
Building Cyber Security Datasets and Tools for

Anomaly Detection

Andi Ari

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2023



Abstract

As new threats frequently emerge, detecting cyber attacks necessitates more sophisti-

cated methods. One technique for detecting novel attacks is anomaly detection, which

leverages machine learning. However, using real-world data in anomaly detectors

presents challenges, including privacy concerns and the need to train the system to

detect rare events. This highlights the critical role of synthetic datasets. Nevertheless,

the quality and extensibility of available synthetic datasets still need to be improved.

This study addresses these challenges by building a technique to generate data

leveraging the DetGen framework. We have extended this framework to generate

synthetic Sysmon logs. We demonstrate that the framework is adaptable to create

additional log sources and maintains essential quality standards, as measured by its

correctness, completeness, determinism, and utility. The results from this report are

essential for developing anomaly detection and can also be used to validate attack

detection rules in systems like Security Information and Event Management (SIEM).

i



Research Ethics Approval

Or include this statement:
This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Andi Ari)

ii



Acknowledgements

I thank Professor David Aspinall, my supervisor, for the continuous guidance and

encouragement throughout this research journey. I would also extend my appreciation

to Robert Flood who gives insights in every discussion.

Lastly, I thank my family, whose love, support, and sacrifices have been my constant

source of strength and motivation.

iii



Table of Contents

1 Introduction 1

2 Background 4
2.1 Docker Container and Its Underlying Technology . . . . . . . . . . . 4

2.1.1 Docker Overview . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Namespaces: A Core Concept in Linux . . . . . . . . . . . . 5

2.2 Sysmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Sysmon Overview . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 eBPF: The Heart of Sysmon for Linux . . . . . . . . . . . . . 7

2.2.3 Available EventIDs . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 CommunityID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Zeek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Elastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Data Generation Technique and Criticism . . . . . . . . . . . . . . . 12

2.7 DetGen Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Design and Implementation 15
3.1 Requirments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Requirement 1 - Correctness . . . . . . . . . . . . . . . . . . 15

3.1.2 Requirement 2 - Completeness . . . . . . . . . . . . . . . . . 16

3.1.3 Requirement 3 - Deterministic . . . . . . . . . . . . . . . . . 17

3.1.4 Requirement 4 - Utility . . . . . . . . . . . . . . . . . . . . . 17

3.2 Design Considerations and Choise . . . . . . . . . . . . . . . . . . . 18

3.2.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Design Choice . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 System Configuration and Tooling . . . . . . . . . . . . . . . . . . . 20

3.4 Program Implementation . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



3.5 Scenario Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Experiments 25
4.1 Experiment 1: Accuracy of Generated Sysmon Data . . . . . . . . . . 25

4.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Experiment 2: Measuring the determinism . . . . . . . . . . . . . . 26

4.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Experiment 3: Assessing the utility of the data . . . . . . . . . . . . . 27

4.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Evaluation and Results 28
5.1 Evaluation of Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Evaluation of Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Nginx Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.2 Insecure SQL Scenario . . . . . . . . . . . . . . . . . . . . . 32

5.3 Evaluation on Experiment 3 . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 37
6.1 Discussion on the Design and Experimentation . . . . . . . . . . . . 37

6.1.1 Discussion on Design . . . . . . . . . . . . . . . . . . . . . . 37

6.1.2 Disucssion on Experimentation . . . . . . . . . . . . . . . . 38

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

v



Chapter 1

Introduction

Software vulnerabilities enable adversaries to execute exploitation, leading to catas-

trophic security incidents, which recently rose in numbers as presented in some reports

[29, 10, 26]. Denning [12] argues that software is often flawed, and fixing these flaws

is non-trivial, given the cost and effort. One method to prevent such exploitation of

vulnerable systems is to have the ability to detect an attack and stop it.

Over the past few decades, efforts have been made to enhance detection mechanisms.

While traditional signature-based detection has proven effective at identifying known

attacks [25], it struggles to detect more recent threats. To address this, researchers have

started using machine learning methodologies to design anomaly detection systems, an

approach that offers a way to detect new types of attacks [3, 22, 49]. However, a critical

challenge arising with machine learning is data quality issues, a concern particularly

relevant in the field of cybersecurity [32]. While real-world data could be utilised,

numerous complications arise.

The first concern in the use of real-world data is privacy. Real-world data often

contains sensitive information. Processing or sharing such data without adequate

sanitisation might lead to the leak of private or sensitive information [50]. Secondly,

there is an imbalanced dataset. This imbalance can skew the performance of detection

algorithms toward high true negatives but poor true positive rates [17]. Another issue is

temporal variability. Network traffic patterns can change over time, influenced by user

behaviour, software updates, or infrastructure changes. Models trained on outdated data

might fail to recognise new patterns [42]. Fourthly, there is a lack of ground truth issues.

Accurate labelling of real-world data is challenging. Supervised learning techniques

rely on labelled datasets and can only apply effectively with clear ground truth. Finally,

a challenge in consistently evolving attack techniques. Cyber attackers continually

1



Chapter 1. Introduction 2

develop new methods and strategies. Thus, real-world datasets might not capture the

full range of current threats, making it hard for detection models to stay up-to-date.

Colbaugh [7] argues that traditional threat detection methods, which often rely on

historical data, may need to be equipped to handle new, unseen attacks, highlighting the

importance of capturing the full range of potential threats in datasets.

Consequently, researchers have suggested using synthetic datasets[47, 8, 32, 7].

Nevertheless, even these datasets come with their own set of hurdles. Firstly, achieving

a realistic representation of network behaviour is difficult. A synthetic dataset must

capture the intricacies and nuances of real-world network traffic, including benign

activities, to be effective [39]. There are also requirements for novel attacks and their

resemblance to real-world traffic[18]. Secondly, ensuring that a synthetic dataset covers

a broad spectrum of attack types, both known and potential, is challenging. There

is a risk of overemphasising specific attacks while neglecting others [42]. Thirdly,

more standardised methods for generating data for anomaly detection would be needed

to enable consistent and objective benchmarks [47]. Finally, Sharafaldin et al. [39]

suggest that validating the effectiveness and realism of synthetic datasets is challenging.

One might need real-world datasets to validate synthetic ones, but the availability of

comprehensive real-world datasets is limited.

Concerning those problems, in previous research at the University of Edinburgh,

Clausen [4] further underscored that currently, available synthetic datasets lack four

crucial aspects: heterogeneity, ground truth labels, large data size, and up-to-date

content. To address these issues, Clausen et al. [5] introduce the DetGet framework to

build data that meet these conditions.

The existing DetGen Framework investigated in [4, 5, 6, 16] focused on examining

network data that pertains to the traffic that traverses a network, captured in the form

of packets. Network data encompasses source and destination IP addresses, port

numbers, payload content, protocol types, packet size, and any other information [38].

Specifically, the mentioned studies harness the traffic microstructure information defined

as ”reoccurring patterns in the metadata and temporal ordering of packet sequences

in an individual connection, such as the packet sizes of a Diffie-Hellman exchange

or typical IATs of video streaming...” [4]. IATs is traffic interarrval times. Clausen

et al. [6] suggest that effectively capturing and representing these microstructures is

fundamental to developing robust traffic anomaly models.

On the other hand, there are log data that are records produced by various compo-

nents of an information technology system, including operating systems, applications,



Chapter 1. Introduction 3

and other devices. They chronicle events, transactions, and operational behaviour

[21, 52]. Log data is invaluable for forensic investigations, allowing cybersecurity

professionals to trace back events leading up to an incident. They also help in under-

standing the behaviour of systems and users over time, allowing for detecting anomalies

that might signify a threat [21]. To this definition, Sysmon (System Monitoring) data

falls under this category. It contains detailed process creation information, network

connection monitoring, and file modification tracking1. We argue that having good

quality Sysmon data contribute to the advancement in the anomaly detection domain.

Accordingly, this dissertation extends the DetGen framework to generate synthetic

Sysmon data.

This dissertation aims to explore and investigate the Sysmon data generation tech-

nique to expand from the previous network dataset investigation performed in [16]. This

effort falls under the ongoing Detlearsom (Detection by Learning Software Models)

project, whose overarching goal is to develop a system for detecting anomalies by

understanding the structure of software.

Our main contributions are as follows:

• Building a framework to generate synthetic sysmon data established on specific

scenarios utilising the DetGen framework. This demonstrates the extensibility

of the DetGen framework to generate richer data types. Such an extensible

framework is valuable for creating a better anomaly detector.

• We then use evaluative metrics to assess the quality of the generated data based

on four fundamental criteria: correctness, completeness, determinism, and utility.

• Manifesting the utility of the generated data to enable event correlation with other

log sources by incorporating Community ID.

Chapter 2 provides the background, detailing Docker technology used in DetGen,

an overview of sysmon, and critiques of current datasets in the domain. Chapter 3

delves into the design and implementation processes, while Chapter 4 outlines the

experimentation procedures employed. Chapter 5 presents a comprehensive evaluation,

and the results obtained from the study, and Chapter 6 concludes the dissertation,

summarising key findings and implications.

1https://github.com/OTRF/OSSEM-DD/tree/main/linux/sysmon/events



Chapter 2

Background

We aim to build a data generation technique for sysmon data, which is a valuable source

of information for attack detection due to its granularity. This data generation method

relies heavily on Docker and its underlying technology. We harness Docker containers’

isolation capability to identify granular processes inside them. These processes represent

simulated attacks or benign behaviour in the DetGen framework. A comprehensive

understanding of such technology is crucial to building a technique that results in good

quality synthetic sysmon data.

