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Abstract

A paradigm in the field of deep learning is the pre-training and subsequent fine-tuning

of Large Language Models (LLMs). Fine-tuning refers to updating parts of a pre-

trained model to perform better on a new task. However, fine-tuning LLMs, like

Transformer-based CodeBERT, can be computationally expensive. This has motivated

the development of parameter-efficient fine-tuning (PEFT) methods that merely update

a small number of extra parameters during fine-tuning. While PEFT shows promise for

natural language processing tasks, it is less studied for code intelligence tasks.

In this project, we systematically assess the efficacy of representative PEFT methods,

namely LoRA, Prefix-tuning, and Adapter-tuning with its variants, when fine-tuning

CodeBERT on the code search task. The results show most PEFT methods perform

poorly, except LoRA. However, our proposed method, “loFF”, combining LoRA and

prioritized Adapter-tuning, outperforms full fine-tuning performance while only tuning

7.52% of parameters. Our further analysis indicates loFF strengthens CodeBERT’s

semantic modelling and handling of complex functions (code). These results indicate

the efficacy of PEFT methods for a code intelligence task, encouraging a strategy of

combining methods when the standalone PEFT methods fail. However, it also suggests

that the effectiveness of PEFT approaches in other code intelligence tasks or other

domains beyond natural language should be examined.
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Chapter 1

Introduction

Recently, the strategy of pre-training and then fine-tuning has become a paradigm in

the deep learning field. Pre-training large models on generalized domain data and

then fine-tuning them on task-specific data can significantly improve their performance

compared to training them directly on task-specific data [8, 38, 4]. The domain of

natural language processing (NLP) has witnessed significant advancements, particularly

with the success of pre-training Transformer-based large language models (LLMs)

and fine-tuning them for downstream tasks. These LLMs, such as GPT-4 [35], have

demonstrated remarkable capabilities in natural language understanding and generation.

Considering the similarity between natural language and programming languages

[19, 5], researchers have demonstrated the effectiveness of employing LLMs in the

field of code intelligence [47, 10, 11]. Code intelligence refers to the development

of AI techniques for programming languages. Typical tasks in this domain include

code completion (predicting code based on previous segments), code summarization

(providing brief descriptions of code snippets), and code search (finding relevant code

for natural language queries).

Despite their effectiveness, LLMs face several challenges. Their capabilities rely on

hundreds of millions of trainable parameters that are pre-trained with abundant data [50].

Although the pre-training step can be undertaken by large companies with substantial

resources and the pre-trained models are typically open access online, fine-tuning these

models on small, task-specific datasets remains computationally expensive. This is

because the fine-tuning process re-trains all the parameters of the pre-trained model

for each downstream task, necessitating a significant amount of labelled data for each

task. Additionally, the large number of parameters in these pre-trained models makes

them cumbersome to deploy and store on hardware during training. This limits their

1



Chapter 1. Introduction 2

accessibility to researchers with constrained resources.

1.1 Motivation

Parameter-Efficient Fine-Tuning (PEFT) is a technique designed to address these

challenges. Unlike full fine-tuning, which updates all pre-trained weights and requires

storing the entire model for every downstream task, PEFT retains and stores only the

additional parameters introduced by modules appended to the model. This approach

updates only a small fraction of the model’s parameters and keeps the pre-trained

weights unchanged. Despite this, some PEFT methods could obtain performance on

par with full fine-tuning [21, 22, 28]. This strategy not only optimizes computational

resources but also reduces the challenges of deployment and storage, making these

powerful models more accessible.

While the efficacy of PEFT on natural language tasks is well-documented [16, 9,

22], its application in the field of code intelligence is still relatively underexplored.

Successfully deploying PEFT for code intelligence could substantially cut training

costs for organizations that are developing code intelligence tools. This, in turn, would

broaden access to powerful AI coding assistants that leverage LLMs.

Several studies [41, 46] have employed Adapter-tuning [21], a prevalent PEFT

approach, for specific code intelligence tasks, yielding favourable results. But they lack

comparison across different PEFT methods. Research has shown [16, 34, 18] deploying

different PEFT methods on the same downstream task can obtain diverse performance.

Some methods do not even demonstrate the expected parameter efficiency on certain

tasks. Given this background, our project aims to evaluate and compare the performance

of various PEFT methods when deployed with LLMs for code intelligence tasks.

1.2 Objective And Hypothesis

The primary goal of this project is to explore and compare the effectiveness and

parameter efficiency of different parameter-efficient fine-tuning (PEFT) methods on

code intelligence tasks. Parameter efficiency refers to achieving strong performance

with as few tuned parameters as possible. We aim to determine and compare the

minimum parameter budget (number of parameters tuned) needed for the deployed

PEFT methods to match the performance of full fine-tuning.
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Specifically, we focus on applying three representative PEFT methods, i.e., LoRA

(Low-Rank Adaption) [22], Prefix-tuning [28], and Adapter-tuning [21], to fine-tune

the CodeBERT model on the code search task. To better understand the similarities

and differences between these methods, we divide these methods, including variants

of Adapter-tuning, into groups based on the specific sub-layers they modify (details

in Section 3.1) in the model. We will also evaluate the feasibility of combining the

top-performing methods from each group, as prior work has shown that hybrid PEFT

approaches can further improve performance on some natural language tasks [2, 34].

Our objectives can be summarized as:

• Evaluate the efficacy of standalone PEFT methods including LoRA, Prefix-tuning

and Adapter-tuning with its variants;

• Develop and assess a combined method that integrates multiple PEFT methods;

• Conduct analysis to probe how these methods impact the model’s performance.

Our hypotheses are:

• Diverse Performance across PEFT Methods: We anticipate that while certain

methods might approach or even surpass the performance of full fine-tuning when

given more trainable parameters, others may lag behind. Differences might also

manifest between and within our categorized groups;

• Synergistic Potential of PEFT Combinations: Combining PEFT methods

may lead to a further performance gain by harnessing their respective strengths,

potentially eclipsing the performance of both full fine-tuning and isolated PEFT

methods deployment.

1.3 Results Achieved

Standalone PEFT Methods Evaluations: LoRA, Prefix-tuning, and Adapter-tuning,

along with their variants, were evaluated for fine-tuning CodeBERT on code search.

Among them, only LoRA’s performance approached that of full fine-tuning. This

indicates the need to examine the efficacy of PEFT approaches other than natural

language tasks.

Combined Method Evaluations: Our proposed approach “loFF”, combining LoRA

with prioritized Adapter-FFN, showed promising performance. With just 7.52% of
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parameters tuned, it outperformed any standalone methods and full fine-tuning. This

indicates the PEFT methods’ efficacy in the code intelligence field.

Performance Analysis: Our attention analysis, which examines the model’s at-

tention weights, suggests loFF strengthens captured semantic features compared to

standalone methods. Moreover, our qualitative analysis indicates loFF is better at

handling long code sequences with repetitions than single methods.

1.4 Overview

The remainder of this report is structured as follows:

Chapter 2 provides background on pre-trained large language models (LLMs) for

code intelligence tasks, fine-tuning, and parameter-efficient fine-tuning (PEFT) methods

deployed.

Chapter 3 explains how we categorize PEFT methods into groups and brings in our

research questions based on this classification.

Chapter 4 details the experiments to address the research questions from Chapter 3,

including our experimental setup, evaluation metrics, results, and evaluations.

Chapter 5 presents a qualitative analysis examining the models’ performance based

on our experiments. We also discuss the limitations of our project here.

Finally, Chapter 6 summarizes our key findings with a discussion about their signifi-

cance for PEFT methods and code intelligence, and suggests future work.

The Appendix (Chapter 7) provides our attention analysis and more experimental

details.



Chapter 2

Background

In this chapter, we introduce some representatives of the Transformer-based LLMs used

for code intelligence tasks with a brief comparison of their architectures and pre-training

processes. Then, we introduce the fine-tuning process and the parameter-efficient fine-

tuning (PEFT) methods we will use for our experiments.

2.1 Transformer-based, Pre-trained Code LLMs

The great generalizability demonstrated by Transformer-based [44] large pre-trained

language models (LLMs), like BERT [8] and GPT series [38, 4], have motivated

exploring their potential beyond Natural language processing (NLP). Code intelligence

has emerged as such an area with massive publicly available programming data. Studies

have shown that jointly pre-training on natural language and code enables models to

learn associations between two modalities, achieving strong results on downstream tasks

[2, 47]. Transformer-based code LLMs generally have three architectures: encoder-

decoder, encoder-only, and decoder-only.

Encoder-decoder models have an encoder and decoder like the original Transformer

[44]. Fig. 2.1 shows a basic structure of this type of model. The encoder encodes an

input sequence into a feature representation, and then the decoder generates tokens

in the output sequence conditioned on this encoding and the preceding generated

tokens. Having both an encoder and decoder enables these models to complete both

understanding and generation tasks, especially for tasks where input-output pairs are

highly related, like translation. But they do not always surpass specialized single-

component architectures [2, 48]. Prominent examples include CodeT5 [48], which

predicts masked code tokens during pre-training, and AlphaCode [29], which generates

5
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codes from encoder outputs containing bimodal sequences.

 DECODERENCODER

I am Batman

我是有钱人

Feature Extraction

Input

Output

Figure 2.1: Encoder-Decoder architecture.

Encoder-only models utilize the bidirectional Transformer encoder, allowing tokens

to attend to all the tokens in the input sequence, i.e., those in the preceding as well as in

the future timesteps. Fig. 2.2 shows an example of this type of model. After pre-training

on code, they generate contextualized code embeddings significant for tasks like code

search, which relies on semantic similarity of natural language query and its function

sequence [23]. Representative examples include CodeBERT [11] and GraphCodeBERT

[15], both built on RoBERTa [31] to predict masked code tokens during pre-training.

GraphCodeBERT additionally incorporates code structure predictions. We use Code-

BERT as our pre-trained code model because of its compatibility with the PEFT Python

modules we deployed and relatively small model size.

Figure 2.2: BERT, a typical example of encode-only architecture. Its notable feature is

that the special [CLS] token (left bottom) learns to represent the whole sequence. The

figure above is a reproduction of the original image taken from [8].
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Decoder-only models use only the unidirectional Transformer decoder, which

means each token can only attend to its preceding tokens. This design suits generation

tasks that sequentially predict tokens based on prior context, without access to future

tokens. Most decoder-only code models adopt GPT-2 [38] (Fig. 2.3) as their backbone

and are pre-trained to predict future code tokens, known as Causal Language modelling.

CodeGPT is a representative example [33].

Figure 2.3: A simple illustration of GPT-2.1The model makes predictions based only on

the previous tokens while future tokens are unavailable.

Many other code models like TreeBERT [24] fall under these architectures, but we

do not list all of them. After pre-training, these models can process both natural and

programming languages. They are then fine-tuned on downstream tasks requiring these

capabilities.

2.2 Full Fine-Tuning and Its Alternatives

The fine-tuning process aims to leverage the general knowledge acquired during the

pre-training step: by initializing with pre-trained weights, models can adapt quickly to

new tasks without training from scratch. For example, Codex [6] employs the GPT-3

[4] model and fine-tunes it with programming languages for code intelligence tasks.

Full fine-tuning means updating all the model’s pre-trained parameters. This can be

computationally expensive and inefficient, especially with LLMs like GPT-3, which has

175 billion trainable parameters and requires approximately 350GB of storage.

