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Abstract

Generative models provide an elegant framework to efficiently represent high-dimensional

data. However, previous studies of generative modeling mainly focus on continuous data

or restricted discrete data. In this thesis, I test 5 generative models and their variants on

modeling sparse object count data in natural scenes: Variational autoencoder, mixture

model, sequence-to-set variational autoencoding transformer, discrete autoregressive

flow and discrete autoregressive diffusion. I find that the sequence-to-set variational

autoencoding transformer performs the best in terms of likelihood, while the discrete

autoregressive diffusion generates samples which are closest to the observed data. Ad-

ditionally, the negative binomial distribution and the categorical distribution are good

choices for explicitly encoding the counts. I also observe that incorporating expressive

priors does not necessarily improve the performances of the variational models.
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Chapter 1

Introduction

From identifying potential risks in the environments based on sensory inputs to timely

evaluating and updating the values of actions during interactions with other agents,

efficiently representing high-dimensional data is a crucial task for real-world agents.

Generative models [50] provide an elegant probabilistic framework to address this task,

which usually assume that the observed data are generated from a latent distribution

which is lower-dimensional or equal-dimensional but more tractable1. These models

not only represent the high-dimensional data efficiently, but also benefit downstream

tasks, such as tailored sample generation [24] and missing data imputation [76]. As the

most popular machine learning technique currently, neural networks endow generative

models with a more complex mapping from the latent variable to the observed data [66].

There have been many successful architectures for deep generative modeling like the

variational autoencoder (VAE) [40] and the generative adversarial network (GAN) [21].

However, generative models often assume that the observed data follow a continuous

distribution, or employ techniques like uniform dequantization [64] to construct a

continuous distribution from a discrete one, ignoring the ubiquitous discreteness in life.

Most real-world data, like the number of people waiting in a queue or the population

of a species within a district, originate from some discrete events. The measurement

precision can also make continuous data factually discrete (for example, if a scale’s

minimum unit is one kilogram, then any objects weighed using this scale will show

masses that are multiples of one kilogram). Even for those generative models designed

for discrete data, the data are mainly confined to languages [80] and consumer ratings

[44].
1There are many other generative models not having this assumption, like the pure autoregressive

models. But this thesis mainly focuses on the generative models assuming a latent distribution.
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Chapter 1. Introduction 2

In this thesis, the focus lies in modeling the count data of different object classes

in natural scenes using generative models [43]. Count data are a kind of discrete data

characterized by a lower bound of 0 and no theoretical upper bounds. A larger value

usually signifies a stronger underlying factor (e.g., more people queuing outside a shop

indicates a stronger consumer demand). The object co-occurrences data reflect the

physical correlations among object classes and the scene information. For example,

when both a knife and a plate are observed, it is natural to infer that there is also a fork.

Moreover, these object instances are more likely to appear in a kitchen compared to a

toilet. Capturing the correlations and the scene information can offer some potential

benefits. First, it may enhance our comprehension of the mechanisms of human vision.

The knowledge concerning physical correlations among objects can play a role of top-

down control when organizing contextual information and detecting objects in visual

tasks [55, 65]. Second, incorporating the object co-occurrences information as prior

knowledge into algorithms may help machines detect objects in ambiguous scenes,

generate reasonable new instances (e.g., a hand with five fingers) and accommodate

different data modalities (e.g., co-occurring object classes should have similar semantic

embeddings) [26, 37].

1.1 Related Work

Generative modeling for discrete data is mainly restricted to language and consumer

ratings data. Language data are the most common discrete data where tokens are

encoded as categories. But the generation of languages is typically conditional (e.g.,

the embeddings of source language are provided in the machine translation task) and

purely autoregressive [7] due to the languages’ inherent sequential structures. There are

some attempts using the VAE with an autoregressive decoder to reconstruct language

data [6, 59], but requiring techniques to mitigate the posterior collapse problem (i.e.,

the inferred latent variable values are not used, which is not problematic if the latent

values are not of interest). Non-autoregressive models like the discrete flow [68, 35]

and the discrete diffusion [2, 34] are recently applied to language data as well, but they

usually perform worse than the pure autoregressive models since language data are

naturally sequential. Another non-autoregressive way to model language data is to treat

languages as bags of words [49] or to directly model the counts of tokens [80, 31]. For

the former, an important application lies in topic modelling [4, 5], where each token is

usually assumed to be generated from a hierarchical latent process. While these models



Chapter 1. Introduction 3

are tailored to identify the topics of sequences, they implicitly model the counts of

tokens when the sequence lengths are known. For the latter, the task aligns with the task

this thesis focuses on, where the explicit encoding of counts is typically required.

Consumer ratings constitute another form of discrete data commonly addressed in

generative modeling. They are closer to the count data since the values indicate the

strength of some latent factors too (e.g., a consumer should give higher ratings to a

commodity if feeling more satisfied), although they usually have clear lower and upper

bounds. The VAE has been applied in many recommendation system studies [44, 47],

aiming to recover missing ratings. Bayesian non-negative matrix factorization models

[9] are used to extract the latent factors of consumers and items [22] in a generative

framework as well. There are also some studies [10, 17] using the GAN to implicitly

learn the distribution of ratings and generate samples to alleviate the data sparsity

challenge.

Additionally, some studies have investigated how to model count data explicitly in a

generative way [1, 46, 69], but primarily within the realm of genomics. The relevant

count data can be substantially different from the object count data (e.g., with a much

higher dimension).

1.2 Thesis Outline

In this thesis, I focus on the count data extracted from the Microsoft Common Objects

in Context (COCO) dataset [45]. Each data point is an 80-dimensional vector whose

elements are non-negative integers. The data exhibit high sparsity, with over 90% of

them containing fewer than 6 non-zero elements, and the counts are usually small

values, with a global maximum value of 28. These properties lead me to apply different

encoding methods.

Chapter 2 provides an elaborate exposition of the generative models tested in this

thesis, including their assumptions about the latent distributions, the optimization

objectives and the ways to generate new samples. All of them except the mixture model

are parameterized by neural networks. Some of them have variants concerning the

forms of the latent distribution, or the encoding of the counts.

Chapter 3 presents how the models are trained and evaluated. It begins with the

introduction of the target dataset, including the pre-processing procedure and some

summary statistics of the data. Subsequently, it turns to the final structure of each model

after hyperparameter tuning. After showing the training schemes of different models,



Chapter 1. Introduction 4

it finally demonstrates the metrics to evaluate the model performances and relevant

results, including quantitative tests and some generated samples.

Chapter 4 analyses how the form of the latent distribution and the encoding method

impact the model performances. It also discusses how the best models may offer insights

to the potential generation process.

Chapter 5 concludes the thesis, encompassing the main findings, the limitations and

some future directions.

The Appendix contains the visualization of the raw data, an overview of the hy-

perparameter values tested and a sanity check I conduct for a model proposed in this

thesis.



Chapter 2

Models

This chapter introduces the models tested in this thesis. The first four models assume

that the count vectors are generated from a lower-dimensional distribution (referred to

as the latent or prior distribution afterwards). They mainly differ in the encoding of

the counts and the choice of the latent distribution. The last two models assume that

the count vectors are generated from an equal-dimensional tractable distribution (i.e., a

factorized categorical distribution; referred to as the base distribution afterwards). They

differ in the transformation of the base distribution.

2.1 Variational Autoencoder

This section presents the vanilla VAE [40]. Let xxx be the observed variable and zzz be the

latent variable. The goal of the VAE is to fit a joint distribution p(xxx,zzz) that maximizes

the log-likelihood1 of the observed data XXX = {xxx1,xxx2, ...,xxxN}:

log p(XXX) =
N

∑
i=1

log p(xxxi) =
N

∑
i=1

Ep(zzz|xxxi) log
p(xxxi,zzz)
p(zzz|xxxi)

(2.1)

The latent, or prior distribution p(zzz) is assumed to be a standard Gaussian in the vanilla

VAE, but the conditional distribution p(xxx|zzz) is parameterized by a neural network to

let p(xxx) be sufficiently expressive, which makes the log-likelihood intractable. As a

compromise, the VAE maximizes the evidence lower bound of likelihood (ELBO):

ELBO(XXX) =
N

∑
i=1

Eq(zzz|xxxi) log
p(xxxi,zzz)
q(zzz|xxxi)

=
N

∑
i=1

[Eq(zzz|xxxi) log p(xxxi|zzz)−DKL(q(zzz|xxxi)|p(zzz))]

(2.2)
1The base number is e for all logarithmic functions in this thesis.

5



Chapter 2. Models 6

where q(zzz|xxxi) is the variational posterior distribution of zzz given xxxi. And the second

term on the rightmost expression is the Kullback–Leibler (KL) divergence between

the variational posterior and the prior. The variational posterior is assumed to be a

factorized Gaussian in the vanilla VAE, ensuring that this term can be computed in a

closed form. Thus, the VAE needs two networks for the parameterization of q(zzz|xxx) and

p(xxx|zzz), which are called encoder2 and decoder respectively. Figure 2.1 is a diagram of

the architecture.