To set the relevancy of this study, we perform a literature review of the existing data

generation techniques along with their criticism. Then, we show how this technique can

contribute to the advancement of anomaly detectors.

2.1 Docker Container and Its Underlying Technology

2.1.1 Docker Overview

Docker is a platform that facilitates application development, shipment, and running

inside containers. Containers allow a developer to package up an application with

all parts it needs, such as libraries and other dependencies, and ship it all out as one

package [14]. This ensures that the application will run on any other Linux machine

regardless of any customised settings that the machine might have that could differ from

the machine used for writing and testing the code.

At the heart of Docker’s innovation is containerisation. Unlike traditional vir-

tualisation, where each application requires a separate operating system instance to

run, containerised applications share the same OS kernel and isolate the application

4



Chapter 2. Background 5

processes from each other [27]. This results in a significant performance boost and

reduction in size. While VMs often take up several gigabytes, containers might only be

tens of megabytes in size.

Docker uses the concept of images and containers. An image is a lightweight,

stand-alone, executable software package that includes everything needed to run a piece

of software [28]. Once an image is created, it can be used to instantiate containers that

run the application. Docker Hub is a public registry containing a vast collection of

images. Organisations also often use private registries to store and manage their images.

For complex applications with multiple interdependent containers, Docker Compose

is a tool that allows developers to define and manage multi-container Docker applications

[13].

2.1.2 Namespaces: A Core Concept in Linux

Namespaces, integral to the Linux kernel, offer a mechanism for resource partitioning.

They enable different sets of processes to perceive disparate and isolated sets of system

resources, thus ensuring one set of processes remains uninfluenced by another. This

capability is foundational to containerisation, which allows applications to run in a

self-contained environment, abstracted from the underlying infrastructure. Docker,

a prominent containerisation tool, harnesses the power of namespaces to make its

containerisation capabilities a reality[34].

Namespaces are instrumental in achieving the isolation and separation fundamental

to containers. When Docker initiates a container, it leverages namespaces to provide

an independent instance of system resources to that container. For instance, due to

namespaces, a container can have its own dedicated filesystem, networking stack,

process tree, and more [28]. This ensures that processes running within one container

remain unaffected by processes in another, preserving the integrity and functionality of

applications and services.

The Linux kernel supports various namespace types, each targeting a specific

resource or set of resources[19]:

• PID Namespace: allocates a distinct set of PIDs to processes, ensuring no overlap

with PIDs in other namespaces. When a process emerges in a new namespace, it

is assigned PID 1, with subsequent child processes receiving the following PIDs.

Notably, if a child process initiates its own PID namespace, it is labelled PID 1

within its namespace yet retains its original PID in the parent’s namespace.



Chapter 2. Background 6

Figure 2.1: PID Namespaces Illustration, source: https://www.nginx.com/blog/what-are-

namespaces-cgroups-how-do-they-work/

• NET Namespace: maintains a self-contained network stack. This encompasses

its exclusive routing table, IP address pool, socket list, connection tracking table,

and firewall, among other networking components.

• MNT Namespace: features a separate list of mount points, which processes

within the namespace perceive. This flexibility allows for mounting and dis-

mounting filesystems within the namespace without impacting the primary host

filesystem.

• UTS Namespace: offers the intriguing capability where varied processes perceive

the system with different host and domain names.

• USER Namespace: possesses a specific set of user and group IDs allocated to

processes. Notably, within its respective user namespace, a process can attain

root privileges without necessarily obtaining them in alternate user namespaces.

In Docker’s implementation, these namespaces often operate in tandem, offering

a layered and comprehensive isolation mechanism. The intricate use of multiple

namespaces ensures that containers are self-contained and separated from the host

and other containers.

The principles and methodologies discussed in this dissertation are deeply en-

trenched in the namespace paradigm. In generating synthetic sysmon data leveraging

the DetGen framework, we utilise the isolative namespaces feature to identify processes

running inside docker containers, where each process represents granular activities of

benign or malicious scenarios. These processes are recorded in Sysmon data and can be

identified by fields such as ProcessId, ProcessName, Image (a command that triggers



Chapter 2. Background 7

the process), User, network connection, and any other information. To this setting,

namespaces maintain the container’s namespace, including PID, NET, MNT, UTS, and

USER Namespaces, so we can identify which container’s processes are stored in the

Sysmon data. This mechanism is the central notion of generating synthetic sysmon data

that will be explained in detail in Chapter 3, Design and Implementation.

2.2 Sysmon

2.2.1 Sysmon Overview

Sysmon (System Monitor) originated as a Windows tool and has been a part of the

Windows Sysinternals suite for a long time. Sysmon was designed to monitor and log

system activity to the Windows event log, thus assisting in identifying security incidents

and malicious activity [51].

On Windows systems, Sysmon quickly became an indispensable tool for security

analysts and system administrators due to its comprehensive logging capabilities. Recog-

nising the need for a similar tool in the expanding landscape of Linux deployments,

especially with the increasing cloud adoption, Microsoft decided to bring Sysmon to

Linux [40]. It is intended to bridge the monitoring gap and provide Linux users with

the same in-depth insights into system activities as their Windows counterparts [40].

The move was a part of Microsoft’s broader strategy to embrace and extend its tools

and services to the open-source community.

Much like its Windows counterpart, Sysmon for Linux offers a variety of event IDs

that correspond to different types of system activities. These include process creation,

file and directory creation, network connections, and many others. Users can gain

insights into potentially malicious or suspicious system activities by monitoring these

event IDs.

2.2.2 eBPF: The Heart of Sysmon for Linux

At the core of Sysmon for Linux lies eBPF (Extended Berkeley Packet Filter). Shown in

Figure 2.2, eBPF1 is a technology that allows developers to run user-defined programs

in the Linux kernel without altering the kernel source code or loading modules. Sysmon

for Linux leverages eBPF to efficiently monitor system calls, network activities, and

1https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/Documentation/bpf/index.rst



Chapter 2. Background 8

Figure 2.2: eBPF Architecture, source:https://techcommunity.microsoft.com/t5/microsoft-

sentinel-blog/automating-the-deployment-of-sysmon-for-linux-and-azure-sentinel/ba-

p/2847054

more, ensuring minimal performance overhead.

Originally conceived as a high-performance network packet filtering technology,

eBPF has since evolved into a more general-purpose in-kernel virtual machine, making

it versatile for various applications, including security monitoring, network tracing, and

performance debugging.

Sysmon’s integration with eBPF demonstrates the tool’s adaptability. While Sys-

mon on Windows relied on native Windows APIs and event logging mechanisms, its

transition to Linux required an understanding of the Linux kernel’s inner workings.

Here, eBPF came into play, allowing Sysmon to tap into the kernel and capture the

necessary telemetry without being invasive[36].

2.2.3 Available EventIDs

Sysmon EventIDs categorise the system activities that Sysmon is designed to mon-

itor. On Windows, the EventIDs span many activities, including process creation,

network connections, driver loads, registry events, and many more[30]. Each EventIDs

corresponds to a specific activity or event that Sysmon captures.

Regarding Sysmon for Linux, the set of available EventIDs is more limited than

its Windows counterpart. This is not because of a limitation in Sysmon itself, but

rather due to the intrinsic differences in the Linux and Windows operating system

architectures [52]. For example, Windows-specific constructs like the registry have no

direct counterpart in Linux; thus, registry-related EventIDs are absent[44]. Another

reason is that sysmon for Linux is still in its relatively early stages of development



Chapter 2. Background 9

compared to its Windows counterpart. As a result, the tool may undergo iterative

refinements and expansions, possibly introducing more EventIDs in future releases. The

key EventIDs available in Sysmon for Linux2 are presented in Table 2.1.

Sysmon for Linux is the central aspect of the investigation in this project. A

comprehensive understanding of this technology sets the relevant scope and context to

measure a good quality of synthetic sysmon data.

2.3 CommunityID

CommunityID3is a standardised hashing mechanism adopted primarily by Zeek, among

other network analysis frameworks. Its primary objective is to generate consistent

and unique identifiers for network sessions, irrespective of where or how the data is

captured. This consistent identification approach becomes vital, especially in large-scale

or distributed network environments, where traffic data might be sourced from multiple

captures or data points. By employing CommunityID, analysts can seamlessly correlate

related network sessions across diverse datasets, facilitating a holistic and integrated

view of network interactions. This harmonisation not only simplifies the analysis

process but also enhances the accuracy of network security investigations, ensuring that

no pertinent session data is overlooked due to disparities in data representation. The

Community ID is computed based on specific flow tuple details: the source and the

destination IP addresses, the transport protocol, and the source and destination port.

The outline of how the Community ID is computed is as follows:

• Normalisation: Regardless of which side is the client or server, the flow tuple

elements are always ordered in a specific way to ensure consistency. This typically

involves arranging the IP addresses and port numbers in ascending order.

• Concatenation: The normalised flow tuple details are concatenated into a single

string. The precise separator used (if any) is implementation-specific, but the key

is to ensure consistent ordering and representation.

• Hashing: The concatenated string is hashed, usually using a cryptographic hashing

function like SHA-1.

