo

11 yf_income_statement = yf.Ticker(symbol).get_income_stmt()

12 yf_income_statement_filter = yf_income_statement.loc[[’

InterestExpense’, ’InterestIncome’,’TotalExpenses’, ’

DilutedEPS’, ’BasicEPS’, ’NetIncome’,

13 ’OperatingIncome’, ’OperatingExpense’,’CostOfRevenue’, ’

TotalRevenue’]].transpose()

14 yf_income_statement_filter = yf_income_statement_filter.

reset_index(drop=False)

15 yf_income_statement_filter = yf_income_statement_filter.

rename(columns={yf_income_statement_filter.columns[0]:’

fiscalDateEnding’})

16 yf_income_statement_filter.insert(0,’symbol’,[symbol ,

symbol ,symbol ,symbol])

17 #yearly cash flow yahoo

18 yf_cash_flow = yf.Ticker(symbol).get_cash_flow()

19 yf_cash_flow_filter = yf_cash_flow.loc[[’FreeCashFlow’, ’

FinancingCashFlow’,

20 ’InvestingCashFlow’, ’OperatingCashFlow’]].transpose()

21 yf_cash_flow_filter = yf_cash_flow_filter.reset_index(drop

59

=False)

22 yf_cash_flow_filter = yf_cash_flow_filter.rename(columns={

yf_cash_flow_filter.columns[0]:’fiscalDateEnding’})

23 yf_cash_flow_filter.insert(0,’symbol’,[symbol ,symbol ,

symbol ,symbol])

24 yf_annual_fr =pd.merge(pd.merge(yf_balance_sheet_filter ,

yf_income_statement_filter ,

25 on=[’symbol’, ’fiscalDateEnding’], how=’outer’),

yf_cash_flow_filter ,on=[’symbol’, ’fiscalDateEnding’],

how=’outer’)

26 #yf_annual_fr[’fiscalDateEnding’] =

27 yf_annual_fr[’fiscalDateEnding’].dt.date.astype(’object’)

28 columns_to_convert = [’ShareIssued’, ’TotalDebt’, ’

CommonStockEquity’,

29 ’StockholdersEquity’, ’CommonStock’, ’

CashAndCashEquivalents’,’InvestedCapital’, ’

InterestExpense’, ’InterestIncome’,’TotalExpenses’, ’

DilutedEPS’, ’BasicEPS’, ’NetIncome’,’OperatingIncome’,

’OperatingExpense’,’CostOfRevenue’, ’TotalRevenue’,’

FreeCashFlow’, ’FinancingCashFlow’,’InvestingCashFlow’,

’OperatingCashFlow’]

30 for col in columns_to_convert:

31 yf_annual_fr[col] = pd.to_numeric(yf_annual_fr[col],

errors=’coerce’)

32 yf_annual_fr.insert(1,’interval’,’annual’)

33 return yf_annual_fr

1 def quarter_financial_report_YF(symbol):

2 #quartery balance sheet yahoo

3 yf_balance_sheet_quarter = yf.Ticker(symbol).

quarterly_balance_sheet

4 rows_to_select_bs = [’Share Issued’,’Total Debt’,’Common

Stock Equity’,

5 ’Stockholders Equity’,’Common Stock’,’Cash And Cash

Equivalents’,"Invested Capital"]

6 common_rows_bs = yf_balance_sheet_quarter.index.

intersection(rows_to_select_bs)

60

7 #yf_balance_sheet_quarter_filter =

yf_balance_sheet_quarter.loc[common_rows_bs].transpose(

)

8 zero_bs = pd.DataFrame(0.0, index=rows_to_select_bs ,

9 columns=yf_balance_sheet_quarter.columns)

10 zero_bs.update(yf_balance_sheet_quarter.loc[common_rows_bs

])

11 yf_balance_sheet_quarter_filter = zero_bs.transpose()

12 yf_balance_sheet_quarter_filter.columns =

yf_balance_sheet_quarter_filter.columns.str.replace(’ ’

, ’’)

13 yf_balance_sheet_quarter_filter =

yf_balance_sheet_quarter_filter.reset_index(drop=False)

14 yf_balance_sheet_quarter_filter =

yf_balance_sheet_quarter_filter.rename(columns={

yf_balance_sheet_quarter_filter.columns[0]: ’

fiscalDateEnding’})

15 yf_balance_sheet_quarter_filter.insert(0,’symbol’,symbol)

16 #quarterly income statement yahoo

17 yf_income_statement_quarter = yf.Ticker(symbol).

quarterly_income_stmt

18 rows_to_select_is = [’Interest Expense’, ’Interest Income’

,’Total Expenses’, ’Diluted EPS’, ’Basic EPS’, ’Net

Income’, ’Operating Income’, ’Operating Expense’,

19 ’Cost Of Revenue’, ’Total Revenue’]

20 common_rows_is = yf_income_statement_quarter.index.

intersection(rows_to_select_is)

21 zero_is = pd.DataFrame(0.0, index=rows_to_select_is ,

columns=yf_income_statement_quarter.columns)

22 zero_is.update(yf_income_statement_quarter.loc[

common_rows_is])

23 yf_income_statement_quarter_filter = zero_is.transpose()

24 yf_income_statement_quarter_filter.columns =

yf_income_statement_quarter_filter.columns.str.replace(

’ ’, ’’)

25 yf_income_statement_quarter_filter =

yf_income_statement_quarter_filter.reset_index(drop=

61

False)