A remaining question is how to calculate the expectation of log p(xxxi|zzz) over the

variational posterior. It is estimated by Monte Carlo approximation, and a trick called

reparameterization [56] is used to ensure a continuous gradient flow. Specifically, for

a given data point, the encoder infers the mean hhh1 and the standard deviation hhh2 of

the Gaussian variational posterior, then a sample εεε is drawn from a standard Gaussian.

The affine transformation result hhh1 +hhh2 ∗ εεε (element-wise multiplication) is equivalent

to a sample drawn from the variational posterior, which is used to approximate the

expectation (the estimate should be more stable with a larger sample size, but 1 sample

is used usually in practice due to the computational cost. Meanwhile, although the

expectation of this estimate is the ELBO, the estimate itself can be larger than the true

log-likelihood due to stochasticity).

From another perspective, the expectation term measures how likely the observed

data point is when using samples from the variational posterior for generation. The

divergence term measures the discrepancy between the prior and the variational posterior.

So the negative expectation term and the divergence term are also called reconstruction

and regularization losses respectively.

As a generative model, the VAE can not only explain the observed data but also

generate new samples. Specifically, both p(zzz) and p(xxx|zzz) (when zzz is known) should be

tractable distributions. We3 can get samples from p(zzz), which are passed to the decoder

to generate the parameter estimates of p(xxx|zzz). The samples drawn from the conditional

distribution are the final generated samples from the VAE.

2The term ”encode” should be self-evident in this thesis, but the readers should realize it refers to the
way to understand the data when appearing in the contexts like ”how to encode the counts”, but the way
to compress the data or infer the variational posterior when appearing in the contexts like ”the encoder
encodes the inputs”.

3In this thesis, ”I” refers to the author. ”we” is a general pronoun of “people” or “researchers in this
field”.
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2.1.1 Conditional Distributions

The decoder does not directly predict the elements of xxx, but the parameter values for the

conditional distribution p(xxx|zzz). It requires an explicit assumption about the conditional

distribution. To simplify the model, I assume the conditional distribution is factorized.

In other words, the counts of different object classes are conditionally independent once

the value of zzz is specified. The requirement is then reduced to defining a 1-dimensional

distribution for count data.

2.1.1.1 Zero-Inflated Poisson Distribution

The Poisson distribution is the most common distribution to model count data. However,

the data in this thesis are highly sparse, so I employ its variant: the zero-inflated Poisson

(ZIP) distribution [41]. For a count variable x following a ZIP distribution ZIP(α, λ), its

probability mass function is:

p(x = k) =


α+(1−α)e−λ, k = 0

(1−α)
λke−λ

k!
, k > 0

(2.3)

The ZIP distribution can be seen as a mixture of 0 and a Poisson distribution. The

parameter α (0 < α < 1) is the mixture weight of 0. The parameter λ (λ > 0) controls

the Poisson distribution component. Its mean and variance are larger when λ is larger.

The hypothesis behind the ZIP distribution is intuitive: For a given image, there are two

reasons for the absence of instances of a particular object class. One is that the object

class and the image are incompatible. For example, It should be impossible to see an

elephant in a kitchen. The other is the instance number happens to be 0. For example,

forks may appear in a kitchen, but the owner put them into a dishwasher, so they do not

appear in the kitchen image.

2.1.1.2 Zero-Inflated Negative Binomial Distribution

For the Poisson distribution, the mean and the variance are the same. So it cannot explain

over-dispersed data where the variance exceeds the mean. The negative binomial (NB)

distribution is an alternative in such situations. From a Bayesian perspective, the NB

distribution is the marginal count distribution when the parameter λ in the Poisson

distribution follows a Gamma distribution. Similarly, I consider its zero-inflation

version [25]. For a count variable x following a zero-inflated negative binomial (ZINB)
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distribution ZINB(α, β, γ), its probability mass function is:

p(x = k) =


α+(1−α)βγ, k = 0

(1−α)
(k+ γ−1)!
k!(γ−1)!

(1−β)k
β

γ, k > 0
(2.4)

The parameter α still controls the degree of zero-inflation. The parameters β (0 < β < 1)

and γ (γ > 0) control the NB distribution component. A larger γ leads to a larger mean

and variance. A larger β leads to a smaller ratio between the variance and the mean,

which is strictly larger than 1.

2.1.1.3 Categorical Distribution

The supports of both the ZIP and the ZINB distributions are all non-negative integers.

However, very large counts are practically impossible for most object classes since

the images only record object instances in a confined space. Furthermore, the counts

tend to be small (See Section 3.1). One solution is encoding the counts as categories.

Specifically, for a given count variable x, if its maximum observed value is L, I assume

it follows a categorical distribution containing L+1 categories. Its probability mass

function is:

p(x = k) = ωk (2.5)

where ∑
L
i=0 ωi = 1 (0 < ω0,ω1, ...,ωL < 1). This encoding method avoids putting prob-

ability mass to unrealistic values and can adapt to any multi-peaked count distributions

(Both the ZIP and the ZINB distributions can only adapt to the count distributions with

at most two peaks). However, it assumes the maximum count observed is indeed the

maximum value that the variable can be, so it is unable to explain any counts larger than

this value. Besides, it requires different parameter numbers to illustrate the conditional

count distributions of different object classes since their observed maximum counts are

different.

2.2 Variational Autoencoder With Expressive Priors

In theory, any continuous distributions can be generated by an equal-dimensional stan-

dard Gaussian through a sufficiently complex function including neural networks [14].

But the optimization techniques and the computational abilities restrict the expres-

siveness of the transformed distributions from a standard Gaussian. A compromise
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Figure 2.1: A diagram of the vanilla VAE assuming a ZIP conditional distribution

Note: The model assumes a 2-dimensional latent distribution. The calculation of the losses is omitted.

All values in the diagram are for demonstration only.

is to directly use more expressive priors, which does improve model performances4

[67, 11, 51, 23].

2.2.1 Variational Mixture of Posterior Prior

If we revisit equation 2.2 and regard it as a function of p(zzz), the optimal p(zzz) is the

aggregated posterior, i.e., 1
N ∑

N
i=1 q(zzz|xxxi). This is the idea of the variational mixture of

posterior (VAMP) prior [67]. However, directly calculating the aggregated posterior can

overfit the data and is computationally costly. So the VAMP prior introduces L trainable

pseudo-inputs uuu1, uuu2, ..., uuuL and adopts their aggregated posterior as the prior.

To some extent, the VAMP prior assumes the data has L clusters, each cluster

containing an equal number of data points. As the authors suggest, we can introduce

the weights for the pseudo-inputs to make it more flexible. Thus, the final version I

adopt is:

p(xxx) =
L

∑
i=1

ωiq(zzz|uuui) (2.6)

where ∑
L
i=1 ωi = 1 (0 < ω1, ...,ωL < 1).

4The prior and the variational posterior restrict each other since the VAE optimizes the ELBO. So there
is essentially no difference between using more expressive priors and using more expressive variational
posteriors in helping the decoder to approach the theoretical upper bound of performance.
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2.2.2 Masked Autoregressive Flow Prior

The normalizing flow [54] is another generative model. Let zzz be a D-dimensional

continuous variable which follows a tractable base distribution like a Gaussian, and f

be an invertible function: RD → RD. For the random variable xxx = f (zzz), its probability

density function is:

p(xxx) = pzzz( f−1(xxx))|det(
dzzz
dxxx

)| (2.7)

where dzzz
dxxx is the inverse of the Jacobian matrix of f and pzzz refers to the base distri-

bution. Since the computational complexity of calculating the determinant of this

matrix is O(D3), the normalization flow usually adopts some special f to accelerate the

computation, one of which is the autoregressive flow [53, 11].

The autoregressive flow assumes the ith element of xxx is only transformed from the

first i elements of zzz:

xxxi = µi(zzz1:(i−1))+σi(zzz1:(i−1))∗ zzzi (2.8)

where µi and σi are the transformation functions for the ith element, often implemented

as neural networks. It ensures the Jacobian matrix is lower-triangular and the computa-

tional complexity of the determinant reduces to O(D).

An autoregressive flow is the most flexible if each transformation function is an

independent neural network, but it can cause optimization and computational efficiency

issues due to too many parameters. The masked autoregressive flow (MAF) [53] allows

different transformation neural networks to share parameters and conduct inference

simultaneously by stacking the masked autoencoder for distribution estimation (MADE)

[18] layers. Thus, the second prior I test is a trainable distribution transformed by an

MAF from a standard Gaussian.

For the flow model, inferring the base variable value is achieved by applying f−1 on

the observed variable value. Generating samples from the model distribution is achieved

by applying f on the samples drawn from the base distribution.

2.2.3 Autoencoder-Assisted Prior

The autoencoder (AE) [30] shares the same network architectures with the VAE, but

the former is mainly used for dimension reduction and data denoising. For a given data

point, the AE first compresses it to a lower-dimensional embedding using the encoder.

The embedding is then passed to the decoder to reconstruct the data point. The AE is

trained to minimize only the reconstruction loss.
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For the decoder, the embeddings extracted by the AE encoder play the same role

as the samples drawn from the variational posterior in the VAE. Actually, the AE is

equivalent to a VAE with a Dirac delta variational posterior centered on the embedding

value. But in this case, the regularization loss is infinite and non-differentiable for

continuous priors. For this “special” VAE, the aggregated posterior is the empirical

distribution of the embeddings. To make this distribution continuous, a natural idea is

to fit a Gaussian mixture distribution on the extracted embeddings.