• Base64 Encoding: The hash value is then base64 encoded to produce a compact

and URL-safe representation.
2https://ossemproject.com/intro.html
3https://github.com/corelight/community-id-spec



Chapter 2. Background 10

EventID Meaning EventData Parameters

EventID 1 Process creation RuleName, UtcTime, ProcessGuid, ProcessId, Im-

age, FileVersion, Description, Product, Company,

OriginalFileName, CommandLine, CurrentDirectory,

IntegrityLevel, User, LogonGuid, LogonId, Termi-

nalSessionId, ParentUser, ParentProcessGuid, Par-

entProcessId, ParentImage, ParentCommandLine

EventID 3 Network connec-

tion

RuleName, UtcTime, ProcessGuid, ProcessId, Image,

User, Protocol, Initiated, SourceIsIpv6, SourceIP,

SourceHostname, SourcePort, SourcePortName, Des-

tinationIsIpv6, DestinationHostname, Destination-

Port, DestinationPortName

EventID 4 Sysmon service

state changed

UtcTime, State, Version, SchemaVersion

EventID 5 Process terminated RuleName, UtcTime, ProcessGuid, ProcessId, Image,

User

EventID 9 Raw access read RuleName, UtcTime, ProcessGuid, ProcessId, Image,

Device, User

EventID 11 File creation RuleName, UtcTime, ProcessGuid, ProcessId, Image,

TargetFilename, CreationUtcTime, User

EventID 16 Sysmon Config

State Changed

UtcTime, Configuration, ConfigurationFileHash

EventID 23 File deletion RuleName, UtcTime, ProcessGuid, ProcessId, Im-

age, User, TargetFilename, Hashes, IsExecutable,

Archived

Table 2.1: Available EventIDs in Sysmon for Linux. This table supports the explanation

in Sub Section 2.2.3



Chapter 2. Background 11

• Final Format: The base64-encoded hash value is often prefixed with a version

number or other metadata.

We utilise CommunityID to assess utility requirements explained in Chapter 3.

2.4 Zeek

Zeek, previously known as Bro, is an open-source network analysis tool that originated

in the 1990s by Vern Paxson at Lawrence Berkeley National Laboratory [33]. Unlike

traditional network intrusion detection systems, Zeek emphasises extensive logging,

protocol parsing, and scriptable event-driven analysis. Its architecture can process

vast traffic volumes, making it apt for high-performance networks. A distinguishing

feature of Zeek is its adaptable scripting language, allowing custom analytics tailored to

specific detection needs[43]. The active community behind Zeek continually enhances

its capabilities, ensuring its relevance in today’s dynamic network security landscape.

This project utilised Zeek to extract netflow from the pcap file generated by scenario

execution.

2.5 Elastic

Elastic Platform4, commonly associated with Elastic (or Elasticsearch), represents a

suite of open-source tools designed to enable organisations to search, analyse, and

visualise large datasets in real time. Rooted in its core component, Elasticsearch, a

distributed search and analytics engine, the Elastic Platform also includes tools like

Logstash, a server-side data processing pipeline, and Kibana, a data visualisation tool.

Often leveraged in scenarios demanding log or event data analysis, Elastic Platform’s

scalability and speed have made it an industry favourite for operational intelligence,

security analytics, and many other use cases where swift data retrieval and analysis are

paramount.

We use this platform to assess utility requirements, which will be explained in

Chapter 3. This platform will as SIEM and perform Community ID calculations.

4https://www.elastic.co



Chapter 2. Background 12

2.6 Data Generation Technique and Criticism

The origins of the static synthetic dataset for cyber security are focused on network

data in several notable works, including DARPA, IDS[23], KDDCUP’99[20], NSL-

KDD[46], UNSW-NB15[31], CCIDS2017[39], and NF-UQ-NIDS-v2[37]. Each of

these offers a diverse array of traffic from multiple applications. Some researchers

have pointed out concerns about these datasets. Among the issues raised are the

absence of accurate comparisons to real-world traffic[24], potential data redundancy[45],

limitations concerning period and the number of hosts used during dataset creation[5],

and inaccuracies in simulating attacks[15].

Given these concerns, a novel approach is required. As highlighted by Shiravi et al.

[41], there is merit in transitioning towards dynamic data generation strategies, allowing

datasets to be more adaptively adjusted and recreated. Shiravi et al. [41] introduced

ISCX-UNB by establishing guidelines for valid dataset generation, emphasising realistic

traffic and diverse intrusion scenarios. However, it is not publicly accessible.

This aligns with the emergence of dynamic dataset generation for cyber security,

which can be traced to several studies. Brauckhoff et.al [2] introduced FLAME, an

attack injection tool for network flow. However, it is now discontinued [9]. INSecS-DCS

[35], designed as a customisable software framework, offers on-demand dataset creation,

providing raw and processed outputs. C. G. Cordero et al. [9] unveiled ID2T, addressing

fundamental dataset issues and enhancing anomaly-based systems with features to

evaluate traffic abnormality. Similarly, the AB-TRAP framework [11], distinguished

for its reproducibility and attack currency, provides a cycle for NIDS solution design,

from generating attack data to evaluating the deployed model’s performance.

We identified that the data generation techniques mentioned above also have draw-

backs that are well articulated by Clausen et al. [5] that suggest common problems in

the modern synthetic dataset:

• Lack of diversity. The current training data mainly comes from isolated test

environments, leading to a lack of diversity in protocols and resulting in uniform

network flows. This simplicity in data structure makes it easier to differentiate

between benign and malicious activities, but it can lead to overly optimistic results

in machine learning.

• Lack of ground truth labelling. It is essential to understand the computational

similarity between two connections and the nature of the traffic they represent.



Chapter 2. Background 13

However, obtaining this information is challenging, so current public NIDS do

not utilise datasets containing these traffic labels.

• Static design. The current Network Intrusion Detection (NID) dataset, designed

around specific vulnerabilities using fixed testbed machines, faces challenges in

adapting to updated traffic structures due to the rigidity of the testbed setup.

• Limited size. Existing NIDS datasets are constrained by their test bed, usually

capturing data from 5-10 hosts over 5-6 weeks. Ideally, researchers should be

able to produce any amount of specific traffic types.

We realise that the dataset generation techniques discussed above are focussed on

network data sets. Accordingly, harnessing the eminence of DetGen framework [4] in

terms of its dynamic design and extensibility, this dissertation investigates a technique

to generate synthetic sysmon data.

2.7 DetGen Framework

DetGen framework addresses challenges observed in synthetic datasets generation

technique. Clausen et al. [4] highlighted various dataset prerequisites, including

diversity (representing real-world protocols), ensuring repeatability, adding new attacks

without altering existing data, and the capability to produce vast data volumes. The

framework harnesses the isolative features of containers, differentiating various traffic

types and their inherent scalability, given the ease of replicating containers. This

approach offers a clear advantage compared to others, such as segregating traffic and

leveraging the finer details and metadata of traffic to enhance the detection of malicious

activity. DetGen operates within docker containers and has four capabilities:

• Scenarios. Specify the container interaction and are captured from each perspec-

tive to construct the base for malicious and benign traffic.

• Subscenarios. Created to specify more granular aspects of the traffic following the

Scenarios. These sub-scenarios include variations of successful and unsuccessful

file transfers, successful and failed login attempts and many more.

• Randomisation within sub-scenarios. Introduced within the sub-scenarios to

generate a random distribution for the dataset that mimics real data. For example,

this includes the distribution of file size and file names.



Chapter 2. Background 14

• Network transmission. Network parameters such as packet drop rate, bandwidth

limit, and latency are modified to ensure they conform to the desired distribution.

We briefly explain one example of a DetGen scenario as follows. In SQL Injection

Scenario, three docker containers are involved: MySQL container act as a database,

Apache container as a web server, and Attacker container which simulate malicious

python script to perform SQL injection attack on the web server. To capture the traffic

on each container, associated tcpdump containers are applied where their function is to

perform packet capture resulting in pcap files. The behaviour and configuration of each

container are scripted in the docker-compose file. The Scenario is run through a script

that executes docker-compose up command to start each container. The script is param-

eterised by duration and attack type that can be executed, i.e., attack0.py is a successful

attack, attacking the login page, and attack1.py is an unsuccessful attack attacking the

register page in the Apache container. The corresponding tcpdump container captures

each container’s network packet and stores them in each corresponding pcap file. This

attack simulation occurs during the Duration supplied to the scenario execution script.



Chapter 3

Design and Implementation

3.1 Requirments

The main objective of this dissertation is to develop a technique to generate synthetic

sysmon data. The technique leverages DetGen Framework. We defined the quality

requirements that our framework should achieve to satisfy the requirement in the

following Sub Sections.

3.1.1 Requirement 1 - Correctness

As suggested by Clausen et al. [5], ground truth labelling is a vital requirement for

synthetic datasets. Applying labels on incorrect data will lead to incorrect results.

Consequently, we will not get valid ground truth labeling. For that reason, our priority

in this project is to create correct data so that labels can be accurately applied in future

work. Our criteria for this requirement are defined as follows:

• We want the generated data to be correctly recorded according to the correspond-

ing events resulting from scenario executions. For instance, if a container executes

an HTTP connection, then the generated synthetic sysmon should also record that

connection correctly for every EventID regarding its source IP address, source

port, destination IP address, destination port, process id and any other relevant

information.