To alleviate cost concerns, several alternatives have emerged. Feature Extraction:

1http://jalammar.github.io/illustrated-gpt2/

http://jalammar.github.io/illustrated-gpt2/
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This approach uses the pre-trained model as a feature extractor to take hidden states

from certain layers. A lightweight network is then trained on top of these extracted

features, leveraging the knowledge from pre-training without the overhead of full fine-

tuning [8, 31]. Fig. 2.2 shows a typical example of this technique, where the “C” token

on the left top corner can be used as input to train neural networks for downstream tasks.

Partial Fine-Tuning: Only specific layers of the model are fine-tuned, while the rest

remain unchanged. This allows extracting both low and high-level representations2and

considerably reduces computational costs. However, these two methods are not always

suitable across tasks or obtain comparable performance to full fine-tuning [42].

There are also other methods that can mitigate these issues and achieve great

performance, such as Knowledge Distillation [20].3 and using Prompts [4, 25].4

While promising, these techniques fall outside the primary focus of our project. Next,

we will introduce an emerging alternative to full fine-tuning called Parameter-Efficient

Fine-Tuning (PEFT).

2.3 Parameter-Efficient Fine-Tuning (PEFT)

PEFT methods flexibly introduce small trainable neural networks (modules) into the

sub-layers of Transformer-based models. During fine-tuning, only these modules’

unique parameters are trained to learn task-specific features while pre-trained weights

are unchanged. This acts like a “partial fine-tuning” approach, only updating parts of the

model in fine-tuning. Moreover, the flexible quantity and inserting position of modules

allow tuning both low and high-level representations, incorporating the benefits of the

feature extraction approach. By only training lightweight modules with a bottleneck

dimension5 for each task, PEFT methods hold the following advantages:

• Parameter efficiency: PEFT tunes far fewer parameters than full fine-tuning, yet

obtains similar or better performance. Our project focuses on this attribute.

2First (bottom) layers in a Transformer-based model normally learn low-level (pairwise) features
while last (top) layers learn high-level features like semantics.

3This technique trains a smaller model (student) to mimic the behaviours of a larger pre-trained model
(teacher). This allows the student to reproduce the teacher’s outputs with considerably less computational
overhead.

4Some phrases to guide generative LLMs like GPT-4 to produce phrases-related outputs without
fine-tuning. They act as cues, allowing the model to invoke its pre-trained knowledge for specific tasks.

5Researchers found that pre-trained LLMs have a considerably lower “intrinsic dimension/rank” than
their model size [1, 27], like 10e3 out of a 10e7 model, and their weights update can be done in this low
dimension that is as effective as tuning them in the original model size [22].
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• Scalability: Modules introduced by PEFT methods can be inserted at different

positions of the models’ sub-layers with various bottleneck dimensions, allowing

flexibly changing the number of trainable parameters [37];

• Robustness: PEFT methods help mitigate overfitting and catastrophic forgetting6

[12], which are two common problems faced by fine-tuning LLMs.

Next, we introduce PEFT methods used in this project and summarize them in Fig.

2.4.

■ .

LoRA

WQ WK WV

h (Hidden States)

Wup

Wdown Wdown

Wup

Q K VPK PV

Prefix-tuning

Multi-Head Attention

Adapter

Add & Norm

Feedforward

Adapter

x LAdd & Norm

Adapter

Wup

Wdown

Pre-trained  K or V PK  or  PV

Prefix-tuning
Prefix

Nonlinear

Figure 2.4: Illustration of the encoder architecture of Transformer-based models and

the PEFT methods employed in this project. Blocks with dashed borders denote the

additional modules introduced by these methods, i.e., where the trainable parameters

are located. We use h to collectively represent the hidden states of all sub-layers for

simplicity. L denotes the number of encoder layers. Note that we emit the scale factor of

LoRA in this figure, which is applied after the W up projection.

2.3.1 Adapter-tuning

Adapter-tuning denotes a category of methods that introduce trainable Adapter modules

(right top in Fig. 2.4) into the sub-layers of Transformer-based models. These mod-
6A situation where pre-trained LLMs forget previously learned information when learning new data.
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ules are typically composed of two projection matrices, achieving parameter-efficient

fine-tuning by operating in a bottleneck dimension. The first matrix, Wdown ∈ Rd×r,

compresses the input, h ∈ Rd , to a smaller bottleneck dimension r. r is a tunable

hyperparameter and normally r<d. After a nonlinear activation function, the second

matrix, Wup ∈ Rr×d , projects the dimension back to d. A residual connection then

combines this output with the original input, yielding hout .

hout ← h+ f (hWdown)Wup, (2.1)

where f denotes the nonlinear activation function. When r grows to d, Adapter layers

converge to a Multilayer Perceptron (MLP).

While variants of Adapter-tuning differ in module placement and quantity [43, 3,

40, 37], their architecture remains consistent. Typically, “Adapter-tuning” refers to the

method proposed by Houlsby et al. [21], in which Adapter modules are added after the

multi-head self-attention (ATTN) and feed-forward network (FFN) sub-layers within

the model’s encoder. However, sequentially adding them to the original model leads

to a drawback: increased inference time.7 In our study, we implement this canonical

approach and its two variants: placing modules either only after the ATTN [43] or only

after the FFN [37] sub-layers.

2.3.2 Prefix-tuning

Prefix-tuning [28] incorporates prefix vectors (length l) with the input of the multi-head

attention (ATTN) sub-layers, treating them as additional tokens to learn task-specific

information. Specifically, two matrices, Pk ∈ Rl×d and Pv ∈ Rl×d , are concatenated

with the original keys and values in each encoder layer. ATTN then operates with these

extended keys and values:

ATTN(Q,concat(Pk,K) ,concat(Pv,V)) , (2.2)

where Q, K and V denote the original Query, Key, and Value, respectively. Each of

them is obtained by projecting the hidden states, h ∈ Rd , through their respective linear

projections. For instance, the Query, Q, is formulated as hWQ (see Fig. 2.4).

Note that Prefix-tuning has a shortcoming as well: as the length l of the prefix vector

increases, the model becomes constrained in processing extended input sequences,

7This occurs because the model becomes deeper.
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given the inherent maximum sequence length limitation of models.8 Similar works

include P-tuning [30] and Prompt-tuning [26]. Prompt-tuning adapts Prefix-tuning,

adding prefix vectors only to the first layer of the Transformer. However, this method

merely works well with LLMs with billions of parameters. Thus, we do not utilize it in

this project.

2.3.3 LoRA

LoRA [22] adds trainable low-rank matrices in the multi-head attention (ATTN) sub-

layers of the Transformer to approximate weight adaptations in the “intrinsic rank” (see

note 5 above).

d wpre_frozen

Wup
Wdown

dhouth

r
scale(α)

Figure 2.5: The figure above illustrates the structure and working of LoRA. LoRA employs

two low-rank matrices, as shown in the bottom part of the figure, to approximate the

weight-updating process during fine-tuning. The upper part of the illustration depicts

outputs derived from pre-trained weights. In the figure, only the weights represented

with dashed lines are updated during the fine-tuning phase.

Specifically, when fine-tuning the pre-trained weights Wpre to Wtuned, instead of di-

rectly updating them, LoRA approximates this update with two matrices Wdown ∈Rd×r

and Wup ∈ Rr×d , where r <<d (low rank). Thus, LoRA changes the full fine-tuning

process from Wtuned←Wpre to Wtuned←Wpre frozen +WdownWup, where Wpre frozen

indicates that the pre-trained weights are unchanged. These matrices are generally

added to the query and value projections in the ATTN sub-layers.9 As displayed in Fig.

8Generally, neural network models have a maximum accepted sequence length. Here it equals the
prefix length plus the input sequence length.

9The authors found this is the best setting balancing simplicity and parameter-efficiency, compared
with implying LoRA matrices to other combinations of elements in {WQuery,WKey,WValue,WOutput}.
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2.5, LoRA passes the hidden states, h ∈ Rd , to the added matrices as input, modifying

the projection output hout :

hout ← hout +α ·hWdownWup, (2.3)

where α is a fixed hyperparameter that can be tuned.10 LoRA does not use a nonlinear

activation function as Adapter-tuning does, so LoRA will converge to fully fine-tuning

the pre-trained model if r equals d.

The primary advantage of LoRA is that it does not lead to increased inference time.

This is because the formula “pre frozen + down*up” can be summed to obtain one

updated set of weights that retains the same size as the original.

2.3.4 Others

There are also other PEFT methods not employed in this project. For instance, BitFit

[39] is a method that re-trains only the bias terms of the pre-trained model during

fine-tuning. We do not list all of them in this report.

Considering that Adapter-tuning, Prefix-tuning, and LoRA typically yield strong

results across natural language tasks [9], we focus on employing them for our experi-

ments.

10The authors changed the value of α for different tasks, based on the model’s performance on the
validation set. Subsequently, it will not change during the fine-tuning process.
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Research Methodology

This section illustrates how we categorize the previously introduced PEFT methods.

Based on this classification, we present our research questions.

3.1 A Simplified And Unified View Of PEFT Methods

We introduce a simplified classification of our deployed PEFT methods based on which

core Transformer sub-layers they directly modify.1 This offers a systematic view to

better understand the similarities and differences between the methods.

The Transformer encoder consists of two main sub-layers (Fig. 3.1): multi-head

self-attention (ATTN) and feed-forward network (FFN). Meanwhile, our studied PEFT

methods modify the outputs of these sub-layers. Thus, we categorize the methods into

three groups:

• Directly modifying ATTN sub-layer outputs;

• Directly modifying FFN sub-layer outputs;

• Directly modifying both ATTN and FFN outputs.

Fig. 3.1 and Table 3.1 shows a visual and tabulated summary of these categories,

respectively. Additionally, to compare the parameter efficiency of these methods, we

introduce how to count the number of tunable parameters of them in Section 4.1.5. The

three categories can be elaborated as follows:

1In our project, “directly modifying” means adapting the outputs of sub-layers at the same encoder
layer, rather than indirectly influencing the results in subsequent encoder layers as these encoder layers
are stacked together.

13
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Multi-Head Self-Attention (ATTN) sub-layer

Feed-Forward Network (FFN) sub-layer

Hidden States

Adapter-ATTN

LoRA

Prefix-tuning

Adapter-FFN

Adapter-H

x L

hout

 hout

ATTN Modifiers

Figure 3.1: Illustration of an abstract architecture of the Transformer encoder (left part).

The dashed lines point to the component that is directly altered by the PEFT methods

(right part). hout represents the modified outputs (or hidden states) that are input into

subsequent sub-layers. While we use the same sign to represent the modified output

from both ATTN and FFN sub-layers for simplicity, they are typically different in general.

• ATTN Modifiers: This group directly modifies the outputs of the ATTN sub-layers.

It includes methods such as Prefix-tuning and LoRA;

• Both ATTN and FFN Modifiers: We denote the configuration of Adapter-tuning

proposed by Houlsby et al. [21] as Adapter-H, which uniquely modifies the

outputs of both ATTN and FFN sub-layers, placing it in a distinct group;

• Position-Specific Adapter-tuning: As highlighted in Section 2.3.1, implementing

Adapter-tuning offers us flexibility, allowing us to insert Adapter modules at

various positions within the Transformer architecture. We consider two variants

in our project. Adapter-ATTN: This configuration inserts Adapter modules

immediately after the ATTN sub-layers [43]. It specifically modifies the ATTN

sub-layers outputs, categorizing it under the ATTN Modifiers group; Adapter-
FFN: This method introduces Adapter modules after the FFN sub-layers [37]. It

exclusively alters the outputs of the FFN sub-layers, placing it in a distinct group.
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Groups Directly Modified Outputs Methods

Group 1 multi-head self-attention (ATTN)

Prefix-tuning

LoRA

Adapter-ATTN

Group 2 feed-forward network (FFN) Adapter-FFN

Group 3 both ATTN and FFN Adapter-H

Table 3.1: A unified view of the PEFT methods we deploy in our project. “Modified

Outputs” means that the PEFT methods we use directly modify the outputs of the

specified sub-layer in each encoder layer.