26 yf_income_statement_quarter_filter =

yf_income_statement_quarter_filter.rename(columns={

yf_income_statement_quarter_filter.columns[0]:’

fiscalDateEnding’})

27 yf_income_statement_quarter_filter.insert(0,’symbol’,

symbol)

28 #quarterly cash flow yahoo

29 yf_cash_flow_quarter = yf.Ticker(symbol).

quarterly_cash_flow

30 rows_to_select_cf = [’Free Cash Flow’, ’Financing Cash

Flow’,’Investing Cash Flow’, ’Operating Cash Flow’]

31 common_rows_cf = yf_cash_flow_quarter.index.intersection(

rows_to_select_cf)

32 zero_cf = pd.DataFrame(0.0, index=rows_to_select_cf ,

33 columns=yf_cash_flow_quarter.columns)

34 zero_cf.update(yf_cash_flow_quarter.loc[common_rows_cf])

35 yf_cash_flow_quarter_filter = zero_cf.transpose()

36 yf_cash_flow_quarter_filter.columns =

yf_cash_flow_quarter_filter.columns.str.replace(’ ’, ’’

)

37 yf_cash_flow_quarter_filter = yf_cash_flow_quarter_filter.

reset_index(drop=False)

38 yf_cash_flow_quarter_filter = yf_cash_flow_quarter_filter.

rename(columns={yf_cash_flow_quarter_filter.columns[0]:

’fiscalDateEnding’})

39 yf_cash_flow_quarter_filter.insert(0,’symbol’,symbol)

40 yf_quarter_fr = pd.merge(pd.merge(

yf_balance_sheet_quarter_filter ,

yf_income_statement_quarter_filter ,on=[’symbol’, ’

fiscalDateEnding’], how=’outer’),

yf_cash_flow_quarter_filter ,on=[’symbol’, ’

fiscalDateEnding’], how=’outer’)

41 columns_to_convert = [’ShareIssued’, ’TotalDebt’, ’

CommonStockEquity’,

42 ’StockholdersEquity’, ’CommonStock’,’

CashAndCashEquivalents’,

62

43 ’InvestedCapital’, ’InterestExpense’, ’InterestIncome’

, ’TotalExpenses’, ’DilutedEPS’, ’BasicEPS’, ’

NetIncome’, ’OperatingIncome’, ’OperatingExpense’,

44 ’CostOfRevenue’, ’TotalRevenue’,’FreeCashFlow’, ’

FinancingCashFlow’,

45 ’InvestingCashFlow’, ’OperatingCashFlow’]

46 for col in columns_to_convert:

47 yf_quarter_fr[col] = pd.to_numeric(yf_quarter_fr[col],

errors=’coerce’)

48 yf_quarter_fr.insert(1,’interval’,’quarter’)

49 return yf_quarter_fr

1 db = wrds.Connection()

2 def wrds_annual_hist(symbol):

3 annual_report_query = f"""

4 SELECT tic, datadate , ebit ,ebitda ,at, act, ivst , lt,

lct, dltt , teq, tstk , re, csho , cshi , dt, ceq,seq,

cstk ,chech ,icapt ,xint ,idit ,xt,

5 epsfi ,epspx ,ni,oiadp ,xoprar ,cogs ,revt ,capx ,fincf ,ivncf

,oancf

6 FROM comp.funda

7 WHERE tic = ’{symbol}’

8 AND indfmt=’INDL’

9 AND datafmt=’STD’

10 AND popsrc=’D’

11 AND consol=’C’

12 AND datadate >= ’2008-01-01’

13 """

14 annual_report_data = db.raw_sql(annual_report_query)

15 pd.set_option(’display.max_columns’, None)

16 new_colum_names =[’symbol’, ’fiscalDateEnding’, ’ebit’, ’

ebitda’,’totalAssets’, ’totalCurrentAssets’, ’

shortTermInvestments’,’totalLiabilities’, ’

totalCurrentLiabilities’, ’longTermDebt’,’

totalShareholderEquity’, ’treasuryStock’, ’

retainedEarnings’,’commonStockSharesOutstanding’, ’

ShareIssued’,

63

17 ’TotalDebt’, ’CommonStockEquity’, ’StockholdersEquity’, ’

CommonStock’, ’CashAndCashEquivalents’,’InvestedCapital

’, ’InterestExpense’,

18 ’InterestIncome’, ’TotalExpenses’, ’DilutedEPS’, ’BasicEPS

’,’NetIncome’, ’OperatingIncome’, ’OperatingExpense’, ’

CostOfRevenue’,’TotalRevenue’, ’FreeCashFlow’, ’

FinancingCashFlow’,’InvestingCashFlow’, ’

OperatingCashFlow’]

19 annual_report_data.columns = new_colum_names

20 annual_report_data[’OperatingExpense’]=

21 annual_report_data[’OperatingExpense’].fillna(0.0)

22 annual_report_data.iloc[:, 2:] *= 1000000

23 annual_report_data[’TotalExpenses’] = annual_report_data[’

TotalRevenue’] - annual_report_data[’NetIncome’]

24 annual_report_data[’FreeCashFlow’] = annual_report_data[’

OperatingCashFlow’] - annual_report_data[’FreeCashFlow’

]

25 annual_report_data.insert(2, ’interval’, ’annual’)

