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Abstract

This thesis revolves around the application of algorithms from the field of Explainable

Artificial Intelligence(XAI) on the trainable models of the AuctionGym simulation

environment, with the ultimate goal of discovering the extend to which these algorithms

can provide meaningful insights about the bidding policies of these agents. More specif-

ically, we apply DeepLift on increasingly more complex instances of the AuctionGym

environment and then empirically evaluate the quality of the results with respect to the

ground truth of the simulation as well as other quantifiable metrics that we consider

suitable for this problem setting.
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Chapter 1

Introduction

1.1 Purpose & Motivation

The authors of AuctionGym [13] have framed the problem of learning to bid in online

auction scenarios as a contextual bandit problem. Additionally they have created an

open source, configurable simulator of online advertising auctions. In that way, they

provide a feasible way to frame and tackle the bidding problem as a reinforcement

learning problem, without the insurmountable business cost it would involve to execute

such a training regime in real world settings. Finally, they also propose different

estimators to tackle the learning problem and provide empirical results that show that

their Doubly Robust Estimator increases the overall profit of the participants when all

of them train using this estimator.

Empirical results that indicate performance gains are common in novel applications

that utilize Artificial Neural Networks. A common limitation however, that inhibits the

adoption of these models, is their black box nature that provides little if any insights as

to how they make their decisions. One way to alleviate this problem and enhance trust

on these models, is to use explainability methods to derive insights about their decision

making process. Unfortunately, interpretability introduces an inevitable trade-off. An

inherently explainable model, has limited expressive power which undermines the

original goal of applying an Artificial Neural Network in the first place. On the other

hand, when trying to explain a complex non-linear model, a set of assumptions need to

be made about its internal function. The extend to which these assumption hold for a

given model, determine the quality of these explanations. As a result, when we apply

an explainability algorithm, the question of whether we can trust its results persists. On

top of that, evaluating explanation results is still an open research question.

1



Chapter 1. Introduction 2

In this project, we will apply explainability algorithms to the models of the Auc-

tionGym environment and investigate the quality of these explanations as the parameters

of the simulation change. We will focus on attribution methods and more specifically

on gradient based algorithms. The motivation behind this is that these methods display

superior computational performance which is a desirable property for any practical

application. Additionally, we will define a set of evaluation metrics that we believe are

suitable for this specific problem setting. Our main focus is to explore how the quality

of the explanations changes, as we increase the dimensionality of the input data and the

competitiveness of the simulation, so that the simulated scenarios progressively emulate

realistic scenarios more closely.

1.2 Research Hypothesis

The main hypothesis of our work is the fact that gradient based explanation algorithms

are computationally efficient. This means that they should remain computationally

tractable while we increase the dimensionality and the size of the input dataset. Since

we are able to utilize larger volumes of data we expect that we can derive more insightful

explanations and preserve a satisfactory level of quality as we increase the complexity of

the simulation. Although gradient based algorithms may violate some theoretical guar-

antees about the quality of their results, we believe that their computational tractability

and scalability, are both very desirable properties that are worth exploring.

As we will explain in more detail in the following sections, the original models of the

simulation are not compatible with Gradient Based algorithms. In order to use Gradient

Based methods, we must use models that approximate the behaviour of the original

models and use them to derive our explanations. In that sense, another hypothesis is

that our assumptions are reasonable enough that they do not distort the explanations to

the extend that they are uninformative.

1.3 Results Summary

In our experiments we first investigate how three popular Gradient-Based Algorithms

scale with respect to the input dimension and input size. We find that all three methods

are almost invariant to the dimension of the input for the sizes we tested. However,

only DeepLift scales reasonably with respect to the volume of the input data. More

specifically even for datasets of 50000 data points it needs less than one minute to
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calculate attributions when run on CPUs. For comparison Integrated Gradients needs

approximately 60-70 minutes for datasets of 10000 data points, using the same infras-

tructure. Moreover, DeepLift displays higher performance when applied on the same

volume of data points.

A second series of experiments we conducted, explores how explanation quality

changes when the dimension of the input data used by the models of the AuctionGym

increases. Through our experiments, we identify that input dimension indeed impacts

the performance of DeepLift, but even for larger dimensions the algorithm is still able to

provide meaningful explanations. Another fact that is highlighted by these experiments,

is that the choice of baseline value for the explanations has significant impact on the

quality of the results.

Finally we explore the impact of increasing the complexity of the simulation, by

increasing the number of available choices for every agent at every auction instance.

This is done by increasing the catalogue of available advertisements they can choose

from. We observe that even for mild increases along this dimension, the stability of

the training is severely impacted so we constrain our analysis on smaller catalogues.

According to our experiments, the quality of the explanations is correlated with the

extend that an agent can learn a stable policy for a given set of simulation parameters.



Chapter 2

Background

2.1 Learning to Bid

In online advertising, the opportunity to display an advertisement is sold in real time.

Advertisers bid on these opportunities and attempt to maximize their overall utility,

which is the expected value they gain from displaying ads minus the cost they pay to

participate in these auctions. The pricing mechanism can vary between second-price,

first-price or any general pricing mechanism. In second-price auctions, the winner of an

auction pays the second largest bid, whereas in first-price auctions the winner pays the

bid they submitted.

Under second-price conditions, truthful bidding maximizes social welfare (overall

net gain for the auction participants) and under certain conditions also maximizes

revenue for the auctioneer. Truthful bidding is the bidding policy where a participant

bids an amount equal to their expected gain from an opportunity. Nevertheless, these

assumptions are frequently violated in practice, so most online advertisement auctions

have adopted first-price mechanisms. In this setting, truthful bidding leads to zero

expected net gain and participants need to lower their bids to generate profit. Lowering

one’s bids is called bid shading. As a result, in first-price settings, participants need to

decide on a bid shading policy.

When an agent is presented with an advertising opportunity they need to make two

decisions. First they need to choose an advertisement that will maximize their expected

gain, assuming they win the auction. Then they need to decide on the amount they will

bid for this opportunity or equivalently decide on a shading factor γ (0 < γ < 1) and bid

an amount equal to the expected value of an ad times γ.

The authors of AuctionGym [13] propose the formulation of these two problems as

4
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a combined contextual bandit problem. Under this problem formulation they propose a

novel objective function, named Doubly Robust Estimation, to train the bidding policies

and present empirical results that support the superiority of this method over existing

approaches in literature, in terms of maximizing the social welfare of the advertisers,

when all participants use the same objective function.