Thus, the third prior I test is the autoencoder-assisted (AEA) prior. Specifically, for

a given encoder and decoder architecture, I first train an AE and fit a Gaussian mixture

distribution with factorized Gaussian components5 on the extracted embeddings. Then

the Gaussian mixture is set as the prior to train a VAE. This idea is inspired by [19],

although they regularize the decoder to mimic the influences of a stochastic variational

posterior.

2.3 Mixture Model

If we are only interested in modeling and generation, the ultimate goal of training a VAE

is to get a decoder that can approximate the observed distribution with the specified

prior. But we still introduce the encoder since maximizing the log-likelihood using the

decoder and the samples from the prior exclusively is computationally inefficient and

unstable. The cost is that the VAE only optimizes the ELBO6 and extra parameters are

introduced. The issue can be mitigated if the latent variable follows a single categorical

distribution with a limited number of states. This is the assumption of the mixture

model.

When the latent variable has L possible states, the probability mass function of xxx is:

p(xxx) =
L

∑
i=1

ωi pi(xxx) (2.9)

where ∑
L
i=1 ωi = 1 (0 < ω1, ...,ωL < 1) and pi refers to the ith conditional distribution,

which can be a factorized ZIP, ZINB or categorical distribution. The posterior distri-

bution of the latent variable has a closed form, so the log-likelihood can be directly

optimized by the expectation-maximization algorithm [12] or the gradient descent.

5I have also tried the full Gaussian components, but the regularization loss diverges in such cases.
Probably because we need to calculate the inverse of the full-rank covariance matrix for the probability
density function of each Gaussian component, making the optimization unstable.

6Although some techniques, such as the importance sampling [8], can sufficiently tighten the bound.



Chapter 2. Models 12

Although the VAE with a categorical latent distribution is equivalent to the mixture

model, there are still some VAE studies [71, 38] assuming a categorical latent distribu-

tion but optimizing the ELBO. In these studies, the latent variable is not illustrated by a

single categorical distribution, but a combination of multiple categorical distributions.

The distributed representation allows the latent variable to have even millions of states,

restricting the direct optimization of the log-likelihood.

2.4 Sequence-to-Set Variational Autoencoding Trans-

former

No matter which conditional distribution is used, the widespread 0s are either encoded

as a special value or an explicit category. But from an informatic-theoretic perspective,

we can only encode the non-zero elements in the vectors without losing any information.

For example, if an image only contains 2 chairs and 1 table, it can be encoded as [2

chairs, 1 table], rather than [2 chairs, 1 table, 0 fork, 0 elephant, ...]. To further simplify

the representation, it can be reduced to a set of objects [chair, chair, table]7.

Since the set size varies across vectors, an intuitive idea is to model the set as

a sequence. To convert sequence predictions to set predictions, we have to sum the

probabilities over all possible sequences for a given set. For example, the set [chair,

chair, table] corresponds to three possible sequences: “chair-chair-table”, “chair-table-

chair” and “table-chair-chair”. Suppose a vector contains m non-zero elements, whose

values are N1, N2, ..., Nm. The number of possible sequences for the transformed set

is (∑m
i=1 Ni)!

∏
m
i=1 Ni!

. Let S be the set variable, L(S) be the number of its possible sequences,

l1,l2,..., lL(S) be the sequences induced the set, pl be the probability mass function of

the sequence variable under the model. The probability mass function of S is:

p(S) =
L(S)

∑
i=1

pl(li) = L(S)∗ 1
L(S)

L(S)

∑
i=1

pl(li) = L(S)Eq(i)pl(li) (2.10)

where q refers to a uniform distribution over all possible sequences. In other words, we

only need to calculate the mean probability value of some sequences, and multiply it by

the number of possible sequences to approximate p(S).

As mentioned in Section 2.3, an encoder can accelerate training and enhance the

result stability. So I choose the encoder-decoder transformer [73] as the sequence

7Strictly speaking, a set should not contain duplicate instances, but it can be understood as [chair-1,
chair-2, table].
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generation model. The traditional encoder-decoder transformer is like the AE, where

the encoder extracts a set of embeddings from the input (which does not need to be

the same as the target), then the embeddings are passed to the decoder to generate the

output autoregressively.

Each encoder layer contains two sub-layers: The first is a multi-head attention

sub-layer, and the second is a feed-forward neural network sub-layer whose input and

output layers have the same width. The attention function operates on three matrices:

the query matrix Q, the key matrix K and the value matrix V . Assuming their sizes are

(dQ,dK), (dV ,dK) and (dV ,dE) respectively, the scaled dot-product attention function is:

Attention(Q,K,V ) = softmax(
QKT
√

dK
)V (2.11)

The size of the output matrix is (dQ,dE). For a multi-head attention function with L heads,

it introduces L sets of transformation matrices: [W Q
i , W K

i , WV
i ] (i = 1,2, ...L), whose

sizes are (dK , dh), (dK , dh) and (dE ,dhE) respectively. There is also a transformation

matrix W O, whose size is (dhE ∗L, dM). The function is:

MultiHead(Q,K,V ) = Concat(head1,head2, ...,headL)W O (2.12)

where headi is Attention(QW Q
i ,KW K

i ,VWV
i ). The size of the output matrix is (dQ, dM).

For the multi-head attention sub-layers in the encoder, all Q, K and V are the stacks of

the token embeddings. To clarify, if there are n tokens in an input sequence and the

embedding dimension is D, then dQ = dV = n and dK = dE = D. If the head number

is L, then dhE = D/L and dM = D. This is also called self-attention. The output of the

self-attention sub-layer is unpacked into n D-dimensional vectors. Each of them is then

passed to the feedforward neural network sub-layer to get the “new” embedding of each

token. Between the two sub-layers and after the feedforward neural network sub-layer,

there are residual connection [27] and layer normalization [3] applied (there are also

dropout layers [61] within and between the sub-layers, but omitted here). The input and

the output of an encoder layer are both a set of token embeddings.

Each decoder layer has three sub-layers. The first is a multi-head self-attention

sub-layer to process decoder input (i.e., the ground-truth tokens during training, and the

tokens having been generated during generation). The second is a multi-head attention

sub-layer whose matrix Q is the stacks of the decoder input’s embeddings, while the

matrices K and V are the stacks of the final extracted embeddings from the encoder. This

is also called cross-attention. The third is still a feedforward neural network sub-layer.

Similar to the encoder layer, there are residual connection and layer normalization
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applied between the sub-layers and after the final sub-layer. The input and the output of

a decoder layer are both a set of token embeddings, but the number of tokens is equal to

that of the decoder input.

In a sequence-to-sequence generation task, the encoder maps the source sequence

to embeddings. The embeddings are transformed through several encoder layers.

When predicting the ith token of the target sequence, the decoder maps the first i−1

tokens (again, there are given/generated during training/generation) to another set of

embeddings. The embeddings are transformed through several decoder layers. The

final last embedding (or the pooled final embedding) is passed to a feedforward neural

network to get the corresponding prediction.

Nevertheless, to make it a full generative model, the final embeddings extracted by

the encoder should be treated as the parameter estimates of the variational posterior.

It causes problems since the input sequence length is not fixed and using samples

from multiple variational posteriors is unstable. To solve this, I introduce a multi-head

attention layer to pool the embeddings inspired by the set transformer [42]. For this

layer, the Q is a matrix of size (2, D), whose elements are trainable. The K and V

are both the stacks of extracted final embeddings. Its output is unpacked into two

D-dimensional vectors, representing the mean and the (log) standard deviation of the

variational posterior. The decoder can only attend to a sample from the variational

posterior for the cross-attention [74]. Figure 2.2 is a diagram of the architecture.

For a given set, the sequence-to-set variational autoencoding transformer (SSVAT)

processes it as follows: The set is first transformed to some possible sequences. For

each sequence, the encoder extracts the embedding of each token. The embeddings are

pooled through the multi-head attention layer and become two vectors, representing the

mean and the (log) standard deviation of the Gaussian variational posterior. A sample

drawn from the variational posterior is passed to the decoder for the cross-attention.

Then we can calculate the reconstruction and the regularization losses and transform

them to the ELBO. The exponentiated ELBO is a surrogate of the sequence probability.

The mean of all sequence probabilities, multiplied by the number of possible sequences,

is the final estimate of the set probability.

Although I model the set as a sequence, the order is meaningless. So no position

embeddings are added for both the encoder and the decoder. In such cases, the encoder

is permutation-invariant due to its architecture, which is an extra benefit.

To generate a sample from the model distribution using the SSVAT, we should pass

the decoder a sample drawn from the prior. The generated sequence is then transformed
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 BOS Chair ...  EOS

0.03  1.6   3.2  -0.5  -2.1  0.4...

... ... ... ...

  2.9  0.01    -7  0.5 0.55  -1.6...

 -5.1  -2.8

 0.3   0.5   0.5  -0.4

h1 (mean)

h2 (std)

ε (sample)

reparameterization
-4.95 -3

 BOS Chair ...

0.03  1.6   3.2  -0.5 ...

... ... ...

 -1.3   0.2   1.4    5 ...

8.1 5.3... -4.4 -3.2... ...