• There should be no extraneous EventID generated from the intended scenario

execution. For example, in the Nginx scenario, which simulates the HTTP

connection from a client to a server, the typical identified EventID generated by

15



Chapter 3. Design and Implementation 16

Sysmon is EventID 1, 3, 5, and 11. The log is correct if no extra EventID is

included in the synthetic sysmon data.

• To get the right setting to prove that the EventID generated is correct, we do not

add any activity noise to the container scenarios used in our experiment, which

will be explained in Chapter 4.

3.1.2 Requirement 2 - Completeness

Sysmon data contains granular information that is valuable for anomaly detection [21].

Concerning this project, we want to harness the extensibility of the DetGen Framework

by introducing a technique to generate Sysmon data built on top of this framework. Our

technique will not give any advantage to the anomaly detection domain if the resulting

data is incomplete, so the granularity is not achieved.

Our synthetic sysmon data is complete if it represents all the benign or malicious

behaviour regarding scenario executions. We define completeness as every EventID

corresponding to the processes in scenario executions should be recorded. The criteria

for this requirement are as follows:

• Synthetic Sysmon should record all representative EventID according to the ac-

tivities inside the docker container’s scenarios. For instance, in the Insecure SQl

scenario (which includes MySQL database container), the corresponding syn-

thetic sysmon data should contain EventID 1, which represents process creation,

EventID 3 for the network connection between MySQL and Apache, EventID

11 informing file creation, EventID 23 representing file deletion, and EventID 5

stating that process termination.

• Specific for EventID 3 network connection, we realise that they may have dis-

crepancies compared to the pcap file in connection counts. For instance, in the

Nginx scenario that utilises Siege tool to generate concurrent traffic, sysmon

may not record all HTTP requests from client(s) on the server side. It will only

record what connection is being processed by the Nginx server. In this project,

the traffic processing capacity in the Nginx container is constrained by the value

of worker connections (representing how many requests the server will handle),

worker processes (representing the number of CPU will be utilised) and how

long the server opens the connections is limited by the keep alive timeout. In this

case, we use 1024 worker connections, auto detect worker processes, and 65s



Chapter 3. Design and Implementation 17

keep alive timeout. This means that, with 4 CPUs, the approximate maximum

number of simultaneous connections can be handled is 4x1024 connections, each

of which takes 65s to keep open.

3.1.3 Requirement 3 - Deterministic

Clausen et al. [5] suggest that one of DetGen’s objectives is to equip researchers with

extensive ground truth information and produce controllable datasets. They suggest that

to ensure accurate ground truth, it is vital to establish scenarios and sub scenarios that

are stable and can be reliably reproduced when executed multiple times. Accordingly,

this project also aims to inherit this determinism so that accurate ground truth labelling

can be applied to future work.

In this project, we define our technique as deterministic if we have consistent cor-

rectness and completeness of synthetic Sysmon data across repeated scenario execution.

Hence, we define the criteria as follows:

• Upon repeated execution of the scenarios, the generated data should not result

in significant non-deterministic deviation. For instance, the network connection

event represented by Event ID 3 should represent its corresponding network flow

extracted from the PCAP file generated by the scenarios we pick.

• The correctness and completeness should also be consistent with other relevant

EventID generated by picked scenarios across all iterations. For example, the

Ngix scenario will generate EventID 1,3,5 and 11 for both the Nginx and Siege

containers. This condition should be consistent across all iterations.

3.1.4 Requirement 4 - Utility

We aim to enrich DetGen Framework to generate sysmon data so it can also be used

to correlate across different data sources to validate attacks. For example, attack

information captured by NIDS can be enriched by the Sysmon data so that we can

obtain more detailed information about what process triggered the connection, what

type of malicious activity was realised in an attacked host, what file being accessed,

and any other relevant information provided by Sysmon data. To validate the utility, we

defined the criteria as follows:

• There should be matched CommunityID between network flow and synthetic

sysmon data (represented by EventID 3 network connection). This match implies



Chapter 3. Design and Implementation 18

that event correlation is valid since we found the corresponding traffic (benign or

malicious) in network flow and sysmon data.

• The match amount depends on the processed connection recorded by Sysmon.

The discrepancy is similar to what has been defined in Requirement 1. For

example, in the server side of Nginx scenario, the number of CommunityID

generated is constrained by the number of connections that the server can handle

with respect to worker processes, worker connection, and keep alive value.

3.2 Design Considerations and Choise

3.2.1 System Architecture

During the design phase, we considered three potential architectures to explore in

implementing Sysmon to record events generated in docker scenarios (picked scenarios

are explained in Sub Section 3.3). We explore the design alternatives as follows:

• Design 1 - Host Sysmon View. We deploy Sysmon for Linux [40] on the

host machine. Consequently, the host Sysmon, captures every event from the

host’s perspective. Our objective is to generate synthetic sysmon according to the

container’s perspective as it represents actual containers’ behaviour regarding their

ProcessId, ParentProcessId, User, and any other relevant Sysmon information.

We utilised the Namespaces feature discussed in Chapter 2 to achieve this objec-

tive. As explained in Chapter 2, every container has its own isolated PID, User,

Network, Mount Point, and UTS. For instance, PID Namespace maintains the

mapping between the host view and associated container PID. Upon running each

picked Scenario, we generate synthetic sysmon by first querying the host Sysmon

parameterised by host PID associated with their activity in each Scenario. We

then modify the query result and store each record according to their container’s

view information.

• Design 2 - Sysmon Container. This method used Sysmon Container. This

method may not require querying sysmon based on ProcessID like the one in

Design 1. In Design 2, we expect Sysmon Container to record Sysmon data

natively according to the container’s perspective. In this design, we must modify

each docker image to include sysmon in their docker requirement. However,



Chapter 3. Design and Implementation 19

Figure 3.1: Design Options

we have found minimal references to deploying such containers. One source

mentions that the events come back as null1.

• Design 3 - Exclusive Container. This design differs from Design 2 in running an

independent docker container so that we do not have to rebuild existing images.

In this design, the query and modification mechanism utilising namespaces

information mentioned in Design 1 is still required.

The design alternatives are shown in Figure 3.1

3.2.2 Design Choice

The design alternatives discussed above come with their benefits and drawbacks, which

will be our justification factor and design decision.

The advantage of Design 1 is that we do not have to redesign and rebuild the

container scenarios picked in Sub-Section 3.3. However, the downside of this design

is the challenges in capturing a short-lived process. In Design 2, besides the limited

sources to deploy the sysmon container, we have to redesign and rebuild each container

scenario, resulting in debugging errors that may result from modifying docker images.

This approach is quite risky considering the timeline to complete this project. Lastly,

Design 3 inherit the benefit and drawback from Design 1. Additionally, it inherits

Design 2’s shortcomings in creating docker images, which will have potential errors, so

we have to perform time-consuming debugging.

Considering the advantages and the downsides constrained by the time to investigate

this project, we adopted Design 1. We explain the mechanism to tackle the drawback in

Design 1 in Progam Implementation Section.
1https://github.com/Antonlovesdnb/LinuxVisibilityContainer



Chapter 3. Design and Implementation 20

3.3 System Configuration and Tooling

We deployed the machine along with various tools to implement Design 1, elaborated

as follows:

• OS Environment. To execute scenarios and generate sysmon data, we deploy a

virtual machine on Google Cloud Platform (GCP) with the specification of e2-

standard-4 (4 vCPUSs x86/64 architecture, 16GB Memory, and 64GB Balanced

persistent disk) and Ubuntu 20.04.1 operating system.

• Sysmon for Linux. We deploy Sysmon for Linux based on the documentation

provided in [40]. We configure the Sysmon to capture all the EventID2

• XML processor. Another tool that is required for this project is xmltartlet3 which

is used to transform Sysmon into a pure XML file so that we can normalise and

sanitise the sysmon data properly.

• SIEM. We also use the open-source version of the Elastic platform4 to act as

a SIEM system. This tool is practical for simulating event correlation used in

the experiment elaborated in Chapter 4. This tool is deployed in our personal

computer, separated from where the synthetic sysmon data is generated.

• Data pre-processing. Additionally, for the data pre-processing phase, we use

Python data science, which is very useful for transforming data and calculating

statistical aspects.

• Calculating tree distance. We use ZSS python library5 to calculate Tree Edit

Distance to measure similarity between process trees across iterations in each

scenario execution.

• Netflow extraction. To extract netflow data from the pcap file generated by

scenario executions, we use Zeek6 (previously Bro IDS). This NetFlow is fed to

the SIEM tool for the next processing.

We deploy SIEM, Python Data Science, ZSS Library, and Zeek on our personal com-

puter, separated from the machine where scenario executions occur.

2https://github.com/microsoft/MSTIC-Sysmon/blob/main/linux/configs/collect-all.xml
3https://xmlstar.sourceforge.net
4https://www.elastic.co
5https://pypi.org/project/zss/1.1.4/
6https://zeek.org



Chapter 3. Design and Implementation 21

Figure 3.2: Pseudo code for the main program to execute Scenario

3.4 Program Implementation

The program to generate synthetic Sysmon data follows the Design 1 principle. We

modify the main script to execute the Scenario to accommodate sysmon data generation

(Pseudocode shown in Figure 3.2). It is implemented in the following sequence:

1. Step 1: Process identification. The main idea of this step is to identify Pro-

cessId representing processes running inside each executed container scenario.