26 annual_report_data[’fiscalDateEnding’]= pd.to_datetime(

annual_report_data[’fiscalDateEnding’], format="%Y-%m-%

d")

27 return annual_report_data

.4 Batch Processing and Storage

1 def get_close_price(row):

2 # row [’fiscalDateEnding’] NaT

3 if pd.isna(row[’fiscalDateEnding’]):

4 return 0.0

5

6 ticker = yf.Ticker(row[’symbol’])

7 start = row[’fiscalDateEnding’] - pd.Timedelta(days=1)

8 end = row[’fiscalDateEnding’]

9 history = ticker.history(start=start , end=end)

10

11 # history

64

12 if history.empty:

13 return 0.0

14

15 return history[’Close’].iloc[0]

16

17 env_settings = EnvironmentSettings.in_batch_mode()

18 table_env = TableEnvironment.create(env_settings)

19 table_env.get_config().get_configuration().set_integer(’

parallelism’,4)

20

21 jars = []

22 for file in os.listdir(os.path.abspath(os.path.dirname(

__file__))):

23 if file.endswith(’.jar’):

24 file_path = os.path.abspath(file)

25 jars.append(file_path)

26

27 str_jars = ’;’.join([’file:///’ + jar for jar in jars])

28 table_env.get_config().get_configuration().set_string("

pipeline.jars", str_jars)

29

30 create_sink_sql = ’’’

31 CREATE TABLE valuationTotal(

32 symbol STRING ,

33 fiscalDateEnding TIMESTAMP(6),

34 ‘interval ‘ STRING ,

35 ebit DOUBLE ,

36 ebitda DOUBLE ,

37 totalAssets DOUBLE ,

38 totalCurrentAssets DOUBLE ,

39 shortTermInvestments DOUBLE ,

40 totalLiabilities DOUBLE ,

41 totalCurrentLiabilities DOUBLE ,

42 longTermDebt DOUBLE ,

43 totalShareholderEquity DOUBLE ,

44 treasuryStock DOUBLE ,

45 retainedEarnings DOUBLE ,

65

46 commonStockSharesOutstanding DOUBLE ,

47 ShareIssued DOUBLE ,

48 TotalDebt DOUBLE ,

49 CommonStockEquity DOUBLE ,

50 StockholdersEquity DOUBLE ,

51 CommonStock DOUBLE ,

52 CashAndCashEquivalents DOUBLE ,

53 InvestedCapital DOUBLE ,

54 InterestExpense DOUBLE ,

55 InterestIncome DOUBLE ,

56 TotalExpenses DOUBLE ,

57 DilutedEPS DOUBLE ,

58 BasicEPS DOUBLE ,

59 NetIncome DOUBLE ,

60 OperatingIncome DOUBLE ,

61 OperatingExpense DOUBLE ,

62 CostOfRevenue DOUBLE ,

63 TotalRevenue DOUBLE ,

64 FreeCashFlow DOUBLE ,

65 FinancingCashFlow DOUBLE ,

66 InvestingCashFlow DOUBLE ,

67 OperatingCashFlow DOUBLE ,

68 currentClosePrice DOUBLE ,

69 pToEDiluted DOUBLE ,

70 pToEBasic DOUBLE ,

71 DilutedPEG DOUBLE ,

72 BasicPEG DOUBLE ,

73 revenueGrowth DOUBLE ,

74 piotroskiFscore BIGINT ,

75 evToEbitda DOUBLE ,

76 enterpriseValue DOUBLE ,

77 marketCaptation DOUBLE ,

78 evToSales DOUBLE ,

79 priceToSales DOUBLE ,

80 bv DOUBLE ,

81 priceToBv DOUBLE ,

82 bvToShare DOUBLE ,

66

83 cashToShare DOUBLE ,

84 priceToFCF DOUBLE ,

85 FCFYield DOUBLE ,

86 GrahamBasic DOUBLE ,

87 GrahamDiluted DOUBLE ,

88 totalEquityToTotalAsset DOUBLE ,

89 Dupont DOUBLE ,

90 debtToCapital DOUBLE ,

91 DFL DOUBLE ,

92 debtToEbitda DOUBLE ,

93 InterestCoverageRatio DOUBLE ,

94 FCFToSales DOUBLE ,

95 altmanZscore DOUBLE ,

96 JoelGreenblattsEarningsYield DOUBLE ,

97 croic DOUBLE ,

98 PRIMARY KEY (symbol ,fiscalDateEnding ,‘interval ‘) NOT ENFORCED

99) WITH (

100 ’connector’ = ’jdbc’,

101 ’url’ = ’jdbc:mysql://localhost:3306/mydatabase?

useSSL=false’,

102 ’driver’ = ’com.mysql.jdbc.Driver’,

103 ’table-name’ = ’valuationTotal ’,

104 ’username’ = ’root’,

105 ’password’ = ’12345678’

106)

107 ’’’

108 table_env.execute_sql(create_sink_sql)

109

110 #ev/ebitda

111 @udf(input_types=[DataTypes.DOUBLE(), DataTypes.DOUBLE(),

DataTypes.DOUBLE(), DataTypes.DOUBLE(), DataTypes.DOUBLE()]

,

112 result_type=DataTypes.DOUBLE())

113 def an_ev_to_ebitda(shareOutstanding , close , totalDebt , cash ,

ebitda):

114 #date = an_fr[’fiscalDateEnding’]