We now provide a prompt mathematical formulation of these two problems and a

description of the proposed estimator that will be useful for future reference for the rest

of this thesis.

2.1.1 The Allocation Problem

We assume that an ad opportunity is described by a context vector x ∈ X. When an

advertising opportunity is presented to the participants they need to decide which

advertisement to display. For the scope of the thesis, we assume that each participant

preserves a static catalogue of ads A and a static value va, for each ad in their catalogue.

This value represents the monetary value of a conversion event C. C is a random

variable which indicates if a conversion event happened after an ad was displayed and

it follows a binary distribution that is parametrized by the conversion probability or

conversion throughput rate PCT R and is characteristic of every ad. A conversion event

can have different interpretations within the online advertiseing setting. For example

it may represent the click of a displayed ad by a user (which could be represented by

lower va and higher PCT R) or the sale of a product. The expected welfare or gain from

a specific ad ai is: E[ω|A = ai,X = x] = vai ∗PCT R(x,ai). Apparently the true value

of PCT R is unknown and participants need to use an estimator P̂CT R to estimate this

probability. They can also introduce some noise to this estimator to enable exploration

for the allocation problem. Under this formulation when an agent is presented a context

vector x they choose an ad according to the rule:

a = argmax
a∈A

va ∗ P̂CT R(x,a) (2.1)

2.1.2 The Bidding Problem

After choosing the most promising ad to display each participant needs to decide on the

bidding amount. The goal of a bidding agent is to maximize their utility U =W (V −P),

where W is a binary variable that denotes when an agent won an auction, V is the value

of the displayed ad and P is the cost they paid to display the ad. When the agent wins an
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auction all values are observable, whereas when they lose all values are 0. The bidders

need to learn a bidding policy π(b|X ,A) to maximize their the expected utility. Using

this policy, the expected utility is:

E[U ]b∼π(b|A,X) =∫
P(W = 1|V = v,B = b)(v− p)

P(V = v|X = x,A = a)P(P = p|X = x,B = b)dvdxd p

=
∫

P(W = 1|V = v,B = b)(v−b)P(V = v|X = x,A = a)dvdx

(2.2)

where in the last equation we consider the fact that in first-price auctions P(P = p|X =

x,B = b) is 1 when p=b and 0 elsewhere. The different bidding algorithms presented

by the AuctionGym paper are essentially different methods to approximate the integral

of 2.2 and minimize the difference between the estimated and observed value of this

quantity.

2.2 The AuctionGym Simulation Environment

AuctionGym follows the common practice within the Reinforcement Learning commu-

nity and provides a simulation environment to train and evaluate agents that participate

in real time online advertisement auctions. The simulation works as follows:

• An advertisement opportunity is sampled from the data distribution P(X). For

the scope of this thesis we use synthetic data and experiment with data sampled

from independed normal distributions.

• The opportunity is presented to a subset of the participants. Increasing the number

of the bidders increases the competitiveness of the auction. We only consider

simulations with two bidders chosen per auction event.

• The bidders choose an ad to display and place their bids.

• The simulation decides the winner and charges the winner according to the pricing

mechanism defined. We will only consider the first-price mechanism.

• The chosen ad of the winner is displayed and a conversion event is created with

probability PCT R(x,a).
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The default mechanism of AuctionGym, that dictates how a conversion event is sampled,

works as described here. At the beginning of the simulation a set of parameters

θα,i = (φα,i,βα,i) is created, where φα,i ∈ IRD,θα,i ∈ IR, D is the dimension of the fully

observable context vectors and i is the number of agents. Using those parameters, the

true PCT R for every advertising opportunity with context x is calculated as fi(x,α) =

σ(φα,i ∗x+βα,i), where σ is the sigmoid. Using this probability, a conversion event c is

sampled c∼ Bernouli( fi(x,α)). The agents only have access to a part of the original

context vector x[1:k]. This simulates the fact that bidders need to make decisions with

imperfect information.

In terms of bidder configuration, the AuctionGym offers three alternatives. The

Value Based Estimator, the Policy Based Estimator and the Doubly Robust Estimator.

All three configurations support the learning of a stochastic policy in the form of a

Gaussian with parameters that depend on the context and ad selection. The value based

method also supports the learning of a deterministic policy by approximating only the

expected utility and then performing a discretized search over the bid space during

inference time.

2.2.1 The Doubly Robust Estimator

We will now provide some additional implementation details for the Doubly Robust

Estimator because we only focus our explainability experiments on models trained with

this objective function. In terms of implementation, this method combines the elements

of the other two, so extending our experiments to other methods is straightforward.

When the agents receive a context vector x, they first choose an ad to display

according to the rule 2.1. For P̂CT R every agent trains a Bayesian logistic regression.

They also use Thomson Sampling [6] to enable exploration for the allocation step.

Thomson Sampling adds Gaussian noise to the parameters of the regression, to enable

occasional sub-optimal exploratory decisions. For the rest of the thesis we will refer

to the part of the agent that handles the decision of the displayed advertisement, as the

allocation model. After each agent chooses the ad with maximum expected welfare

va∗P̂CT R, the allocation model outputs the value va and the deterministic P̂CT Rdeterministic.

The deterministic value is the estimation without the noise of Thomson sampling. After

the allocation decision is made, the policy network receives these two values as inputs

and produces two output values. These values correspond to the mean and standard

deviation of a Gaussian distribution. This distribution is the stochastic policy of the
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shading factor for the given context and ad selection. Then a shading factor γ is sampled

from the distribution and the bid b = va ∗ γ is placed. We also note that the standard

deviation is kept over a minimum threshold to prevent the policy from collapsing to a

deterministic sub-optimal policy.

2.3 Explainable Artificial Intelligence (XAI)

Although Artificial Intelligence models have achieved state of the art performance in

various tasks, their ”black-box” nature still remains a notorious problem. There are

multiple shortcomings whose root cause is this inherent nature of these models. First

of all, there are multiple cases where these models extract unintended patterns from

data and erroneously base their decisions on them. Such behaviour is very difficult for

practitioners to identify before deployment. Especially when such models are intended

for critical applications, for example healthcare or finance, then establishing trust on

the decision making process of these models is equally if not more important than the

performance gain they achieve. This justifies why, in many cases practitioners from

other domains are reluctant to utilize Artificial Intelligence model despite their enhanced

performance. If we also consider the fact that regulations around data manipulation

are becoming increasingly strict [10], then finding ways to accurately describe the

decision making of any model is of paramount importance and beneficial both for the

development and the adoption of them.