Subsequently, we create reference tuples for each container scenario that contain

information including ProcessId, container ProcessId, ParentProcessId, container

ParentProcessId, name of corresponding Scenario (for example, in Nginx scenario,

this can be Server or Client), Image (process name), User from host perspective,

and User from container perspective. ProcessId(s) are the keys in the created

reference tuples used as a reference to perform Query in the next step.

To get the host’s ProcessId and ParentProcessId, we run the docker top command

for each container. Subsequently, we find the corresponding container’s ProcessId

and ParentProcessId by leveraging the PID Namespace feature where it maintains

its information inside /proc/pid/status. Finally, to get the rest of the information

required in the reference tuples, we run ps command parameterised identified

ProcessId. The pseudocode for Step 1 is shown in Figure 3.3.

2. Step 2: Sysmon Query. In this step, we perform Query on the original Sysmon

stored in /var/log/syslog based on the identified ProcessId in Step 1 utilising the

reference tuples. This queried Sysmon representing the log for each executed

Scenario. Subsequently, we transform the original sysmon into pure XML format



Chapter 3. Design and Implementation 22

Figure 3.3: Pseudo code for Step 1: Process Identification

Figure 3.4: Pseudo code for Step 2: Sysmon Query

so we can properly perform Normalisation and Sanitation in Steps 3 and 4,

respectively. Pseudocode for this step is shown in Figure 3.4

3. Step 3: Normalisation. This step modifies ProcessId and User field inside the

Sysmon data, resulting in Step 2 by utilising the reference tuples. We perform

this operation using the xmlscarlet tool mentioned in Section 3.3. Pseudocode

shown in Figure 3.5.

4. Step 4: Sanitation. The main objective of this step is to shape the synthetic

sysmon to contain information based on the container’s perspective. It employs

stripping out fields: ParentProcessGuid(s), ParentImage(s), ParentCommand-

Line(s), and ParentUser(s) for ProcessId(s) that has parent process from the host



Chapter 3. Design and Implementation 23

Figure 3.5: Pseudo code for Step 3 and 4: Normalisation and Sanitation

perspective but has no corresponding ProcessId(s) according to the Namespaces

information maintained in /proc/pid/status in the host. In this step, we remove

every field containing the directory path that still refers to the overlay file system

used by containers. The Sanitation step ensures correctness, meaning that we do

not generate ”noisy” information that is still associated with the host’s processes.

Pseudocode shown in Figure 3.5

3.5 Scenario Selection

We depict 13 scenarios from the private DetGen Github repository in Table 3.1. The

chosen scenarios ranged from simple to complex representing benign and malicious

traffic. Before determining scenarios for our experiment, we conduct a run-through test

to identify which container can run smoothly on our machine. Several scenarios can not

be executed for several reasons. For instance, The MPD, Nginx Patator, Slowhttptest,

ssh patator, and Stream can not be executed mainly because the images are no longer

available in the Github repository7.

7https://github.com/detlearsom/detgen-working/tree/master



Chapter 3. Design and Implementation 24

Table 3.1: Implemented Scenarios

# Scenario Description Attack Type

1 Nginx

Nginx Wget

Nginx SSL

Apache

Apache

Wget

Apache SSL

Generating http/s traffic to corresponding server (Ng-

inx and Apache)

Benign

2 Wordpress Generate recursive wget to wordpress server Benign

3 Syncthing File synchronization Benign

4 Openssh Establishing SSH connection Benign

5 Nginx Brute-

force

Generating bruteforce traffic Attack

6 Heartbleed Simulating heartbleed attack Attack

7 Secure SQL Simulating unsuccessful SQL injection attack Attack

8 Insecure

SQL

Simulating successful SQL injection attack Attack

9 Backdoor Simulating backdoor communicating with CnC Attack

10 Goldeneye DDoS simulation on Nginx server Attack

11 Mirai Simulating Mirai botnet Attack

12 Wget SSL Running wget variation of user agents Benign

13 NTP Generating NTP traffic between client and server Benign



Chapter 4

Experiments

Our objective is to conduct experiments to evaluate our technique and the resulting

data against the requirements mentioned in Chapter 3: correctness, completeness,

determinism, and utility. To achieve this, we design three experiments.

4.1 Experiment 1: Accuracy of Generated Sysmon Data

4.1.1 Objective

This experiment evaluates the degree of completeness and correctness of the generated

data across the implemented scenarios. Given the program implementation explained

in Chapter 3, we want that every field in each data structure between synthetic and the

actual sysmon data are matched. We must also ensure that all the relevant EventId(s)

are available in the generated data.

4.1.2 Methodology

To evaluate the correctness, we conduct field-by-field comparisons manually to ensure

the Query, Normalisation, and Sanitisation are correctly executed. To do this, we utilised

the reference tuples mentioned in Section 3.4. The generated synthetic Sysmon data

should be a correctly normalised and sanitised version of the corresponding original

Sysmon data.

Additionally, to measure the completeness, we check every EventID representing

the activity of the scenarios that can be analysed via the docker-compose file and the

process behaviour using the Linux command to catch the PIDs. As a test case, we

25



Chapter 4. Experiments 26

sample a simple scenario like one of the HTTP scenarios and a complex scenario like

secure and insecure SQL.

4.2 Experiment 2: Measuring the determinism

4.2.1 Objective

Our objective in this experiment is to measure the degree of determinism, meaning

that for every repeated scenario execution, the resulting data remains similar without

any meaningful deviation. As this framework leverages docker containers with strong

isolation characteristics, we argue that our generated data will achieve this determinism.

4.2.2 Methodology

We measure the determinism on two criteria. Firstly, we specifically evaluate the

consistency of generated Event ID 3 representing network connection for selected

scenarios. The metrics used are the match percentage of connections compared to

network flow generated from pcap data for each Scenario. We then calculate the Mean,

Max, and Min of the connections count, and finally, we calculate the Coeffisien Variance

[1] to assess the relative volatility or spread across the iterations.

Secondly, we also measure the similarity of process trees for more complex scenar-

ios that generate more activity, including process creation, file deletion, and process

termination. In this method, we employ the Tree Edit Distance (TED) metrics to

measure the similarity of process trees across iterations. TED is a measure used to

determine the similarity between two trees, specifically by quantifying the minimum

cost of transforming one tree into another using a set of elementary operations. These

operations consist of node deletions, node insertions, and node relabeling. The cost is

then the cumulative cost of these operations. TED provides a way to understand how

structurally similar or dissimilar two trees are by capturing the effort needed to morph

one into the other. The concept is analogous to the string edit distance (or Levenshtein

distance), which measures the similarity between two sequences or strings [48]).

In both methods, if there is no significant deviation across iteration over the metrics

used, the framework satisfies the deterministic criteria.



Chapter 4. Experiments 27

4.3 Experiment 3: Assessing the utility of the data

4.3.1 Objective

The generated synthetic Sysmon data should be useful for detecting attacks. This

experiment aims to generate sysmon data along with corresponding Community ID1.

The Community ID is a standardised flow hashing mechanism designed to label network

traffic flows with a consistent ID. This is useful for various network analysis and security

tasks, such as correlating logs from different sources. By doing this, we want our

generated data to be able to correlate with corresponding network flow data in each

Scenario.

4.3.2 Methodology

We will implement the Community ID on the pipeline of our implemented elastic search

during ingestion before the data is indexed2. We use three steps of data pipeline: data

collection, parsing, and analysis. A brief explanation of the environment setup is as

follows:

• Data preparation. We use Zeek (previously Bro) to extract flow from the pcap for

each Scenario. Then, the XML sysmon data generated in DetGen are transformed

to CSV.

• Data Collection. This is part of data processing step in the elastic where we use

filebeat to collect data from the directory where the prepared files reside; then we

send it to the elasticsearch3.

• Creating pipeline in elastic search. In this step, we create a pipeline script. Its

primary purpose is to catch the logs from filebeat with the correct format and

calculate CommunityID for each connection for sysmon and network flow data

right before the ingested data is indexed.

• Calculating Match. This is the step where we find the match of Community

ID in Netflow and sysmon. We calculate the match by creating a visualisation

dashboard rule to query the data from both log types with the same community

ID.

1https://github.com/corelight/community-id-spec
2https://www.elastic.co/guide/en/elasticsearch/reference/current/ingest.html
3https://www.elastic.co/guide/en/elasticsearch/reference/current/ingest.html



Chapter 5

Evaluation and Results

5.1 Evaluation of Experiment 1

5.1.1 Correctness

The event comparison mapping between the synthetic sysmon and the original sysmon

stored in /var/log/syslog indicates that the generation technique yields a correct result. It

implies that our Query, normalisation, and sanitation process work properly. We sample

this event comparison on Event IDs 1 and 3, where most normalisation and sanitation

occur.

We use the Nginx scenario to compare each Event ID. In Event ID 1, the ProcessId

normalisation runs correctly. It transforms from ProcessId: 2086676 in the original

sysmon to ProcessId=1 in the synthetic one. In the original sysmon log, this Pro-

cessId correspond to ParentProcessGuid: e9d7acd6-787b-64d9-b640-860000000000,

ParentProcessId: 2086655, ParentImage: /usr/bin/containerd-shim-runc-v2, Parent-

CommandLine: /usr/bin/containerd-shim-runc-v2, ParentUser: root which are the host

process.

For EventID 3, the normalisation is applied for fields ProcessId and User. In the

original file, field User contains value systemd-network while the sanitised version

contains value nginx. The ProcessId is also normalised to value 8 from 2086720. The

event comparison is shown in Figures 5.1 and 5.2.

