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Abstract

This work looked to match real-world incidents of stabbings in police records with

stab-wound related incidents in ambulance records provided by Police Scotland and

the Scottish Ambulance Service. We investigated the following research questions:

What are suitable and effective matching criteria for linking related incidents across

the police and ambulance datasets? Can we automate these criteria? What is the extent

of overlap between the records in the two datasets? Can we uncover potential patterns

of underreporting?

Two main approaches for classifying records as matches or non-matches were ex-

plored: deterministic and seeded iterative SVM. We found that, while automation of

matching criteria was possible, the deterministic approach excelled in both outcome

and efficiency. Deterministic classification was therefore used to assess the overlap of

the two datasets.

Consistent with prior work, it was found that approximately 44% of knife related

injuries were not reported to the police. This suggests that police are unaware of a

large proportion of stabbings that are otherwise recorded by ambulance services.
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Chapter 1

Introduction

A large number of violence victims who seek medical care often do not report crimes to

the police, resulting in discrepancies between police and public health records. These

discrepancies can leave police with an incomplete view of community crime, posing a

significant challenge to those seeking to understand vulnerability and inform policing

policies. Recent years have therefore seen a shift towards viewing violent crime as a

public health problem as well as a policing one.

The public health approach to policing is one that emphasises the importance of

multi-agency collaboration, data sharing and integration. The aim of this approach is to

provide community safety services with supplementary data from ambulance services

and emergency departments (ED) in an effort to better understand and reduce violent

crime [36]. Studies have shown that improved interagency data sharing can reduce the

number of victims of violence [4] [38].

For example, one study examined the effects of sharing anonymised ED data with

local public safety agencies. It was found that increased data sharing partnerships led

to a decrease in violence-related hospital admissions and an increase in the reporting

of minor assaults to the police [15]. Another study found that EDs documented twice

the number of assaults as their local police department, suggesting that combined data

would provide a more complete picture of community violence [20]. Further work

integrated ED and ambulance data with police records relating to violent crimes, indi-

cating that ambulance data can serve a similar purpose as ED data [35].

In addition, one study used ambulance data to identify crime hotspots of commu-

nity violence-related calls that were otherwise unidentified by the police. It was also

reported that only a small number of violence victims who called an ambulance were

subsequently transported to the hospital [1]. A cross-sectional study that explored the

1



Chapter 1. Introduction 2

characteristics of calls to ambulance services similarly observed that approximately

one third of callers were not taken to hospital [11]. Collectively, these studies indicate

that a large proportion of incidents attended by ambulance services are not recorded

by EDs and the police, and that linking police and public health records can help the

police prevent crime.

Linking data from different sources is commonly referred to as record linkage.

However, data matching, data linkage, data integration, record matching, entity match-

ing, entity resolution, merging, deduplication and reidentification can all refer to the

same thing [12]. The aim of record linkage is to compare records, in one or more

datasets, and determine whether the compared pairs of records correspond to the same

real-world events (matches) or distinct events (non-matches). When records are com-

pared within the same dataset, this is known as deduplication whilst comparison be-

tween different datasets is known as data linkage.

If datasets from two different sources share a common identifier, then linking two

datasets can be solved using a simple join operation. However, in most situations, no

such identifiers are available, meaning that more advanced linkage solutions are re-

quired. In this project, we look to link police data related to stabbings with ambulance

data related to stab wounds provided by Police Scotland (PS) and the Scottish Am-

bulance Service (SAS). By matching records that correspond to the same real-world

events, we hope to provide an indication of the extent of under-reporting related to

knife crime in Scotland. While our current focus centres on stabbings only, we are

driven by the potential application of linkage to a range of other contexts, such as

mental health. Our core aims are as follows: (1) determine suitable matching criteria

for linking the police and ambulance datasets, (2) understand whether it is possible to

automate these criteria, (3) identify the extent overlap between police and ambulance

records, and (4) use this to understand potential patterns of underreporting.

The contents of this paper are organised as follows. Chapter 2 introduces the pri-

mary steps in record linkage and potential methodologies. Chapter 3 outlines our

chosen linkage approaches as well as the rationale behind their selection. Chapter

4 presents our findings and analysis. Finally, chapter 5 offers a brief project summary

and concluding remarks.



Chapter 2

Background and Literature

This chapter outlines the main steps involved in record linkage: data preparation, in-

dexing, comparison, classification, and evaluation. We start with a brief overview of

the linkage process, followed by a detailed exploration of each step involved.

2.1 The Record Linkage Process

The record linkage process consists of five major steps: data preparation, indexing,

comparison, classification, and evaluation. In the data preparation step, two datasets

are cleaned and standardised to ensure the consistent and compatible formatting of all

attributes. Attributes refer to the individual characteristics or fields present in each

record such as names, dates, postcodes, etc. The second step, indexing, involves per-

forming a pairwise comparison of all records in the datasets, considering all possi-

ble record pair combinations. In practice, a full pair-wise comparison may result in

a significant number of record pairs, which poses computability challenges for large

datasets. The indexing step therefore aims to reduce the number of comparisons by

only comparing records that are likely to refer to matches. The resulting record pairs

are compared in the third step, comparison. Comparisons between each record pair

are made based on a set of one or more matching attributes that are common to both

records. In the fourth step, classification, each compared record pair is classified into

the set of matches, M, the set of non-matches, U, or the set of possible matches, P,

depending on the classification model used. Manual review of the possible matches in

P results in their classification into the set of matches or non-matches. In the final eval-

uation step, the quality of the linked records is assessed using a number of measures

[9].

3
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The subsequent sections delve into each step of the record linkage process in more

detail, discussing the methodologies, techniques, and challenges associated with each.

2.2 Data Preparation

Perhaps the most time consuming step of the record linkage process is data preparation

and pre-processing. Real-world datasets often contain noisy, inconsistent and incom-

plete information making data cleaning and standardisation an important first step in

the linkage process. A lack of high quality data is considered one of the main obstacles

to successful record linkage as the success of linkage relies more on the quality of the

input data than on the capabilities of the classification technique [10].

The challenges related to data quality and data quality assessment have been cov-

ered in depth in the literature [5] [31]. In the context of record linkage, three di-

mensions of data quality are most relevant: accuracy, completeness, and consistency.

Accuracy refers to how accurate the attribute values are, whether it is known how the

data was recorded, and whether the data has been verified for correctness. Complete-

ness refers to the number of missing attribute values, the reasons for the missing data,

and whether missing components will impact linkage. Finally, consistency refers to

how consistent attribute values are across and within the two datasets used for record

linkage. Inaccurate or inconsistent data often appears in the form of typographical

errors and unlikely or even impossible values. Such data can result in false matches,

where unrelated records are erroneously linked together, or false non-matches, where

related records are not matched. Therefore, errors must be corrected and the data be-

ing used must be put into standard formats. For example, dates can be formatted as

YYYY-MM-DD where Y is the year, M is the month and D is the day.

Handling missing values is also crucial as they can lead to bias in classification

outcome or patterns that frequently include missing values [9]. Various methods ex-

ist for handling missing values, some of which remove the records or attributes with

missing values. This, however, may lead to a large loss of information if the number

of missing values is significant. Alternative approaches fill in missing values, either

manually or automatically, with constants, the mean, the median, or the mode. These

methods are only well suited to numerical data. Some missing values can be inferred

from other attributes. For example, the sex of a person can often be inferred from their

name. Data imputation and rule-based techniques to find the optimal value with which

to fill a missing attribute value are also commonly used in linkage projects [29].
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2.3 Indexing

When linking two datasets, A and B, it is most natural to compare each record in A
with all records in B. The pair-wise combination of a record a from A with a record b
from B is known as a record pair. The total number of record pair comparisons is there-

fore equal to |A|× |B|, where | · | represents the number of records in a dataset. When

the datasets are large, comparing all records becomes an impractical and prohibitive

task. For example, two datasets each containing 106 records require 1012 record com-

parisons.