67

115 #Enterprise Value = Market Capitalization + Total Debt -

Cash and Cash Equivalents

116 if shareOutstanding is None or close is None or totalDebt

is None or cash is None or ebitda is None or ebitda ==

0.0 :

117 ev_to_ebitda = 0.0

118 else:

119 ev_to_ebitda = (shareOutstanding * close + totalDebt -

cash) /ebitda

120 #an_fr[’ev/ebitda’] = (an_fr[’commonStockSharesOutstanding

’] * current_close_price(date ,symbol) + an_fr[’

TotalDebt’] - an_fr[’CashAndCashEquivalents’]) / an_fr[

’ebitda’]

121 return ev_to_ebitda

122 table_env.register_function(’evToEbitda’,an_ev_to_ebitda)

123

124 #ev

125 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE(),DataTypes.DOUBLE()],

126 result_type = DataTypes.DOUBLE())

127 def an_ev(shareOutstanding , close , totalDebt , cash):

128 if shareOutstanding is None or close is None or totalDebt

is None or cash is None:

129 ev =0.0

130 else:

131 ev = shareOutstanding * close + totalDebt - cash

132 return ev

133 table_env.register_function(’ev’,an_ev)

134

135 #marketCap

136 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

137 result_type=DataTypes.DOUBLE())

138 def an_marketcap(shareOutstanding , close):

139 if shareOutstanding is None or close is None:

140 marketcap = 0.0

141 else:

142 marketcap = shareOutstanding * close

68

143 return marketcap

144 table_env.register_function(’marketCap’,an_marketcap)

145

146 # EV/Sales

147 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE(),DataTypes.DOUBLE(),DataTypes.DOUBLE()],

148 result_type=DataTypes.DOUBLE())

149 def an_ev_to_sales(shareOutstanding , close , totalDebt , cash ,

totalRevenue):

150 if shareOutstanding is None or close is None or totalDebt

is None or cash is None or totalRevenue is None or

totalRevenue==0.0:

151 ev_to_sales=0.0

152 else:

153 ev_to_sales = (shareOutstanding * close + totalDebt -

cash) / totalRevenue

154 return ev_to_sales

155 table_env.register_function(’evToSales’,an_ev_to_sales)

156

157 # Price/Sales = Market Capitalization / Total Revenue (or

Sales)

158 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE()],

159 result_type=DataTypes.DOUBLE())

160 def an_price_to_sales(shareOutstanding , close ,totalRevenue):

161 if shareOutstanding is None or close is None or

totalRevenue is None or totalRevenue==0.0:

162 price_to_sales =0.0

163 else:

164 price_to_sales = shareOutstanding*close/totalRevenue

165 return price_to_sales

166 table_env.register_function(’price/sales’, an_price_to_sales)

167

168 #bv

169 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

170 result_type=DataTypes.DOUBLE())

171 def an_bv(totalAsset ,totalLib):

69

172 if totalAsset is None or totalLib is None:

173 bv = 0.0

174 else:

175 bv = totalAsset - totalLib

176 return bv

177 table_env.register_function(’bv’,an_bv)

178

179 #P/B = Market Capitalization / Total Book Value

180 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE(),DataTypes.DOUBLE()],

181 result_type=DataTypes.DOUBLE())

182 def an_price_to_bv(shareOutstanding , close ,totalAsset ,totalLib

):

183 if shareOutstanding is None or close is None or totalAsset

is None or totalLib is None or totalAsset == totalLib:

184 pb = 0.0

185 else:

186 bv = totalAsset - totalLib

187 pb = shareOutstanding * close / bv

188 return pb

189 table_env.register_function(’P/B’,an_price_to_bv)

190

191 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE()],

192 result_type=DataTypes.DOUBLE())

193 def an_bv_to_share(totalAsset ,totalLib ,shareOutstanding):

194 if totalAsset is None or totalLib is None or

shareOutstanding is None or shareOutstanding ==0.0:

195 bs = 0.0

196 else:

197 bv = totalAsset - totalLib

198 bs = bv/shareOutstanding

199 return bs

200 table_env.register_function(’bv/share’,an_bv_to_share)

201

202 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

203 result_type=DataTypes.DOUBLE())

70

204 def an_cash_to_share(cash ,shareOutstanding):

205 if cash is None or shareOutstanding is None or

shareOutstanding ==0.0:

206 ratio = 0.0

207 else:

208 ratio = cash/shareOutstanding

209 return ratio

210 table_env.register_function(’cash/share’,an_cash_to_share)

211

212

213 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE()],

214 result_type=DataTypes.DOUBLE())

215 def an_price_to_FCF(shareOutstanding ,close ,fcf):

216 if shareOutstanding is None or close is None or fcf is

None or fcf==0.0:

217 ratio = 0.0

218 else:

219 ratio = shareOutstanding*close/fcf

220 return ratio

221 table_env.register_function(’price/FCF’,an_price_to_FCF)

222

223 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE()],

224 result_type=DataTypes.DOUBLE())

225 def an_FCF_Yield(shareOutstanding ,close ,fcf):

226 if shareOutstanding is None or close is None or fcf is

None or shareOutstanding ==0.0 or close ==0.0:

227 ratio = 0.0

228 else:

229 ratio = fcf/(shareOutstanding * close)

230 return ratio

231 table_env.register_function(’FCF Yield’,an_FCF_Yield)

232

233 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE(),DataTypes.DOUBLE()],

234 result_type=DataTypes.DOUBLE())