Note that the PEFT methods we apply introduce modules in each encoder layer.

This means that, while a PEFT method like Adapter-FFN targets a specific sub-layer (in

this case, FFN), it has an indirect effect2 on the outputs of both ATTN and FFN sub-

layers in the subsequent encoder layers. Consequently, our classification is a simplified
approach based on direct modifications. Based on this unified view, some questions

arise naturally.

• Effectiveness: How do these PEFT methods perform under a consistent hyperpa-

rameter setting?

• Intra-Group Efficiency: Within the first group, which method offers superior

parameter efficiency (Section 4.1.5)?

• Inter-Group Comparison: Across different groups, which type of direct modifi-

cation (ATTN or FFN sub-layer outputs) is more effective for our task?

• Optimal Efficiency with Adapter-H: Considering the uniqueness3 of Adapter-H,

does it stand out as the most parameter-efficient method?

• Combining Strengths: Since methods in Group 1 can be deployed with Adapter-

FFN,4 could we combine the most efficient method from Group 1 with Adapter-

FFN to achieve a performance gain?

To address these research questions, we introduce how we design each of them in

the following section.
2Because the encoder layers are stacked with each other serially, the output of one layer is the input

of the following layer, affecting the results of all subsequent layers. We denote this influence as the
“indirect” modification in our project.

3Adapter-H is the only method which directly modifies the outputs of both ATTN and FFN sub-layers.
4Because they insert modules at different sub-layers in an encoder layer.
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3.2 Research Questions (RQ)

To answer the above questions for the code search task (Section 4.1.2), we explore the

following research questions and introduce our motivation and study design.

3.2.1 RQ1: Evaluating Adapter-H Performance (Group 3)

Group 3 denotes the group in Table 3.1.

Motivation: Previous research has demonstrated that the original Adapter con-

figuration proposed by Houlsby et al. [21] can achieve comparable performance to

full fine-tuning across natural language tasks with less than 10% of the total model

parameters. In this research question, we adopt this original configuration, denoted as

Adapter-H (see Fig. 3.1), to explore its effectiveness when applied to CodeBERT, a

pre-trained code model, on the code search task.

Design: We will apply Adapter-H to fine-tune CodeBERT on the CodeXGLUE

benchmark [33]. This benchmark includes the Python programming language, a lan-

guage present in CodeBERT’s pre-training dataset.

The bottleneck dimension (r) of Adapter modules plays a significant role in its

performance, since it determines the number of trainable parameters. We will deploy

Adapter-H with r in {64, 128, 256, 512} based on preliminary experiments [21]. The

upper limit of r is set to 512 to ensure it remains a “bottleneck” dimension, given the

hidden size of CodeBERT is 768. We aim to evaluate the performance of Adapter-H with

an increase in the bottleneck dimension. This will also reveal Adapter-H’s effectiveness

and parameter efficiency for this task. We will compare the results, in terms of the

Mean Reciprocal Rank (MRR) metric (Section 4.1.4), and parameter efficiency, of

Adapter-H against a fully fine-tuned CodeBERT, which serves as our baseline. We will

run experiments 2 times with different seeds to obtain more robust results, reporting

their mean values with standard deviation.

Hypothesis: As the only method that modifies the results of both the ATTN and

FFN sub-layers, Adapter-H might offer an upper bound in terms of performance and

efficiency among PEFT methods for this task. Additionally, a larger r may enhance

Adapter-H’s performance, but this would come at the expense of parameter efficiency

due to the increase in trainable parameters.
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3.2.2 RQ2: Comparing ATTN Modifiers Efficiency (Group 1)

We term the PEFT methods that directly modify the outputs of ATTN sub-layers as

“ATTN Modifiers”. These constitute Group 1, as represented in Table 3.1 and Fig. 3.1.

Motivation: Our first aim is to evaluate the effectiveness and parameter efficiency

of the ATTN Modifiers group, which includes Prefix-tuning, LoRA, and Adapter-ATTN.

Within this group, we expect to identify the top-performing method under the same

parameter budget. This method will serve as a representative of the group’s efficiency.

By identifying the top performer, we will be able to make comparisons with other

groups in RQ3 and use the representative in a combined approach for RQ4.

Design: We fine-tune CodeBERT on the CodeXGLUE benchmark, for the code

search task, using each ATTN modifier, and evaluating them based on their MRR value

and the number of tunable parameters. We use the fully fine-tuned CodeBERT as our

baseline. To maintain a fair comparison, the hyperparameter settings are consistent

(details in Section 4.1.6), except for the bottleneck dimensions of each method.

For Prefix-tuning, the length l of the prepended vectors is set to {5, 10, 20, 30,

50, 100, 256}, constrained by CodeBERT’s maximum input length and the test set’s

maximum input sequence length.5

For LoRA, an initial step is to determine the scale factor α (Eq. 2.3.3) for optimal

LoRA performance.6 Experiments are conducted with r set to 64 and α in {1, 2, 3, 4}.7

We select the α value that yields the best average MRR on the validation set over 2

runs. Subsequently, this value is used for LoRA with different bottleneck dimensions

[34, 22].

Bottleneck dimensions (r) values are varied as {32, 64, 128, 256} for LoRA and

{64, 128, 256, 5128} for Adapter-ATTN. When using the same r values, LoRA’s tunable

parameters are roughly double those of Adapter-ATTN and Prefix-tuning. Therefore,

LoRA’s r is set at half of that for Adapter-ATTN to compare their efficiency under an

equivalent budget. More details can be found in Section 4.1.5. The mean performance,

accompanied by the standard deviation over two runs, will be reported.

Hypothesis: A method may hold the highest parameter efficiency within Group

1. For these methods, increasing the bottleneck dimension (either l or r) may lead to

5The maximum acceptable input length for CodeBERT is 512, which means the sum of the input
sequence length and the prefix vector length should not exceed 512. The maximum length of the prefix
vectors we use here is 256, since the maximum length of the input sequence in the test set is also 256.

6The performance of LoRA is sensitive to this hyperparameter, and its optimal value varies across
tasks [22].

7These are commonly used values from previous studies [2, 34].
8Same as Adapter-H, to satisfy a bottleneck or “low rank” dimension.
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performance gains.

3.2.3 RQ3: Relative Efficiency Across Groups

Motivation: ATTN and FFN sub-layers of the Transformer encoder are believed to

capture different feature patterns in data [13]. Based on this, we aim to identify which

sub-layer modification type (Table 3.1)—namely, directly modifying ATTN only, FFN

only, or both—exhibits superior efficiency for the code search task. This indicates

which sub-layers are probably more influential for this task, providing us with insight

into optimizing parameter allocation when combining PEFT methods in RQ4.

Design: To evaluate Adapter-FFN, we will fine-tune CodeBERT on CodeXGLUE

using the same range of bottleneck dimensions as Adapter-ATTN in RQ2 (64 to 512).

Based on the top performer identified for the ATTN Modifiers group in RQ2, we will

compare it against Adapter-FFN (Group 2) and Adapter-H (Group 3). The comparison

will use the mean MRR on the test set under the same parameter budget, contrast-

ing against full fine-tuning as a baseline. This approach allows us to compare the

performance of the three groups with shared hyperparameters and metrics.

Hypothesis: Considering that Adapter-H is the sole method directly modifying both

ATTN and FFN sub-layers, it may emerge as the most parameter-efficient method for

the code search task.

3.2.4 RQ4: Enhancing Efficiency Through Cross-Group Methods

Combination

Motivation: Based on the results of previous research questions, we will identify the

best-performing ATTN Modifier from Group 1 (Table 3.1) and evaluate Adapter-FFN’s

efficacy. This exploration leads us to examine the potential synergy between these

two methods. The goal is to create a new method that falls under Group 3, which

modifies the outputs of both ATTN and FFN sub-layers directly. Specifically, drawing

insights from RQ3, we are interested in determining if a strategic combination of the top-

performing method from Group 1 with Adapter-FFN can outperform the deployment of

any standalone method on CodeBERT for the code search task.

Since the design of RQ4 relies on results from previous research questions, we will

introduce its design and findings in Section 4.2.4.
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Experiments

In this chapter, we detail our experimental setup, including the baseline model, dataset,

and the specific task on which we focus. We also introduce the implementation details

of our experiments, such as hyperparameter settings.

4.1 General Setup

4.1.1 Baseline

Due to resource constraints and the compatibility of the CodeBERT [11] model with

the PEFT libraries we use, we employ the publicly available CodeBERT-base model1

for our experiments. Fully fine-tuning this model serves as our baseline. This allows us

to compare the performance of the baseline with different PEFT methods, evaluated

based on task-specific metrics and parameter efficiency.

Model Overview:

• RoBERTa: RoBERTa (Robustly optimized BERT approach) is a variant of

BERT2 [8] that exhibits great performance on several natural language under-

standing tasks. Key enhancements of RoBERTa include training on a larger

dataset, using larger batch sizes, and extending the training duration. As a result,

RoBERTa can handle longer input sequences compared to BERT. Several pre-

trained code models, including CodeBERT, adopt RoBERTa as their backbone.

RoBERTa is available in multiple size variants. In our experiments, we employ

the RoBERTa-base version, which consists of 125 million parameters: 12 encoder
1https://huggingface.co/microsoft/codebert-base
2A pre-trained model with an encoder-only Transformer architecture. It achieved state-of-the-art

performance on several natural language understanding tasks.

19
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layers, 768-dimensional embeddings, and 12 attention heads for each attention

sub-layer.

• CodeBERT: CodeBERT-base employs the RoBERTa-base architecture as its

model structure. It is pre-trained on the CodeSearchNet [23] corpus, containing

paired natural language (NL) and programming language (PL) examples. Its

pre-training objectives include Masked Language Modelling [8] and Replaced

Token Detection [7], which can be summarized as predicting the masked NL

or PL tokens in an input sequence. Thus, CodeBERT can effectively encode

bidirectional contexts for bimodal input sequences. It tokenizes the NL and PL

using byte-level Byte Pair Encoding [38], which splits words and code segments

into sub-word units (see App. 7.6 for an example). This tokenization approach

allows CodeBERT to manage rare and out-of-vocabulary3 terms. In summary,

CodeBERT’s ability to contextually encode both NL and PL sequences makes it

a suitable choice for bimodal understanding tasks like code search, our focus in

this project.

4.1.2 Task

Code Search: In code search, a natural language query is given as input, and the goal

is to identify the most semantically similar code snippets (functions in our experiments)

from a collection of candidate functions, including distractors (unrelated candidates).

This can be achieved using joint embeddings. The objective is to project the queries

and functions into a shared embedding space where semantically aligned queries and

functions are positioned close to each other.

To represent an entire sequence as an embedding, a prevalent approach is to leverage

the [CLS] token of BERT-based models. For models like CodeBERT, the final hidden

state (last encoder layer) of the [CLS] token could be used as a sequence-level repre-

sentation [8], encapsulating the contextual information of the input sequence. Given

CodeBERT’s capability to encode both natural language and function sequences with

its [CLS] token, it is suited for the code search task achieved with joint embeddings.