Explaining Artificial Intelligence models, while preserving their ability to iden-

tify complex patterns in the data are two competing goals because their highly non

linear nature is the source of their expressive power but simultaneously makes them

non-transparent. Inevitably, we need to compromise either performance or quality of

explanations. One approach is to use less expressive models that are inherently inter-

pretable such as decision trees or random forests[7][5][18]. Alternatively we can use

post-hoc approximations to attempt to explain the original model. This can be achieved

by fitting a surrogate model to mimic the behaviour of the original. This model is

either interpretable as the aforementioned ones or at least more amenable to explanation

[8]. Alternatively, we can introduce some simplifying assumptions about the original

model and attempt to explain it. Several popular alternatives exist under the latter

framework, such as LIME [19], SHAP and its variants [16][22] and Gradient-Based

Attribution methods [20][21][3][4]. All these methods try to approximate the model

locally with a linear approximation. By interpreting the weights of the linear model



Chapter 2. Background 9

we can reason about the relative importance of the individual features on the original

model’s output. All methods come with their individual advantages and disadvantages

in terms of accuracy, computational tractability and whether they can interpret any

source model or they need to impose structural constraints to it. All these parameters

need to be taken into consideration when choosing the best explanation algorithm for a

specific application.

2.3.1 SHAP Value Attribution based Methods

SHAP based methods are named after Shapley values [15] and they define the class

of additive feature attributions. They prove that any algorithm in this class has a

unique local solution that satisfies three desirable axioms (local accuracy, missingness,

consistency). However, a model agnostic implementation of the algorithm has expo-

nential complexity with respect to the feature dimension. If we enforce some structural

constraints to the explained model, then computation becomes tractable [20][3][22].

2.3.2 Gradient based Attribution Methods

Gradient based algorithms are only pertinent to Neural Network models. They are

based on the idea that the attributions of the input features can be backpropagated,

by calculating the difference between the model’s output and some reference output

value and recursively attributing this difference through the network’s layers. The

most attractive property of these methods is that, since they are compatible with neural

network implementations, they can leverage the algorithmic and hardware acceleration

available for these models. This makes them in practice more suitable for models with

large input dimension. Additional analysis on these methods [1] shows that under

certain structural constraints of the original model, some of these methods may or may

not satisfy some of the axioms of the additive attribution methods.

2.3.2.1 DeepLift

DeepLift [20] is a gradient based method that is based on the idea that if we define a

reference input, then for any input example we can calculate attributions such that they

satisfy the summation to delta rule: ∑
n
i=1C∆xi

= ∆y where Ci is the attribution weight

for feature i. This rule is equivalent to the local accuracy axiom of SHAP methods.

Although there are two approximation rules to calculate the attributions in the original
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paper, the original implementation only supports Keras models (it is the only one that

supports both approximation rules), so we will only describe the Rescale Rule that is

supported by all implementations except the original. For the non-linear layers, this

rule approximates the attributions with ∆y
∆x

or the gradient when ∆x→ 0, where ∆x,∆y

are the difference from the reference input and output accordingly. For linear layers

the attribution rule is straightforward to derive from the summation to delta rule. This

fast approximation is the source of the computational efficiency of DeepLift. However,

this comes at a cost of being more restrictive on the nonlinear layers it supports. For

example, the original implementation only supports layers that occur in Convolutional

Neural Networks. Subsequent implementations extend the Rescale Rule for most non

linear layers but still the calculation used for the attributions may not always be a

good approximation. DeepSHAP is a variant of DeepLift where the attributions are

calculated for different baselines and they are averaged on every layer before they are

backpropagated to the previous layer. This variant approximates the Shapley values [16]

but lacks in terms of computational efficiency. Since the attributions must be averaged

on every layer before being transmitted to the previous, batched calculations can only

be performed for multiple baselines. When the baselines are significantly less than the

number of input examples, calculations become very inefficient.

2.3.2.2 IntegratedGradients

IntegratedGradients [21] is another popular Gradient Based explainability method that

was published at a similar time as DeepLift. This method attempts to approximate

the attribution weights by calculating the integral IGi(x) =
∫ ∂ f (x′+α(x−x′))

∂xi
∂α, where

x’ is the baseline input, for every dimension i. Integrated Gradients is much more

computationally intensive, because for a single example, the integral needs several

forward passes per input dimension to be approximated. On the other hand, this method

does not impose any constraints on the original model, as long as the operations used

are differentiable and thus produce gradient signal.

2.3.3 Evaluating Explanations

A common problem in the research field of XAI is the lack of generally applicable

evaluation metrics. Even the notion of a ”good” explanation is under debate. There

are two popular criteria to evaluate explanations on, plausibility and faithfulness [11].

Plausibility refers to how much the explanations are acceptable by humans. Faithful-
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ness measure how accurately the explanations describe the behaviour of the model.

Potentially these two metrics might vary for the same model. Faithful explanations

can be unintuitive and viseversa. A very popular example of a plausibility evaluation

method is a salience map. The problem with such evaluation methods, is that they

need human feedback which is costly. Moreover, such an evaluation procedure is

unsuitable for systematic evaluation. On the other hand, faithfulness is more suitable

for systematic evaluation but it is still an open question as to what is an effective and

generally applicable faithfulness metric. When dealing with synthetic data, a possible

choice is to compare the explanation results with some pre-established ground truth.

When we are dealing with non synthetic data, the most common approach is to use some

form of perturbation test [9] [20][17][2]. However, perturbation tests have their own

shortcomings because changing features may create examples that are out of distribution

and might provide misleading results.
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Conceptual Design and Implementation

3.1 Evaluation Metrics

As we mentioned in section 2.3.3, there are no general purpose evaluation metrics for

XAI like accuracy or f1 score are, in supervised learning. Nevertheless, we need a

systematic method to evaluate the results of our explanation algorithms. For this reason,

we need to define a set of metrics that are suitable for the specific task at hand. We are

mainly interested in explaining the bidding policy of the trained agents, so we certainly

need a metric that quantifies this. If we trained our agents with real world data or in

an actual online bidding setting, then we could argue that the aforementioned metric

would be the only one we are interested in. However, within the simulation setting we

have additional information about the generative process of the simulation data. We can

leverage this information to reason about the quality of the explanations. Following this

thought process, we propose that the evaluation of the explanations should be performed

on two fronts. First, on the model that tackles the allocation problem and then on

the ”end-to-end” model that receives as input the context of a given advertisement

opportunity and produces as output the bid.