71

235 def an_Graham_basic(totalAsset ,totalLib ,shareOutstanding ,

basiceps):

236 if totalAsset is None or totalLib is None or

shareOutstanding is None or basiceps is None or

shareOutstanding==0.0:

237 ratio = 0.0

238 else:

239 bv = totalAsset - totalLib

240 if (22.5 * (bv/shareOutstanding) * basiceps)>0.0:

241 ratio = np.sqrt(22.5 * (bv/shareOutstanding) *

basiceps)

242 else:

243 ratio = 0.0

244 return ratio

245 table_env.register_function(’GrahamBasic’,an_Graham_basic)

246

247 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE(),DataTypes.DOUBLE()],

248 result_type=DataTypes.DOUBLE())

249 def an_Graham_du(totalAsset ,totalLib ,shareOutstanding ,dueps):

250 if totalAsset is None or totalLib is None or

shareOutstanding is None or dueps is None or

shareOutstanding==0.0:

251 ratio = 0.0

252 else:

253 bv = totalAsset - totalLib

254 if (22.5 * (bv/shareOutstanding) * dueps)>0.0:

255 ratio = np.sqrt(22.5 * (bv/shareOutstanding) *

dueps)

256 else:

257 ratio = 0.0

258 return ratio

259 table_env.register_function(’GrahamDu’,an_Graham_du)

260

261 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

262 result_type=DataTypes.DOUBLE())

263 def an_EA(shareequity , totalAsset):

72

264 if shareequity is None or totalAsset is None or totalAsset

==0.0:

265 ratio = 0.0

266 else:

267 ratio =shareequity/totalAsset

268 return ratio

269 table_env.register_function(’total equity/total asset’, an_EA)

270

271 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE(),DataTypes.DOUBLE()],

272 result_type=DataTypes.DOUBLE())

273 def an_Dupont(netIncome , totalRe , totalAs , shareEq):

274 if netIncome is None or totalRe is None or totalAs is None

or shareEq is None or totalRe==0.0 or totalAs==0.0 or

shareEq==0.0:

275 ratio=0.0

276 else:

277 ratio = (netIncome/totalRe)*(totalRe/totalAs)*(totalAs

/shareEq)

278 return ratio

279 table_env.register_function(’Dupont’,an_Dupont)

280

281 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

282 result_type=DataTypes.DOUBLE())

283 def an_debt_to_capital(totalde ,equity):

284 if totalde is None or equity is None:

285 ratio =0.0

286 else:

287 if (totalde+equity)==0.0:

288 ratio = 0.0

289 else:

290 ratio = totalde/(totalde+equity)

291 return ratio

292 table_env.register_function(’debt/capital’,an_debt_to_capital)

293

294 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

295 result_type=DataTypes.DOUBLE())

73

296 def an_DFL(ebit ,inex):

297 if ebit is None or inex is None:

298 ratio = 0.0

299 else:

300 if (ebit-inex)==0:

301 ratio =0.0

302 else:

303 ratio = ebit/(ebit-inex)

304 return ratio

305 table_env.register_function(’DFL’,an_DFL)

306

307 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

308 result_type=DataTypes.DOUBLE())

309 def an_debt_to_ebitda(totalDebt , ebitda):

310 if totalDebt is None or ebitda is None or ebitda==0.0:

311 ratio = 0.0

312 else:

313 ratio = totalDebt/ebitda

314 return ratio

315 table_env.register_function(’debit/ebitda’,an_debt_to_ebitda)

316

317 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

318 result_type=DataTypes.DOUBLE())

319 def an_InterestCoverageRatio(oi,ie):

320 if oi is None or ie is None or ie==0.0:

321 ratio = 0.0

322 else:

323 ratio = oi/ie

324 return ratio

325 table_env.register_function(’InterestCoverageRatio’,

an_InterestCoverageRatio)

326

327 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

328 result_type=DataTypes.DOUBLE())

329 def an_FCF_to_sales(cash ,totalre):

330 if cash is None or totalre is None or totalre==0.0:

331 ratio =0.0

74

332 else:

333 ratio = cash / totalre

334 return ratio

335 table_env.register_function(’FCF/sales’,an_FCF_to_sales)

336

337 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE(),

338 DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE(),

339 DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE()],

340 result_type=DataTypes.DOUBLE())

341 def an_altman_zscore(totalCurrentAssets ,

totalCurrentLiabilities ,retainedEarnings ,

342 totalAssets ,ebit ,

commonStockSharesOutstanding ,close ,

343 totalLiabilities ,TotalRevenue):

344 if totalCurrentAssets is None or totalCurrentLiabilities

is None or retainedEarnings is None or totalAssets is

None or ebit is None or commonStockSharesOutstanding is

None or close is None or totalLiabilities is None or

TotalRevenue is None:

345 ratio=0.0

346 else:

347 if totalCurrentLiabilities==0.0 or totalAssets==0.0 or

totalLiabilities==0.0:

348 ratio = 0.0

349 else:

350 ratio = 1.2 * ((totalCurrentAssets /

totalCurrentLiabilities) / totalAssets)

351 ratio += 1.4 * (retainedEarnings / totalAssets)

352 ratio += 3.3 * (ebit / totalAssets)

353 ratio += 0.6 * ((commonStockSharesOutstanding *

close) / totalLiabilities)

354 ratio += 1.0 * (TotalRevenue / totalAssets)

355 return ratio

356 table_env.register_function(’altman_zscore’,an_altman_zscore)