Assuming that there are no duplicate records in the datasets, each record in A
can only match with one record in B, and vice versa. This means that the maximum

number of true matches is equivalent to the number of records in the smaller of the

two datasets, min(|A|, |B|). Therefore, while the maximum number of true matches

increases linearly, the computational load increases quadratically with the size of the

datasets. As a result, the vast majority of comparisons will be between records that do

not truly match [9].

To reduce the computational burden of comparing a large number of records, in-

dexing techniques are often used to remove record pairs that likely correspond to non-

matches. If a pair of records is not compared due to indexing, it is implicitly assumed

that the records in that pair are non-matches. Several indexing techniques, traditionally

referred to as blocking, are discussed below.

Standard blocking (SB) is the simplest blocking approach and has been used in

record linkage for several decades [14]. A domain expert selects suitable attributes

from the data and uses (parts of) their values to form blocking keys. An example of a

blocking key is a postcode. Records with the same unique blocking key are grouped

together in a single block. SB has two main advantages: it creates non-overlapping

blocks, preventing the duplication of efforts during the linkage process, and it has a

linear time complexity. However, SB may result in missing links under some circum-

stances. For example, if blocking is based on incident dates, two matching records

that occur at similar times (11:59pm and 12:02am), but on different days, would not

be linked. SB is also sensitive to data noise as even a small difference in blocking key,

due to typographical variations for instance, can place matching records into separated

blocks. Furthermore, the approach does not impose a limit on block size which raises

scalability concerns.

Sorted neighbourhood (SN) is an alternative indexing approach that aims to ad-
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dress these concerns [19]. The first step is to combine or concatenate the datasets to

be linked and generate sorting keys (similar to blocking keys) for each record. The

sorting keys are sorted in ascending order for numerical data and alphabetically for

string data, aligning the associated records accordingly. A window of fixed size then

moves over the sorted records, comparing only records within the window at any step.

The underlying assumption of SN is that records with sorting keys that are close to one

another in a sorted order are more likely to match.

SN has two main advantages: it results in linear time complexity for record linkage,

and it is robust to noise, allowing a small difference in the sorting keys of records that

potentially match. SN can also be applied to include a tolerance in numerical value,

making it suitable for numerical data. The main drawbacks of this method is that its

performance largely depends on the choice of window size and sorting key, which are

often difficult to configure.

These drawbacks are handled by performing multiple passes of the core SN algo-

rithm, changing the sorting keys in each pass in order to improve the quality of the

approach. The multi-pass sorted neighbourhood approach is one of the most efficient

and widely used indexing techniques for record linkage [32]. A number of other in-

dexing techniques that extend upon the above approaches are discussed in [30].

2.4 Comparison

At the core of the record linkage process lies the detailed comparison of record pairs.

These comparisons are used to determine whether two records in a pair are a match

or a non-match. However, with real-world data, even after the data has been cleaned

and standardised, it is likely that attribute values contain variations or errors. Such

variations make the comparison of two values difficult as one cannot rely on exact

matching. To solve this problem, a number of methods have been developed that allow

for the approximate comparison between attribute values.

When comparing records from two datasets, A and B, a subset of n common

attributes (a1,a2, . . . ,a3) is selected for comparison. For each pair of records ri j =

(ri,r j), where ri is a record from A and r j is a record from A, an attribute-wise com-

parison is performed. This involves applying a comparison function, denoted as Ck, to

each common attribute of the record pair. The comparison function takes the values

of the attributes from both records as inputs and produces a numerical similarity score

ci, j
k in the range [0,1]. This results in a vector of n values, ci j = [ci j

1 ,c
i j
2 , . . . ,c

i j
n ], called
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a comparison vector. The set of all comparison vectors is called the comparison space

[18].

Comparison functions can vary in complexity and scope, e.g. simple exact string

and numerical comparisons, comparisons that take typographical variations into ac-

count, specialised comparisons for date and time values, and even distance-based com-

parisons based on geographical coordinates (longitudes and latitudes) appear in the

literature. The specific choice of comparison function depends on the nature and type

of the attribute being compared (string, numerical, categorical, etc.). The following

briefly outlines several of the most commonly used comparison functions for string,

numerical, date and time, and geographical values.

2.4.1 String Comparisons

The simplest string comparison is the exact comparison (EC). The similarity between

two string values, s1 and s2, is given by:

CEC(s1,s2) =

{
1, if s1 = s2

0, otherwise,
(2.1)

where a score of 1 corresponds to exact similarity and a score of 0 corresponds

to exact dissimilarity. Two variations of EC have been proposed. The first variation

compares only the beginning or end of the string values. The second encodes strings

using an encoding function that replaces similar-sounding strings with similar codes.

These codes facilitate the comparison between strings with a phonetic or semantic

similarity.

Alternative to exact comparisons are partial comparisons. These compute an ap-

proximate similarity score between exact similarity and exact dissimilarity. Some par-

tial comparison functions are based on the edit distance which counts the smallest

number of edit operations needed to convert one string to another. For example, the

most basic edit distance, the Levenshtein distance [27], assigns a cost of 1 to every

single character insertion, deletion, and substitution required to convert one string to

another. A number of improved variations have been proposed to reduce its time com-

plexity or to allow for different costs for different edit operations.

Other partial string comparisons involve splitting the input strings into sub-strings

of length q characters called q-grams or n-grams. Q-gram-based approaches sequen-

tially slide a window of size q over the input strings and count how many of each

q-gram appears in both strings. The numerical similarity can then be computed using
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various methods [8]. Extensions based on skip-grams [23] have also been proposed,

showing improved matching results compared to q-gram and edit distance-based ap-

proaches in the presence of cross-lingual spelling variations.

Additional approaches iteratively find and remove the longest common substring

(LCS) of a pair of strings [16]. This process is repeated until either no common sub-

strings remain, or the length of the common substring falls below a given threshold. A

substring consists of a consecutive sequence of characters and can refer to a prefix or

a suffix. A variation of this approach that extracts the longest common prefix (LCP) is

particularly valuable when the shared prefix of a pair of strings carries important and

informative information.

2.4.2 Numerical Comparisons

Similarly to string values, numerical values can be compared either exactly or partially

to allow for variations and errors. One simple method involves defining a maximum

absolute difference, denoted as dmax. For this method, the similarity between two

numerical values, n1 and n2, is computed using the function

C(n1,n2) =

{
1, if |n1 −n2| ≤ dmax

0, otherwise.
(2.2)

This function can be modified to allow for partial comparisons by using a linear

extrapolation between exact similarity and exact dissimilarity [9]:

C(n1,n2) =

 1−
(
|n1−n2

dmax

)
, if |n1 −n2| ≤ dmax

0, otherwise.
(2.3)

Other richer functions, as described in the literature [25], involve the use of dis-

tances such as the Euclidean distance, which are then normalised through various

transformations. These functions are often used when different attributes carry varying

levels of weight.

2.4.3 Date and Time Comparisons

There are two main methods one can use to store date and time information: as a string

in some variation of the format YYYY-MM-DD or as a numerical value known as a

timestamp. Timestamps represent absolute time values and are typically expressed as

the number of seconds or milliseconds that have elapsed since a well-defined reference
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point, often called an epoch. Unix time is the most common timestamp with an epoch

set to January 1st, 1970, 00:00:00 UTC.

Two methods are therefore available for comparing date and time information:

string comparisons and numerical comparisons. String comparisons offer flexibility

by accommodating differences in formatting and partial matches. However, they of-

ten increase complexity in parsing. On the other hand, numerical methods enable the

inclusion of tolerance in the comparison. This proves particularly useful when compar-

ing events that may have occurred within a few hours or days of each other. Numerical

methods also allow for more efficient comparisons, making them well suited to larger

datasets.