... 0.3 0.01... 0.12 0.4...

encoder 
layers

embedding
layer

embedding
layer

decoder 
layers

multi-head attention pooling softmax

p(token 2) p(token 3)

Transformed sequence

Figure 2.2: A diagram of the SSVAT

Note: The model assumes a 2-dimensional latent distribution. All values in the diagram are for

demonstration only. The calculation of the losses and the transformation between the sequence and the

set are omitted. The arrows indicating the attention are simplified in the encoder layers to avoid a mess.

This diagram illustrates the teacher-forcing training process [77], where the ground-truth first i−1

tokens are provided when predicting the ith (i = 2,3, ...) token. During generation, only a sample from

the prior and the [BOS] (beginning of sequence) token are provided initially for the decoder. After

predicting the ith token’s conditional distribution, a sample from it is added to the current sequence. The

decoder will use the sequence to predict the (i+1)th token’s conditional distribution until the [EOS] (end

of sequence) token is generated.

to the count vector. I also test two expressive priors for the SSVAT: the MAF prior

and the AEA prior. I do not test the VAMP prior since the inputs are sequences whose

lengths are not fixed, which makes it difficult to set the trainable inputs.

To my best knowledge, the only study which generates sets of discrete data using

sequence models is [63]. However, they do not directly optimize and evaluate the set

probabilities, and they do not use the transformer encoder and the variational posterior to

accelerate learning. To ensure the SSVAT can produce reasonable probability estimates

for the count data, I also conduct a sanity check using the samples generated from some

mixture model variants. See Appendix B for the procedures and the results.
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2.5 Discrete Autoregressive Flow

As mentioned in Section 2.2.2, the normalizing flow is another way to represent high-

dimensional distributions. But the studies of the discrete flow are still in infancy

since the change of volume (i.e., the Jacobian matrix determinant) is not applicable.

There have been some attempts [68, 35, 36], but a systematic comparison is lacking.

[2] compares the flows in [68] and [35], revealing that the former performs better in

modeling language data. Thus, I choose the winner, the discrete autoregressive flow

(DAF) to be tested on the count data.

For the DAF with an invertible function f and a base distribution pzzz, the probability

mass function of the random variable xxx = f (zzz) is:

p(xxx) = pzzz( f−1(xxx)) (2.13)

The DAF encodes each element of the base and the observed variables as a categorical

variable, and applies the modulo location-scale transformation:

xxxi = [µi(zzz1:(i−1))+σi(zzz1:(i−1))∗ zzzi] mod L(xxxi) (2.14)

where L(xxxi) is the number of possible categories of that element, i.e., the maximum

observed count of the object class plus 1 (see Section 2.1.1.3).

Different from equation 2.8, the outputs of µi(zzz1:(i−1)) and σi(zzz1:(i−1)) are both

integers representing the categories to ensure all elements are integers. It is achieved by

adding an argmax function after the neural network outputs. The gradient is estimated

using a so f tmax straight-through gradient estimator [48]. This whole transformation

is invertible only when L(xxxi) and σi(zzz1:(i−1)) are coprime. To ensure it, I set the σ

transformation to 1 and use an MAF to construct the µ transformation. The base

distribution is a factorized categorical distribution.

2.6 Discrete Autoregressive Diffusion

The diffusion model is a popular generative model recently [57, 32, 60]. Its core

idea is to gradually inject noise into the observed distribution to make it the base

distribution, and train a model to gradually recover the observed distribution from the

base distribution. The joint distribution of the states during the noise injection process

is a pre-specified variational posterior. The model is trained to learn a conditional joint

distribution of states during the denoising process to maximize the ELBO with the
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base distribution as the prior. Similar to the flow model, the discrete diffusion model is

still under-explored and is currently restricted to the categorical variables [35, 2, 34].

Among the existing approaches, the discrete autoregressive diffusion (DAD) [34] is a

competitive participant due to its computational efficiency in both training and sample

generation.

The DAD takes a form of an order-agnostic autoregression model, but the authors

have proved that it is equivalent to an infinite time limit absorbing diffusion, with

the base distribution a Dirac delta distribution where all elements are a [MASK]

category. The DAD assumes that the observed variable can be generated in any order

autoregressively. For a D-dimensional variable, there are D! possible orders. Let l1, l2,

..., lD! be the possible orders, li( j) be the jth element in the ith order, the log-likelihood

of xxx is:

log p(xxx) = log
1

D!

D!

∑
i=1

p(xxx|li)> Eq1(i)

D

∑
j=1

log p(xxxli( j)|xxxli(< j))

= Eq1(i)D∗Eq2( j) log p(xxxli( j)|xxxli(< j))

= DEq1(i)Eq2( j)
1

D− j+1 ∑
k∈l(≥ j)

log p(xxxli(k)|xxxli(< j))

(2.15)

where q1 refers to a uniform distribution over all possible orders, and q2 refers to a

uniform distribution over all possible element positions.

Thus, the DAD is also optimizing the ELBO due to the first inequation. During the

training, we need to uniformly select an order and a position, and use elements prior to

that position to predict the elements after the position simultaneously. The prediction is

conducted by a neural network. All elements are encoded as categorical variables and

the masked state is encoded as a additional category [MASK]. To generate a sample,

we need to uniformly select an order and generate the elements autoregressively.

Besides the 5 models mentioned above, I test a baseline model which assumes a

factorized ZIP, ZINB or categorical distribution. And as an ablation study, for all models

which should consider the conditional distribution, I test two extra distributions: the

Poisson and the NB distributions, whose probability mass functions can be represented

by the equations 2.3 and 2.4 when the parameter α is 0 respectively.
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Experiments

The chapter delves into the experiment details. Section 3.1 introduces the pre-processing

and some summary statistics of the data for modeling. Section 3.2 describes the final

architecture of each model. Section 3.3 illustrates the training schemes of different

models. Section 3.4 introduces the metrics to evaluate the model performances. Section

3.5 shows the model performances and some generated samples.

3.1 Dataset

The object count data is extracted from the COCO dataset [45], a dataset mainly for

object detection, segmentation and captioning. I use the training set of COCO 2017,

which considers 80 classes of objects in 118,287 images. Each image corresponds

to an 80-dimensional count vector, whose elements are non-negative integers. The

object classes are: person, bicycle, car, motorcycle, airplane, bus, train, truck, boat,

traffic light, fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse, sheep,

cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee,

skis, snowboard, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard,

tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich,

orange, broccoli, carrot, hot dog, pizza, donut, cake, chair, couch, potted plant, bed,

dining table, toilet, TV, laptop, mouse, remote, keyboard, cell phone, microwave, oven,

toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear, hair drier, toothbrush.

Since the count vectors are very sparse (1,021 of them are even all-zero vectors), I

order them by the number of non-zero elements (i.e., how many object classes appearing

in the corresponding image) and the sum of elements (i.e., how many object instances

appearing in the corresponding image), and choose the first 110,000 vectors.

18
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After the selection, there are still 90.2% of vectors containing fewer than 6 non-zero

elements. Besides, the element values are generally small. The sum of elements is less

than 11 for 74.5% of the vectors, indicating that each object class usually has no or

few instances in one image (see Appendix A for the empirical count distributions of

different object classes). The following is an example count vector: [0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 3 2 1 1 0 0 3 0 0 0 0 0 0 5

0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 2 0 0 0 0]

The count vectors are shuffled and split into the training, the validation and the test

sets, which contains 80,000, 10,000 and 20,000 vectors respectively.

3.2 Model Architectures

The hyperparameter tuning procedures and some patterns can be found in Appendix C.

For the VAEs, the architecture of the encoder is [80, 160, 160, 4*2] if using the ZIP

conditional distribution, where *2 indicates that it has two output layers corresponding

to the mean and the standard deviation of the variational posterior. The architecture of

their decoder is [4, 160, 160, 80*2], where *2 indicates that it has two output layers

corresponding to the estimates of the conditional distribution’s two parameters. When

using the ZINB conditional distribution, their encoder architecture is [80, 80, 8*2] and

their decoder architecture is [8, 80, 80*3]. When using the categorical conditional

distribution, their encoder architecture is [80, 160, 8*2] and their decoder architecture

is [8, 160, max-counts]. Here max-counts is an 80-dimensional vector where the ith

(i = 1,2, ...,80) element is the observed maximum count of the ith object class plus 1. It

indicates the decoder has 80 output layers, whose widths are dependent on the observed

maximum counts of different object classes. When using the Poisson/NB distribution,

the encoder/decoder architecture is the same as that when using its zero-inflated version

(although the number of the output layers is reduced by 1 for the decoder). This is the

same for other hyperparameters below.