5.1.2 Completeness

We observed that the generated EventIDs are complete. It generates relevant EventIDs,

including EventID 1 process creation, EventID 3 network connections, Event ID 5 file

28



Chapter 5. Evaluation and Results 29

Table 5.1: Evaluation of Event Completeness on each scenarios (Experiment 1)

Scenario Description Attack Type Generated Event ID

Nginx

Nginx Wget

Apache

Apache

Wget

Generating http/s traffic to cor-

responding server (Nginx and

Apache)

Benign server: 1, 3,5,11

client: 1, 3, 5, 11

Nginx SSL

Apache SSL

Generating http/s traffic to cor-

responding server (Nginx and

Apache)

Benign Server:1,3,5,11; Client:1,5,11

Wordpress Generate recursive wget to word-

press server

Benign database: 1,3,5,11,23; sServer:

1,3,5,11,23; Wget: 1,5,11

Syncthing File synchronization Benign Syncthing1:1,3,5,11,23

Syncthing2:1,5,11

Syncthing2:1,5,11

Openssh Establishing SSH connection Benign Server:1,3,5,11; Client:1,5,11

Nginx Brute-

force

Generating bruteforce traffic Attack Server:1,3,5,11; Client:1,3, 5,11

Hearbleed Simulating heartbleed attack Attack Server:1,5,11; Client:1,5,11

Secure SQL Simulating unsuccessful SQL in-

jection attack

Attack Server:1,3,5,11

Attacker: 1,3,5,11

attacker:1,3,5,11

Insecure

SQL

Simulating successful SQL injec-

tion attack

Attack Attacker: 1,3,5

MySQL: 1,3,5,11,23

apache:1,3,5,11

Backdoor Simulating backdoor communi-

cating with CnC

Attack Server:1,3,5,11; CNC:1,3,11, 23

Goldeneye DDoS simulation on Nginx

server

Attack server: 1,3,5,11

Server:1,3,5,11,23

Attacker:1,3,5,11

Mirai Simulating Mirai botnet Attack CNC:1,3,5,11 bot(1,2,3):1,3,5,11

Apache and Attacker: 1,5,11

Wget SSL Running wget variation of user

agents

Benign Server:1,3,5,11; Wget1:1,3,5,11;

Wget2:1,5,11; Wget3:1,3,5,11;

Wget4:1,3 5,11, 23

NTP Generating NTP traffic between

client and server

Benign Server:1,5,11; Client:1,5,11



Chapter 5. Evaluation and Results 30

Figure 5.1: Event ID 1 comparison. The highlighted rows show the event comparison.

The left column is the synthetic Sysmon data that has been normalised and sanitised,

while the right column is the original Sysmon data.

Figure 5.2: Event ID 3 comparison. The highlighted rows show the event comparison.

The left column is the synthetic Sysmon data that has been normalised and sanitised,

while the right column is the original Sysmon data.

creation, and Event ID 23 file deletion as presented in Table 5.1. On the other hand,

Event ID 4 sysmon started or stopped, EventID 9 raw data access, and EventID 16

sysmon configuration updated do not appear because the corresponding scenarios do

not generate such processes. As we defined in Requirement 1 in Chapter 3, no noise

process is added to each Scenario.

5.2 Evaluation of Experiment 2

We sample the Nginx and Insecure SQL representing the simple and the complex

Scenario, respectively.



Chapter 5. Evaluation and Results 31

5.2.1 Nginx Scenario

For the Nginx scenario, we used 100 threads, 100 requests per thread within 30 seconds,

while the repetition was realised at 5, 10, 30, and 100. With this setting, the Siege

container should make 100(threads)x100(request per thread)=10,000 simultaneous

connections.

We observed that tcpdump does not record all the TCP conversations (6,020 out of

10,000 generated HTTP connections). Since we use only 100 request in this experiment,

this finding is aligned with what explained in the DetGen GitHub Repository1 that Siege

http request happening so fast so there may not enough time for tcpdump to capture the

traffic. We can see this phenomenon in Figure 5.3. In contrast, at the server side / Nginx

container, we observed that the associated tcpdump container records 100% (10,000

out of 10,000 generated HTTP connection) of TCP conversation. We can see the TCP

conversation count in Figure 5.4.

Figure 5.3: TCP conversation in captured by tcpdump for Siege container. The TCP

conversation count is 6,020

Figure 5.4: TCP conversation in captured by tcpdump for Nginx container. The TCP

conversation count is 10,000

We then compare the match connection between network flow (extracted from the

pcap file discussed above) and the associated network connection recorded in synthetic

sysmon represented by EventID 3. On the client side / Siege container, all network

flow connections are included in Sysmon connection records. This is represented by

flow match average on the left-hand side of Figure 5.5. Furthermore, there are Sysmon

1https://github.com/detlearsom/detgen-working/blob/master/captures/capture-020-
nginx/README.md



Chapter 5. Evaluation and Results 32

Figure 5.5: Match percentage comparing network flow and sysmon network connection

for Nginx scenario both for client and server side

connections that has no corresponding traffic in network flow. This is represented

by sysmon match average on the left-hand side in Figure 5.5. On the server side

/ Nginx container, we observe that not all network flow connection is recorded in

synthetic sysmon, represented in flow match average on the right-hand side of Figure

5.5. In contrast, all connections recorded in synthetic sysmon match with network flow

connection. It is represented by sysmon match average on the right-hand side of figure

5.5.

The pattern in Figure 5.5 matches what is shown in Figure 5.3. and 5.4 where at the

client side, tcpdump does not record all the connections due to the condition explained

above. Then on the server side, tcpdump records all the TCP conversations.

Mean, Max, Min, and Coefficient Variant are calculated here. The results is pre-

sented in Figure 5.6. We can observe that the Mean connection count is consistent

across iterations at approximately 10,000 at client side / Siege container. The result

implies that our technique generates consistent logs across iterations. On the server

side, synthetic sysmon does not fully record the connection. This is the same pattern as

the connection comparison explained above. This phenomenon, will be discussed in

Chapter 6. However, the Mean of connection counts across iterations is also consistent

with 2% Coefficient Variant. This also implies that our technique is consistent across

repeatable execution.

5.2.2 Insecure SQL Scenario

This Scenario simulates SQL injection attacks on the server side through the execution

of a malicious script on the client side, along with taking injection parameters from a

word list.



Chapter 5. Evaluation and Results 33

Figure 5.6: The variation of the number of network count in the sysmon (represented in

EventID 3 both for client and server-side)

Figure 5.7: The variation of the number of network count for Insecure SQL scenario in

the sysmon (represented in EventID 3 both for client and server-side)

We observed the identical result pattern with the Nginx scenario. Using 60 seconds

of execution time across 1, 5, 10, 15 and 20 repetitions, on the attacker side, the

percentage of match between flow and sysmon and vice versa is 100% (left-hand side

of Figure 5.7). The same phenomenon is found in the server side of Nginx (right-hand

side of Figure 5.8). We also see no significant difference in the number of connections

across the entire repetition in the experiments with 6.48% Coefficient Variant.

To measure the repeatability, we also consider the process tree for InsecureSQL as a

representation of complex scenarios. We presented the sample of the process tree from

the Sysmon generated by the Insecure SQL scenario for 20 repetitions on the MySQL

side. The process tree represents all relevant MySQL processes.

• Process ID: 1 (Image Name: /usr/sbin/mysqld): This is the root process with

Process ID (PID) 1. It is running the MySQL daemon, which is the main service

for the MySQL database system. All the processes listed under it (indented with

the |– prefix) are its child processes.



Chapter 5. Evaluation and Results 34

Figure 5.8: The variation of the number of network count in the sysmon (represented in

EventID 3 both for client and server-side)

• Process ID: 16 (Image Name: /usr/sbin/mysqld): This is a child process of PID

1. It is also running the MySQL daemon, which suggests that the main MySQL

daemon (PID 1) has started another instance or thread of itself.

• Process ID: 174 (Image Name: /usr/bin/mysql tzinfo to sql): This is another

child process of PID 1. It’s running a utility related to MySQL, specifically one

that deals with time zone information.

• Process ID: 175 (Image Name: /usr/bin/mysql): This is another child process of

PID 1. This process is running a MySQL client, which is a command-line tool to

interact with the MySQL database.

• Process ID: 243 (Image Name: /usr/bin/mysqladmin): Another child process of

PID 1. This one is running the mysqladmin utility, a command-line tool that

provides administrative operations for the MySQL server.

Then, we calculate TED for both structural and label and structural only. As we

predict, the TED scores vary for the first one as the ProcessID that represents the label

is always newly generated by the container across repetition (Figure 5.9). On the other

hand, the result of the structural-only TED calculation is also as we expect (Figure 5.10).

It consistently scores zero, meaning the process tree generated is identical across repeti-

tion. Except for iteration 5, we identify that this Image /usr/sbin/mysqld is generated

twice inside the tree. Regarding this finding, we observed that ProcessId 106, as shown

in Figure 5.10 c, runs command mysqld –user=mysql –daemonise –skip-networking –

socket=/var/lib/mysql/mysql.sock –default-time-zone=+00:00 which initialised MySQL

daemon. When the MySQL Docker container is first initialised (when it detects an

empty data directory), it undergoes an initialisation process. This process might involve



Chapter 5. Evaluation and Results 35

Figure 5.9: TED calculation (label and structure)

Figure 5.10: TED calculation (structure only)

executing specific MySQL commands to set up the initial databases and configura-

tions. Once initialised, subsequent starts of the same container may not show the same

initialisation steps because the data directory is no longer empty.