2.4.4 Geographical Comparisons

Geographic information can be represented as either an address or geographical coor-

dinates (longitude and latitude). Addresses are typically stored as strings and compared

using approximate string measures to handle typographical variations. In such string

based approaches, each address element (house number, street name, town, and post-

code) is compared individually. However, a problem with these methods is that they do

not consider the spatial relationship between two locations. For example, two nearby

locations with different names may be treated as separate entities, even though they are

physically close to one another.

To address this problem, one can calculate the geographic distance between two

coordinate values and use the resulting numerical value for numerical comparison as

discussed in Section 2.4.2. The geographic distance between two points is the length

of the shortest path that connects the two points along the surface of a sphere. This

distance is typically measured in kilometres or miles. The Haversine formula is one

of the most commonly used methods to compute the distance between two coordinates

on the Earth’s surface.

By using coordinate comparisons, the proximity of two locations can be taken into

account. This approach is particularly useful when dealing with tasks such as geospa-

tial analysis, mapping, and location based services, where understanding the true phys-

ical distance between two points is essential. If unavailable, coordinate information can

often be derived from address information using open source resources.
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2.5 Classification

When two datasets share common identifiers, such as NHS numbers, linking two

records becomes as simple as performing a standard join operation. In practice, how-

ever, such identifiers are often unavailable or missing, necessitating the use of more

sophisticated methods for linkage. Three broad categories of linkage method exist:

deterministic, probabilistic, and modern approaches. These methods, while generally

treated as distinct, share similar implications for subsequent steps in the record linkage

process. The aim of each is to classify record pairs based on their true match status

using their corresponding comparison vectors.

Deterministic linkage, also known as rule-based linkage, involves the use of a set

of pre-defined rules for classifying record pairs based on their agreement over a set of

matching attributes. The simplest example of deterministic linkage uses exact match-

ing, where two datasets are joined using a shared unique identifier. More complex

approaches implement multiple decision rules, typically starting with those that are

least likely to result in a false match. Then, more general rules are applied to iden-

tify additional true matches. However, this also makes false matches more likely. For

example, consider two real-world events that are likely to match if they occur within

a 10 minute interval. Increasing the interval expands the potential matches but also

increases the risk of false matches.

When using a set of rules to make decisions, one can determine how uncertain a

link is by noting at which step the link is identified. However, when there are multiple

matching attributes, there can be a large number of possible agreement patterns. For

example, three attributes with binary agreement/disagreement would have 23 = 8 pos-

sible patterns. Nine attributes, on the other hand, would have 29 = 512 patterns. When

partial agreement is allowed, the number of potential patterns increases even further.

Defining and ranking decision rules can therefore be a difficult task, as it often relies

on the subjective judgment of the linker. This is the issue that probabilistic linkage

methods aim to solve [12].

Probabilistic linkage [14] [28] methods can inform the selection of decision rules

by associating each pattern of agreement with the likelihood that two records with the

same pattern are a match. Simply, these methods rely on two sets of probabilities:

m-probabilities and u-probabilities. M-probabilities refer to the probability that two

records agree on every matching attribute given that they are a true match. On the flip

side, u-probabilities represent the probability of agreement between two records given
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that they are a true non-match. The ratio of these probabilities is called a likelihood

ratio and is used to form match weights or scores that indicate the likelihood that a

record pair is a match [34]. These scores effectively result in a ranking of all possible

patterns of agreement for a set of matching attributes. A decision can then be made

regarding the match status of each record pair by comparing their respective patterns

against a set of thresholds defined by the linker.

The main issue in probabilistic linkage is thus computing the m and u-probabilities.

In the absence of training data, the likelihood ratios, and by necessity the m and u-

probabilities, have to be estimated and may therefore deviate from those calculated

had the true match status been known. The classic method [14] for estimating these

probabilities involves solving a set of quadratic equations, however, this approach is

based on the assumption that the matching attributes are conditionally independent. In

most cases, this independence relation is likely to be violated. For example, if street

name, postcode, and country are the chosen attributes, then records that match on post

code are more likely to match on street name and country. Under a weaker assump-

tion than conditional independence, [39] proposed the expectation-maximisation (EM)

algorithm to estimate the m and u-probabilities. However, different initialisations are

often required to achieve good results. Instead of relaxing the conditional dependence

assumption, [40] showed that appropriately incorporating conditional dependence into

the original probabilistic model yields comparable or improved matching outcomes.

Alternative semi-supervised [24] methods are also proposed in the literature.

Modern approaches aim to improve the quality and scalability of record linkage by

leveraging advances in machine learning (ML). Machine learning methods have long

been used for pattern classification where the aim is to correctly assign patterns to one

of a finite number of classes. In the same vein, record linkage aims to assign record

pairs to a set of matches or non-matches based on the agreement patterns between each

record pair. Therefore, given a set of agreement patterns, ML methods can be used to

predict the class that each pattern belongs to.

The majority of these methods are based on supervised learning, which requires

knowledge of the true match and true non-match status of each record pair, i.e. training

data. If available, training data can be used to train a classification model to classify

record pairs into matches and non-matches. However, in practice, training data is often

unavailable, making the manual preparation of training examples necessary. This task

is laborious and usually results in training data that is not 100% accurate due to human

error, bias, or limitations in the available information that prevent one from discerning
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the true match status of a given record pair.

Two popular supervised approaches that have been successfully employed in record

pair classification are support vector machines (SVM) [7] [26] and decision tree induc-

tion [37]. These approaches often outperform deterministic and probabilistic methods

and result in better linkage quality as compared to unsupervised approaches. For ex-

ample, the authors of [13] implement three classification methods: supervised decision

tree induction, unsupervised k-means clustering with three clusters for matches, non-

matches and possible matches, and a hybrid approach that combines the first two. The

hybrid approach involves two steps. First, a subset of comparison vectors are clus-

tered into matches, non-matches, and possible matches. Then, the clusters containing

matches and non-matches are used to train a decision tree classifier. The supervised

and hybrid approaches were shown to produce better results than the unsupervised

clustering approach on both synthetic and real data.

Various unsupervised clustering techniques have been used for automatic record

pair classification. One such technique uses the k-means clustering algorithm to sepa-

rate comparison vectors into matches and non-matches [18]. A region in between the

two cluster centroids can be identified which contains record pairs that are difficult

to classify. These pairs can then be classified via manual review. This approach was

shown to have high linkage quality, while reducing the number of pairs that have to be

reviewed. Other approaches have used clustering to improve indexing and blocking by

forming blocks based on the records placed in the same cluster [2]. One study [3] uses

canopy clustering, an approach that groups records into overlapping clusters using a

distance measure. Records within each canopy are then linked, reducing the number

of comparisons required.

Active learning approaches aim to overcome the need for training data by selecting

the most informative record pairs for manual review. In [33], a small labelled dataset

is initially used to train a classifier. After classification, the most difficult to classify

record pairs are given to a user to label. These pairs are added to the training data and

the classifier is retrained. This process is repeated until all record pairs have been clas-

sified. It was shown that manually classifying less than 100 record pairs can achieve

better quality results than a supervised method with 7000 randomly selected training

examples.

An alternative semi-supervised method for record linkage is explored in [22]. The

method initially trains a classification model on a small set of training examples known

as seeds. This initial model is used to classify unseen record pairs. A different classi-
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fication model is then iteratively trained on a small percentage of the most confidently

classified record pairs, repeating the process until all unseen pairs are classified or a

set number of iterations is reached. The authors use an ensemble technique known

as boosting with Random Forest and Multilayer Perceptrons as the base classifiers to

maximise performance on the classification of unseen data.

While semi-supervised methods reduce the number of manually labelled training

examples needed to train a classifier, they still require some level of human input. As

a solution, [7] propose an unsupervised approach based on automatic self-learning.