For the VAEs with expressive priors, the number of pseudo-inputs is 8 for all variants

using the VAMP prior. When using the MAF prior, the numbers of MADE layers are 5, 3

and 3 for the VAE-ZIP, VAE-ZINB and VAE-categorical models respectively. A MADE

layer contains two hidden layers whose widths are five times the input layer width. It

has two output layers corresponding to the outputs of the µ and the σ transformations

respectively. When using the AEA prior, the number of mixture components is 2 for all

variants.
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For the mixture model, the numbers of mixture components are 900, 900 and 800

respectively for the mixture-ZIP, the mixture-ZINB and the mixture-categorical models

respectively. Since the numbers are large, some components may only have small

weights. I calculate the effective number of components by:

N = exp(∑
L
i=1−ωilogωi) (3.1)

where ωi (i = 1,2, ...,L) is the weight of the ith component of a mixture model with L

components. The entropy of the mixture weight distribution is equal to that of a uniform

distribution over N categories. The effective numbers of mixture components are

189.623, 92.276, 7.258, 62.294 and 52.454 for the mixture-ZIP, the mixture-ZINB, the

mixture-categorical, the mixture-Poisson and the mixture-NB models respectively. Only

the value from the mixture-categorical model indicates that the data may be explained

by a limited number of components. But it is not the best mixture model variant, even

not a competitive member among all models (see Section 3.5.1). Collectively, these

results suggest the distribution of the count vectors is complex enough that cannot be

captured by a small set of components/clusters1.

For the SSVATs, the embedding dimension is 20, and they have 3 encoder/decoder

layers. The dropout rate and the number of heads for the encoder/decoder layers are

0.1 and 4 respectively. The feedforward neural network sub-layers have 1 hidden layer,

whose width is 40. When using the MAF prior, the number of MADE layers is 5. When

using the AEA prior, the number of mixture components is 2.

For the DAF, it has 4 MADE layers. Each MADE layer has 3 hidden layers, whose

widths are twice the input layer width.

For the DAD, It has 2 hidden layers, whose widths are the twice the input layer

width.

For both the DAF MADE layers and the DAD, the input is a concatenation of count

embeddings of different object classes. They output layers are the same as those of the

VAE-categorical models. Besides, the input layer width of the DAD is larger than the

sum of the output layer widths since it needs to consider the extra [MASK] category.

3.3 Implementation Details

For each model, I run 5 experiments. Each experiment is controlled by a random seed.

The 5 seeds are generated by a primary random seed, which is the same for all models.
1I have also tried to reduce the variational posterior means extracted by the VAEs to 2-dimensional

using t-SNE [72], but do not observe clear clusters visually either.
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In each experiment, for the VAEs, the DAF and the DAD, the model is trained with

a batch size of 100. The weight parameters are initialized using the Xavier uniform

method [20] while the bias parameters are initialized with 0. I use ReLU as the activation

function [16]. The negative ELBO as the loss, is optimized using the Adam optimizer

[39]. The initial learning rate is 0.005. The gradients are clipped when their norms are

larger than 4. After each epoch, the mean validation loss is calculated. The learning

rate is halved when the mean validation loss has not been improved for 5 consecutive

epochs. The experiment is stopped early when the mean validation loss has not been

improved for 10 consecutive epochs. The maximum epoch is 50.

To maintain a healthy gradient flow, the gradients are replaced with the noise from a

standard Gaussian if NaN value appears. The α and the β parameters in the ZIP and

the ZINB/NB distributions are restricted between 0.01 and 0.99 (i.e., the values which

are beyond the threshold are replaced with the threshold value. So the gradient flow

through the corresponding parameter is truncated then. Same below). The λ and the γ

parameters in the ZIP/Poisson and the ZINB/NB distributions are restricted between 0

and 50. For the categorical distribution, I implement the label smoothing technique [62]

during training to ensure the model assigns some probability mass to the unseen but

possible categories. Specifically, the one-hot encoded labels are replaced with a mixture

of themselves and a uniform distribution over all possible labels (but the number of

possible labels still varies across object classes). The mixture weight is 10−5 for the

uniform distribution.

One sample is used in the reparameterization trick. The sample is also used to

approximate the regularization loss if the KL divergence does not have a closed form.

Specifically, the divergence term in equation 2.2 can be written as:

DKL(q(zzz|xxxi)|p(zzz)) = Eq(zzz|xxxi) logq(zzz|xxxi)−Eq(zzz|xxxi) log p(zzz) (3.2)

where the former term has a closed form since the variational posterior is a factorized

Gaussian, and the latter can be approximated by sampling as long as the probability

density of the given sample can be computed.

The best mean validation loss is the final model performance in that experiment.

The experiment with the best final model performance is chosen. I use the parameter

values in the checkpoint which produce the best mean validation loss in the chosen

experiment as the final parameter estimates of the model.

For the mixture model, the best architectures require hundreds of mixture compo-

nents, making the training process slow. So I increase the batch size to 4000 and the
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initial learning rate to 0.05. Besides, the loss is the negative log-likelihood (same for

the baseline and the DAF).

For the SSVATs, each vector is first transformed into a sequence randomly. This

sequence is called the forward sequence. I then reverse this sequence to create the

backward sequence. After adding the [BOS] and [EOS] symbols, the sequences are

passed to the model. Their mean exponential ELBO, multiplied by the number of

possible sequences serves as the estimate of the corresponding set probability. This

approach is intended to mitigate variance. The model are not allowed to predict/generate

the [BOS] token and the token for padding by setting their logit values to the negative

infinity.

For the VAE/SSVAT with AEA prior, the training process of the AE is the same

as above. After training, the AE encoder extracts the embeddings of points in the

training and the validation sets. The embeddings are used to fit the mixture model with

factorized Gaussian components.

For the baseline model, the factorized ZIP [13], Poisson and categorical distributions

have closed-form maximum likelihood estimates, which are directly used. The log-

likelihood of the factorized ZINB and NB models is optimized by the gradient descent,

with a fixed learning rate of 0.2, a norm threshold of 10 and a maximum epoch of 1000,

which are the empirical values ensuring convergence.

3.4 Evaluation Metrics

3.4.1 Likelihood

The main metric I use is the mean loss on the test set, i.e., the negative log-likelihood or

ELBO. Although the ELBO is a lower bound of the log-likelihood, if a model’s ELBO

is significantly larger than another model’s log-likelihood, it sufficiently supports the

former model is better. Also, I conduct paired-sample t tests to compare the mean test

losses since the test set is fixed.

Besides, an important fact is I am using the test set distribution as a surrogate of the

ground-truth distribution that generates the data. Since the data is discrete, the mean test

loss is actually the cross entropy (although the base number is e rather than 2) between

the model distribution and the test set data’s empirical distribution. The lower bound of

the mean test loss is the entropy of the test set data’s empirical entropy, which is 8.652.

Knowing this value can help us to better understand how the models perform.
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3.4.2 Sample Quality

The ELBO is a surrogate of the log-likelihood, but it is also influenced by the compati-

bility between the true and the variational posterior. It is possible that a model with a

lower ELBO actually has a larger log-likelihood when comparing two models using

the ELBO. Meanwhile, all models tested are generative models. It is a natural idea to

compare the quality of their generated samples. Theoretically, if a model can better

approximate the observed data distribution, the samples it generates should be more

similar to the observed data.

However, the sparse count data are very different from language or image data,

traditional pre-trained-classifier-based metrics like the Fréchet inception distance [29]

may be biased. Meanwhile, there are no commonly used labels for images in the

COCO dataset (not to mention the count vectors may be not a good surrogate of the

original images), so evaluating the sample quality through downstream tasks [58] is

also unrealistic. Inspired by the GAN [21], I introduce a discriminator to distinguish

whether the data are generated or observed. Specifically, I use a simple neural network

containing 1 hidden layer (whose width is 80, equal to the number of object classes)

with ReLU activation as the discriminator.

For each model, I let it generate 90,000 points. They are randomly split into two

groups, containing 80,000 and 10,000 points respectively. The final training set is the

concatenation of the original training set (positive labels, same below) and the first

group (negative labels, same below). The final validation set is the concatenation of the

original validation set and the second group. The training scheme of the neural network

is the same as that in Section 3.3.

After training the discriminator, it makes predictions for the points in the test set.

I consider two metrics to measure the model performances: One is the mean loss of

the discriminator (i.e., the negative log-likelihood). The other is the accuracy of the

discriminator with a decision threshold of 0.5.

3.5 Results

3.5.1 Model Performances

The mean test losses with standard errors of different models are shown in Table 3.1

(lower is better). The mean test losses with standard errors of the discriminator for

different models are shown in Table 3.2 (higher is better). The mean accuracy with
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standard errors of the discriminator for different models is shown in Table 3.3 (lower

is better). The theoretical loss and accuracy should be log(0.5) = 0.693 and 50.0%

respectively if the discriminator cannot distinguish the observed and the generated data.

So values closer to the two values indicate a higher model performance.

For models having variants assuming different conditional distributions, the best

variant is labelled in italics. It is asterisked if it performs significantly better than the

second best variant at a significance level of 0.05. The global best model is labelled

in bold. It is asterisked if it performs significantly better than the second global best

model.

The mean test losses of the best variants (The DAF and the DAD have no variants.

The best variants are the baseline-categorical, the VAE-MAF-categorical, the mixture-

NB and the SSVAT-MAF respectively for the rest models based on the metrics) of

different models, and the corresponding discriminator accuracy (the mean discriminator

test losses indicate a similar pattern) is shown in Figure 3.1.

3.5.2 Generated Samples

Here are some samples generated by the best variants of different models. Since the

data are sparse, I only show the non-zero counts.