For the first evaluation task, we can use the generative process of the simulation to

make a direct comparison between the features that the explanation algorithm identifies

as important and the features that are actually important for a given simulation instance.

When solving the allocation problem, the agents estimate PCT R while having access

only to a part of the context vector x[1:k]. If the agents can effectively approximate

the true CTR function and the explanation algorithm is able to produce meaningful

explanations, then there should be an alignment between the ground truth vectors φα,i

and the importance weights generated by running an explanation algorithm on the model

12
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used to approximate the CTR.

One way to capture this alignment, is by calculating the cosine similarity between

φα,i[1:k] and the average of the normalized importance weight vectors that are produced

by the explanation algorithm. The cosine similarity, is defined as: SC(a,b) = a·b
∥a∥∥b∥

The intuition behind this is that if we consider the average attribution weights for

every item as a vector, then if the relative magnitude of these weights is similar or

identical to the relative magnitude of the dimensions of φα,i[1:k] (as it should be for a

well performing explanation method), then these two vectors should point to a similar

direction, driving the cosine similarity closer to 1. However, as shown in fig. 3.1, this

metric may provide misleading insights, where the vectors do not have the described

property but cosine similarity is high.

Figure 3.1: An example of two random vectors where cosine similarity provides mislead-

ing results. The cosine similarity of these two vectors is 0.959. The total ordering metric

for these vectors is 0.2.

A better alternative is to use a metric that captures if and by how much, the sorted

order of the importance weights corresponds to the sorted order of the ground truth

vectors. The idea behind this is that the actual value of the importance weights is

informative only locally(attribution weights should satisfy the summation to delta rule,

section 2.3.2.1). The information that should be more globally applicable, is the relative

importance of the weights. Assuming we have a ground truth vector a and a vector we

want to test b, we define the total ordering metric as:

STO =
∑

k
i=0 argsort(a)[i] == argsort(b)[i]

k
(3.1)
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where k is the dimension of a and b. Algorithm 1 presents the pseudo code for the total

ordering metric.

We need to note at this point that the complexity of this evaluation task scales linearly

with the number of classes or the total ads in the catalogue of an agent, because we need

to calculate and compare the attributions of each individual class with the simulation

ground truth. Since the catalogue in realistic scenarios is much larger than the dimension

of the data, it dominates the computational complexity and we would have to either

sample classes to perform this test or have some sort of additional criterion to choose

which classes are the most informative to test for.

Algorithm 1 Total Ordering Algorithm for vectors a and b

arga← argsort(a)

argb← argsort(b)

c← 0

for i = 0; i < len(arga) do
if arga[i] == argb[i] then

c← c+1

end if
end for
return c/len(a)

In the case of the ”end-to-end” model there is no ground truth that we can use to

compare the explanation results to. For this reason, we will attempt to evaluate the

explanations in terms of faithfulness to the explained model. To achieve this, we will

adopt a test that is especially popular for evaluating faithfulness in NLP related tasks,

the perturbation test. In such a test, we measure the change in the model’s output when

we perturb a part of the input. The idea is that the more important a feature is, the

more significant the change of the model’s output should be, if we alter the value of this

feature. The perturbation can vary from zeroing the feature or scaling it by constant

factor. By performing the perturbation on every dimension of the input, one at a time,

we can get a vector that captures how significant the distortion of the output was when

the selected feature was perturbed. We note, that since we are interested in deriving and

testing global explanations, we will aggregate the results of the perturbation test, by

averaging distortions per dimension.

Algorithm 2 presents the pseudo code for generating the perturbation vector. After

we have generated the perturbation test output, we can test the level of agreement
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between the relative magnitude of the importance weights and the magnitude of distor-

tion of the output. For this purpose, we can use the total ordering metric we defined,

between the attribution weights and the perturbation vector. Alternatively, we can

also measure the top-k recall between these two vectors. Top k recall is defined as:

STop−K = TruePositives
TruePositives+FalseNegatives

We treat the perturbation vector as the ground truth, so true positives are considered

the features that are in the top-k most important positions of both the perturbation and

the attribution vector and as false negatives the ones that only appear in the perturba-

tion vector. The motivation behind this is that several features with similar attribution

weights might result to output changes that are marginally different. In those cases

the total ordering metric might be unnecessarily penalizing and top-k recall can help

capture that. We will only constrain our test on perturbing one feature at a time to avoid

out of distribution samples.

Algorithm 2 Perturbation vector for input example x and function f

out← []

for i = 0; i < len(x) do
x′← x

x′[i] = perturbation∗ x′[i]

out[i] = f (x)− f (x′)

end for
return out

3.2 Processing the Attributions

In order to derive meaningful results from explanation algorithms, we need to be aware

of what the explanations actually represent and consequently how we need to process

them. All gradient based explanation algorithms generate local explanations. However,

local explanations are of little use if the examined data point has no special importance.

Especially in our case, where input examples are synthetic, local explanations are even

less useful. We are more interested in producing a global explanation of the original

model or at least a satisfactory approximation of it. This implies that we need to

perform some form of aggregation of the local explanations. If we naively average

them, then we will get misleading results. The reason is that for every input point x



Chapter 3. Conceptual Design and Implementation 16

used to calculate attributions, then it should be true that ∑
n
i=1Ci ≃ f (x)− f (b) where

i is the input dimension, f is the original model and b is the baseline reference value

(assuming that the algorithm we use does not violate the local accuracy axiom). For

points where the difference from the reference f (x)− f (b) is large, the magnitude of all

attributions will also be larger compared to points with small f (x)− f (b). In that way

we are weighting features that deviate a lot from the baseline more. But the numerical

values of the attributions are only meaningful locally, so in order to get as much of an

accurate global interpretation as possible, we must normalize the attribution vectors per

example so that all examples have equal contribution. Otherwise the relative importance

of the features over multiple examples will be distorted in favor of the examples that

lead to larger deviation from the baseline output.

A second form of processing we need to do is due to a difference between the

original DeepLift [20] paper and the Captum [14] library we use for our experiments.