5.3 Evaluation on Experiment 3

We conduct this experiment on attack scenarios including InsecureSQL, Backdoor

and NginxBruteforce within 60s. In this experiment we calculate Community ID for

sysmon connection and NetFlow data. We then calculate the match percentage from

each perspective. From the sysmon point of view, the match percentage is a fraction

of sysmon unique Community ID over netflow unique Community ID that shares the

same values, and vice versa for the network flow point of view.

Figure 5.11 represent matches CommunityID on client-side from Sysmon and

Netflow perspectives. We got 100% match for InsecureSQL and Backdoor scenario.

However, in NginxBruteForce scenario, sysmon capture more connections than the

netflow. We find the same pattern as in the previous Nginx scenario, where client-side

sysmon generates more connection data than the tcpdump.

However, in NginxBruteForce scenario we find a different pattern for the server side

(Figure 5.12). Server-side Sysmon also generate more connection data than netflow. We

suspect that this is because the bruteforce attack behaviour constantly generates server

traffic.



Chapter 5. Evaluation and Results 36

Figure 5.11: Matching Community ID, both from sysmon log and NetFlow log point of

view

Figure 5.12: Matching Community ID, both from sysmon log and NetFlow log point of

view

Figure 5.13: Sampled of match CommunityID



Chapter 6

Conclusion

6.1 Discussion on the Design and Experimentation

6.1.1 Discussion on Design

We have designed a framework to generate synthetic sysmon data from selected scenar-

ios in the DetGen framework. Several challenges and critique that arise are identified as

follows:

• Challange in capturing very short-lived processes. For this kind of Scenario, we

employ a workaround which uses process names directly to identify ProcessId,

specifically on InsecureSQL scenarios; this solution solved the issues.

A drawback in our technique is that we do not identify processes in container

scenarios that employ watch command. The scenarios using this mechanism

are NginxSSL, ApacheSSL, and WordPress. For instance, in the NginxSSL

scenario, the HTTP request is performed by executing command: watch -n 5

wget ”http://172.16.236.15” -P /data as stated in the corresponding Docker-

Compose file. For every Scenario that employs this approach, we cannot identify

every process that runs after watch command, in this example wget. Given this

condition, we are able to generate corresponding synthetic sysmon for scenarios

using this approach up to EventID 1,5,11 or 23.

• During the experimentation, we also found containers that do not work correctly

in our machine; it can be observed from the generated pcap file. These scenarios

include Heartbleed, where no proper pcap was generated and also no Event ID

3 was generated. We suspect this is due to the payload loaded by the attacker

37



Chapter 6. Conclusion 38

container containing a running msf console that is not allowed to run in GCP,

but this requires further investigation. However, Event ID 1,5,11 are correctly

generated.

• Another scenario that is not run as we expected is Mirai botnet. We experience

an intermittent blocking problem when the attacker’s script runs telnet command;

this issues persist also for the pcap file generated by the tcpdump containers.

Considering the time constraint in this dissertation, this problem needs to be in-

vestigated further. We suspect that this is due to machine configuration. However,

there are complete EventIDs for bot1, bot2, bot3, and cnc (Event ID 1,3,5, and

23), while attacker and apache generate Event ID 1,5 and 11.

6.1.2 Disucssion on Experimentation

The experiments are arranged to evaluate the correctness, completeness, determinism,

and utility. Given these criteria, we have conducted three experiments where the

experiment design and results are presented in Chapter 3 and 4. In this section we

discuss the challenge and the critique to our approached used in this project.

• Experiment 1. The aim of this experiment is to evaluate the correctness of the

generated data. Firstly, we confirm that the the synthetic sysmon is correctly

generated. It can be seen from the result of field comparison experiment between

the queried, normalized, and sanitized sysmon and the original sysmon stored

in the /var/log/sysmon. Secondly, for the containers that run properly and also

employ suitable command with our data generation method, we verify that the

data is complete, as EventIDs are generated for each corresponding scenarios.

In the field-to-field experiment, we employ sampled manual field comparison to

show that the generated synthetic sysmon data is correct. Although we utilised

information from reference tuples (per program implementation) that contain

accurate information on PID Namespace mapping, the experiment could be

automated and expanded to more scenarios.

• Experiment 2. This experiment is design to measure the determinism. As our

experiment on simple and complex scenario, we can see that across repetition of

running the scenarios, we find that our data generation are repeatable. The result

show consistent pattern in terms Event ID generated. Specifically we delve on

Event ID 3 by comparing network connection pattern with corresponding network



Chapter 6. Conclusion 39

flow extract from pcap files per scenarios. We observed that connection counts

across iteration is consistent. In the TED calculation on the process tree across

iteration, we observe the consistent result.

For the Scenario that generates HTTP traffic. On the server side, there are

different connection counts between synthetic sysmon and NetFlow. We suspect

several conditions. Firstly is that Sysmon’s EventID 3 logs network connection

events. If software reuses a connection (like persistent HTTP connections in the

keep-alive state), it might not necessarily create a new EventID 3 event for every

data exchange on that connection. Secondly, a connection might be observed in

the pcap in the initial stages (SYN, SYN-ACK) but might only be established

partially due to various reasons (like RST being sent). Sysmon might log only

fully established connections in some configurations. This presumption needs

further investigation.

• Experiment 3. The main objective of this experiment is to demonstrate the utility

of the generated data. Given the idea of data fusion, we can detect and confirm

attack from different log sources to minimise false positive. Our experiment show

that the synthetic Sysmon can be fully utilised for data correlation on the solution

like SIEM. We demonstrate that we can compute the correct Community ID for

both synthetic and netflow data, so that the event correlation can be conducted.

We perform semi-manual data pipelining in the experiment from data generation,

prep-rocessing, and processing. This process should be conducted in a more

automated manner so that it is scalable to cover more scenarios. The automated

process also minimises error.

Common aspect that could be improved is to include more scenario in each experiment,

so that we can draw a more generalised conclusion.

6.2 Future Work

Considering the design challenges in the previous section, investigating Designs 2 and

3 could be beneficial to compare the practical approach in generating synthetic sysmon

data in terms of completeness to tackle the drawback mentioned in the discussion

section above. Secondly, generating more scenarios suitable for detecting endpoint

attacks is also favourable. For example, scenarios that generate complex process trees



Chapter 6. Conclusion 40

in some malware variants can be considered. This Scenario can also be employed to

build a pipeline for testing detection rules before deploying into production to minimise

false positives on generated alerts.

6.3 Conclusion

Data plays a critical role in anomaly detection. Using real-world quality data faces

challenges, such as privacy issues, rare events, and the requirement of standardised data

for objective comparison. This is where synthetic data generation techniques become

crucial. However, there are still concerning matter for this method in terms of its quality,

variability, and extensibility.

This dissertation aims to build a framework to generate synthetic sysmon data

leveraging existing DetGen framework scenarios that satisfy the above criteria. We

measure the quality of the data by its correctness, completeness, determinism, and

usefulness. Our experiment shows that for every Scenario with the suitable command

that runs correctly on our machine, we can generate synthetic sysmon data that fulfil

such quality defined in our requirements. We generated correct and complete synthetic

sysmon data according to our chosen scenarios. However, we only test some of the data

due to the time constrain of this dissertation.

Regarding variability and extensibility, our work offers a valuable approach to

generating sysmon data where more variation attacks and benign scenarios can be built.



Bibliography

[1] Arthur G Bedeian and Kevin W Mossholder. On the use of the coefficient of

variation as a measure of diversity. Organizational Research Methods, 3(3):285–

297, 2000.

[2] Daniela Brauckhoff, Arno Wagner, and Martin May. FLAME: A flow-level

anomaly modeling engine. In Terry Benzel, editor, Workshop on Cyber Security

and Test, CSET’08, San Jose, CA, USA, July 28, 2008, Proceedings. USENIX

Association, 2008.

[3] Anna L. Buczak and Erhan Guven. A survey of data mining and machine learning

methods for cyber security intrusion detection. IEEE Commun. Surv. Tutorials,

18(2):1153–1176, 2016.

[4] Henry Clausen. Traffic microstructures and network anomaly detection. PhD

thesis, School of Informatics, The University of Edinburgh, 9 2021.

[5] Henry Clausen, Robert Flood, and David Aspinall. Traffic generation using

containerization for machine learning. CoRR, abs/2011.06350, 2020.

[6] Henry Clausen, Robert Flood, and David Aspinall. Controlling network traffic

microstructures for machine-learning model probing. In Joaquı́n Garcı́a-Alfaro,

Shujun Li, Radha Poovendran, Hervé Debar, and Moti Yung, editors, Security

and Privacy in Communication Networks - 17th EAI International Conference, Se-

cureComm 2021, Virtual Event, September 6-9, 2021, Proceedings, Part I, volume

398 of Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, pages 456–475. Springer, 2021.

[7] Richard Colbaugh and Kristin Glass. Proactive defense for evolving cyber threats.

In Proceedings of 2011 IEEE International Conference on Intelligence and Secu-

rity Informatics, pages 125–130, 2011.