The similarity between query and function embeddings can be quantified using their

inner product. Therefore, the training objective for code search is contrastive learning:

3When the model encounters an unseen word, i.e., a rare or out-of-vocabulary word, during inference,
it can break it down with sub-words that might have been seen during training and represent this unfamiliar
word with them.
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maximizing the inner product for aligned query-function pairs, while minimizing it for

mismatched distractor pairs. This can be formulated as:

− 1
N ∑

i
log

(
exp(CLS(ci)

T ·CLS(qi))

∑ j exp(CLS(c j)T ·CLS(qi))

)
, (4.1)

where CLS(ci) is the embedding of the correct function, represented by the final hidden

state of the [CLS] token encoded by CodeBERT. CLS(c j) (where i ̸= j) denotes the

embeddings of the distractors, i.e., incorrect functions. CLS(qi) is the embedding of the

associated query, which corresponds to the docstring of the functions (further details in

Section 4.1.3).

The essence of this training objective can be understood in a way depicted in Fig.

4.1: positioning the query embedding, CLS(qi), close to its matching function, CLS(ci),

while keeping it distant from distractor embeddings, CLS(c j), in the embedding space.

CodeBERT 
 Target Function Sequence (ci)

Query Sequence (qi) CLS(qi)

CLS(ci)

Joint Embedding Space

(make close)

Distractors (cj) CLS(cj)

(make far away)

Figure 4.1: Illustration of the code search task objective: Embeddings of input sequences

are encoded by CodeBERT and represented by the [CLS] tokens. The objective is to

make the query embedding, CLS(qi), as close as possible to its semantically aligned

function embedding, CLS(ci), while distancing it from distractors (unrelated functions)

embeddings, CLS(c j).

4.1.3 Dataset

CodeXGLUE [33] is a widely-used benchmark for several code intelligence tasks,

including code search. In our project, we employ the CodeSearchNet AdvTest dataset

from CodeXGLUE for our code search task.
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CodeSearchNet AdvTest is a cleaner version of the CodeSearchNet corpus [23]. It

contains over 250,000 examples from the Python programming language. Each example

pairs a function with its corresponding docstring. For code search, the first paragraph
of a function’s docstring is employed as the query for that function.

To better evaluate the generalizability of the trained model, each example’s function

name and variable names are normalized in both the validation and test set. This

means that every function and the i− th variable are represented as “Func” and “arg i”,

respectively. A normalized example from this dataset is demonstrated in Fig. 4.2.

Such normalization can be challenging for models, as original, semantically-rich names

(normally used naming strategy) might be essential for discerning the function’s intent

or the role of variables. Besides, the maximum length of the function sequence is set to

256. Sequences longer than this limit will be truncated, while shorter sequences will be

padded with an attention mask to avoid unnecessary computations.

All the models in our experiments are trained using the training set and then evalu-

ated on the validation and test sets. The dataset’s statistics are shown in Table 4.1.

Figure 4.2: An example from the CodeSearchNet AdvTest. Image taken from [33]

Language Dataset Count

Python

Training 251,820

Validation 9,604

Test 19,210

Table 4.1: Statistics of CodeSearchNet AdvTest used for the code search task.
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4.1.4 Evaluation Metrics

Following prior work employing this dataset [11, 33], we evaluate our models’ perfor-

mance based on the Mean Reciprocal Rank (MRR). MRR is commonly used in ranking

and retrieval tasks to assess a model’s ability to highly rank relevant results for a query.

This aligns with the goal of code search to semantically match queries to functions.

Specifically, MRR calculates the average reciprocal rank at which the most relevant

result is retrieved across a set of queries Q (Eq. 4.2). The MRR score ranges from 0 to

1, with 1 being the ideal score. To illustrate, a MRR value of 1
2 for a single query means

the most relevant result is ranked second by the model.

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

, (4.2)

where |Q| denotes the size of the query set, and ranki is the predicted rank of the correct

answer for the i-th query.

4.1.5 Parameter Efficiency

Parameter efficiency measures the effectiveness of a method’s performance in relation

to its number of trainable parameters. A method is considered more parameter efficient

if it can achieve comparable or superior experimental performance with fewer trainable

parameters than another method.

In this project, we evaluate and compare the parameter efficiency of several PEFT

methods. Specifically, we compute the percentage of trainable parameters used by each

PEFT method relative to the full CodeBERT model size. Their performance is evaluated

using the Mean Reciprocal Rank (MRR) metric. A PEFT method that achieves a higher

MRR with fewer trainable parameters is considered more efficient. By comparing

trainable parameters and MRR values, we can assess their relative parameter efficiency

both amongst themselves and in relation to full fine-tuning.

We describe below the method for computing the number of tunable parameters for

each PEFT method. For rounding efficiency and consistent comparison, we exclude the

bias terms introduced by the Adapter modules, as their impact on the overall parameter

efficiency is minimal. For instance, deploying Adapter-H with a bottleneck dimension

of 512 adds only about 0.025% more parameters due to bias terms, especially when

considering the CodeBERT model size of 125M.

CodeBERT is an encoder-only model (Section 4.1.1), and each of its encoder layers
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contains a multi-head self-attention (ATTN) sub-layer and a feed-forward network (FFN)

sub-layer. We denote the hidden state dimension as d and the bottleneck dimension

introduced by PEFT methods as r (or prefix vector length l for Prefix-tuning). For each
encoder layer, the number of additional trainable parameters brought by each method

through their specialized modules (Fig. 2.4) is:

• LoRA: It introduces two trainable matrices, Wdown ∈ Rd×r and Wup ∈ Rr×d , for

both the query and value projections in the ATTN sub-layer. This brings in extra

4× r×d parameters.

• Adapter-H: Similarly to LoRA, Adapter-H incorporates two matrices, Wdown ∈
Rd×r and Wup ∈ Rr×d , to both ATTN and FFN sub-layers, adding a total of

4× r×d parameters.

• Adapter-ATTN and Adapter-FFN: These two methods introduce Adapter modules

only in the ATTN or FFN sub-layers, respectively. Thus, they add half of the

parameters compared to Adapter-H, namely 2× r×d.

• Prefix-tuning: This method prepends prefix vectors with length l to both keys and

values in the ATTN sub-layer, resulting in 2× l×d parameters.

In summary, for a specific r, LoRA and Adapter-H update an equivalent number

of parameters, while Adapter-ATTN and Adapter-FNN train half of that. When l = r,

Prefix-tuning tunes the same number of parameters as Adapter-ATTN and Adapter-FNN.

We summarize these computations in Table 4.2.

PEFT Methods #Trainable Parameters In Each Encoder Layer

LoRA 4× r×d

Adapter-H 4× r×d

Adapter-ATTN, Adapter-FFN 2× r×d

Prefix-tuning 2× l×d

Table 4.2: The number of (#) trainable parameters in each encoder layer for the PEFT

methods used in our experiments. r is the bottleneck dimension. d is the hidden state

dimension of the model. l is the length of prefix vectors.
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4.1.6 Implementation Details

Frameworks and Libraries: We implement our experiments using PyTorch [36]

library and employ the HuggingFace Transformers library [51] to deploy the pre-trained

CodeBERT-base model. We use OpenDelta [9] to implement the PEFT methods

discussed in our project. Besides, we utilize the fine-tuning and evaluation pipelines

provided by CodeXGLUE [33].

Hyperparameters: Our goal is to fine-tune CodeBERT for the code search task

using PEFT techniques. We generally follow the fine-tuning hyperparameter setting

provided by CodeXGLUE, while we make two modifications due to our hardware

constraints: We decrease the batch size to 16 for both training and validation set; we

set the learning rate to 1×10−5 based on the validation set performance of the fully

fine-tuning CodeBERT, the results of which are presented in Table 7.3. The specific

hyperparameters of PEFT methods, like the bottleneck dimension and scaling factor,

are elaborated in the respective research question designs (Section 3.2).

Optimization: We employ the AdamW optimizer [32] to update the model’s param-

eters and adopt a linear learning rate scheduler following the setup of CodeXGLUE. We

train each model for 2 epochs. Within each epoch, we evaluate the model’s performance

on the validation set 10 times and save the best-performing model, which is used for

test set evaluation. For robustness, most experiments are conducted twice with different

random seeds, with their mean performance and standard deviation reported.4 We run

our experiments with 1 NVIDIA V100 card with 16GB of graphic memory.

4Due to limited resources, we ran full fine-tuning and our combined methods three times, while we
ran the other methods only twice.
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4.2 Experimental Results And Evaluation

4.2.1 RQ1: Evaluating Adapter-H Performance (Group 3)

Model Note #Parameters
Performance

Valid MRR (%) Test MRR (%)

Baseline Full Fine-Tuning 125M(100%) 38.33±0.09 31.66±0.12

Adapter-H-64 r = 64 235K(1.88%) 28.41±0.66 22.71±0.43

Adapter-H-128 r = 128 472K(3.76%) 29.30±0.26 23.52±0.25

Adapter-H-256 r = 256 943K(7.52%) 31.40±0.14 25.46±0.06

Adapter-H-512 r = 512 18M(15.04%) 33.62±0.35 27.45±0.46

Table 4.3: Results of fine-tuning CodeBERT on the code search task using Adapter-H are

presented, where r denotes the bottleneck dimension of Adapter modules. We ran each

experiment two times with different random seeds, and the mean performance (MRR)

and standard deviation are shown. The model with the best validation MRR is selected

and evaluated on the test set. Parameter counts are in millions (M) or thousands (K).

Results: As shown in Table 4.3, Adapter-H underperformed the baseline across all di-

mensions. However, its performance kept increasing with larger bottleneck dimensions

(r), especially when r reached 256.

Evaluation: Our initial expectation was that Adapter-H, due to its unique ability

to directly modify both ATTN and FFN sub-layers outputs, might show the upper

bound among PEFT methods and obtain performance comparable to Full Fine-Tuning

(baseline). However, even with the largest r set to 512 (which tunes 15.04% of the

model size parameters), Adapter-H’s test MRR was still about 0.4% lower than that of

the baseline. This suggests that our hypothesis was only partially correct, indicating

potential limitations of PEFT methods for this specific task.

A previous study [34] observed a similar trend: Adapter-H’s performance in fine-

tuning the RoBERTa model for the CoLA task[49] improved with an increasing bottle-

neck dimension, especially when r reached 256.5 This suggests a potentially shared

pattern in natural language understanding and programming language understanding

tasks when deploying Adapter-H with the leverage of the [CLS] token.

5CoLA, a natural language understanding task assessing the linguistic acceptability of sentences, also
uses the [CLS] token from BERT-based models to capture sentence-level information.
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The poor performance of Adapter-H in prior research [34] for the CoLA task was

attributed to hyperparameter choices. We concur with this perspective. Our default

hyperparameter settings (Section 4.1.6), based on optimal full fine-tuning results, might

not be the most suitable ones for fine-tuning models with a reduced parameter count.

We leave this for future work, as we aim to evaluate multiple PEFT methods under the

same hyperparameter settings.

Summary: Although increasing the bottleneck dimension improved Adapter-H’s

performance, it remained underperforming Full Fine-Tuning when fine-tuning

CodeBERT on the code search task given our hyperparameter settings.

4.2.2 RQ2: Comparing ATTN Modifiers Efficiency (Group 1)
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Figure 4.3: Performance variation when the fine-tuned parameters (bottleneck dimen-

sions or length for Prefix-tuning) of three PEFT methods in Group 1 (ATTN Modifiers)

are increased. The dashed line denotes full fine-tuning. Points indicate mean test MRR

over two runs, with shaded areas as standard deviation.

Results: Fig. 4.3 and Table 4.4 show the performance of deploying different ATTN

Modifiers (Fig. 3.1) for fine-tuning CodeBERT to code search. LoRA demonstrated the

strongest performance among ATTN Modifiers, with a mean test MRR of 28.92% when

the parameter budget increased to 7.52%. However, its performance almost plateaued

upon reaching this parameter quota, and it still underperformed full fine-tuning (31.66%).