More specifically, the implementation we use is based on the proposed global attribution

method in Table 1 of [1]. In this version, the attributions are multiplied by the difference

x− b. The motivation behind this is that in order to get a proper insight about the

marginal impact of a feature, then its average magnitude needs to also be taken into

consideration. Although it is out of scope to verify this claim, section 3.2 of [1] provides

an illustrative example.

In order to get meaningful insights from our aggregation when using the above

implementation, we must use the absolute values of the attributions. Obviously, we

lose information, concerning the positive or negative impact of a feature, but overall it

helps significantly to capture the relative magnitude of importance between features.

In an attempt to corroborate our choice, we provide an example that highlights why

using the absolute value is important. Assuming we want to explain a linear model

∑
n
i=1 aixi. Let us assume that our dataset consists of two examples and we only consider

1 dimension j. Feature 1 has value v and feature 2 has value−v+c where c is a constant.

Then the average attribution for this dimension would be (v−b)a j+(−v+c−b)a j
2 =

(c−b)a j
2 .

When c−b is small, then the attributions diminish. Also, this obscures the impact of

co factoring the magnitude of the input, as we originally intended by using the global

attribution method. In our experiments, where the sampling distribution of every input

dimension is a normal distribution, and for any data distribution that is symmetric, this

is problematic because input pairs like the one we described are common and most

attributions cancel out. We also note that since we make this processing choice we need

to perform a similar processing to the perturbation vector. More specifically, instead
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of averaging the distortions per dimension we will average the absolute values of the

distortions.

3.3 Challenges of Applying Gradient based Methods

Gradient based attribution methods have the attractive property of being more computa-

tionally efficient compared to SHAP value based methods. This has several practical

implications. First of all, these methods can be applied on datasets with large dimension-

ality, because the attribution weights are calculated using the efficient implementations

of the explained neural model. For the same reason, we can apply them on larger

datasets, which also improves the quality of the explanations. Nevertheless there are

several limitations that we need to account for when we try to apply such methods to

our problem setting.

The first problem is that in reality the bidding agents need to make two decisions in

order to produce a bidding value. In] terms of implementation, this means that they are

using two different estimators. The first estimates the PCT R and tackles the allocation

problem and the second estimates the parameters of the bidding policy. However, we

are interested in producing a unified explanation for the end-to-end model. With model

agnostic explanation methods this is not problematic but gradient based approaches are

inherently designed to produce explanations for a single neural network. This limitation

by itself is relatively easy to overcome by combining the two trained models into a

single PyTorch model to be explained.

A second problem that is harder to overcome is the fact that gradient based methods

can only be used by models that use differentiable functions. As we discussed, the

allocation model uses the decision rule 2.1 that uses an argmax operator. This operator

is not differentiable, so the gradients for this operator are 0. If we naively combine

the two aforementioned estimators then any gradient based explanation algorithm

will not be able to produce results. An additional complication is the fact that the

allocation model actually uses two slightly different estimators, one stochastic to decide

on the selected advertisement and one deterministic to calculate the PCT R value that is

propagated to the policy network. This enables exploration for the allocation problem

but is problematic for our case because such logic is even harder to transform into a

sequence of differentiable operators.

Finally, one last problem we need to take into consideration, is the choice of the

baseline values we use to generate our explanations. As mentioned in Section 3.3 of the
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DeepLift paper [20], the choice of baseline is crucial for the quality of the explanations.

Given that we are using synthetic data in our problem setting, we have access to the

true mean value of the input data based on the generative process we sample from. We

need to highlight however, that the choice of the baseline value indeed impacts the

performance of the DeepLift algorithm, as we verified empirically. When trying to

apply the same algorithm to any dataset whose true distribution is unknown (as is the

case for most if not all non-synthetic data), then choosing an informative baseline value

is a non-trivial task.

3.4 Proposed Solutions

The most foundational problem we need to tackle, in order to use gradient based

approaches, is the propagation of gradients between the allocation and the policy model.

To achieve this we need to make two simplifying assumptions about the model we will

use to generate explanations. The first is that we will explain only the deterministic

elements of the allocation model. This means that we will only use the deterministic

estimator of the allocation model both for deciding on the optimal ad to display and

for calculating the P̂CT R that is propagated to the policy network. Adopting such an

approach is reasonable as long as the stochastic estimator leads to the same decision as

the deterministic one in most cases. As we can see in table 3.1 the deterministic policy

deviates from the stochastic policy less than 4% of the times in the dataset we use to

generate our explanations, so this is a reasonable approach. Moreover, it is reasonable

to expect that at the end of the training, the agents will choose the deterministic and

optimal option almost always. It is obvious though, that such an approach would be

unsuitable if we were interested in generating explanations throughout the training of

the agents.

An additional simplification we attempted, was to change the target of our explana-

tions. At its original form, the policy network produces two output values, the mean

and standard deviation of the Gaussian that forms the bidding policy for that given

context vector and then a value is sampled from this distribution. However, by exam-

ining table 3.2 we observe that the generated standard deviation is always about 1%.

Additionally, if we examine the implementation of the Doubly Robust Estimator, we

can see that the actual output of the policy network is offset by an additional 0.01. This

means that the actual output of the policy network is at least one order of magnitude

lower than 0.01. As a result, we can neglect this part of the output without losing signif-
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icant information about the input attributions. By doing that we can instead generate

explanations using as target the bids when always choosing the mean shading value of

the bidding policy instead of the actual predicted bidding value. We expected that this

would remove the noise that is introduced by the sampling of the shading factor and

improve the quality of the explanations. However, explaining the stochastic bidding

policy directly led to better empirical results.

Emb.Sz Avg

5 4.1%±0.03

10 3.0%±0.01

20 2.9%±0.00

40 3.52%±0.00

50 3.81%±0.00

Table 3.1: The percent of times where the stochastic allocation estimator results in a

different decision than the deterministic estimator.

Emb.Sz Avg Min Max

5 0.0102 0.0100 0.0107

10 0.0105 0.0100 0.0105

20 0.0100 0.0100 0.0112

40 0.0101 0.0100 0.0119

50 0.0101 0.0100 0.0134

Table 3.2: Indicative values of the predicted standard deviation of the bidding policy by

the policy network.