Their work uses an approach known as nearest based to automatically select seeds.

The nearest based approach sorts all similarity vectors by their distance from an exact

similarity vector [1,1, . . . ] and an exact dissimilarity vector [0,0, . . . ]. The similarity

vectors closest to exact similarity or dissimilarity are then chosen as match and non-

match seeds, respectively. Three sizes (1%, 5%, and 10% of the entire dataset) of

non-match seeds were evaluated. The number of match seeds were selected based on

an estimated ratio of matches to non-matches. The seeds were then used to iteratively

train a classifier using a similar approach to that in [22]. It was observed that while the

approach outperformed other unsupervised techniques, it struggled to perform well on

datasets containing very few true matches.

More recent work builds upon [21] by combining ensemble learning with auto-

matic self-learning and unsupervised field weighting. In this work, an ensemble is

created using various similarity measure schemes initially selected using cosine sim-

ilarity. These similarity measures are used to generate similarity vectors. An unsu-

pervised field weighting method is then used in combination with the nearest based

approach to improve seed selection. The final ensemble is selected based on seed di-

versity. It was shown that this method improves the quality of the selected seeds and

thereby results in better classification. However, the proposed approach cannot handle

missing data well and requires a significant number of record pair comparisons in order

to generate similarity vectors.

2.6 Evaluation

Record linkage involves balancing the need to maximise linkage accuracy and analy-

sis validity with the constraints of limited human resources, computing resources, and

data quality. When making decisions about how to classify a given record pair, two

main aspects are considered: the likelihood that the method results in false matches
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(where two records corresponding to different events are matched) and the likeli-

hood of missed matches (where two records corresponding to the same event were

not matched). However, the balance between the two types of linkage error generally

depends on the requirements of the analysis.

If we assume that the true match status of a record pair can reasonably be deter-

mined from the available information, then each compared and classified record pair

can be assigned to one of the four following categories:

• True positives (TP): record pairs that have been classified as matches and are

true matches.

• False positives (FP): record pairs that have been classified as matches, but are

not true matches.

• True negatives (TN): record pairs that have been classified as non-matches and

are true non-matches.

• False negatives (FN): record pairs that have been classified as non-matches, but

are in fact true matches.

To be able to evaluate linkage outcomes, these categories must be summarised into

a score. The most commonly used measure to assess classification performance, is

accuracy. However, in most record linkage problems, the number of true negatives is

often much larger than the sum of the true positives, false positives, and false negatives

because of the way records are compared. Due to this imbalance, the large number of

true negatives dominates accuracy and produces results that are too optimistic, making

accuracy an unsuitable measure for evaluating the quality of record pair classification.

Instead, linkage quality is typically a trade-off between two key metrics:

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

.

Precision computes the proportion of all classified matches that have been correctly

classified as true matches. On the other hand, recall computes the proportion of true

matches that have been correctly classified. Because precision and recall do not include

the number of true negatives, they do not suffer from the imbalance problem [9].

Depending on the situation, it might be more important to prioritise results with

higher precision than recall, and vice versa. For example, if matching certain suspect

individuals with a large database of people, it can be important to identify all possible
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matches at the expense of investigating false matches. This requires high recall. On

the flip side, high precision is a priority in situations where linkage is used to identify

individuals that need to be contacted about a sensitive health issue.

However, neither precision nor recall alone can completely capture the quality of

linkage. For example, one can obtain perfect recall if all record pairs are classified

as matches. This would result in a low precision because of the large number of false

positives. It is therefore common to combine precision and recall into the f-score which

calculates the harmonic mean between precision and recall:

F-score = 2× precision× recall
precision+ recall

(2.4)

The f-score strikes a compromise between precision and recall as it only returns a

high value if both precision and recall are high.



Chapter 3

Method

In this chapter, we provide the details of the work undertaken in this project. The

first section provides a description of the data provided by Police Scotland and the

Scottish Ambulance Service. Subsequent sections outline the methods used in each

step of the record linkage process, including indexing and comparison, classification,

and evaluation techniques.

3.1 The Data

Two datasets relating to knife crime and knife wound-related calls were provided for

linkage by Police Scotland (PS) and the Scottish Ambulance Service (SAS), respec-

tively. Both data sets span a two year period from 1st January 2021 to 31st December

2022.

Police Scotland Dataset A subset of data containing information on incidents that

featured “knife”, “blade” or “stab” in the incident description was obtained from Police

Scotland. The information is recorded in a service centre where calls are received and

incidents are created by the call handler. Officers may also create incidents themselves.

The dataset includes the categories shown in Table 3.1. When a call is made,

date and time stamps are automatically recorded, while all other information is either

selected or manually inputted. Date and time are therefore the most consistent and

complete fields and give a reliable indication of when an incident was reported. Data

on postcode and caller number is less consistent, with approximately 0.5% and 8.6%

of values missing, respectively. Postcode information is generated by placing a digital

pin on a map using details provided by the caller and is generally accurate to the street

level.

16
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Variable Description

ISR Number Automatically generated case ID

Date Date of incident

Time Time the call started

Final Service Code Type of incident1

Description Description of incident

Postcode Full postcode

Caller Number Partial caller number2

Table 3.1: Table containing some of the variables provided in the PS dataset. Additional

variables provided for analysis have not been included. 1There are 55 unique service

codes such as assault, robbery, and domestic incident. 2Partial mobile numbers consist

of the first four digits after the country code (07 or +44). Landlines consist of the first

four digits after the area code.

An additional dataset containing more details is also provided, specifically for in-

cidents linked to more than one crime. This dataset is geographically partial, cover-

ing only Highlands and Islands, the North East, Tayside, Fife, and Forth Valley. The

records in this dataset are linked to the first dataset through their respective ISR num-

bers.

Scottish Ambulance Service Dataset The SAS dataset contains 2070 records that

are selected based on the wound type “penetrating trauma”. This data is routinely

collected by call handlers from SAS ambulance control centres. The categories shown

in Table 3.2 are included in the dataset.

Like in the police dataset, the date and time stamps are recorded automatically and

are thus consistent and complete. All other variables are manually inputted or selected

from a drop down menu. In this dataset, the postcode sector and caller number fields

contain 0.8% and 28.9% missing values, respectively.

The two datasets share five common fields: date, time, description, postcode (sec-

tor), and caller number. However, for the ambulance dataset, incident location is only

provided at the postcode sector level, which consists of the first part of the postcode

before the space and the first digit following the space. For example, the postcode unit

ML7 2SX is part of the postcode sector ML7 2.

The postcode information in both datasets covers similar geographical areas and

contains few missing values. Of the 886 unique postcode units in the PS dataset and
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Variable Description

Date Date of the incident

Time Time the call started

Description Description of the incident

Postcode Sector Postcode sector

Wound Issue Type of wound1

Caller Number Partial caller number2

Table 3.2: Table containing the variables provided in the SAS dataset. 1There are 10

unique wound issues including swelling, abrasion, laceration, penetrating, foreign body,

haemorrhage, degloving, bruising, amputation, and haematoma. 2Mobile numbers con-

sist of the first four digits after the country code (07 or +44) and landlines consist of the

first four digits after the area code.

580 unique postcode sectors in the SAS dataset, 570 unique instances match on post-

code sector. This makes incident location a good field for linkage. Other suitable

linkage fields include date and time as both fields cover the same two year period and

contain no missing data in both datasets.

Caller number is another potential linkage field. However, initial record pair com-

parisons revealed that there were no instances where caller number matched for match-

ing incidents. In other words, individuals never contacted both the police and ambu-

lance services regarding the same incident. When uncertain about which agency to call,

individuals may contact one and assume that that agency will coordinate with others

as needed. Caller number is therefore not included as a linkage variable. Furthermore,

while both datasets contain incident descriptions, the descriptions are recorded as un-

structured text, making them inconsistent and thus unsuitable for linkage. The set of

fields used for linkage are therefore date, time, and postcode (sector).