Conversely, Adapter-ATTN showed poorer performance, only reaching 23.64% average
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test MRR with the same quota. Meanwhile, Prefix-tuning’s performance declined

despite more tunable parameters, defying our hypothesis.

Model Note #Parameters
Performance

Valid MRR (%) Test MRR (%)

Baseline Full Fine-Tuning 125M(100%) 38.33±0.09 31.66±0.12

LoRA-32 α = 4, r = 32 117K(0.94%) 32.44±0.77 26.32±0.69

LoRA-64 α = 4, r = 64 235K(1.88%) 33.85±0.09 27.61±0.14

LoRA-128 α = 4, r = 128 472K(3.76%) 35.32±0.11 28.71±0.15

LoRA-256 α = 4, r = 256 943K(7.52%) 35.95±0.16 28.92±0.21

Adapter-ATTN-64 r = 64 117K(0.94%) 25.15±0.88 19.74±0.77

Adapter-ATTN-128 r = 128 235K(1.88%) 26.90±0.87 21.36±0.84

Adapter-ATTN-256 r = 256 472K(3.76%) 28.30±0.31 22.63±0.30

Adapter-ATTN-512 r = 512 943K(7.52%) 29.59±0.08 23.64±0.05

Prefix-tuning-10 l as 10 18K(0.14%) 28.50±0.31 23.10±0.08

Prefix-tuning-50 l as 50 92K(0.74%) 29.43±0.30 23.56±0.28

Prefix-tuning-100 l as 100 184K(1.48%) 29.31±0.14 23.49±0.17

Prefix-tuning-256 l as 256 472K(3.76%) 27.48±0.24 22.17±0.14

Table 4.4: Results on the code search task when varying bottleneck dimension (r) for

LoRA and Adapter-ATTN, and prefix length (l) for Prefix-tuning. Two runs per setting with

different random seeds. Mean results are shown with standard deviation. Best validation

model evaluated on the test set. Parameter counts in thousands (K).

Evaluation: LoRA’s stronger performance might be attributed to its parallel modifi-

cation of attention inputs, enabling it to operate in a multi-headed manner alongside

original keys/values (see Fig. 2.4). This allows it to capture more relationships, offer-

ing greater expressiveness than Adapter-ATTN’s sequential output projection (single-

headed). Prior work [37, 16] has also found that parallel modifications can outperform

sequential tuning across NLP tasks, suggesting this pattern generalizes. Additionally,

much like the residual connection [17], LoRA’s additive integration (Eq. 2.3.3) might

avoid overwriting pre-trained patterns (hidden states), while Adapter-ATTN is more

likely to modify them during projection.

Contrary to our hypothesis, Prefix-tuning’s performance declined (Fig. 4.3) as the

length of prefix vectors increased, despite growing parameters. Fig. 7.9 shows the

training curves of Prefix-256, which did not show a sign of overfitting as the validation
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MRR did not demonstrate a notable decline. Thus, one possible reason is that the addi-

tional tokens disturbed learned relationships in the original input sequences. Moreover,

initializing prefix vectors with random words [28] may have introduced variability in

sequence semantics and [CLS] tokens’ representations. This alignment disruption and

semantic variation may override the benefits of increased tunable parameters.

Summary: For PEFT methods in Group 1, fine-tuning CodeBERT with LoRA

achieved the highest parameter efficiency on the code search task. It obtained

performance that was slightly inferior to Full Fine-Tuning. In contrast, both

Adapter-ATTN and Prefix-tuning performed poorly. Interestingly, Prefix-tuning

showed worse performance even with increased tunable parameters, suggesting

increasing trainable parameters may not be a panacea for poor-performing PEFT

methods on all tasks.

4.2.3 RQ3: Relative Efficiency Across Groups

From the results of RQ2, we observed that LoRA emerged as the most parameter-

efficient method within Group 1. Given this, we expected to compare LoRA’s relative

efficiency with Adapter-FFN from Group 2 and Adapter-H from Group 3 under consis-

tent hyperparameter settings.

Model Note #Parameters
Performance

Valid MRR (%) Test MRR (%)

Baseline Full Fine-Tuning 125M(100%) 38.33±0.09 31.66±0.12

LoRA-256 α = 4, r = 256 943K(7.52%) 35.95±0.16 28.92±0.21

Adapter-H-256 r = 256 943K(7.52%) 31.40±0.14 25.46±0.06

Adapter-FFN-64 r = 64 117K(0.94%) 27.56±0.24 22.51±0.57

Adapter-FFN-128 r = 128 235K(1.88%) 29.82±0.26 23.91±0.09

Adapter-FFN-256 r = 256 472K(3.76%) 31.97±0.91 25.96±0.79

Adapter-FFN-512 r = 512 943K(7.52%) 32.45±0.21 26.35±0.23

Table 4.5: The results of the code search task when changing the bottleneck dimension

r of Adapter-FFN. We conducted each experiment twice using different seeds and

reported the mean values along with their standard deviation. The model that performs

best on the validation set is selected for evaluation on the test set.



Chapter 4. Experiments 30

0 1 2 3 4 5 6 7
Fine-tuned Parameters (%)

20.00

22.00

24.00

26.00

28.00

30.00

31.66

Av
er

ag
e 

Te
st

 M
RR

 (%
)

LoRA
Adapter-FFN
Adapter-H
Full Fine-tuning

Figure 4.4: Performance variance when the number of fine-tuned parameters of PEFT

methods from three groups (Table 3.1) are increased. Each point signifies the mean

MRR value on the test set, and the shaded areas denote the standard deviation.

Results: Fig. 4.4 and Table 4.5 show the performance variation of Adapter-FNN,

LoRA, and Adapter-H as the parameter budget increases. We observed that: LoRA
outperformed other methods consistently with the same parameter budget, emerging as

the most effective method across groups; Adapter-FFN surpassed Adapter-H, aligning

results on several natural language tasks [34]; Adapter-FFN’s performance improves

with an increase in the bottleneck dimension, approximately plateauing when the

fine-tuned parameters reach 7.52% (r = 512).

Evaluation: In contrast to our hypothesis, the uniqueness of directly modifying both

multi-head attention (ATTN) and feed-forward network (FFN) sub-layers outputs did

not enable Adapter-H to become the most effective method for this task. However, this

uniqueness may lead to Adapter-H’s considerable performance boost when increasing

the parameter budget from 3.76% to 7.52% (see Fig. 4.4), where both LoRA and

Adapter-FFN showed a sign of saturation.

Summary: LoRA demonstrated the best parameter efficiency among all the

PEFT methods on the code search task, followed by Adapter-FFN and Adapter-

H. Although this indicates that directly modifying the ATTN sub-layers might

optimize CodeBERT more effectively than other modification approaches, a

performance saturation of LoRA was observed, signalling potential limitations.
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4.2.4 RQ4: Enhancing Efficiency Through Cross-Group Methods

Combination

Based on the previous experimental results, we highlight the following three findings:

• LoRA’s Superiority: LoRA demonstrated the highest parameter efficiency com-

pared to other PEFT methods;

• Performance Saturation: The performance of both LoRA and Adapter-FFN

seemed to plateau when the proportion of fine-tuned parameters increased from

3.76% to 7.52% (Fig. 4.4);6

• Adapter-H’s Significant Boost: Adapter-H showed a significant performance

gain when the fine-tuned parameters were increased from 3.76% to 7.52% (Fig.

4.4).

Hypothesis: These observations lead us to test whether combining LoRA with Adapter-

FFN might overcome the limitations when they were applied individually (Performance

Saturation). We posit that the performance boost observed in Adapter-H might be at-

tributed to its capability to directly modify the outputs of both multi-head self-attention

(ATTN) and feed-forward network (FFN) sub-layers, a feature absent in sole implemen-

tations of LoRA and Adapter-FFN.

Design: To validate this hypothesis, we propose “loff”, a combination of LoRA and

Adapter-FFN (LoRA + Adapter-FFN). We aim to examine its efficacy within a 7.52%

parameter budget and investigate whether modifying both ATTN and FFN sub-layers

outputs through LoRA and Adapter-FNN can emulate Adapter-H’s performance surge,

potentially breaking LoRA’s performance stagnation at the 7.52% parameter budget.

Based on prior experimental results, we deploy “loff” with the following configurations.

Overview architectures of them are available in App. 7.3:

• LOFF (Fig. 7.10): Equal budget allocation (3.76% each) for LoRA and Adapter-

FFN.

• loFF (Fig. 7.11): A smaller 1.88% budget for LoRA, due to its robust perfor-

mance with a limited parameter quota,7 with the remaining budget allocated to

Adapter-FFN.
6The 7.52% parameter budget stems from the largest bottleneck dimension we utilized for Adapter

modules (512), constrained by CodeBERT’s 768 hidden sizes. With this bottleneck size, Adapter-
FFN/ATTN methods fine-tune 7.52% of the total parameters.

7LoRA achieved comparable results across the 1.88% (27.61 Test MRR) to 7.52% (28.92 Test MRR)
tunable parameters range, motivating us to test if a minimal allocation to LoRA suffices.
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• LOff (Fig. 7.12): In contrast, a 1.88% allocation to Adapter-FFN with the

remainder designated to LoRA,8 representing a more LoRA-centric approach.

Model Note #Parameters
Performance

Valid MRR (%) Test MRR (%)

Baseline Full Fine-Tuning 125M(100%) 38.33±0.09 31.66±0.12

loFF (1.88% + 5.64%) rlo = 64, rff = 384 943K(7.52%) 39.19±0.55 32.59±0.53

LOFF (3.76% + 3.76%) rlo = 128, rff = 256 943K(7.52%) 37.98±0.29 31.39±0.24

LOff (5.64% + 1.88%) rlo = 192, rff = 128 943K(7.52%) 38.47±0.20 32.15±0.24

Average Average of “loff” 943K(7.52%) 38.55 32.04

Table 4.6: The results for code search when combining LoRA (denoted lo/LO) and

Adapter-FFN (ff/FF). rlo, rff indicate the bottleneck dimensions of LoRA and Adapter-

FFN respectively. Models named “loff” are our proposed combinations. The uppercase

letters indicate which method has a larger parameter allocation, with the parameter

quota shown. We conducted experiments three times with different seeds for all the

above fine-tuning methods.

Results: Table 4.6 shows the performance for the different configurations of the

combined method “loff”. When compared to the baseline, all the configurations of “loff”

demonstrated promising results. Notably, the loFF configuration achieved the highest

performance, successfully overcoming the plateau of LoRA and even surpassing the

full fine-tuning model while fine-tuning only 7.52% of model size parameters.

Evaluation: Observations suggest LoRA’s performance plateau arises from its sole

focus on adjusting the ATTN outputs. As attention mechanisms primarily capture low-

level pairwise relationships between input tokens (largely learned during pre-training),

over-tuning them may offer diminishing returns. This aligns with Hu et al.’s findings

[22], emphasizing that LoRA only emphasizes task-specific pre-trained dimensions.

Our attention analysis further supports this, showing similar attention results across

LoRA models with varying bottleneck dimensions (detailed in App. 7.1). Therefore,

instead of maximizing attention tuning, Adapter-FFN may help further refine LoRA’s

adapted patterns, as discussed next.

Adapter-FFN may help by aggregating the low-level patterns LoRA amplifies in

the feed-forward network (FFN) sub-layers. These layers aggregate and refine LoRA’s
8Previous results (RQ3) imply that directly modifying ATTN sub-layers outputs with LoRA might be

more effective for this task than modifying FFN sub-layers.
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amplified patterns into high-level semantic features [13], essential for tasks like code

search that require understanding the semantics of inputs. Without tuning FFN sub-

layers, models might fail to optimally transform the patterns into the joint embedding

space (Fig. 4.1). This is supported by our experiments directly using pre-trained

CodeBERT for code search, which yielded a 0.30% validation MRR.