Although focusing on the deterministic components of the bidding policy can be

an effective proxy to help us explain the original model, it still does not solve the use

of the argmax operator. To overcome this difficulty there are several alternatives. The

first is to train a new model that imitates the output of the original allocation model but

only uses differentiable operators. For example this could be a regressor that takes as

input the context vector and potentially also the values vai and produces two outputs,

the P̂CT R of the original model and the corresponding value. We chose not to adopt

this solution. The reason is that, training a new model is a non trivial task, which

means that for every new simulation setting we want to analyze, we also need to train

an additional model, potentially with different hyperparameter settings. This makes

it harder to automate the process. Also as the simulation becomes more complex,
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approximating the original model also becomes a harder task, which implies that the

approximation will progressively not imitate the original allocator closely. This will

introduce additional error that will degrade the quality of the explanations. Finally, the

highly non-linear nature of the argmax operator is unlikely to be well approximated by

a regressor. This will lead to output values that have not been observed and should not

appear. This can have unexpected results since the policy model was observing only

specific values during training.

An alternative approach is to try to transform the non-differentiable operation, to a

differentiable one or at least partly. Our goal is to be able to propagate the tuple (P̂CT R,v)

that corresponds to the ad with maximum P̂CT R ∗v for the given context. We can use the

original allocation model to calculate ˆE[ω] = P̂CT R ∗ v for every ad in the catalogue of

the agent. Then we can use the decision rule maxa
ˆE[ω] to find the maximum expected

welfare for the given context. If we had a way to know the value that corresponded to the

maximum welfare, then our problem would be solved. We can get this value by using

the original allocation rule 2.1 and returning the value that corresponds to the selected

add. Then we can propagate the tuple (maxa
ˆE[ω]/v,v) which is almost identical to the

original output of the allocation model, with the exception of a small numerical error

introduced by the division operation. The difference is that we now have a sequence of

differentiable operators that connects the input vectors and the bidding output. We only

miss the part of the information that corresponds to the decision of the value of the ad.

A final approach we attempted, is to replace the argmax operator with a softmax.

To do that, we first use the allocation estimator (we can now choose between choosing

the stochastic or the deterministic one) to generate a soft mask according to the rule

mask = so f tmaxa
ˆE[ω]. We need the mask to be sparse during the forward pass, so

that the output of the explained allocator, is identical to the original one. To achieve

this, we use the straight-through trick similar to the one used for Straight-Through

Gumbel Softmax [12], where during the forward pass we use output of argmaxa
ˆE[ω]

but during the backward pass we use the gradient of the softmax operator. The idea was

that with more gradient information, the results of the explanations could improve. But

empirically, this approximation leads to significantly less informative explanations.

One last limitation we need to mention here, is the fact that the implementation of

DeepLift that is compatible with the PyTorch library [14], only supports the Rescale

version of DeepLift. For out problem setting it would be more suitable to use the

RevealCancel rule that is described in section 3.5.3 of the original paper [20]. This

approximation rule is supposed to perform better when assigning attribution scores to
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min/max functions. However, the Rescale rule is the one that has been studied in more

depth [16] [1] and will only constrain analysis in this version of the algorithm.



Chapter 4

Empirical Results and Evaluation

For all of the experiments we train the agents using the Doubly Robust Estimator. We

fix the number of agents to 3 and the number of participants per auction event to 2.

Although this is not directly related to the explanation problem we examine, we keep

a fixed ratio of 0.2 of the context vector hidden throughout our experiments because

it makes the learning problem harder and imperfect information is a characteristic

property of the online advertising problem. We train the agents for 50 iterations where

every iteration consists of ∆r = 10000 online auction instances. The agents only train

their policies every ∆r steps. After saving the trained models and the parameters of

the auction, we generate different amounts of data using the trained models and the

simulation with the same parameters used during training. Then we use these data to

derive the explanation results.

4.1 Replacing argmax with a max operator

All of the experimental results presented in this section correspond to the approximation

we introduced in paragraph 4 of section 3.4.

4.1.1 Comparing Different Gradient Based Methods

In this part of the analysis we will compare the performance and computational effi-

ciency of three different Gradient Based Explanation Methods, DeepLift, Integrated

Gradients, DeepSHAP. Before we use the explanation algorithms we transform the

models as described in paragraph 2 and 4 of section 3.4 and we compare the results on

the perturbation test for the three trained agents for different data sizes. We observe that

22
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Figure 4.1: Performance of IntegratedGradients(IG), DeepLift(DL) using the empirical or

the true mean of the input data as baseline and DeepLiftSHAP with 10 baselines per

example. The results are aggregated by embedding sizes in [5,10,20,40,50] and for 3

trained agents per embedding size.

DeepLift displays better average performance on the perturbation test over all dataset

sizes. However, the performance over experiments with different embedding sizes

varies significantly, because as the input dimension increases the problem becomes

more complex and the performance of the algorithms decays. However, a more signif-

icant advantage of DeepLift is that is very computationally efficient. In table 4.1 we

see the CPU time for generating the explanations of 3 agent models using different

algorithms over various dataset sizes. As we can see DeepLift is the only solution

that scales reasonably with the size of the data processed. The reason for this is that

DeepLift can fully leverage the speedup of PyTorch and calculate attributions with one

forward and one backwards pass.

On the other hand Integrated Gradients needs to perform multiple calculation steps

per input dimension to approximate the attributions, which impacts the computational

performance over higher volumes of data and does not provide any gains in terms

of quality of explanations. Finally, DeepSHAP performance varies depending on the

number of baselines we use for our calculations. As shown in fig. 4.1 when using 10

inputs as baselines, performance is poor compared to the other alternatives. When

using 100 computation becomes intractable and it is of little practical use. At this

point we need to mention that the presented performance of DeepSHAP is potentially

implementation specific up to some extend. According to the original developers of

DeepLift, there are alternative implementations that might scale better when the size of
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the input data is significantly larger than the baselines, but they do not provide support

for the PyTorch library. Since DeepLift appears superior both in terms of performance

and in terms of computational efficiency, for the rest of the experiments we constrain

our analysis on the DeepLift algorithm.

Aglorithm 1000 2000 5000 10000

DeepLift 8.43s 8.46s 9.07s 10.64s

IG 59.3s ∼5min ∼15min ∼65min

DeepSHAP(10 baselines) 10.51s 16.0s 40.40s 7.2min

DeepSHAP(100 baselines) 7.1min ∼61.2min ∼390min -

Table 4.1: CPU Time as measured at the student.compute cluster of Informatics. In cells

with ” ” there was an inconsistency between different runs but the order of magnitude

was the same.