41



Bibliography 42

[8] Carlos Garcia Cordero, Emmanouil Vasilomanolakis, Aidmar Wainakh, Max

Mühlhäuser, and Simin Nadjm-Tehrani. On generating network traffic datasets

with synthetic attacks for intrusion detection. ACM Trans. Priv. Secur., 24(2):8:1–

8:39, 2021.

[9] Carlos Garcia Cordero, Emmanouil Vasilomanolakis, Aidmar Wainakh, Max

Mühlhäuser, and Simin Nadjm-Tehrani. On generating network traffic datasets

with synthetic attacks for intrusion detection. ACM Trans. Priv. Secur., 24(2):8:1–

8:39, 2021.

[10] Crowdstrike. 2022 crowdstrike global threat report.

https://www.crowdstrike.com/resources/reports/global-threat-report/. Last

accessed 6 January 2023.

[11] Gustavo de Carvalho Bertoli, Lourenço Alves Pereira Júnior, Osamu Saotome,

Aldri L. dos Santos, Filipe Alves Neto Verri, Cesar Augusto Cavalheiro Marcondes,

Sidnei Barbieri, Moises S. Rodrigues, and José M. Parente de Oliveira. An end-to-

end framework for machine learning-based network intrusion detection system.

IEEE Access, 9:106790–106805, 2021.

[12] Dorothy E. Denning. An intrusion-detection model. IEEE Trans. Software Eng.,

13(2):222–232, 1987.

[13] Docker. Docker compose overview. https://docs.docker.com/compose/. Last

accessed 8 August 2023.

[14] Docker. Use containers to build, share and run your applications.

https://www.docker.com/resources/what-container/. Last accessed 8 August 2023.

[15] Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an intrusion

detection dataset: the CICIDS2017 case study. In IEEE Security and Privacy

Workshops, SP Workshops 2021, San Francisco, CA, USA, May 27, 2021, pages

7–12. IEEE, 2021.

[16] Robert Flood. A data-driven toolset using containers to generate datasets for

network intrusion detection. Master’s thesis, School of Informatics, University of

Edinburgh, 2019.

[17] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. ADASYN: adaptive

synthetic sampling approach for imbalanced learning. In Proceedings of the



Bibliography 43

International Joint Conference on Neural Networks, IJCNN 2008, part of the

IEEE World Congress on Computational Intelligence, WCCI 2008, Hong Kong,

China, June 1-6, 2008, pages 1322–1328. IEEE, 2008.

[18] Hanan Hindy, David Brosset, Ethan Bayne, Amar Kumar Seeam, Christos Tach-

tatzis, Robert C. Atkinson, and Xavier J. A. Bellekens. A taxonomy of network

threats and the effect of current datasets on intrusion detection systems. IEEE

Access, 8:104650–104675, 2020.

[19] Scott v Kalken. What are namespaces and cgroups, and how do they

work? https://www.nginx.com/blog/what-are-namespaces-cgroups-how-do-they-

work/. Last accessed 8 August 2023.

[20] kddcup99 mld. kddcup99 dataset. Last accessed 6 January 2023.

[21] Karen Kent and Murugiah Souppaya. Guide to computer security log management,

2006.

[22] Ilhan Firat Kilincer, Fatih Ertam, and Abdulkadir Sengür. Machine learning

methods for cyber security intrusion detection: Datasets and comparative study.

Comput. Networks, 188:107840, 2021.

[23] LINCOLN LABORATORY. 1998 darpa intrusion detection evaluation dataset.

Last accessed 6 January 2023.

[24] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and Kumar

Das. The 1999 DARPA off-line intrusion detection evaluation. Comput. Networks,

34(4):579–595, 2000.

[25] Hongyu Liu and Bo Lang. Machine learning and deep learning methods for

intrusion detection systems: A survey. Applied Sciences (Switzerland), 9, 10 2019.

[26] Mandiant. M-trends 2022 insights into today’s top cyber security trends and

attacks. https://www.mandiant.com/m-trends. Last accessed 6 January 2023.

[27] Karl Matthias and Sean P Kane. Docker: Up & Running: Shipping Reliable

Containers in Production. ” O’Reilly Media, Inc.”, 2015.

[28] Dirk Merkel et al. Docker: lightweight linux containers for consistent development

and deployment. Linux j, 239(2):2, 2014.



Bibliography 44

[29] Microsoft. Microsoft digital defense report 2022. https://www.microsoft.com/en-

us/security/business/microsoft-digital-defense-report-2022. Last accessed 6 Jan-

uary 2023.

[30] Microsoft. Sysmon v15.0. https://learn.microsoft.com/en-

us/sysinternals/downloads/sysmon. Last accessed 8 August 2023.

[31] Nour Moustafa and Jill Slay. UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set). In 2015 Military

Communications and Information Systems Conference, MilCIS 2015, Canberra,

Australia, November 10-12, 2015, pages 1–6. IEEE, 2015.

[32] Sergey I. Nikolenko. Synthetic data for deep learning. CoRR, abs/1909.11512,

2019.

[33] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer

networks, 31(23-24):2435–2463, 1999.

[34] Nigel Poulton. Docker Deep Dive: Zero to Docker in a single book. NIGEL

POULTON LTD, 2020.

[35] Nadun Rajasinghe, Jagath Samarabandu, and Xianbin Wang. INSECS-DCS: A

highly customizable network intrusion dataset creation framework. In 2018 IEEE

Canadian Conference on Electrical & Computer Engineering, CCECE 2018,

Quebec, QC, Canada, May 13-16, 2018, pages 1–4. IEEE, 2018.

[36] Roberto . Rodriguez. Automating the deployment of sysmon for linux and azure

sentinel in a lab environment. https://techcommunity.microsoft.com/t5/microsoft-

sentinel-blog/automating-the-deployment-of-sysmon-for-linux-and-azure-

sentinel/ba-p/2847054. Last accessed 8 August 2023.

[37] Mohanad Sarhan, Siamak Layeghy, and Marius Portmann. Towards a standard

feature set for network intrusion detection system datasets. Mob. Networks Appl.,

27(1):357–370, 2022.

[38] Karen A. Scarfone and Peter Mell. Guide to intrusion detection and prevention

systems (idps), 2007.

[39] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward generating

a new intrusion detection dataset and intrusion traffic characterization. In Paolo



Bibliography 45

Mori, Steven Furnell, and Olivier Camp, editors, Proceedings of the 4th Interna-

tional Conference on Information Systems Security and Privacy, ICISSP 2018,

Funchal, Madeira - Portugal, January 22-24, 2018, pages 108–116. SciTePress,

2018.

[40] Kevin Sheldrake. Sysmon for linux. https://github.com/Sysinternals/SysmonForLinux.

Last accessed 8 August 2023.

[41] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. Toward

developing a systematic approach to generate benchmark datasets for intrusion

detection. Comput. Secur., 31(3):357–374, 2012.

[42] Robin Sommer and Vern Paxson. Outside the closed world: On using machine

learning for network intrusion detection. In 31st IEEE Symposium on Security and

Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA, pages

305–316. IEEE Computer Society, 2010.

[43] Joel Sommers, Vinod Yegneswaran, and Paul Barford. A framework for malicious

workload generation. In Proceedings of the 4th ACM SIGCOMM conference on

Internet measurement, pages 82–87, 2004.

[44] Andrew S Tanenbaum and Albert S Woodhull. Operating systems: design and

implementation, volume 68. Prentice Hall Englewood Cliffs, 1997.

[45] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A detailed

analysis of the KDD CUP 99 data set. In 2009 IEEE Symposium on Computational

Intelligence for Security and Defense Applications, CISDA 2009, Ottawa, Canada,

July 8-10, 2009, pages 1–6. IEEE, 2009.

[46] UNB. Nsl-kdd dataset. Last accessed 6 January 2023.

[47] Emmanouil Vasilomanolakis, Carlos Garcia Cordero, Nikolay Milanov, and Max

Mühlhäuser. Towards the creation of synthetic, yet realistic, intrusion detection

datasets. In Sema Oktug, Mehmet Ulema, Cicek Cavdar, Lisandro Zambenedetti

Granville, and Carlos Raniery Paula dos Santos, editors, 2016 IEEE/IFIP Network

Operations and Management Symposium, NOMS 2016, Istanbul, Turkey, April

25-29, 2016, pages 1209–1214. IEEE, 2016.

[48] Robert A Wagner and Michael J Fischer. The string-to-string correction problem.

Journal of the ACM (JACM), 21(1):168–173, 1974.



Bibliography 46

[49] Yang Xin, Lingshuang Kong, Zhi Liu, Yuling Chen, Yan-Miao Li, Hongliang Zhu,

Mingcheng Gao, Haixia Hou, and Chunhua Wang. Machine learning and deep

learning methods for cybersecurity. IEEE Access, 6:35365–35381, 2018.

[50] Dingbang Xu and Peng Ning. Privacy-preserving alert correlation: A concept

hierarchy based approach. In 21st Annual Computer Security Applications Con-

ference (ACSAC 2005), 5-9 December 2005, Tucson, AZ, USA, pages 537–546.

IEEE Computer Society, 2005.

[51] Pavel Yosifovich, David A Solomon, and Alex Ionescu. Windows Internals,

Part 1: System architecture, processes, threads, memory management, and more.

Microsoft Press, 2017.

[52] Lei Zeng, Yang Xiao, Hui Chen, Bo Sun, and Wenlin Han. Computer operating

system logging and security issues: a survey. Security and Communication

Networks, 9(17):4804–4821, 2016.