Baseline:

[1 person, 4 giraffe, 3 knife]

[1 truck]

[9 person, 1 car, 1 tie, 5 bottle, 1 spoon]

[1 person, 1 airplane, 1 chair]

VAE:

[1 bottle, 1 knife, 2 pizza, 1 cake, 1 chair, 1 dining table]

[1 person, 1 dog]

[2 zebra]

[1 person, 11 bottle, 1 dining table, 1 sink]

Mixture:

[1 person]

[1 toilet]

[5 car, 1 airplane, 1 truck]

[9 person, 3 bus, 1 fire hydrant, 3 bench, 2 bird, 1 cow, 1 elephant, 2 giraffe, 1

handbag, 1 tie, 6 skis, 3 snowboard, 1 kite, 1 baseball bat, 8 cup, 33 knife, 3 spoon, 1
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bowl, 35 sandwich, 1 orange, 6 pizza, 1 donut, 1 cake, 3 potted plant, 15 bed, 1 dining

table, 3 laptop, 4 remote, 3 vase, 4 teddy bear, 103 toothbrush]

(I choose this extreme example deliberately to show a potential problem of the NB

conditional distribution. See Section 4.1)

SSVAT:

[5 person, 15 tie],

[1 person, 1 handbag, 7 bottle, 4 wine glass, 2 cup],

[4 airplane, 7 truck],

[1 bottle, 1 bowl, 1 refrigerator]

DAF:

[4 person, 1 fire hydrant, 14 book, 1 vase],

[1 bottle, 1 bed, 1 dining table],

[1 person, 1 sandwich, 1 book],

[1 person, 1 train, 1 skateboard, 1 cake, 2 couch, 1 bed]

DAD:

[9 person, 1 frisbee, 1 clock],

[2 person, 1 cow, 2 chair],

[1 person, 1 dog, 1 donut],

[2 donut]

As can be seen, these variants (except the baseline) capture the physical correlations

among the object classes more or less. For example, [2 zebra] may correspond to an

image of animals in the wild. [1 bottle, 1 bowl, 1 refrigerator] may correspond to

an image of cooking utensils in a kitchen. But there are still some vectors hard to

understand like [1 person, 1 handbag, 7 bottle, 4 wine glass, 2 cup] (the counts mainly

imply that there should be several people, but the count of person is 1) and extreme like

the final one generated by the mixture model.
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Figure 3.1: Performances of the best variants

Note: For both metrics, a lower value indicates a better model performance.



Chapter 4

Discussions

This chapter discusses the experiment results. Section 4.1 analyses the effects of

different conditional distributions. Section 4.2 analyses the effects of different priors.

Section 4.3 discusses the best ways to model object co-occurrences.

4.1 Choice of the Conditional Distribution

The following discussion is restricted to the models which need an explicit choice of

the conditional distribution.

When the model performances are measured by likelihood as shown in Table 3.1,

the categorical distribution holds a dominant advantage across models. As mentioned in

Section 2.1.1.3, the categorical distribution avoids putting probability mass to unrealistic

values and can flexibly adapt to the multi-peaked distributions. The empirical count

distributions of some object classes like sheep and bananas are indeed multi-peaked

(see Appendix A), lending some supports to this distribution.

However, among the models, the best one1 is the mixture model with the NB

distribution components. And the NB distribution shows a close, or better performance

than the ZINB distribution across models. This is surprising since the former is nested

in the latter. After checking the original distributions, I find for most object classes, the

most frequent non-zero count is 1, and some of them like books and bananas can have a

small peak at a large count. It causes an over-dispersed pattern: most counts are small

values (0 or 1), but few counts are considerably larger. This pattern can be explained by

the NB distribution when its two parameters are both small [80]. In other words, the NB

1The conclusion is not rigorous since the loss is the negative log-likelihood for the baseline, the
mixture model and the DAF, but the negative ELBO for others.

30
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distribution is flexible enough to account for the sparsity of the count data. Introducing

the zero-inflation parameter may make the loss landscape more multi-modal and let the

model get stuck in a worse sub-optimal solution. This can also be the reason why it can

perform better than the categorical distribution, although the latter is theoretically the

best choice as it can mimic any finite-state discrete distributions.

When the model performances are measured by sample quality as shown in Tables

3.2 and 3.3, the results become less clear. But the categorical and the NB distributions

are still the main winners. Interestingly, the Poisson distribution shows an advantage in

the VAE-VAMP and the VAE-MAF models. It can be explained since the expressive

priors can allow the conditional Poisson distribution to have a low λ mostly, but a large

λ occasionally. This can help explain the over-dispersion of data.

Nevertheless, the model can generate some outlier samples like the one shown in

Section 3.5.2 if not using a categorical conditional distribution. The vector is very

dense (containing many object classes) and some elements are unrealistic (e.g., 103

toothbrush), indicating a strong activation of the latent factors. In other words, coupled

with a count conditional distribution, an extreme sample from the prior can lead to

an extreme generated count vector. To further investigate it, I calculate the numbers

of outlier samples for all models assuming a count conditional distribution2. The

standard of outlier is for at least one object class, the generated count is larger than

twice the maximum observed count. The result is shown in Table 4.1. As can be seen,

the models assuming a Poisson/ZIP conditional distribution generally produce fewer

outlier samples than those assuming a NB/ZINB conditional distribution, which may

be because the Poisson distribution restricts the mean and the variance to be the same.

And the zero-inflation assumption generally decreases the number of outlier samples,

which is expected since it explicitly removes some probability mass from the non-zero

counts. Combined with Tables 3.2 and 3.3, the number of outlier samples and sample

quality has a positive correlation, which somewhat explains why the Poisson distribution

performs better when measuring the model performances using sample quality.

In conclusion, the zero-inflation seems unnecessary to explain the sparse counts.

When we need a count distribution as the conditional distribution, the NB distribution

is a good choice. But it can lead to the problem of extreme generated samples. The

categorical distribution is generally the best choice if we believe the observed maximum

counts do reflect the factual maximum counts, although the extra parameters may also

2The term “count distribution” refers to the distributions which encode the counts as non-negative
integers rather than categories if not referring the empirical distribution a specific object class’s counts.
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Conditional
Distribution

Baseline
Vanilla

VAE
VAE-

VAMP
VAE-
MAF

VAE-
AEA

Mixture

ZIP 0 0 5 3 5246 1194

ZINB 77 85 88 96 281 516

Poisson 0 2 5 26 5673 19

NB 104 182 237 218 356 229

Table 4.1: Numbers of outlier samples out of 90,000 samples for different models

cause some problems during the optimization, and adding a output layer for each object

class is computationally costly.

4.2 Choice of the Prior

The following discussion is restricted to the models which can have an expressive prior.

The effects of the expressive priors are consistent across the evaluation metrics and

the conditional distributions. That is, the VAMP prior does not have an obvious effect

on the model performances, the MAF prior improves the model performances, while

the AEA prior harms the model performances.

For the VAMP prior, I check the mixture weights of the components, and find the

mixture distribution is always dominated by one component. This component is close

to a standard Gaussian. Take the VAE-VAMP-ZIP model as an example, the mean and

variance are: [-0.033 -0.024 0.174 -0.059 -0.018 -0.567 0.463 -0.022] and [0.932 0.911

0.262 0.878 0.941 3.181 5.296 0.895]. I have also tried to use the aggregated rather

than the mixture of the variational posteriors of the pseudo-inputs as the prior, the result

is all components converge to a standard Gaussian.

For the MAF prior, I compare it with a standard Gaussian in a rough way. Specif-

ically, I generate some samples from the prior, reduce them to 2-dimensional using

t-SNE [72], and compare them with a 2-dimensional standard Gaussian visually. It

seems that their empirical distribution is more dispersed. Figure 4.1 is an example from

the SSVAT-MAF model.

As for the inferior performances of the AEA prior, a possible reason is it overfits the

data. As mentioned in Section 2.2.3, this prior is the aggregated Dirac delta variational

posterior of all inputs before fitting the Gaussian mixture. This definitely has overfitted

the data, not to mention the variational posterior is actually deterministic. And in the
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Figure 4.1: The empirical distribution of samples from the MAF prior (SSVAT-MAF) after

dimension reduction

Note: The blue points are the samples from the MAF prior after dimension reduction. The red points are

the samples from a 2-dimensional standard Gaussian. Each group contains 10,000 points.

study of [19], they regularize the decoder when training the AE, which helps to smooth

the latent distribution. So the effectiveness of the AEA prior can potentially depend on

the regularization.

In conclusion, the expressive priors do not always improve the model performances.

In my models, the VAMP prior does not change the model performances since it

degenerates to a standard Gaussian. The MAF prior improves the model performances

probably by constructing a more dispersed distribution. The AEA prior harms the model

performances, which may be due to the overfitting of data.

4.3 Best Models

No matter whether the model performances are measured by likelihood or sample

quality, the SSVAT (or its variants) and the DAD consistently outperform the others.

But they encode the data in different ways.

The SSVAT treats a count vector as a set of object one-hot embeddings. It can be

regarded as an order-agnostic autoregression model where even the element number is

variable across inputs. It is designed for the sparse data but may reflect the generation

process. That is, the count data can be seen as a compression of sequence data. When
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the object instances are recognized from an image, the process is very likely to be

sequential since human attention and visual receptive field are limited. A participant

who glances over the image may follow a specific direction (e.g., top to down, left to

right) and recognize the objects successively (extensive psychological and physiological

studies have supported the sequential object recognition in human vision [79, 15, 33]).