4.1.2 Explaining the Greedy Policy

In this section we will examine the performance of DeepLift over different simulation

configurations. We keep the generative process of the data to its default settings. Each

feature of the context vector is sampled from a normal distribution. The coefficients of

the ground truth vectors that are used to estimate PCT R are also sampled from a normal

distribution. Finally the values for every ad in the agents’ catalogues are sampled from

a lognormal distribution.

As we argued, the deterministic policy of the agents at the allocation step, is almost

identical to the stochastic policy of the agents at the end of the training. For this reason,

to overcome implementation difficulties, we will use the deterministic policy to generate

our explanations but we will perform our perturbation test using the original model as

ground truth. We also use a different dataset to calculate our explanations and a different

one to calculate the perturbation vector. The motivation behind this is that when we use

the same dataset for both tasks, smaller datasets display inflated performance. This is

similar to using the same dataset for training and evaluation.

4.1.2.1 Increasing the Context Dimension

For this part of the experiments we change the input context dimension and explore

how the quality of the explanations evolves. DeepLift needs a reference value to use
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as baseline. In the plots below, we can observe that the choice of baseline actually

impacts the performance of the explanations. More specifically we perform two runs

of DeepLift. On the first we use the true mean of the input context as baseline and on

the second the empirical mean. Apparently, access to the true mean is only available as

long as we are using simulated data.

Figure 4.2: Performance of DeepLift(DL) using the empirical mean of the input data as

baseline. The results are aggregated for 3 trained agents per embedding size.

Figure 4.3: Performance of DeepLift(DL) using the true mean of the input data as

baseline. The results are aggregated for 3 trained agents per embedding size.

By observing fig. 4.2 and fig. 4.3 the first thing we identify is that performance

decays as we increase the dimension of the input, regardless of the input data we use

for the explanations. This is expected for multiple reasons. First of all, DeepLift is

originally designed to derive local explanations for a single input example. However,
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we are trying to generalize explanations by aggregating over multiple examples. As

we increase the dimension of the input it is less likely that a single dimension will

be consistently more impactful than the rest in isolation, which introduces noise in

our results. The second reason is that the perturbation test we perform, also uses

aggregated information. That said, when multiple features have similar magnitudes of

perturbed outputs, then they will be placed in close positions in the ground truth vector

of the perturbation test. However, when their difference is marginal, we cannot be

certain that the order for these features accurately captures the behaviour of the model.

If we also consider the fact that the output of the original model has some inherent

stochasticity due to the sampling of the shading factor, our confidence is reduced further.

This phenomenon is more likely to occur in higher dimensions and might erroneously

obscure the results of the perturbation test.

It is reasonable then to wonder how the algorithm performs on a more relaxed

version of the perturbation test. For that reason we calculate the ground truth vector

with the same method as before but now we measure only the top-k recall for different

subset sizes of the input dimension. In fig. 4.4 we see that the algorithm has more

consistent performance on this test. Especially as we decrease the size of the subset

(which only considers the more important features), performance is very high which

shows that DeepLift can scale well with the number of dimensions.

Figure 4.4: Top-k recall of DeepLift(DL) using the empirical mean of the input data as

baseline for a dataset of 50000 data points. The results are aggregated for 3 trained

agents per embedding size.

Another observation from fig. 4.3, fig. 4.2 that is counter intuitive is that performance

does not increase significantly on average for larger datasizes, especially for larger
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dimensions. It is important to note however that when using the true mean as baseline,

larger datasets consistently improve the worst case performance, as we can observe

by the minimum variance. This is important because the training of all agents is not

symmetric especially for larger dimensions. Some agents win more often because they

have more favorable auction parameters, while others win rarely. When agents win they

gain more positive reinforcement which allows them to achieve better training. This

also becomes more intensive in the experiments with higher dimensionality. Smaller

dataset sizes are more susceptible to this variance and perform better for agents with

better performance on the simulation, whereas larger dataset sizes are more robust to

this fluctuation. This is an important property that we need to consider because our aim

is to generate explanations for any agent regardless of the parameters that are out of its

control. This observation also highlights the impact of the baseline on the quality of the

results.

Due to the fact that the perturbation test becomes less reliable as the complexity

of the simulation increase, it is also important to evaluate the performance of the

explanations on the allocation problem in isolation. For this part of the problem we

have access to actual ground truth and that can give us more reliable insights. Using

DeepLift on the allocation model in isolation, we generate the explanations for each

item individually and then compare its alignment with the corresponding ground truth

parameters of the simulation. fig. 4.5 presents the aggregated results for all three

Figure 4.5: Different Metrics for the performance of DeepLift on the allocation problem.

Results are aggregated over different dataset sizes and 3 agents.

agents and for different dataset sizes used to generate the explanations. We observe the

same trend as in the plots of the bidding problem performance.However, the variance is
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Figure 4.6: Total Ordering performance of DeepLift on the allocation problem. Results

are aggregated for 3 agents.

significantly reduced compared to the bidding problem which means that DeepLift’s

performance is relatively invariant with respect to dataset size and examined agent. This

is also made apparent by fig. 4.6 which shows that increasing the dataset only leads to

marginal improvements in the total ordering metric. For the top-k recall metrics, one

potential reason of this invariance in performance, is that DeepLift explanations achieve

high performance, even for small datasets, so the margin of improvement is small.

We would expect however, that increasing the dataset would lead to more significant

performance gains in the total ordering metric. There are multiple factors that led to

this counter intuitive result. First of all, the way we process our explanations makes the

problem harder. Since we are only analyzing the explanations in terms of magnitude, we

need to make a comparison between the absolute values of the ground truth vectors and

the explanations. This loss of sign information doubles the probability of two features

being marginally different and harder to distinguish, although originally they would

be easily separable because of the difference in sign. The second reason is that the

allocation models of the simulation do not fit the ground truth function perfectly. As a

result, the error of the original model is propagated to the explanations and since we are

comparing with the ground truth we are also observing the error of the original model.