75

357

358 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE(),

DataTypes.DOUBLE(),

359 DataTypes.DOUBLE(),DataTypes.DOUBLE()],

360 result_type=DataTypes.DOUBLE())

361 def an_JoelGreenblattsEarningsYield(ebit ,

commonStockSharesOutstanding ,close ,TotalDebt ,

CashAndCashEquivalents):

362 if ebit is None or commonStockSharesOutstanding is None or

close is None or TotalDebt is None or

CashAndCashEquivalents is None:

363 ratio = 0.0

364 else:

365 if (commonStockSharesOutstanding*close+TotalDebt-

CashAndCashEquivalents)==0.0:

366 ratio =0.0

367 else:

368 ratio = ebit/(commonStockSharesOutstanding*close+

TotalDebt-CashAndCashEquivalents)

369 return ratio

370 table_env.register_function(’JoelGreenblattsEarningsYield’,

an_JoelGreenblattsEarningsYield)

371

372 @udf(input_types=[DataTypes.DOUBLE(),DataTypes.DOUBLE()],

373 result_type=DataTypes.DOUBLE())

374 def an_croic(FreeCashFlow ,InvestedCapital):

375 if FreeCashFlow is None or InvestedCapital is None or

InvestedCapital==0.0:

376 ratio=0.0

377 else:

378 ratio = FreeCashFlow / InvestedCapital

379 return ratio

380 table_env.register_function(’croic’,an_croic)

381

382 PROCESSED_SYMBOLS_FILE = "valuation_processed_symbols.txt"

383

384 def load_processed_symbols():

76

385 if os.path.exists(PROCESSED_SYMBOLS_FILE):

386 with open(PROCESSED_SYMBOLS_FILE , "r") as f:

387 return set(f.read().splitlines())

388 return set()

389

390

391 def save_processed_symbol(symbol):

392 with open(PROCESSED_SYMBOLS_FILE , "a") as f:

393 f.write(symbol + "\n")

394

395

396 def process_symbol(symbol):

397 processed_symbols = load_processed_symbols()

398 if symbol in processed_symbols:

399 print(f"{symbol} has already been processed. Skipping.

..")

400 return

401

402 try:

403 start_time = time.time()

404 annual = wrds_annual_hist.wrds_annual_hist(symbol)

405 if annual is None or annual.empty:

406 print(f"No data available for {symbol}. Skipping..

.")

407 return

408

409 annual.fillna(0.0, inplace=True)

410 annual[’currentClosePrice’] = annual.apply(

get_close_price , axis=1)

411 annual = valuation_metrics_function.

mini_factors_generate(annual , symbol)

412 table = table_env.from_pandas(annual)

413 result = table.select(table.symbol , table.

fiscalDateEnding , table.interval , table.ebit , table

.ebitda , table.totalAssets ,

414 table.totalCurrentAssets , table.

shortTermInvestments , table.

77

totalLiabilities ,

415 table.totalCurrentLiabilities , table.

longTermDebt , table.

totalShareholderEquity ,

416 table.treasuryStock , table.

retainedEarnings , table.

commonStockSharesOutstanding ,

417 table.ShareIssued , table.TotalDebt , table.

CommonStockEquity , table.

StockholdersEquity ,

418 table.CommonStock , table.

CashAndCashEquivalents , table.

InvestedCapital , table.InterestExpense ,

table.InterestIncome ,

419 table.TotalExpenses , table.DilutedEPS ,

table.BasicEPS , table.NetIncome ,

420 table.OperatingIncome , table.

OperatingExpense , table.CostOfRevenue ,

421 table.TotalRevenue , table.FreeCashFlow ,

table.FinancingCashFlow ,

422 table.InvestingCashFlow , table.

OperatingCashFlow ,

423 table.currentClosePrice , table.pToEDiluted

, table.pToEBasic , table.DilutedPEG ,

table.BasicPEG ,

424 table.revenueGrowth ,table.piotroskiFscore ,

425 an_ev_to_ebitda(table.

commonStockSharesOutstanding , table.

currentClosePrice ,table.TotalDebt ,

table.CashAndCashEquivalents , table.

ebitda).alias(’evToEbitda’),

426 an_ev(table.commonStockSharesOutstanding ,

table.currentClosePrice ,table.TotalDebt

, table.CashAndCashEquivalents).alias(’

enterpriseValue’),

427 an_marketcap(table.

commonStockSharesOutstanding , table.

78

currentClosePrice).alias(’

marketCaptation’),

428 an_ev_to_sales(table.

commonStockSharesOutstanding , table.

currentClosePrice ,table.TotalDebt ,

table.CashAndCashEquivalents ,table.

TotalRevenue).alias(’evToSales’),

429 an_price_to_sales(table.

commonStockSharesOutstanding , table.

currentClosePrice ,table.TotalRevenue).

alias(’priceToSales’),

430 an_bv(table.totalAssets , table.

totalLiabilities).alias(’bv’),

431 an_price_to_bv(table.

commonStockSharesOutstanding , table.

currentClosePrice ,table.totalAssets ,

table.totalLiabilities).alias(’

priceToBv’),

432 an_bv_to_share(table.totalAssets , table.

totalLiabilities ,table.

commonStockSharesOutstanding).alias(’

bvToShare’),

433 an_cash_to_share(table.