So the original count data are sequences but the sequential information is lost when

they are compressed into count vectors. What the SSVAT does is trying to recover the

count vectors into sequences and maximize the ELBO. Since the original direction is

unknown, or may follow a uniform distribution, it is reasonable that the SSVAT does

not consider any position embedding information.

The DAD treats a count vector as a concatenation of count one-hot embeddings,

where the order is also agnostic. Although it is trained and generates samples in an

autoregressive way, it is equivalent to a diffusion model and shows some relevant

patterns (i.e., lower ELBO but higher sample quality). Compared to the SSVAT, it

should be more stable since the number of elements is fixed and it can be extended to

other data. But as mentioned in Section 2.1.1.3, it requires an explicit assumption that

the observed maximum counts are the factual maximum counts. Besides, it is not very

intuitive why the count data can be generated from a Dirac delta distribution where all

elements are masked.

Both the SSVAT and the DAD generate elements in an autoregressive way, showing

the ability of autoregression in representing high-dimensional distributions. But another

autoregressive model, the DAF performs poorly among the models. A further check

shows it degenerates to a factorized categorical distribution, i.e., the µ transformation is

insensitive to the inputs. I speculate the reason is the mod manipulation is incompatible

with the categorical encoding of the count data. Consider a critical condition where xxxi

is K −2 (suppose the maximum count plus 1 is K). When µi(zzz1:(i−1)) is increased by 1,

xxxi will be K −1, the maximum count value. But when µi(zzz1:(i−1)) is further increased

by 1, xxxi will be 0, the minimum count value. This is a abrupt transition that makes

the function unsmooth, which should cause a large loss and finally makes the model

degenerate to a factorized categorical distribution.
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Conclusions

In this thesis, I compare 5 generative models and their variants assuming different

priors or conditional distributions on modeling object co-occurrences in images. The

high-dimensional sparse count data are a representative discrete data which have not

been thoroughly investigated before. This thesis contributes to this field by exploring

how different generation processes and encoding methods can accommodate the data.

The most important finding is the SSVAT and the DAD perform best among the

models, while the former is better on likelihood and the latter is better on sample quality.

It indicates the potential of encoding the sparse counts as sequences and the advantage

of the diffusion process in sample generation.

The idea of encoding the count vectors as sets comes from the trick of storing only

the non-zero elements in sparse matrices, which are a common data type in machine

learning, especially the natural language processing tasks. It can be extended to any

vectors if most elements share the same value. The idea of transforming set data to

sequential data is not novel, no matter in traditional statistical learning models [78], or in

neural network models [63]. However, they either make unrealistic assumptions like the

independence between set items, or use a simple autoregressive model without directly

optimizing the set probabilities. The SSVAT overcomes the problems by introducing a

sampling process over all possible sequences. The sanity check and the main experiment

results show the effectiveness of this model. The success of the SSVAT demonstrates the

potential of using neural autoregreesive models to explain and generate non-sequential

data. From another perspective, the SSVAT can be viewed as a topic model [4, 5] which

also considers the sequence length since the order of tokens is irrelevant. Then the

generation process can be decomposed as follows: First, sample a topic of the sequence

(i.e., the image type, like indoor or outdoor. We can use a distributed representation

35



Chapter 5. Conclusions 36

to represent the topics, even assume each element of the representation vector is not a

category value, but a sample from a Dirichlet distribution). Second, choose a sequence

length based on the topic (some images may contain more object instances). Finally,

generate each token one by one conditioned on the topic (each topic should correspond

to a multinomial distribution over object classes).

However, the SSVAT’s flaw is obvious too. It is tailored for the sparse data. The

computational cost will increase when the number of object classes and their counts

increase. The stability of the estimate will also decrease in such situations. A possible

solution is to merge items of the same object class. For example, the set [chair, chair,

table] can be represented as [2 chairs, 1 table]. When the model predict a token, it should

both predict the object class and its count (i.e., adding another output layer for the count

value, which should be simple if not using a categorical conditional distribution1). But

we should introduce a masking mechanism to ensure the model only predict the object

classes which have not been given or predicted before. The generation still stop once a

[EOS] token is predicted (and its corresponding count does not matter). This method

restrict the maximum sequence length to be the number of object classes plus 2 ([BOS]

and [EOS]) but is still in a sequence-to-set framework, and can be explored in future

studies.

The diffusion model [57, 32, 60] has got much attention recently due to its ability

to generate diverse and high-quality samples. Some studies of the discrete diffusion

[2, 34] has shown it works well on generating image and language data. This thesis

demonstrates it also perform well in generating the count data when encoding the counts

as categories. The diffusion model comes from the observation that the structured data

can be transformed to noise easily. The DAD circumvents the direct optimization of the

denoising process but train and generate samples in an order-agnostic autoregressive

manner. However, [34] find the DAD perform worse than the pure autoregressive

models on language data. Since the thesis does not consider such models, whether the

pure autoregressive models can perform even better than the DAD (and the SSVAT)

remains a subject for future studies.

This thesis also find how to encode the sparse counts can significantly influence

the model performances. Although the counts are sparse, the zero-inflation assumption

is not necessary when encoding them as non-negative integers. The main reason

should be that we do not directly rely on the conditional distribution to explain the

1If we assume the maximum counts are the same for all object classes, even a categorical conditional
distribution can be used since different object classes can share the same layer to predict counts.
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counts. The latent distribution and the neural network are flexible enough to explain

the widespread 0s (One piece of evidence is the performance differences between the

Poisson distribution and other conditional distributions are much smaller when using

a latent distribution). As a count distribution, the NB distribution itself can explain

the sparsity of the data. It also performs well in more complex model architectures.

But a potential problem is it may generate unrealistic samples, which can influence

downstream tasks. The categorical distribution provides a flexible way to encode the

sparse counts. It is also the DAD’s encoding method. But it can be unstable and

computationally costly since many output layers are introduced. Besides, implicitly

encoding the counts like the SSVAT may also be a feasible choice for the sparse data.

For future studies, an interesting direction is to use a continuous distribution to represent

the count data. For example, we can apply log(x+ z) where z is a positive value to

transform a non-negative integer x. Some techniques like uniform dequantization [64]

can also help realize it. After transforming the counts to continuous data, there are

definitely more possible model options.

Another finding is the expressive priors do not necessarily improve the performances

of the VAE and the SSVAT. The VAMP prior degenerates to a standard Gaussian. The

AEA prior appears to harm the model performances probably due to the overfitting of

data. Only the MAF prior obviously improves the model performances. Among the 3

priors, the MAF’s form is also the most flexible since the two others are restricted to

a mixture model with factorized Gaussian components. Its success demonstrates the

strength of combing the autoregressive models and the normalizing flow, showing a

combination of generative models can be beneficial. In the meantime, the empirical

distribution of samples from the MAF prior after dimension reduction seems like a

spherical Gaussian with large variances, indicating a dispersed prior may be advanta-

geous (although theoretically the variances of a factorized Gaussian prior should not

matter [14]. It may have some effects2 in practice like why we use the expressive priors).

In future work, we can try some other priors constructed by generative models asides

from the MAF, like a diffusion prior [75].

Due to the time limit, this thesis only test some representative generative models.

There are many other options like the pure autoregressive models and the energy-based

models. Also, this thesis only considers some shallow network architectures due to the

computational cost, future work can delve into deeper and wider network architectures,

2For example, a dispersed prior may play a role of practical regularization like putting a 0-centered
prior belief on parameters in traditional Bayesian models.
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even more stochastic layers [70]. Besides, the success of the SSVAT and and that of the

MAF prior demonstrate the potential benefits of combining multiple generative models.

This idea of hybrid modelling [66] can be further explored in the future.

The final concern is about the dataset. On the one hand, the object count data

seem to be under-represented even the minimum sub-dataset contains 10,000 vectors.

An assumption of this thesis is that the 3 sub-datasets do reflect the ground-truth

distribution that generates the count vectors. The factual lower bounds of the mean

losses on the three sub-datasets are their empirical entropy, which is 9.384, 8.207 and

8.652 respectively. The minimum value is equal to the entropy of a uniform distribution

over 3666.526 categories, while the maximum value is equal to the entropy of a uniform

distribution over 11896.506 categories. The discrepancy in the empirical entropy

indicates that the 3 sub-datasets can be heterogeneous and at least the validation set is

under-representing the ground-truth distribution since the empirical entropy based on

the largest sub-dataset should be more trustworthy3. Future work can consider larger

datasets or a more efficient way to split the dataset to mitigate the problem. On the

other hand, this thesis is restricted to the object count data, future studies can consider

testing the models (especially the SSVAT) on other count datasets like those in genomics

[1, 46, 69].

3In this situation, sample quality seems to be a more robust metric as it is not explicitly bounded by
the sub-dataset empirical entropy (although still influenced by it). A potential direction is to see whether
the data under-representation also explains why the diffusion can have better sample quality but lower
ELBO compared to most generative models.



Bibliography

[1] Xusheng Ai, Melissa C Smith, and Frank Alex Feltus. Generative adversarial

networks applied to gene expression analysis: An interdisciplinary perspective.