3.2 Data Preparation and Pre-processing

3.2.1 Irrelevant Data

A core issue when analysing stabbings and stab wound-related calls is the presence

of information for incidents unrelated to stabbings in the datasets, like accidents or

self-harm. These incidents, included as a result of the data collection process, could
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introduce bias in later analyses and lead to conclusions that do not accurately represent

the patterns of knife crime. To address this problem, manual labelling of the two data

sets was performed to categorise incidents as related or unrelated to stabbings. The

labels are as follows: (1) unlikely, (2) possible, (3) probable, (4) definite, (5) other

weapon types, and (6) self-inflicted.

Definite incidents include only those which specify that a person has been stabbed

with a knife. For the police data, definite incidents were verified against the additional

dataset containing further details if available. Probable incidents include any stabbings

that do not specify a weapon type, e.g. “male stabbed”, where it is assumed a knife

has been used. Possible incidents generally include potential stabbings and claims or

statements that one has been stabbed. Unlikely incidents contain incidents in which a

knife or blade is mentioned, but a stabbing is not explicitly stated e.g. “threat to stab”

or “female with knife”. The other weapon types category consists of stabbings that

occurred with anything other than a knife or blade (machetes, swords, and hatchets are

considered blades). The self-inflicted category includes incidents in which a person has

accidentally or purposefully harmed themselves. If a person has harmed themselves

using something other than a bladed instrument, then the incident is included in the

self-inflicted category.

While the proposed solution attempts to solve the problem of unrelated incidents,

it has several limitations. First, manual labelling is a subjective process that can lead

to inconsistent categorisations. Even labels assigned by a perfect annotator can be

systematically biased due to data quality. Second, human error is likely to introduce

misclassifications, especially in large datasets where the time investment is significant

and the task laborious.

To mitigate these issues, clear guidelines about the labelling process were estab-

lished, taking into consideration ambiguous cases. These guidelines were informed

by collaboration with the respective agencies. Furthermore, random samples were

selected for review to help verify the reliability of the labels. Various automatic ap-

proaches for labelling were also considered as alternatives. However, due to the limited

time frame of this project, they were not used here. Further work could explore and

implement such alternatives.

In the context of linkage, matching across two categories may result in relevant

matches or patterns being missed or overlooked. For example, an incident described as

“male seen with knife” could reasonably match to another described as “male stabbed”.

However, the first would be labelled as 1 (unlikely), while the second as 3 (probable).
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To ensure that potential matches are not missed, linkage is performed across the en-

tirety of both datasets. Then, only incidents with possible, probable and definite labels

are kept for further analyses.

3.2.2 Standardisation and Cleaning

Prior to linkage, the datasets were reformatted and recoded to ensure consistency. This

process aligned the data types for all linkage fields in both datasets. Additional data

processing tasks are detailed in the following.

Missing values were removed as the subsequent comparison step involves only

two fields, namely the combination of date and time, and postcode (sector). The for-

mer attribute is complete and the latter contains a very small proportion of missing

values, ensuring that information loss is minimised. Setting missing values to 0 in the

comparison step would ultimately yield the same result due to the limited number of

comparison fields.

False/hoax calls were removed as they provide no useful information for link-

age and subsequent analyses. The final service code “false call” and the class codes

”false/hoax calls to emergency services” and ”falsely accusing named person of crime”

were used to identify false calls. Class codes are provided in the dataset containing ad-

ditional details and represent the incident type. In the SAS dataset, relevant informa-

tion could be located in the incident description. Specifically, hoax calls are described

as ”patient not found”. No such calls were found in the SAS dataset.

Duplicates were removed from both datasets to reduce the possibility of false

matches. The PS dataset records duplicates in the “final service code” field using

the key phrase “duplicate incident” (n=2297). These duplicates are instances in which

more than one person has called to report the same incident. If this is found to be the

case, the call handler flags the incident as a duplicate. Usual procedures require that

the duplicates are linked back to the live incident, but this does not always happen and

the data input is inconsistent. For this reason, we chose to simply remove incidents

with the duplicate flag from the PS dataset without linking them back to their original

counterparts.

On the other hand, the SAS dataset contains two types of duplicates. The first

type contains the keywords ”dup” or ”duplicate” in the incident description and occurs

when a person re-dials 999 while waiting for an ambulance, resulting in repeated calls

(n=27). The SAS does not link the call IDs, making it impossible to identify a dupli-
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cate’s counterpart directly. It is assumed, however, that the counterparts are provided

in the dataset and that their duplicates could therefore be safely removed without loss

of information.

The second type of duplication involves the presence of multiple identical records

(n=673). These records share the same attribute values for all fields except “wound

issue”. Each duplicated incident is repeated a different number of times, and the reason

for this duplication is unclear. One possible explanation is that wound issues were

recorded separately to other incident information along with an incident ID. If some

incidents have multiple entries for the wound issue, then merging the wound issues

with the original incidents could lead to such duplications. While removing these

duplicates may result in the loss of some data related to wound issues, it is important

to note that the wound issue attribute is not used for matching. Therefore, it can be

safely disregarded.

Date and time values were transformed into Unix timestamps for numerical com-

parison in subsequent steps. This approach accommodates incidents that happen at

similar times but on different days. For example, an incident that occurs at 11:58pm

on Friday in one dataset might appear in the other at 12:02am on Saturday.

3.3 Indexing and Comparison

In this step, records are compared based on timestamp and postcode information. The

indexing and comparison methods used in each iteration of linkage are detailed below.

Sorted neighbourhood indexing was used to generate record pairs. All records

occurring within one day of each other were paired, as informed by previous findings

that police and ambulance records are unlikely to match when more than 24 hours

apart [35]. Initial tests confirmed that larger time windows increased the number of

false matches considerably. This approach reduced the number of record comparisons

from over 29 million to just under 120 thousand.

Timestamps were compared using two of the approaches outlined in Section 2.4.2.

The first involves a simple binary match/non-match within a specified time window

(see Equation 2.2). If the difference between two incident timestamps is less than the

time window, then the incidents match. Window sizes of 3 to 24 hours were tested

on either side of an incident. This approach was chosen due to its simplicity and ease

of interpretation. It also closely aligns with a previous study that linked police and

ambulance data based on time and location [35].
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The second approach partially matches timestamps using a linear extrapolation be-

tween exact similarity and exact dissimilarity (see Equation 2.3). A predefined window

of 24 hours was used to denote exact dissimilarity. Specifically, identical timestamps

were given a score of 1, timestamps more than 24 hours apart were given a score of 0,

and all other timestamp comparisons received scores that decay linearly from 1 to 0.

This approach reflects our belief that incidents become less likely to be related as the

time interval between them increases. Partial similarity scores are also well suited to

machine-learning classification approaches, which we use in our classification step.

Postcode unit and sector information was provided in the police and ambulance

datasets, respectively. Postcode sectors represent a higher level of aggregation, while

postcode units represent smaller, more granular areas. The difference in granularity

makes their comparison an interesting yet challenging problem. We discuss the two

approaches used in this work for comparing postcode information.

The first approach used is the exact comparison (EC) of two strings, the simplest

and most common approach to comparing postcode information. By truncating the

postcode unit information in the PS dataset to the postcode sector level, a direct com-

parison can be made with the corresponding data in the SAS dataset. The postcode unit

and sector attribute values are automatically generated by both agencies and recorded

in standardised formats, making these attributes ideal for EC. While this approach is

efficient, we recognise that the information in each dataset may differ slightly for the

same incident, for example, due to an incident happening close to a postcode sector

boundary.