CashAndCashEquivalents ,table.

commonStockSharesOutstanding).alias(’

cashToShare’),

434 an_price_to_FCF(table.

commonStockSharesOutstanding , table.

currentClosePrice ,table.FreeCashFlow).

alias(’priceToFCF’),

435 an_FCF_Yield(table.

commonStockSharesOutstanding , table.

currentClosePrice ,table.FreeCashFlow).

alias(’FCFYield’),

436 an_Graham_basic(table.totalAssets , table.

totalLiabilities ,table.

commonStockSharesOutstanding ,table.

79

BasicEPS).alias(’GrahamBasic’),

437 an_Graham_du(table.totalAssets , table.

totalLiabilities ,table.

commonStockSharesOutstanding ,table.

DilutedEPS).alias(’GrahamDiluted’),

438 an_EA(table.StockholdersEquity ,table.

totalAssets).alias(’

totalEquityToTotalAsset’),

439 an_Dupont(table.NetIncome ,table.

TotalRevenue , table.totalAssets ,table.

StockholdersEquity).alias(’Dupont’),

440 an_debt_to_capital(table.TotalDebt , table.

StockholdersEquity).alias(’

debtToCapital’),

441 an_DFL(table.ebit ,table.InterestExpense).

alias(’DFL’),

442 an_debt_to_ebitda(table.TotalDebt ,table.

ebitda).alias(’debtToEbitda’),

443 an_InterestCoverageRatio(table.

OperatingIncome ,table.InterestExpense).

alias(’InterestCoverageRatio’),

444 an_FCF_to_sales(table.FreeCashFlow ,table.

TotalRevenue).alias(’FCFToSales’),

445

446 an_altman_zscore(table.totalCurrentAssets ,

table.totalCurrentLiabilities ,table.

retainedEarnings ,

447 table.totalAssets ,table.ebit ,table.

commonStockSharesOutstanding ,table.

currentClosePrice ,

448 table.totalLiabilities ,table.TotalRevenue)

.alias(’altmanZscore’),

449 an_JoelGreenblattsEarningsYield(table.ebit

,table.commonStockSharesOutstanding ,

table.currentClosePrice ,table.TotalDebt

,table.CashAndCashEquivalents).alias(’

JoelGreenblattsEarningsYield’),

80

450 an_croic(table.FreeCashFlow ,table.

InvestedCapital).alias(’croic’)

451)

452

453 table_env.create_temporary_view(’temporary_table’,

result)

454

455 table_env.execute_sql("INSERT INTO valuationTotal

SELECT * FROM temporary_table").wait()

456 table_env.drop_temporary_view(’temporary_table’)

457 print(f"{symbol} stored to database successfully!")

458 end_time = time.time() # End time of the processing

459

460 duration = end_time - start_time

461 throughput = len(annual) / duration

462 print(f"{symbol} processed in {duration:.2f} seconds

with a throughput of {throughput:.2f} rows/second."

)

463

464 # Once the symbol is processed and stored successfully

, save it to the file

465 save_processed_symbol(symbol)

466 except Exception as e:

467 print(f"Error processing {symbol}: {e}")

468

469 def process_group(symbols_group):

470 for symbol in symbols_group:

471 process_symbol(symbol)

472

473 group_size = math.ceil(len(symbols) / 20)

474 symbol_groups = [symbols[i:i+group_size] for i in range(0, len

(symbols), group_size)]

475

476 for idx, symbols_group in enumerate(symbol_groups , start=1):

477 print(f"Processing group {idx} of {len(symbol_groups)}..."

)

478 process_group(symbols_group)

81

479 print(f"Group {idx} processed successfully!")

.5 Real-time Stream Processing and Storage

1 def read_stock_from_kafka(env):

2 deserialization_schema = JsonRowDeserializationSchema.

Builder() \

3 .type_info(Types.ROW([Types.STRING(),Types.STRING(),

Types.DOUBLE(),Types.DOUBLE(),Types.DOUBLE(),Types.

DOUBLE(),Types.INT(),Types.DOUBLE(),Types.DOUBLE()

4])) \

5 .build()

6 kafka_consumer = FlinkKafkaConsumer(

7 topics=’stock_topic’,

8 deserialization_schema=deserialization_schema ,

9 properties={’bootstrap.servers’: ’localhost:9092’, ’

group.id’: ’test_group_1’}

10)

11 result = env.add_source(kafka_consumer)

12 result.add_sink(JdbcSink.sink(

13 "INSERT IGNORE INTO stock_price_test (‘Date ‘, ‘Symbol

‘, ‘Open ‘, ‘High ‘,‘Low‘,‘Close ‘ ,‘Volume ‘,‘

Dividends ‘,‘StockSplits ‘) values (

?,?,?,?,?,?,?,?,?)",

14 Types.ROW([Types.STRING(),Types.STRING(),Types.DOUBLE(),Types.

DOUBLE(),Types.DOUBLE(),Types.DOUBLE(),Types.INT(),Types.