Computational and Systems Oncology, 3(3):e1050, 2023.

[2] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne

van den Berg. Structured denoising diffusion models in discrete state-spaces.

In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and

Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing

Systems 34: Annual Conference on Neural Information Processing Systems 2021,

NeurIPS 2021, December 6-14, 2021, virtual, pages 17981–17993, 2021.

[3] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization.

CoRR, abs/1607.06450, 2016.

[4] David M. Blei. Probabilistic topic models. Communications of the ACM,

55(4):77–84, 2012.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.

Journal of Machince Learning Research, 3:993–1022, 2003.

[6] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz,
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Figure A.1: Empirical count distributions of different object classes

Note: For each object class, the content below the horizontal axis indicates the class name and the

relative frequency of the count 0. The horizontal axis shows the non-zero count values, and the vertical

axis shows the corresponding relative frequencies. I avoid showing the relative frequencies of the count

0s since they can overwhelm the relative frequencies of other values in the visualization.



Appendix B

Sanity Check

For the SSVAT, a problem is that the probability estimates can be unrealistic and

unstable with a large number of possible sequences. Consider a set having many

possible sequences and we happen to use a sequence with a high probability under the

current model to represent the set, the model can produce a probability estimate larger

than 1, which is theoretically impossible (This problem also exists for the DAD, see

Section 2.6, but [34] has shown it a reliable model). Although the expectation of the

estimates is still a valid probability, it is worthwhile to conduct a sanity check. That is,

whether the model can effectively approximate different distributions that are known.

In this sanity check, I consider three distributions: The mixture ZIP, the mixture

ZINB and the mixture categorical distributions. Each mixture distribution has 10

components and the parameter values are estimated from the training set (see Section

3.1). Then I use each distribution to generate 3 sub-datasets, whose sizes are equal to

those of the training, the validation and the test sets respectively. I fit and evaluate 3

models on the data. The first is a vanilla VAE assuming the same conditional distribution.

It has no hidden layers in the encoder and the decoder, and the latent distribution

dimension is the optimal value based on the hyperparameter tuning experiments (see

Section 3.2 and Appendix C). The second is a SSVAT using 1 encoder/decoder layer.

The embedding dimension is 4, with 4 heads for the attention sub-layer and a dropout

rate of 0.1. The feedforward neural network sub-layer has 1 hidden layer, whose width

is the twice the input layer width (i.e., the embedding dimension). The third is the best

SSVAT variant (See Section 3.5.1). It has 3 encoder/decoder layers and a embedding

dimension of 20. It also use an MAF prior. The other hyperparameters are the same

as those in the second. I test it to see how close the SSVAT can approximate the

distributions.
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Distribution
Ground
Truth

VAE SSVAT
SSVAT

Best

Mixture

ZIP
64.095(0.072) 74.709(0.097) 87.821(0.142) 65.802(0.086)

Mixture

ZINB
47.595(0.119) 53.591(0.126) 79.324(0.248) 51.158(0.148)

Mixture

Categorical
15.823(0.064) 15.951(0.079) 23.043(0.149) 16.277(0.100)

Table B.1: Mean test losses with standard errors of different models for different distribu-

tions

The model fitting process is the same as that in the main text (see Section 3.3),

and the evaluation metric is the mean loss (i.e., the negative ELBO) on the test set. I

also calculate the mean test loss (i.e., the negative log-likelihood) of the ground-truth

model (i.e., the mixture model with the parameter values mentioned above), which is an

estimate of the entropy (although the base number is e rather than 2) of the ground-truth

distribution. Its expectation is the lower bound of the expected mean test loss of any

other models. The test loss of the VAE/SSVAT is the estimate of the cross entropy

between the model distribution and the ground-truth distribution. The mean test losses

with standard errors of different models for different distributions are shown in Table

B.1.

It is expected that the mean test losses of the ground-truth model are the minimum

since the data are generated by itself. It is also expected that the VAE can achieve

performances close to those of the ground-truth model even without hidden layers,

since they share the same conditional distribution assumption, while the SSVAT can

only approximate the distributions implicitly. An arousing result is that the mean test

loss of the SSVAT decreases when that of the ground-truth model decreases, indicating

the SSVAT can adapt to the ground-truth distribution and give reliable probability

estimates. Besides, the SSVAT’s best variant achieves performances close to those of

the ground-truth model, showing it can sufficiently approximate the sparse distributions

with a complicated architecture.



Appendix C

Hyperparameter Tuning

For the VAEs, the encoder has 1 input layer, whose width is 80. It has 2 output

layers, which are the mean and the (log) standard deviation of the variational posterior

respectively. Their widths are equal to the latent distribution dimension. The decoder

has 1 input layer, whose width is equal to the latent distribution dimension. It has 1

(Poisson), 2 (NB or ZIP), 3 (ZINB) or 80 (categorical) output layers, depending on the

conditional distribution. The output layer widths are all 80 unless using the categorical

conditional distribution (where the widths depend on the maximum observed counts of

different object classes). To reduce the computational cost, I assume the hidden layers

of the encoder and those of the decoder are symmetric. For example, if the hidden

layers for the encoder are [160, 80, 40], those for the decoder are [40, 80, 160]. Then

the task reduces to tuning the hyperparameters of the encoder.

For the encoder, I consider 3 hyperparameters: the hidden layer depth, width and the

latent distribution dimension. To decide the range of the latent distribution dimensions

to test, I run a principal component analysis which uses a zero-inflated bivariate Poisson

distribution [28] to model the pairwise covariance between dimensions on the training

set. The result suggests 95% percent of the variance can be explained by 17 principal

components. Since neural networks should be more expressive than this linear method,

I consider 5 values for the latent distribution dimension: 4, 8, 12, 16, 20.

The hidden layer widths in the VAE encoder are usually between the input layer

width and the output layer width, which gradually decrease with network depth for

information compression. However, it is also known that the neural networks with

wider hidden layers are more expressive [52]. Thus, I consider 3 possible hidden layer

width values: 40, 80 and 160, which are half, the same and twice the input layer width

respectively.
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For the hidden layer depth, I consider 4 possible values: 0, 1, 2 and 3.

To reduce the computational cost, I apply 2 tricks. First, the hidden layers are

combined in a non-increasing way. If the ith (i = 1, 2) hidden layer’s width is w, the

(i+1)th hidden layer’s width should not be larger than w. Second, I adjust the latent

distribution dimension incrementally. If the best latent distribution dimension for the

encoder with i (i = 0, 1, 2) hidden layers is d, I do not test the values larger than d for

the encoder with i+1 hidden layers.

For each hyperparameter setting, I conduct experiments as those in the main text

(see Section 3.3). I use the best mean validation loss from the best experiment as the

standard to choose the hyperparameters. The main pattern1 is that increasing the depth

from 0 to 1 obviously improves the model performances, but further increasing the

depth does not. And wider layers usually lead to better model performances.

For the VAE/SSVAT with expressive priors, I only tune the hyperparameters relevant

to the prior. For the variants assuming different conditional distributions, I directly

use the best network architectures based on the vanilla VAE hyperparameter tuning

experiments. When using the VAMP prior, I consider 5 values for the number of pseudo-

inputs: 2, 4, 6, 8 and 10. When using the MAF prior, I consider 5 values for the number

of MADE layers: 1, 2, 3, 4 and 5. When using the AEA prior, I consider 5 values for

the number of mixture components: 2, 4, 6, 8 and 10. For the AEA prior, the main

pattern is the model performances decrease with the number of mixture components.

For the mixture model, the hyperparameter is the number of mixture components. I

initially try values from 2 to 10 with a step size of 2, but find the model performances

stably and obviously improve with more mixture components. Then I try values from

20 to 100 with a step size of 10, where the pattern does not change. Finally I try

values from 200 to 1000 with a step size of 100, where the improvement is not obvious

anymore. It indicates the data have a complex architecture which cannot be illustrated

by few components.

For the SSVAT, I assume the number of encoder layers and that of the decoder layers

are the same. Then I consider 2 hyperparameters: the number of encoder layers and the

embedding dimension. For the former, I consider 3 values: 1, 2 and 3. For the latter,

I consider 5 values: 4, 8, 12, 16 and 20. The main pattern is the model performances

improve with more encoder layers and a larger embedding dimension, but the effect of

the latter is much more obvious.

For the DAF, I consider 3 hyperparameters: the number of MADE layers, the width

1I do not mention “main pattern” if the pattern is not clear below.
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of MADE layers (measured by the ratio between the hidden layer width and the input

layer width), the depth of MADE layers. For the first hyperparameter, I consider 4

values: 1, 2, 3 and 4. For the second hyperparamter, I consider 2 values: 2 and 4. For

the third hyperparameter, I consider 3 values: 1, 2 and 3. The main pattern is the model

performances are insensitive to the hyperparameter values and are close to those of

the model assuming the data follows a factorized categorical distribution. It indicates

the model degenerates to the factorized categorical model under all hyperparameter

settings.

For the DAD, I consider 2 hyperparameters: the hidden layer width (measured by

the ratio between the hidden layer width and the input layer width) and depth. For the

first hyperparameter, I consider 3 values: 1, 2 and 3. For the second hyperparameter, I

consider 4 values: 1, 2, 3 and 4.