Postcode sectors provide a moderate level of granularity, but they may still cover

relatively large areas especially in rural or less densely populated regions. As a result,

two reports that are close to one another but fall on opposite sides of a sector boundary

might not be linked. Likewise, two distant incidents within the same postcode sector

might be falsely linked. While we cannot address the latter point due to lack of more

granular location information, we attempt to account for cross-boundary cases using

a geographical approach. To mitigate boundary related issues, we propose a method

that utilises the shapefiles of postcode sectors and units. Shapefiles contain informa-

tion related to the spatial features of postcode units and sectors, such as their shapes,

boundaries, and centroid coordinates. This information can be used to define buffer

regions around each postcode unit. The percentage overlap between the buffered units

and postcode sectors can then serve as a measure for assessing the similarity between

a given unit and any sectors it touches.
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For instance, units located near the centre of a sector will receive a similarity score

of 1 when 100% of the unit area and its buffer lie within that sector’s boundaries.

However, the buffers of units near sector boundaries may overlap with a neighbouring

sector. In such cases, if 20% of the buffered unit overlaps with a neighbouring sector,

its similarity to that sector would be 0.2. The remaining 80% would lie within the

unit’s own sector, resulting in a similarity score of 0.8. This approach may account

for boundary cases while minimizing the weight of matches to neighbouring sectors,

except when the unit is in close proximity to the sector boundary.

3.4 Classification

In this section, we outline the deterministic and machine learning approaches chosen

to classify record pairs into matches and non-matches and clarify the rationale behind

our selection.

3.4.1 Deterministic Classification

The first classification method we implement is deterministic. This was selected due to

its simplicity, reproducibility, and effectiveness in prior research, particularly in linking

police and public health sector data [17]. Another reason for this selection is our use

of only two linkage fields. This makes the number of possible agreement patterns

minimal and allows us to capture true matches while minimising false matches.

Our implementation is inspired by the approach outlined in [35] as it tackles a

closely related matching problem using time and location linkage fields. The matching

procedure is simple: if two records match on timestamp and postcode information,

then the pair is considered a match. Otherwise, the pair is considered a non-match.

Whether two attribute values match is determined in the comparison step. Times-

tamps were compared using a binary match/non-match within time windows of 3, 4,

5, 6, 7, and 8 hours either side of an incident. Postcode information was compared

using exact comparison in the first matching iteration and postcode unit-sector overlap

comparison in the second (see Section 3.3). Further details as to matching iterations

can be found in Section 4.1. In addition, each record in the PS dataset was matched

with one record from the SAS dataset. The records with the highest comparison scores

were retained if a duplicate was found.

While deterministic methods have demonstrated efficacy in linkage projects such
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as ours, they also necessitate careful manual selection of classification criteria. We

therefore explore an alternative approach aimed at automating this process in order to

streamline classification.

3.4.2 Iterative Support Vector Machine Classification

To automate the selection of matching criteria, we follow the unsupervised learning

approach outlined in [7]. Our motivation for choosing this approach was twofold:

first, it was found to outperform traditional unsupervised clustering techniques, and

second, its implementation is straightforward and interesting.

The approach used consists of two main steps for record pair classification. In the

first step, training examples are automatically selected based on the detailed compar-

ison between attribute values. The training examples are then used in the second step

to iteratively train a support vector machine (SVM). There are two main assumptions

underlying this approach. First, if two records relate to the same event, then their com-

parison vectors are expected to have very high or exact similarity in all linkage fields.

Second, if two records relate to different events, then their comparison vectors are ex-

pected to have very low similarity in all linkage fields. By selecting such comparison

vectors as seeds for training data, one can train a binary classifier to classify all vectors

into matches or non-matches.

Two different approaches can be used to select training examples: distance thresh-

olds and nearest based [6]. We chose to use the nearest based approach because it

was shown to produce better matching outcomes. In this approach, comparison vec-

tors are sorted according to their distances from vectors representing exact similarity,

[1,1, . . . ], and exact dissimilarity, [0,0, . . . ]. These distances were computed using the

Euclidean distance between vectors. The vectors respectively nearest to exact similar-

ity or dissimilarity were selected as training examples, forming two distinct training

sets of matches and non-matches.

The number of examples selected into the non-match set was 10% of all compar-

ison vectors computed during the comparison step. The number of examples selected

into the match set was calculated according to the ratio of true matches to true non-

matches, which is estimated as:

r =
min(|A|, |B|)

|C|−min(|A|, |B|)
, (3.1)

where A and B denote the two datasets to be linked, C denotes the set of all com-
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parison vectors, and | · | denotes the number of elements in a set. Because the number of

non-matches is typically much larger than the number of matches, selecting balanced

training sets makes it more likely that comparison vectors selected into the match set

are not true matches. Therefore, it is better to select more examples into the non-match

training set than into the match set. Once the seed training examples are selected, they

are used to iteratively train an SVM.

In the classification algorithm, an initial SVM is used to classify all unseen com-

parison vectors. A small percentage of the most confidently classified vectors is then

iteratively added to the training sets of subsequent SVMs. This process is repeated un-

til all vectors have been classified. Two input parameters must be specified: ip and t p.

The first parameter determines the percentage of unclassified comparison vectors that

are added into the training sets. The second determines the total number of comparison

vectors that are added into the training sets. These parameters were both set to 25 as

initial tests revealed that they had little influence on linkage results.

3.5 Evaluation

Given that no ground truth data was available, we conducted a manual review of the

matching outcomes using all available informational cues. In particular, incident de-

scriptions allowed us to determine whether an incident was likely to be a match or a

non-match. When the match status of a record pair was unclear, that pair was for-

warded to PS for further review. During our evaluation, we treated likely matches as

true matches and likely non-matches as true non-matches.

Due to the large number of record pairs and the project’s time constraints, it was

only feasible to review small subsets of matches and non-matches. By randomly sam-

pling the set of matches and non-matches and counting the number of true positives

(TP), false positives (FP), false negatives (FN), and true negatives (TN) within these

sets, one can compute estimates of the precision and recall.

However, recall that the number of true non-matches (TN) is often significantly

larger than the number of true matches (TP). Therefore, random sampling from the

non-match set is unlikely to capture the relatively small proportion of missed matches

(FN), should they exist, making it difficult to estimate the recall accurately. For this

reason, we do not estimate precision and recall directly. Instead, we adopt an itera-

tive improvement approach where we systematically test different matching criteria to

find a balance between precision and recall, refining our results over each matching
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iteration.

Deterministic classification was evaluated as follows:

1. Apply strict matching criteria that is very likely to return only true matches.

2. Count the number of true matches (TP) and false matches (FP) in the set of

matches.

3. Relax the matching criteria. For example, increase the time window from 3 hours

to 4 hours.

4. Count the number of additional true matches (TP) and false matches (FP) in the

set of matches.

5. Repeat steps 3 to 4 until the number of additional false matches is significantly

larger than the number of additional true matches.

Several iterations of deterministic classification were performed using different

methods for computing the agreement between two attribute values. The methods

tested in each iteration were as follows:

• Iteration 1: Exact postcode sector comparison and binary match/non-match be-

tween timestamps for varying time windows.

• Iteration 2: Postcode unit-sector overlap comparison (Section 3.3) and binary

match/non-match between timestamps for a fixed time window, as informed by

iteration 1.

The focus of iteration 1 was to determine an effective time window within which to

match incidents. Time windows of 3, 4, 5, 6, 7, and 8 hours either side of an incident

were tested. Longer time periods of up to 24 hours either side of an incident were

also tested, but these did not yield improved results and led to an increased probability

of matching unrelated events. We therefore exclude these from the results. On the

other hand, the aim of iteration 2 was to determine whether it was possible to capture

matching incidents that occurred close to a postcode boundary, but on opposite sides.

For this reason, a fixed time window, as informed by the previous iteration, was used

along with a postcode unit-sector overlap comparison.