However, relying solely on Adapter-FFN has drawbacks as well. The [CLS] token,

which should represent the entire sequence, was not explicitly designed for this role

during CodeBERT’s pre-training.9 Thus, while Adapter-FFN aggregates semantic

patterns, the [CLS] token might fail to encompass sentence-level information with-

out the fine-tuning of sentence-level tasks. This synergy between LoRA’s low-level

pattern extraction and Adapter-FFN’s high-level refinement could lead to the superior

performance of the combined method, loff.

Among the configurations, loFF performed best for the code search task, probably

because minimal LoRA tuning adequately captures task-specific patterns with others

learned from pre-training. Meanwhile, allocating more parameter budget to Adapter-

FFN enables aggregating patterns into task-specific semantic representations that are

especially meaningful for this task. Interestingly, this observation stands in contrast

to our initiation for LOff drawn from LoRA’s superiority, indicating the priority of

adapting FFN sub-layers over ATTN sub-layers for this task. This is also indicated by

our attention analysis, which showed that tuning FFN sub-layers has a slightly greater

impact on capturing semantic patterns than changing the bottleneck dimensions of

LoRA (detailed in App. 7.1).

However, we have to say that while our interpretations draw from previous studies

and our experiments, they remain speculative. The intricate interplay between attention

and FFN sub-layers and their true influence requires deeper investigation.

Summary: Combining LoRA and Adapter-FFN did further enhance parameter

efficiency compared to the single PEFT methods when fine-tuning CodeBERT on

the code search task. Among the configurations tested under a 7.52% parameter

budget, loFF emerged as the most efficient approach, suggesting that tuning the

feed-forward network (FFN) sub-layers may be a priority for this task.

9As we introduced in Section 4.1.1, CodeBERT’s pre-training objectives aim to predict tokens. This
means [CLS] knows how to capture contextual information from other tokens but may not know how to
specifically represent an entire input sentence, which needs to be “invoked” with fine-tuning.
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Discussion

5.1 Qualitative Analysis

We conducted a qualitative analysis to examine CodeBERT’s performance when fine-

tuned with different methods on the code search task. We studied “easy” examples

correctly predicted by Prefix-tuning-256,1 LoRA-256,2 full fine-tuning,3 and loFF.4 We

further explored “hard” examples incorrectly predicted by all methods. Additionally, we

inspected examples where loFF succeeded but LoRA-256 failed, aiming to understand

loFF’s performance gains. More statistics of these examples are available in App. 7.5.

5.1.1 Easy and Hard Examples

In the code search task, the objective is to evaluate the semantic similarity between a

given query docstring5 and a target code snippet, which is represented as a sequence

of function tokens. We first calculated the statistical attributes of these inputs. This

involved measuring their average length and complexity—the number of repeated and

unique tokens within the functions. These characteristics are illustrated in Fig. 5.1.

1The model with the worst performance on this task.
2The model faces a performance bottleneck that is resolved by loFF.
3Our baseline model.
4The model with the best performance on this task.
5In the dataset we used, it is the first paragraph of docstrings of a function.

34
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Figure 5.1: Comparison of the statistical attributes of queries (docstring) sequences and

target code snippets (function) sequences of easy and hard examples.

Docstring Length: The hard examples have shorter docstring lengths on average.

This suggests that function complexity might not solely depend on docstring length

but also on other factors, such as the specificity of the language used. The average

query length for hard examples is around 9. This implies that extra tokens introduced by

Prefix-tuning, especially with a length of 256, could significantly disrupt the semantic

meaning of the input query. This disruption might be further compounded if these

additional tokens are initialized with word tokens that are uncorrelated to the function’s

meaning, probably leading to their poor performance (Fig. 4.3).

Moreover, shorter docstrings might lack the sufficient description needed for the

model to fully grasp the function’s objective, such as 261446 (idx) in Table 5.1. This can

make matching these terse docstrings with their respective functions more challenging.

A promising future direction would be to rewrite such docstrings more descriptively.

This could potentially improve the ranking of functions with vague descriptions.

Function Length: Hard examples have significantly longer function lengths on

average. This aligns with the common intuition that functions with more tokens (code

segments) are harder to understand and predict.

Unique Tokens And Repeated Tokens: Hard examples contain more unique tokens

and a significantly higher number of repeated tokens on average, which indicates a

higher level of code complexity and a tendency toward code repetition or redundancy.

Recall that function and variable names are normalized to placeholders like “Func”
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and “arg 0” in the test set. Given this and our previous observations, it is reasonable to

understand why hard examples are challenging: (1) Long function sequences make it

difficult for the fixed-dimension [CLS] token to fully capture long-term dependencies6

and the overall function semantics; (2) Unique tokens might employ libraries or opera-

tions that are not covered in the training data, complicating predictions; (3) Repeated

placeholders with minimal semantic information can dilute sequence semantics, as the

[CLS] token might pay undue7 attention to these repeated tokens.

Examples. Next, we examine specific examples to better understand the impacts

of function length, function complexity, and token repetition. Table 5.1 presents the

docstrings (untokenized queries) of some samples from both easy and hard examples.

Example Type Docstring

Easy (idx = 262144) Returns the jQuery DataTables CSS file to version number.

Easy (idx = 262165) Check if the given information is a URL.

Easy (idx = 262185) Count the number of BEL relations generated.

Hard (idx = 261425) This rolls up the feature functions above and returns a single dict.

Hard (idx = 261432) r“““Levinson-Durbin recursion.

Hard (idx = 261446) Handle the ‘files = !ls‘ syntax.

Table 5.1: Docstrings (untokenized query sequence) of some easy and hard examples.

“idx” is the specific id of this function in the dataset.

It is evident from the provided examples that the docstrings of easy functions

are specific, employing detailed and clear language to describe the function’s intent.

Conversely, while the docstrings of hard examples are concise as well, they may require

additional context for comprehension. For instance, the ambiguous docstring for idx

261425 lacks clarity about what the “functions above” refers to. Another challenging

case is idx 261432, which carries the docstring “r“““Levinson-Durbin recursion.”.

While the [CLS] token might recognize this theoretical concept from its pre-training

data,8 its respective function includes around 60 lines of codes with 9 normalized

variables. Matching a succinct 3-word concept with nearly 60 lines of abstract codes

6The diminishing statistical dependence of two tokens in a sequence as their distance increases is a
common issue when processing long input sequences with neural networks.

7The attention mechanism tends to assign more weights to repeated tokens, as it performs a weighted
sum of all the tokens in the sequence.

8CodeBERT uses the RoBERTa as its base model, which is pre-trained on sources like Wikipedia that
probably includes this theorem.
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(available in App. 7.7), though truncated,9 is inherently challenging. This reinforces

the earlier point: vague docstrings lack enough contexts, and even when the [CLS]

token grasps the docstring’s content, the lengthy and normalized code might lead to a

semantic discrepancy between the query and its implementation.

5.1.2 Fixed Examples

In this section, we inspected some examples predicted incorrectly by LoRA-256 but

fixed by our proposed method, loFF. We aim to understand how the combined method

helps LoRA-256 overcome its performance plateau. We conjecture that our proposed

method, loFF, may help capture long-term dependencies that might be missed by solely

modifying the ATTN (multi-head self-attention) sub-layers. This might be especially

beneficial for longer functions, like the ones found in hard examples. Additionally, we

believe it could assist the model in recognizing functions with a large number of unique

and repeated tokens.

Results:
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Figure 5.2: Statistical attributes of function examples: those predicted correctly or

incorrectly by both LoRA-256 and loFF, and those predicted incorrectly by LoRA-256 but

fixed by loFF.

Fig. 5.2 shows that the fixed examples exhibit moderately longer function lengths

and more repetitions compared to those predicted correctly by both models. One sample
of fixed examples is available in App. 7.8. This function contains 256 tokens in total,

9As highlighted in Section 2.3.2, transformer-based models have a maximum input sequence length,
set to 256 in our experiments.
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with 8 repeated normalized variable names, underlining the pattern of repetitions in

long functions. Interestingly, the number of unique tokens in the fixed examples is

similar to that in the correct predictions of both models. This observation suggests that

the performance gain of loFF is primarily associated with its ability to handle longer

sequences and repetitions, rather than recognizing unique tokens. This contradicts our

initial hypothesis. In summary, this pattern indicates that loFF may excel at capturing

long-term dependencies and effectively balancing the attention weights of repetitions,

rather than enhancing the recognition of unique tokens.

Summary: loFF handles long functions with multiple repeated tokens more

effectively than standalone PEFT methods do, whereas unique tokens in the

functions may have less impact on their predictive difficulty. By combining

Adapter-FFN with LoRA, the model might be better at capturing long-term

dependencies and minimizing undue attention to irrelevant repetitions.

5.2 Threats To Validity

5.2.1 External Validity

We conducted experiments exclusively on the CodeXGLUE benchmark, which contains

only the Python programming language for the code search task. This limitation raises

questions about the effectiveness of the PEFT methods we deployed, as well as our

proposed method, loFF, when applied to datasets that include other programming lan-

guages or other code intelligence tasks. Furthermore, due to our limited computational

resources, our experiments implemented only the CodeBERT model. Other pre-trained

code models, such as GraphCodeBERT [15] and UniXcoder [14], are also competent

in the code search task but were not studied in this work. Testing loFF and the PEFT

methods we employed on other datasets, programming languages, tasks, and models

will provide a more comprehensive evaluation of their generalizability.

5.2.2 Internal Validity

Parameter Efficiency Calculation. Most prior studies omit the bias terms10 introduced

by the Adapter module’s projection layers when comparing the parameter efficiency of

10Each Adapter module has two bias terms for down projection and up projection, adding r (bottleneck
dimension) and d (hidden states dimension) parameters.
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different PEFT methods. For simplicity, we followed this common approach, so the

percentage of trainable parameters reported differs slightly from precise values.

Hyperparameter Setting. (1) Default Hyperparameter Setting: To ensure a con-

sistent comparison across all the fine-tuning methods we implemented, we adopted

a default hyperparameter setting. This configuration was optimized specifically for

the full fine-tuning (FFT) of CodeBERT on the validation set. However, this setting

might not be ideal for every PEFT method we employed. For example, the learning

rate we selected, while optimal for FFT, may be less suitable for PEFT methods since

they update fewer parameters during training. Consequently, some experimental results

might be influenced by this unified hyperparameter setting. Furthermore, some previous

studies [18, 2] fine-tuned the hyperparameters separately for each PEFT method. With

such an approach, each method could potentially reach its full performance potential,

which might lead to different performance rankings than what we have obtained. (2)

Scaling Factor Of LoRA: We examined the influence of the scaling factor, α, on LoRA

by evaluating its performance across different α values on the validation set (results de-

picted in Fig. 5.3). The result shows that larger α values improve LoRA’s performance,

However, an α value larger than 1 may unfairly benefit LoRA over methods without a

scaling hyperparameter, as it acts similarly to amplifying the learning rate. While this

proves the benefit of adjusting α for LoRA, it also suggests our comparisons may be

biased in LoRA’s favour under our shared hyperparameter setting.
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Figure 5.3: Performance variance of different scaling factors for LoRA on the code search

task. Each point signifies the mean MRR value on the validation set, and the shaded

areas denote the standard deviation.