4.1.3 Increasing the Ad Catalogue Size

For this part of the experiment we investigate the impact of catalogue size on the quality

of the explanations. Increasing the catalogue size directly affects the complexity of the
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allocation problem because there are more choices available that must be explored and

learn the parameters for them. We initially considered to keep a larger dimension of

context vectors but the simulation fails to stabilize the training even for catalogues of

size 30 (the default is 12). In the experiments that produce fig. 4.7, we used a ∆r of

50000 in an attempt to stabilize training but it still fails for 2 out of 3 agents.
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Figure 4.7: Net utility for the simulation agents for catalogue size of 30 and input

dimension 40. The results are aggregated over 3 runs of the training simulation with the

same simulation parameters.

Figure 4.8: Perturbation test results for the explanations of DeepLift(total ordering). The

explanations were generated using either the true or the empirical mean of the data as

baseline.

By fig. 4.8 we observe that there is an apparent discrepancy in explanation quality

between agent 3 and the other 2 agents. We notice that agent 3 is also the only one that
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is able to converge to a stable policy during training. The perturbation test evaluates the

quality in terms of faithfulness between the explanations and the original model so even

if the policy is not performing well, the explanations could potentially be faithful to the

model. One potential reason for the observed results is that the agents with unstable

policies preserve a significant stochastic component in their decision pipeline, which

makes the explanation algorithm unable to correctly assign attributions to the input

features. Moreover, since we are neglecting the stochastic part of the allocation decision,

this problem is even more severe.

4.2 Replacing argmax with a softmax operator

Our attempts to increase the quality of the results by replacing the argmax operator with

a softmax were not successful. We note that this change reduces the violation of the

local accuracy axiom significantly. With the max approximation, the violation error

can reach up to 10−1 and with the softmax approximation it is in the order of 10−2.

This means that DeepLift is able to approximate the original output with attribution

weights more accurately when using the softmax approximation. The discrepancy

however, between the forward and the backward pass distorts the results and makes

the explanations less informative. A possible reason is that DeepLift is based on the

assumption that the output of any well behaved neuron is locally linear. However, the

function that represents the decision rule for the value of a selected ad does violate this

rule because even an infinitesimal change in the input can shift the allocation decision

and change the output value significantly. A second possibility is that for the explained

models, the value of the PCT R dominates the decision of the bidding value. When we

use the max approximation model, we are neglecting the attribution that corresponds

to the value of the conversion event and potentially we inadvertently remove noise

from the results. Finally, since the agents are trained without the softmax operator, the

conversion probabilities can take arbitrary values in the range [0,1], as long as they solve

the allocation problem. On the other hand, softmax enforces a competition between

inputs during training. Using the softmax operator during training might lead to better

explanation results afterwards. Figure 4.9 and fig. 4.10 display the performance of the

two approximations on the perturbation test.
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Figure 4.9: Comparative results of the Softmax vs Max approximation performance on

the perturbation test. ”T.M.” denotes using the mean bid as target and ”T.B” using the

sampled bid as target. Results are aggregated for 3 agents.

Figure 4.10: Comparative results of the Softmax vs Max approximation performance on

the perturbation test for a catalogue size of 30 and embedding size of 40. ”T.M.” denotes

using the mean bid as target and ”T.B” using the sampled bid as target. Results are

aggregated for 3 agents.
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Conclusions & Future Work

5.1 Conclusions

For the scope of this thesis we utilized the DeepLift algorithm and applied it on models

trained with different configurations of the AuctionGym environment. We studied how

the quality of the explanations changes as the complexity of the underlying simulation

increases. By comparing its computational performance we found out that it is superior

compared to alternative algorithms that are popular in the relevant literature. Also

for the scope of our experiments it appears that it produces better results in terms of

faithfulness to the original model. We believe that one reason behind this observation, is

that the models used are shallow which means that the simplifying assumptions that the

DeepLift algorithm relies on conceptually, are more likely to hold in our problem setting.

We also need to mention that we only used Gradient Based Algorithms to generate

global explanations of the models by generalizing over multiple local examples. The

fact that DeepLift displayed superior performance on this task is by no means indicative

of its performance on the task of generating local explanations.

For the DeepLift algorithm we found through our experiments that it is able to iden-

tify important features even for simulations with inputs of higher dimensionality. This

result is consistent with experiments conducted in the original paper of DeepLift, where

it was tasked with identifying a subset of important features. When evaluated against

the harder task of deriving a total order of features’ importance, then its performance

decays more rapidly when the dimension increases. We note however, that these results

are less definitive because the test we used is susceptible to noise as the dimension of

the input increases. We also displayed empirical evidence that choosing the correct

baseline value is indeed important for the performance of the algorithm. Although there

32
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is no general rule for identifying the correct baseline value, we believe that choosing

the mean value is the most reasonable choice for the given problem.

We then experimented with the catalogue size parameter of the AuctionGym en-

vironment. We observed that when an agent is able to converge to a stable policy,

then DeepLift is able to provide meaningful explanations but otherwise fails. We note

however that this degradation in performance is potentially not entirely due to the

limitations of the algorithm used but also due to the simplifications we are forced to

introduce in order to explain the original model.

For this reason, we attempted to use a different approximation that makes the model

completely differentiable and potentially more amenable to explanations using Gradient

Based algorithms. The empirical results were not encouraging and the quality of the

explanations diminished systematically.

5.2 Future Work

Although we conducted several experiments which circumscribe the potential of using

DeepLift for the models of the AuctionGym, our analysis is by no means exhaustive.

One additional avenue we would like to explore is how are the results are affected when

we change the generative process of the input data. Since in a realistic setting, different

dimensions of the input follow different distributions, exploring how this affects the

performance of DeepLift is interesting. We need to note however, that when using a

more diverse generative process we might need to change the method of processing the

local explanations to derive a global explanation.

As we discussed, another reason that affects the quality of the results, is that we

are not explaining the original models directly but a simplified version of them. Even

though our attempt to derive a more accurate approximation of the original model failed,

it is still an interesting research question. We can take this thought process one step

further and change the trained model with one that is differentiable, for example by

swapping the argmax operator with a softmax or a Gumbel softmax, if we also want

to allow exploration at this step. After all, the shortcomings we encountered when

trying to generate post-hoc explanations also affect training. The two models are not

connected through a differentiable pipeline and they must be trained sequentially. It

would be interesting to explore, if introducing the aforementioned change would not

only make the model more compatible with gradient based explainability methods,

but also improve its performance since gradients can be backpropagated through both



Chapter 5. Conclusions & Future Work 34

models.
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