Using this approach to evaluation, suitable matching criteria could be selected by

balancing the number of additional true positives against the number of additional false
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positives. The final matching criteria and the number of matches and non-matches

serve as a benchmark against which the performance of the machine learning approach

is assessed.

Iterative SVM Classification was evaluated as follows:

1. Train the model using different combinations of parameters and comparison

functions, noting the total number of resulting matches and non-matches.

2. Select all combinations that result in a total number of matches that is similar to

that achieved by the deterministic approach.

3. Manually review the set of matches for all selected combinations.

Several matching iterations were performed using different methods for generating

the comparison vectors:

• Iteration 1: A linear extrapolation between exact similarity (a score of 1) and

exact dissimilarity (a score of 0) over a 24 hours period was used for timestamp

comparisons. Postcode sectors were compared exactly.

• Iteration 2: A linear extrapolation between exact similarity (a score of 1) and

exact dissimilarity (a score of 0) over a 24 hours period was used for timestamp

comparisons. Postcode sectors were compared using the unit-sector overlap ap-

proach.

Note that the approach used to compare timestamps is the same across all itera-

tions, whereas the postcode approach is varied. Both iterations 1 and 2 were initially

tested using 6 SVM parameter variations: three kernel methods (linear, polynomial and

RBF), and two values for the cost parameter (1, 10). The number of matches resulting

from each variation in each iteration were used to determine the most suitable parame-

ter settings. The parameters that produced the most similar results to the deterministic

approach were selected for more detailed manual review. This is because the results of

the deterministic approach provide us with an approximate number of matches to aim

for.
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Results and Discussion

In this chapter, we present our results. We start by discussing the deterministic and

machine learning approaches to classification and subsequently present an analysis of

the resulting data overlap.

4.1 Deterministic Classification

Deterministic classification was used to classify record pairs into match and non-match

sets based on their agreement over a set of attributes, namely timestamp and postcode

(sector). Several matching iterations were performed as outlined in Section 3.5. The

first iteration was used to determine an effective time window within which to match

incidents.

Figure 4.1 shows the the number of additional likely false positives and true posi-

tives that were counted for varying time windows. Notably, the number of additional

false positives consistently increases as the time window expands. This increase is

gradual from 3 to 6 hours and becomes more pronounced between 6 and 8 hours.

In contrast, the number of additional true positives diminishes as the time window

increases, increasing by one at 4 and 5 hours and then plateauing. As anticipated, this

indicates that incidents are less likely to relate to the same event as the temporal dis-

tance between them increases. Furthermore, a time difference of 4 to 5 hours between

incidents appears to strike a good balance between capturing additional true positives,

while minimising false positives. This is in line with previous work.

The second matching iteration was used to capture incidents that occurred close to

a postcode sector boundary, but on opposite sides. A fixed time window of 4 hours was

therefore used along with a postcode unit-sector overlap comparison. This approach

28
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introduced 12 additional matches that were not captured by the exact postcode sector

comparison in a 4 hour time window. In some cases, incidents from neighbouring post-

code sectors occurred within a short time frame of each other. This could lead to the

assumption that they relate to the same incident, given their spatial and temporal prox-

imity. Indeed, 7 of the 12 incidents shared matching descriptions and were considered

true positives.

Figure 4.1: The number of additional false positives and true positives with varying time

window.

However, challenges arise due to the way boundary cases are accounted for. In our

approach, the agreement between postcode information is computed as the percentage

overlap between a postcode unit with a buffer zone and a postcode sector. Because

of this, an incident that occurred in a postcode unit could potentially be matched with

any incident inside the sector it touches, regardless of its specific geographical location

within that sector. In other words, an incident that occurred at a sector boundary could

be matched with another that occurred in a distant location in the neighbouring sector.

For this reason, 5 additional false positive matches are also included within the 4 hour

time window.

Interestingly, these false positive matches seemed to be associated with events

where the time difference exceeded one hour. This is likely because postcode sec-

tors cover large geographical areas. Therefore, as the time gap between two events
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increases, the more likely it is that incidents occurred in different locations. Stricter

matching criteria was subsequently applied to exclude events that do not match exactly

on postcode sector and occur more than one hour apart.

Drawing from previous iterations, our final iteration classified incidents using a

binary match/non-match within a 4 hour time window and the postcode unit-sector

overlap comparison. An additional criterion was applied to exclude incidents that oc-

curred in different postcode sectors and more than one hour apart. In line with our

expectations, these results suggest that incidents are likely to be related if they occur

in close spatial and temporal proximity. Increasing the time window beyond 4 to 5

hours does not yield better results, but it does increase the probability of incorrectly

matching two unrelated incidents.

4.2 Iterative SVM Classification

Here we assess whether it was possible to automatically generate matching criteria

using an unsupervised learning classification approach. This approach used an itera-

tive SVM to classify record pairs into the set of matches or non-matches. The SVM

was trained on seed training examples that were automatically selected using the near-

est based approach. The training examples consist of comparison vectors or features

generated in the comparison step. Several classification iterations were performed as

outlined in Section 3.5.

The selected parameter settings for the first iteration included a polynomial kernel

and cost parameter of 1. Those selected for the second included a linear kernel with

a cost parameter of 1. These settings were found to produce the most reasonable re-

sults in terms of the number of matches. Other parameter setting performed poorly,

sometimes resulting in more matches than the minimum number possible.

Manual review of the match sets produced by each iteration revealed several inter-

esting things. In iteration 1, the classifier only matched incidents that were no more

than 5 hours apart. Although comparisons were allowed over a 24 hour period, inci-

dents were classified as matches within a similar time window to that identified by our

previous approach. One possible explanation for this is the choice of timestamp com-

parison. Because the scores assigned when comparing two timestamps decays linearly

over 24 hours, it is likely that this influenced the classifiers behaviour in preference of

a smaller time window. Indeed, the features used in the comparison step are known to

play a significant role in shaping the matching outcome, regardless of the classification
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method used.

In addition, the choice of SVM parameters greatly impacted the classifier’s perfor-

mance, with some settings emphasising postcode comparisons over temporal ones. For

example, one parameter variation returned matches solely based on an exact match on

postcode sector, even in cases where incidents had no temporal relation.

In iteration 2, we changed the way we compared postcode information. Instead of

exact comparisons between postcode sectors, the percentage overlap between postcode

units and sectors was used to quantify agreement. As before, we searched for the

inclusion of additional matches that occurred on different sides of a postcode sector

boundary. Surprisingly, this change had little impact on the resulting match sets. In

fact, no incidents involving different postcode sectors were included in the match sets

across all reasonable parameter variations.

One reason for this is that the number of incidents that occur close to a postcode

boundary were found to be very few relative to those that did not. Specifically, the

change in the postcode comparison introduced only 59 additional potential matches

on top of the 733 that already matched exactly on postcode sector. Further scrutiny

of the selected training examples also revealed that no cross-boundary examples were

included in the seed training set. These factors likely hindered the classifier’s ability

to learn distinctions between matches and non-matches involving different postcodes.

The final iteration of this approach therefore used an exact match on postcode sector

and a linear extrapolation between exact similarity and exact dissimilarity over a 24

hour period.

Overall, the iterative SVM was able to identify decision criteria for classifying

record pairs that compares to the criteria identified using a deterministic approach.

However, due to the way training data is generated, the SVM struggled to learn more

nuanced agreement patterns that were otherwise captured using the deterministic ap-

proach.

In the context of streamlining the linkage process, the SVM did not perform better

than the deterministic approach. This is because it required fine-tuning of a variety

of parameters and careful design of the comparison vectors based on detailed domain

knowledge to achieve optimal performance. The large number of possible comparison

and parameter combinations makes evaluation a difficult and time consuming process,

especially if manual review is necessary. On the other hand, evaluation of the deter-

ministic approach proved far more straightforward. It is for this reason that we use the

results from the deterministic approach in further analyses.
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Note, however, that our evaluation of both approaches is limited due a lack of

detailed incident information and ground truth data. Fully assessing the performance

of each approach would require extensive review of incident information provided by

both police and ambulance services. While this was not possible here, we hope that

our work can serve as a guide for such future endeavours.