Other Limitations. Other threats include small training and test batch sizes used,

the randomness in model initialization and small running times (ideally at least 3 runs

for all experiments). All of them could potentially affect our experimental findings.
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Conclusions

In this project, we conducted an exploration of parameter-efficient fine-tuning (PEFT)

methods, specifically Prefix-tuning, LoRA, and Adapter-tuning, applied to the Code-

BERT model for the code search task. We aimed to examine the efficacy and parameter

efficiency of these methods when fine-tuning large language models (LLMs) pre-trained

with programming languages for code intelligence tasks.

Our experiments indicated that except for LoRA, single PEFT methods were ineffec-

tive for this task, suggesting the necessity of evaluating them outside of natural language

tasks. However, our “loFF” approach, combining LoRA with Adapter-FFN prioritized,

outperformed full fine-tuning with just 7.52% of the model’s parameters tuned. This

not only highlights PEFT methods’ potential in code intelligence but also indicates a

salient takeaway: strategically combining PEFT methods as a potential remedy when

standalone approaches perform poorly.

Our attention analysis (App. 7.1) revealed that “loFF” strengthens the model’s

ability to capture semantic features. Moreover, our qualitative analysis highlighted

loFF’s enhanced ability in processing lengthy and repetitive function sequences.

Future work includes evaluating the generalizability of the PEFT methods we

deployed for more models and tasks. Additionally, investigating hyperparameter opti-

mizations specific to each PEFT method, exploring refined PEFT approaches like the

parallel/scaling Adapter [2], and designing dynamic parameter allocation strategies for

“loff” tailored to different tasks are interesting directions.

In summary, this project offers encouraging indications that, with selective com-

bination, LLMs can be parameter-efficiently fine-tuned on code intelligence tasks,

potentially paving the way for more resource-efficient applications in the field of code

intelligence.
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[40] Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils

Reimers, and Iryna Gurevych. Adapterdrop: On the efficiency of adapters in

transformers. arXiv preprint arXiv:2010.11918, 2020.

[41] Iman Saberi, Fatemeh Fard, and Fuxiang Chen. Utilization of pre-trained language

model for adapter-based knowledge transfer in software engineering. arXiv

preprint arXiv:2307.08540, 2023.

[42] Ensheng Shi, Yanlin Wang, Hongyu Zhang, Lun Du, Shi Han, Dongmei Zhang,

and Hongbin Sun. Towards efficient fine-tuning of pre-trained code models: An

experimental study and beyond. arXiv preprint arXiv:2304.05216, 2023.

[43] Asa Cooper Stickland and Iain Murray. Bert and pals: Projected attention layers

for efficient adaptation in multi-task learning. In International Conference on

Machine Learning, pages 5986–5995. PMLR, 2019.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

[45] Jesse Vig. A multiscale visualization of attention in the transformer model. In

Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 37–42, Florence, Italy, July 2019.

Association for Computational Linguistics.

[46] Deze Wang, Boxing Chen, Shanshan Li, Wei Luo, Shaoliang Peng, Wei Dong,

and Xiangke Liao. One adapter for all programming languages? adapter tuning

for code search and summarization. arXiv preprint arXiv:2303.15822, 2023.



Bibliography 46

[47] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D.Q. Bui, Junnan Li,

and Steven C. H. Hoi. Codet5+: Open code large language models for code

understanding and generation. arXiv preprint, 2023.

[48] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-

aware unified pre-trained encoder-decoder models for code understanding and

generation. arXiv preprint arXiv:2109.00859, 2021.

[49] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network

acceptability judgments. arXiv preprint arXiv:1805.12471, 2018.

[50] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian

Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.

Emergent abilities of large language models. arXiv preprint arXiv:2206.07682,

2022.

[51] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
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Chapter 7

First appendix

7.1 Attention Analysis

Motivation: In Section 4.2.4, we observed that loFF can overcome the plateau faced

by LoRA-256, which is the most effective PEFT method when applied individually for

the code search task. Moreover, loFF even outperformed the full fine-tuning model’s

performance. Based on our results and analysis, we argued that:

• (1) The plateau faced by LoRA may be attributed to the fact that the attention

results do not vary considerably when increasing the tunable parameters (i.e.,

bottleneck dimension) for LoRA.

• (2) loFF’s superior performance compared to LOff1 suggests that modifying the

feed-forward network (FFN) sub-layers might be more crucial for this task. This

is likely because the FFN helps capture high-level (semantic) patterns in the last

encoder layers.

Design: To scrutinize our hypothesis, we conducted an attention analysis. We

selected an example from the test set that posed challenges for both LoRA-64 and

LoRA-256 but is correctly predicted by loFF. The example chosen had the query:

“Return relative path if path is local.”, paired with the following input function

sequence:

def Func(arg_0=None, arg_1=None):

if path_is_remote(arg_0) or not os.path.isabs(arg_0):\n

1LOff predominantly modifies attention, whereas loFF leans more towards modifying the feed-forward
network (FFN). Refer to App. 7.3 for a visual comparison.

47
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return arg_0\n

else:\n

return os.path.relpath(arg_0, arg_1)

Then, we carried out the following analysis for each of our arguments, respectively.

7.1.1 Attention Weights Variation Of Different LoRA

Experiments and Results: To understand the attention behaviour across different

LoRA configurations, we analysed the multi-head self-attention (ATTN) outputs for

LoRA-64 and LoRA-256 using the example introduced earlier. Specifically, we focused

on the attention weights of the [CLS] token, which represents the entire input sequence

in our task, across different attention heads in the last encoder layer. We chose this layer

because it captures richer semantic information, a fact we will validate in subsequent

analysis.

Fig. 7.1 provides a comparison of the attention results between LoRA-64 and LoRA-

256 for the query sequence. Note that here the attention results mean the attention

scores (weights) after taking softmax2 of the scaled dot-product of input queries and

keys (query token sequence here).

2To make the obtained weights a distribution. The results are also called logits.
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Figure 7.1: Attention score variations between LoRA-64 and LoRA-256 are depicted.

The X-axis represents tokens in the input query sequence, while the Y-axis denotes the

12 different attention heads. Each cell in the matrix illustrates the difference in attention

weights between the two LoRA configurations for a specific token-head combination.

< s > and < /s > symbolize the [CLS] and [SEP] tokens, respectively. The (i, j) value

in this matrix represents the attention weight of the j-th attention head from the [CLS]

token to the i-th token in the input query. For instance, the value in the right bottom

corner of this matrix shows a difference in attention scores of 0.01 between the two

LoRA models, specifically from the [CLS] (< s >) token to the [SEP] (< /s >) token in

the last attention head of the last encoder layer.

From the figure, we observe that the attention weights exhibit minor variations

between the two configurations. The computed maximum absolute difference is 0.15,

and the mean absolute difference is 9.31e-10. These findings suggest that there may be

limited improvement in pairwise pattern capture as the bottleneck dimension increases.

This provides a potential explanation for the performance plateau observed in LoRA.
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Similarly, Fig. 7.2 displays the differences in attention weights for the function sequence,

with an even smaller mean absolute difference of 3.72e-10.
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Figure 7.2: Variations in attention scores for the selected example’s input function

sequence between LoRA-64 and LoRA-256. The X-axis represents tokens in the input

(function) sequence, while the Y-axis denotes different attention heads. The value at (i,

j) in this matrix represents the attention weight from the j-th attention head, specifically

from the [CLS] token to the i-th token in the input function. For instance, the value in the

right bottom corner of this matrix indicates the difference in attention scores between the

two models from the [CLS] token to the [SEP] token (the last token) in the final attention

head of the last encoder layer.

Summary: The minimal variations in attention weights between LoRA-64

and LoRA-256 indicate that increasing the bottleneck dimension offers limited

benefits in terms of capturing pairwise patterns, which may lead to LoRA’s

performance saturation.
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7.1.2 The Ability to Capture Semantics

Design: For the query “Return relative path if path is local”, we identified certain

tokens—specifically “path” and “remote”—that seem to carry significant semantic in-

formation. This observation is based on their relevance to the query’s intent, as deduced

from our subjective analysis. Our examination focused on the pairwise relationships

highlighted by the attention sub-layers in both LoRA-64 and loFF (a hybrid of LoRA-64

and Adapter-FNN-384, as illustrated in Fig. 7.11). We aimed to investigate if the

modifications in the feed-forward network (FFN) sub-layers, introduced by Adapter-

FFN, could potentially improve the model’s ability to identify more complex semantic

patterns.

Experiments and Results. Semantics Captured Lastly: We employed Bertviz [45]

to visualize attention scores, providing insights into the pairwise patterns recognized

by loFF’s attention layers. For visual clarity, we present only segments of the function

sequence. Fig. 7.3 shows the attention scores from the 10th encoder layer (counting

from 0). From this figure, we found that tokens such as “remote” and “return”, which

contain significant semantic information, are not emphasized. However, in the final

encoder layer (Fig. 7.4), these tokens are prominently highlighted, which are indicated

by lines connecting the [CLS] token (< s >) to them or by the depth of token colours.

This observation aligns with previous research, suggesting that high-level semantic

patterns are mainly captured in the last encoder layers [42, 13].
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Figure 7.3: Attention scores from the 10th

Encoder Layer.

Figure 7.4: Attention scores from the last

Encoder Layer.

Ablation Study For loFF-Combining LoRA-64 And Adapter-FFN: Next, we ex-

amined the attention scores between LoRA-64 and loFF. Fig. 7.5 shows the attention

weights from the last encoder layer’s 1st head of LoRA-64, whereas Fig. 7.6 does

the same for loFF. Surprisingly, although LoRA-64’s prediction was inaccurate for

this instance, it recognized the semantic importance of tokens such as “remote” and

“return”. However, in comparison to loFF, LoRA-64 allocated less attention to these

tokens. This is indicated by the thinner lines (or lighter token colours) connecting the

[CLS] (< s >) token to them. This observation implies that modifying FFN sub-layer

outputs by incorporating Adapter-FFN might guide the [CLS] token’s attention towards

tokens containing semantic information.
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Figure 7.5: Lora-64 Figure 7.6: loFF

Compare loFF with LoRA-256: To ensure the observed distinctions were not a

consequence of loFF having more trainable parameters than LoRA-64, we drew a

comparison between the attention scores of loFF and LoRA-256. Thus, both methods

fine-tuned an equal 7.52% of the model’s parameters. Fig. 7.7 illustrated the comparison,

which corroborates our earlier observations: the integration of Adapter-FFN seemingly

enhances the [CLS] token’s ability to capture sequence semantics.
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Figure 7.7: Attention score comparison from the 1st head of the last encoder layer

between Lora-256 and loFF. Line thickness denotes attention score values. LoRA-256

results are displayed on the left, and loFF’s on the right. Although sharing the same

7.52% tunable parameter budget, loFF shows slightly larger attention weights (thicker

lines or deeper token colours) on key semantic tokens like “remote” and “return”.

However, this attention weight enhancement is subtle. The question then becomes:

did this subtle increase in attention weights cause the final correct prediction, or was

it the subsequent FFN sub-layers contribution? This conundrum even deepens when

considering the interplay between ATTN and FFN sub-layers, given the encoder layers’

stacked architecture: did this interplay actually make correct predictions? We suppose

more rigorous and deeper exploration are needed to answer this question.

Summary: loFF pays more attention to semantic patterns captured in the last

encoder layers over standalone PEFT methods. This enhancement may be

attributed to the incorporation of Adapter-FFN to modify FFN sub-layers outputs.
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7.1.3 A Further Step

Based on the results from the last section, we tried to explore the performance of adding

modules only to the last encoder layers, as these are the places where semantic features

are captured. Specifically, we deployed loFF’s configuration, but only in layers 9-12th of

CodeBERT (Fig. 7.8). The result was great compared to the standalone methods. With

about 2.52% of the parameters fine-tuned, this setting achieved a test MRR of 29.75%.