DOUBLE(),Types.DOUBLE()

15]),

16 JdbcConnectionOptions.JdbcConnectionOptionsBuilder()

17 .with_url(’jdbc:mysql://localhost:3306/mydatabase?useSSL=

false’)

18 .with_driver_name(’com.mysql.jdbc.Driver’)

19 .with_user_name(’root’)

20 .with_password(’12345678’)

21 .build(),

22 JdbcExecutionOptions.builder()

82

23 .with_batch_interval_ms(5000)

24 .with_batch_size(500)

25 .with_max_retries(5)

26 .build()

27))

28 print("store to database")

29 env.execute()

30 if __name__ == ’__main__’:

31 logging.basicConfig(stream=sys.stdout , level=logging.INFO ,

format="%(message)s")

32 env = StreamExecutionEnvironment.get_execution_environment

() env.add_jars("file:///Users/zhouyuxuan/Desktop/Test

/Libs/flink-sql-connector-kafka-1.17.1.jar",

33 "file:///Users/zhouyuxuan/Desktop/Test/flink-

connector-jdbc-3.1.0-1.17.jar",

34 "file:///Users/zhouyuxuan/Desktop/Test/mysql-

connector-java-8.0.30.jar")

35 print("start reading from kafka")

36 read_stock_from_kafka(env)

1 def json_latest_stock(symbol):

2 try:

3 history = yf.Ticker(symbol).history(period=’1d’)

4 except Exception as e:

5 print(f"Failed to get stock price for {symbol}: {e}")

6 raise

7 else:

8 if not history.empty:

9 history[’Symbol’] = symbol

10 last_column = history.columns[-1]

11 history = history[[last_column] + list(history.

columns[:-1])]

12 history.reset_index(drop=False ,inplace=True)

13 history[’Date’]=pd.to_datetime(history[’Date’]).dt

.date

14 history[’Date’] = history[’Date’].astype(str)

15 history[’Volume’] = history[’Volume’].astype(int)

83

16 tuples = list(history.itertuples(index=False , name

=None))

17 return tuples

18 else:

19 print(symbol , "fetched no data for stock price")

20

21 def write_stock_to_kafka(env,json_data):

22 type_info = Types.ROW([

23 Types.STRING(),Types.STRING(),Types.DOUBLE(),Types.DOUBLE(),

Types.DOUBLE(),Types.DOUBLE(),Types.INT(),Types.DOUBLE(),

Types.DOUBLE()

24])

25 ds = env.from_collection(json_data ,

26 type_info=type_info)

27

28 serialization_schema = JsonRowSerializationSchema.Builder(

) \

29 .with_type_info(type_info) \

30 .build()

31 kafka_producer = FlinkKafkaProducer(

32 topic=’stock_topic’,

33 serialization_schema=serialization_schema ,

34 producer_config={’bootstrap.servers’: ’localhost:9092’

, ’group.id’: ’test_group’}

35)

36 # note that the output type of ds must be RowTypeInfo

37 ds.add_sink(kafka_producer)

38 env.execute()

39 def job():

40 logging.basicConfig(stream=sys.stdout , level=logging.INFO ,

format="%(message)s")

41 env = StreamExecutionEnvironment.get_execution_environment

()

42 env.add_jars("file:///Users/zhouyuxuan/Desktop/Test/Libs/

flink-sql-connector-kafka-1.17.1.jar",

43 "file:///Users/zhouyuxuan/Desktop/Test/

flink-connector-jdbc-3.1.0-1.17.jar",

84

44 "file:///Users/zhouyuxuan/Desktop/Test/

mysql-connector-java-8.0.30.jar")

45 for symbol in symbols:

46 try:

47 data = json_latest_stock(symbol)

48 except Exception as e:

49 print(f"Failed to get daily stock price for {

symbol}: {e}")

50 continue

51 else:

52 print("start writing to kafka")

53 write_stock_to_kafka(env, data)

54 print(’writing done’)

55 # fetch latest stock data (yesterday) at 00:00

56 schedule.every().day.at("00:00").do(job)

57 while True:

58 schedule.run_pending() # check whether there exists job

to execute

59 time.sleep(1) # wait 1s

.6 User Interface

1 @app.route(’/valuation_dataset’, methods=[’GET’])

2 def get_valuation_data():

3 conn = mysql.connect()

4 cursor = conn.cursor()

5 symbol = request.args.get(’symbol’, None)

6 start_date = request.args.get(’start_date’, None)

7 end_date = request.args.get(’end_date’, None)

8 # fiscal_date_ending = request.args.get(’fiscalDateEnding

’, None)

9 interval = request.args.get(’interval’, None)

10 output_format = request.args.get(’format’, ’json’) #

Default to ’json’, but can also be ’csv’

11 query = "SELECT * FROM valuationTotal WHERE 1=1"

12 if symbol:

85

13 query += f" AND symbol=’{symbol}’"

14 if start_date and end_date:

15 query += f" AND fiscalDateEnding BETWEEN ’{start_date

}’ AND ’{end_date}’"

16 # if fiscal_date_ending:

17 # query += f" AND fiscalDateEnding=’{

fiscal_date_ending}’"

18 if interval:

19 query += f" AND ‘interval ‘=’{interval}’"

20 cursor.execute(query)

21 data = cursor.fetchall()

22 column_names = [i[0] for i in cursor.description]

23 if output_format == ’json’:

24 result = [dict(zip(column_names , row)) for row in data

]

25 return jsonify(result)

26 elif output_format == ’csv’:

27 output = StringIO()

28 writer = csv.writer(output)

29 writer.writerow(column_names) # write header

30 writer.writerows(data)

31 output.seek(0)

32 return output.getvalue(), 200, {

33 ’Content-Disposition’: ’attachment; filename=

valuation_data.csv’,

34 ’Content-Type’: ’text/csv’

35 }

36 else:

37 return jsonify({"error": "Invalid format requested"}),

400