4.3 Extent of Overlap

Figure 4.2: Venn diagram depicting the overlap between police and ambulance

datasets.

Previous research into police and ambulance data matching has yielded a small number

of findings as to the extent of data overlap. One study examined hotspots of commu-

nity violence-related calls to police and ambulance services, finding that the respective

hotspots of violence overlapped by 50% on average. It was also reported that only 62%

of incidents in the ambulance data were present in the police data [1]. Another study

analysed the potential value of ambulance data for violence prevention using datasets

provided by West Midlands Police and the West Midlands Ambulance Service. It was
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found that between 66 and 90% of incidents recorded by ambulance services were

not found in police data [35]. Similarly to ours, their approach looked at spatial and

temporal overlap between the two datasets.

Using our deterministic approach to linkage, we found that approximately 56% of

knife-related injuries recorded by the Scottish Ambulance Service were also recorded

by Police Scotland, as depicted in Figure 4.2. In other words, 44% of knife-related

injuries were not reported to the police. In line with previous work, this suggests that

ambulance records may contain substantial new information relating to knife crime

and highlights the importance of data sharing across police and public health services.

4.4 Temporal Trends

The number of incidents in each dataset were compared by time of day as depicted in

Figure 4.3. Notably, the overall distribution of incidents exhibits remarkable similarity

between the police and ambulance datasets, with minimal reports made in the morning

and pronounced peaks during night time hours. This pattern suggests that individuals

are just as likely to contact police and ambulance services, regardless of the hour.

Therefore, underreporting of incidents is unlikely to be influenced by time of day.

Figure 4.3: The normalised incident frequencies in police and ambulance datasets by

time of day.
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In addition, the frequency of incidents occurring by day of the week is shown in

Figure 4.4. Once again, both datasets exhibit similar trends, with fewer incidents oc-

curring during the weekdays as compared to weekends. We note that the ambulance

dataset has a slightly higher incident frequencies on Wednesday and Saturday, poten-

tially suggesting underreporting on those days of the week. However, given the lim-

ited number of incidents in the ambulance dataset, it remains uncertain whether this

observation stems from chance fluctuations. Conducting an analysis over an extended

timeframe would offer more reliable insights. This was similarly found to be the case

for the monthly incident distributions, which is why we chose not to include the results

here (see Appendix A.1).

Figure 4.4: The normalised incident frequencies in police and ambulance datasets by

day of the week.

4.5 Geographical Coverage

Examining the geographical allocation of reported incidents revealed several interest-

ing things. First, the police and ambulance datasets covered 567 and 349 unique post-

code sectors, respectively. Among these sectors, 327 were common to both datasets,

leaving 22 unique to the ambulance dataset and 240 unique to the police dataset. One

reason for this discrepancy could be variations in data collection and reporting. An-

other may be variations in the perception and severity of injuries, which differ from
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incident to incident. For instance, some incidents may not require an ambulance fol-

lowing a call to the police.

Postcode Area Proportion of Unreported (%)

Edinburgh 14.9

Glasgow 14.0

Motherwell 12.3

Kirkcaldy 9.5

Dundee 9.4

Aberdeen 7.4

Kilmarnock 7.3

Table 4.1: Proportions of unreported incidents by postcode area.

Furthermore, densely populated areas have much higher incident frequencies. This

aligns with our expectations as a large number of people in close proximity often cor-

relates with a greater number of incidents. In general, higher density areas were found

to have slightly higher rates of underreporting, as shown in Table 4.1. To account for

the small number of incidents in the datasets, the proportion of incidents that were not

reported to the police are calculated for each postcode area. Postcode areas with very

few reported incidents were also omitted from the analysis to ensure statistical validity.

Figure 4.5 illustrates the frequencies of incidents per postcode sector that were

not captured by police records in the Glasgow area. Lighter regions denote higher

incident numbers, providing an overview of potential areas of underreporting. We

note, however, that analysis at the postcode sector level may be less informative due to

large geographical coverage, especially in rural areas. Future efforts could benefit from

more detailed geographical analysis, enabling closer examination of underreporting

patterns.
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Figure 4.5: Heatmap depicting the frequency of incidents that were not found in police

records in each postcode sector in the Glasgow postcode area.



Chapter 5

Conclusion

The purpose of this project was to determine suitable matching criteria for linking

police and ambulance datasets and, through this, understand the extent of overlap in

incidents recorded in the two datasets. Another aim that emerged was the automation

of matching criteria. The two primary reasons for doing this were first, to streamline

the record linkage process, and second, to identify potential patterns of underreporting.

Two classification approaches were used: deterministic and iterative SVM. The

first approach allowed the design of a simple set of matching criteria to binary classify

records into matches and non-matches. It was identified that a 4 to 5 hour window was

the most suitable time frame for striking a balance between the number of true matches

and the number of false matches. This aligns with findings in previous work [35]. An

approach for matching postcode information using the percentage overlap between

postcode units and postcode sectors was used in combination with the selected time

window. This approach required that incidents occurring more than one hour apart,

but in different postcode sectors, were excluded from the match set. Interestingly,

seven of the twelve matches that were included as a result were true positives, linking

related incidents that occurred on opposite sides of a postcode sector boundary.

The second approach used a nearest based method to generate seed training ex-

amples, which in turn were used to iteratively train an SVM classifier. This method

yielded similar matching criteria to those identified using the deterministic approach,

linking incidents that occurred no more than 5 hours apart. However, the SVM classi-

fier was unable to capture additional agreement patterns relating to incidents at post-

code sector boundaries. This was likely due to the small number of boundary cases

included in the data and, by extension, the training seeds.

For the purpose of streamlining, deterministic classification outperformed iterative

37
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SVM classification in the presence of two linkage fields and no ground truth data. The

primary limitation of the SVM was that it required careful fine tuning of a number

of various parameters. This made evaluation a difficult task when having to manually

review results. Evaluation of the deterministic approach, on the other hand, proved

far simpler. This method enabled a pragmatic approach to balancing precision and

recall, underlining its suitability for use in resource-limited environments. For this

reason, the deterministic approach was carried forward for further analyses. We note,

however, that SVM classification has greater potential for scalability in projects with a

larger number of linkage fields.

The overlap between police and ambulance datasets revealed that ambulance records

contain substantial new information related to incidents of knife crime, with approx-

imately 44% of knife-related injuries not reported to the police. This suggests that

police are not aware of a large number of stabbings that are otherwise recorded by

ambulances services, leaving a gap in the understanding of knife crime in Scotland.

These results, consistent with prior work that cuts across police and public health care,

highlight the benefits of continued interagency data sharing and integration.

While we recognise that ambulance data has value for violence prevention, our

analysis was limited due to a lack of detailed incident information. A full understand-

ing of the extent and reasons behind gaps in reporting will require further collaborative

investigation between police and public health services. By harnessing the strengths

of different agencies, a better understanding of violent crime is possible. The need for

more research and development of such methods therefore seems clearly justified.
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Appendix A

A.1 Incident Frequencies by Month

Figure A.1: The normalised incident frequencies in police and ambulance datasets by

time of day.
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Appendix B

B.1 Geographical Coverage of Police Dataset

Figure B.1: Heatmap depicting the frequency of incidents in the police dataset for each

postcode sector in the Glasgow area.

45



Appendix B. 46

B.2 Geographical Coverage of Ambulance Dataset

Figure B.2: Heatmap depicting the frequency of incidents in the ambulance dataset for

each postcode sector in the Glasgow area.