This was comparable to the highest test MRR we got from LoRA-256 (29.83%), while

LoRA-256 updates 7.52% of the model’s parameters. Table 7.1 summarizes the results.

Model Parameter Budget(%) Highest test MRR (%)

LoRA-256 7.52% 29.83%

loFF 9-12 2.52% 29.75%

Table 7.1: Results for using the loFF configuration on the last four encoder layers (9-12th),

compared with LoRA-256. loFF 9-12 denotes that we only added modules to the 9-12

encoder layers and updated them during fine-tuning

This result may indicate that, for semantically-related tasks, updating the top layers

might be more efficient. However, the results probably would not be comparable to

those obtained from modifying all layers. There is a trade-off to consider, just like

“partial fine-tuning” (Section 2.2).
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Figure 7.8: An overview of the model architecture of loFF 9-12. Compared with loFF

(Fig. 7.11), we only add modules to the 9-12th encoder layers.
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7.2 Training Curves of Prefix-256
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Figure 7.9: The training curves of deploying Prefix-256 for fine-tuning CodeBERT on

the code search task. We trained CodeBERT for 2 epochs. Overall, the training loss

consistently diminished during the first training epoch, which ended at around the 15,000

training step. As the model progressed into the second epoch, this reduction plateaued,

indicating convergence. As for the performance on the validation set, we evaluated the

model’s performance 10 times for each training epoch. As can be seen, the validation

MRR value gradually grew, eventually becoming saturated without showing a notable

decline. This indicates that the observed poor performance of Prefix-256 is not a

consequence of overfitting, a scenario typically signified by both a drop in training loss

and validation performance. Through the qualitative analysis we conducted in Section

5.1.1, we argued that the excessive tokens brought by prefix vectors disturb the model

and cause Prefix-256’s poor performance.
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7.3 “loff” Architecture Overview

7.3.1 LOFF

Figure 7.10: An overview of the model architecture of LOFF: LoRA introduces four

matrices (to the query and value) while the Adapter introduces only two. Thus, the

bottleneck dimension of LoRA (128) is half that of the Adapter modules (256) when they

are allocated the same parameter budget (3.76%). The weights highlighted in purple are

introduced by the PEFT methods and represent the only trainable parameters; all other

weights are frozen during fine-tuning.
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7.3.2 loFF

Figure 7.11: An overview of the model architecture of loFF is presented. LoRA con-

tributes an additional 1.88% to the model’s parameters, while the Adapter modules

account for 5.64% of the model’s parameters. The weights highlighted in purple come

from the PEFT methods. These are the only trainable parameters, with all other weights

remaining frozen during fine-tuning.



Chapter 7. First appendix 60

7.3.3 LOff

Figure 7.12: An overview of the LOff model architecture is provided. LoRA contributes

an additional 5.64% of trainable parameters to the model size, whereas the Adapter

modules account for 1.88%. The weights highlighted in purple are introduced by the

PEFT methods and represent the trainable parameters; all other weights remain frozen

during fine-tuning.
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7.4 Hyperparameters

7.4.1 General Setting of Fine-tuning Hyperparameters

Hyperparameter Description Value

max token length Max input sequence length after tokenization 256

train batch size Batch size per GPU for training 16

eval batch size Batch size per GPU for evaluation 16

learning rate The initial learning rate for Adam 1e-5

adam epsilon Epsilon for Adam optimizer 1e-8

max grad norm Max gradient norm 1.0

max steps Total number of training steps to perform 31478

save steps Save model for evaluation every X updating steps 3100

seed Random seed for initialization 123456, 654321, 123

epoch The number of training epoch 2

warmup steps Linear warmup over warmup steps 3147

Table 7.2: Hyperparameters and their descriptions. Most of them follow the setting

from CodeXGLUE [33] except for training batch size and learning rate due to limited

resources.

7.4.2 Learning Rate

Learning Rate Valid MRR (%)

1e-5 38.33±0.09

3e-5 35.06±0.07

4e-5 34.55±0.06

Table 7.3: Results for different learning rates on the validation set. We run three

experiments with different seeds, and the mean values of them are reported with

standard deviation. A higher MRR value indicates better performance.

7.5 Statistical Attributes of Examples

Here we show some statistical attributes of the examples analyzed.
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Category Correct Predictions Incorrect Predictions

Prefix-256 2878 16332
LoRA-256 3893 15317

Full Fine-Tuning 4453 14757

loFF 4684 14526

Table 7.4: Performance of different fine-tuning methods on the test set. (Total: 19210

examples).

Category Count

Easy Examples 1974

Hard Examples 4072

Both Correct 3221

Both Incorrect 13854

Fixed Examples 1463

Table 7.5: Easy/Hard examples denote those correctly/incorrectly predicted by all the

models in Table 7.4. Both correct/incorrect denote the examples predicted correctly/in-

correctly by both LoRA-256 and loFF. Fixed examples denote those predicted incorrectly

by LoRA-256 but fixed by loFF.

We also counted the examples that were correctly predicted by LoRA-256 but
incorrectly predicted by loFF. The statistics show that there are 672 examples in this

category in total. As for the other statistical attributes, they almost all lie between the

“Both Correct” and the “Fixed Examples” categories. This indicates that LoRA-256

demonstrates “improved” performance compared to the relatively easier examples,

namely the “Both Correct” ones.

7.6 Tokenized Example

Here, we present a tokenized example from the CodeXGLUE dataset using CodeBERT.

As illustrated in Fig. 7.13, both the query and function sequences are tokenized using

byte-level Byte Pair Encoding [38], which breaks words into sub-words. Additionally,

the function and variable names in the code snippets from the CodeXGLUE benchmark
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are further normalized to serve as placeholders, such as “arg 1”. “ ” usually denotes

blank. “< s >” is the [CLS] token and “</s >” is the [SEP] token to separate sentences

in a BERT-type model.

def from_file(cls, file, *args, **kwargs):
    try:

        cache = shelve.open(file)
        return cls(file, cache, *args, **kwargs)

    except OSError as e:
        logger.debug("Loading {0} failed".format(file))

        raise e

code_tokens: ['<s>', 'def', '_Fun', 'c', '_(', '_arg', '_', '0', '_,', '_arg', '_', '1', '_,', 
'_*', '_arg', '_', '2', '_,', '_**', '_arg', '_', '3', '_)', '_:', '_try', '_:', '_arg', '_', '4', '_=', 

'_shel', 've', '_.', '_open', '_(', '_arg', '_', '1', '_)', '_return', '_arg', '_', '0', '_(', '_arg', 
'_', '1', '_,', '_arg', '_', '4', '_,', '_*', '_arg', '_', '2', '_,', '_**', '_arg', '_', '3', '_)', 
'_except', '_O', 'SE', 'r', 'ror', '_as', '_e', '_:', '_logger', '_.', '_debug', '_(', '_"', 
'Loading', '_{', '0', '}', '_failed', '"', '_.', '_format', '_(', '_arg', '_', '1', '_)', '_)', 

'_raise', '_e', '</s>']

    Query: """Try loading given cache file."""

   Code Snippet:

nl_tokens: ['<s>', 'Try', '_loading', '_given', '_cache', '_file', 
'_.', '</s>']

Query tokens:

Code tokens:

Figure 7.13: A tokenized example from the dataset we use.

7.7 A Hard Example

A normalized function example that is not predicted correctly by all the models deployed

in this project. The query for this example is: “r“““Levinson-Durbin recursion.”.

def Func(arg0, arg1=None, arg2=False):

if arg1 is None:

arg1 = arg0_len

else:

assert arg1 <= arg0_len,

’arg1 must be less than size of the input data’

arg1 = arg1
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arg0_realdata = numpy.isrealobj(arg0)

if arg0_realdata is True:

arg3 = numpy.zeros(arg1, dtype=float)

arg4 = numpy.zeros(arg1, dtype=float)

else:

arg3 = numpy.zeros(arg1, dtype=complex)

arg4 = numpy.zeros(arg1, dtype=complex)

arg5 = arg0_0

for arg6 in range(0, arg1):

arg7 = arg0_1[arg6]

if arg6 == 0:

arg8 = -arg7 / arg5

else:

for arg9 in range(0, arg6):

arg7 = arg7 + arg3[arg9] * arg0_1[arg6-arg9-1]

arg8 = -arg7 / arg5

if arg0_realdata:

arg5 = arg5 * (1. - arg8**2.)

else:

arg5 = arg5 * (1. - (arg8.real**2+arg8.imag**2))

if arg5 <= 0 and arg2==False:

raise ValueError("singular matrix")

arg3[arg6] = arg8

arg4[arg6] = arg8 # save reflection coeff at each step

if arg6 == 0:

continue

arg6_half = (arg6+1)//2

if arg0_realdata is True:

for arg9 in range(0, arg6_half):

arg9_reverse = arg6-arg9-1

arg7 = arg3[arg9]

arg3[arg9] = arg7 + arg8 * arg3[arg9_reverse]
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if arg9 != arg9_reverse:

arg3[arg9_reverse] += arg8*arg7

else:

for arg9 in range(0, arg6_half):

arg9_reverse = arg6-arg9-1

arg7 = arg3[arg9]

arg3[arg9] = arg7 + arg8 * arg3[arg9_reverse].conjugate()

if arg9 != arg9_reverse:

arg3[arg9_reverse] = arg3[arg9_reverse] + \

arg8 * arg7.conjugate()

return arg3, arg5, arg4

7.8 A fixed Example

An example incorrectly predicted by LoRA-256 but corrected by loFF is presented

below. The query for this function is “Intraday strategies will often not hold positions
at the day’s end.” Even though the query is abstract and challenging to comprehend

without context, loFF managed to predict it accurately. It’s possible that words like

“date”, “24H”, and “period close” offer significant semantic information for the query.

Notably, the term “end” in the query has a strong semantic relation to “close” in

“period close”. This is especially relevant since “close” appears toward the end of the

function, distant from the [CLS] token. Such an observation might imply that loFF has

a heightened ability to discern long-term relationships within the function sequence.

Interestingly, this could also suggest that these repeated, normalized variables might

be more informative than we initially assumed. This challenges our hypothesis that they

are almost semantically meaningless, as discussed in “Unique Tokens And Repeated

Tokens” in Section 5.1.1.

def Func(arg_0, arg_1, arg_2, arg_3=23):

arg_4 = arg_2.copy()

arg_4.index.names = [’date’]

arg_4[’value’] = arg_4.amount * arg_4.price

arg_4 = arg_4.reset_index().pivot_table(arg_5=’date’, values=’value’, \

arg_13=’symbol’).replace(np.nan, 0)
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arg_4[’date’] = arg_4.index.date

arg_4 = arg_4.groupby(’date’).cumsum()

arg_4[’exposure’] = arg_4.abs().sum(axis=1)

arg_7 = (arg_4[’exposure’] == \

arg_4.groupby(pd.TimeGrouper(’24H’))[’exposure’].transform(max))

arg_4 = arg_4[arg_7].drop(’exposure’, axis=1)

arg_4[’cash’] = -arg_4.sum(axis=1)

arg_8 = arg_1.copy().shift(1).fillna(0)

arg_9 = arg_1.iloc[0].sum() / (1 + arg_0[0])

arg_8.cash[0] = arg_9

arg_4.index = arg_4.index.normalize()

arg_11 = arg_8.add(arg_4, fill_value=0)

arg_11.index.name = ’period_close’

arg_11.columns.name = ’sid’

return arg_11
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