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Abstract

Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can develop after

experiencing traumatic, usually life-threatening events. The disorder is characterised

through various symptom clusters, each of which can cause extreme distress and result

in significant impairment within many aspects of an individuals life. Complex PTSD

(cPTSD) is a recently proposed distinction of the disorder, resulting from prolonged,

ongoing trauma that can cause additional symptoms, and typically precipitates lasting

damage to an individuals perception of themselves and the world. Current knowledge

of the underlying mechanisms of this disorder remains limited, as does knowledge

of clear distinctions between PTSD types. Through methods of computational psy-

chiatry, we model the fear learning aspect of the disorder, hoping to improve this

understanding. Several reinforcement learning models of PTSD are summarised. A

recent TD-Momentum model is then re-implemented and evaluated in terms of describ-

ing cPTSD and implications to treatments. Several extensions are then proposed that

can add value to the model, these include concepts of associability, outcome-sensitivity,

and valence partitioning which are evaluated in terms of their implications.
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Chapter 1

Introduction

Post-traumatic stress disorder (PTSD) is a psychiatric disorder which effects all ages and

can develop after an individual experiences or witnesses a traumatic event. Although

not all who suffer from PTSD have experienced a dangerous life event, the risk of

developing PTSD drastically increases after exposure to serious trauma. The context of

such traumatic events can vary greatly, but will likely include feelings of horror, extreme

fear or helplessness, e.g. being injured or witnessing another person being injured or

killed. The disorder is thought to effect around 6–8% of the general population, with

this figure increasing significantly up to 25% if individuals have experienced severe

psychological trauma (combat veterans, war refugees) [22].

The Diagnostic and Statistic Manual of Mental Disorders (DSM-5) [4] classifies

PTSD as a Trauma- and Stressor-Related Disorder, rather than an anxiety disorder

and organises symptoms into clusters, where the duration of disturbances must be

more than one month and cause significant distress and/or impairment to an individ-

uals social or occupational life (which cannot be attributed to effects of substance

abuse or another medical condition). Symptom clusters include: intrusion symptoms,

avoidance symptoms, negative alterations in cognition/mood, and alterations in
arousal and reactivity. However, the DSM-5 does not separate type-1 and type-2

PTSD (also known as complex PTSD, or cPTSD), so no clinical diagnosis of cPTSD

currently exists. cPTSD refers to PTSD caused by repeated, long-lasting exposure to

traumatic experiences (at any age) that may not be life threatening themselves, but are

still extremely traumatic and often come with an increased sense of helplessness and

powerlessness (e.g. domestic abuse, sexual abuse).

In contrast to the DSM-5, the International Classification of Diseases (ICD-11)

[29] does provide a distinction for PTSD types. The ICD-11 lists PTSD symptoms
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Chapter 1. Introduction 2

to be: re-experiencing symptoms (intrusive, distressing memories, dissociative reac-

tions e.g. flashbacks, intense distress at exposure to cues reminiscent of the trauma,

re-experiencing trauma in the here and now), avoidance symptoms (deliberate avoid-

ance of memories and external reminders related to trauma, e.g. people and places),

alterations in arousal and reactivity (emotional outbursts, persistent perceptions of

heightened fear, hypervigilance, hyperarousal). Additional clinical features are noted,

including dissociative symptoms, suicidal ideation, substance abuse, social withdrawal,

and anxiety. Emotional responses include sadness, shame, humiliation, and guilt (also

survivor guilt). The criteria for cPTSD includes all of the above, and additionally: se-
vere problems with affect regulation (increased emotional reactivity, self-destructive

behaviour, emotional numbing, dissociation), persistent diminished feelings of oneself
(worthlessness, guilt from not having escaped the trauma/preventing it for others),

persistent difficulties in maintaining relationships (avoiding relationships/social

situations, a sustained view of the world being dangerous/that people cannot be trusted).

There is much debate as to whether these PTSD types should be distinctly separated.

Some, like Cloitre et al. [8], believe that a clear distinction is necessary for progress

in refining treatments and diagnoses. However, there are those, such as Achterhof et

al. [2], who claim that statistical tests show that patient groups are not well separated,

showing a lack of clear evidence to support such a distinction. Here, we take the stance

of Cloitre at al., that a distinction between PTSD and cPTSD will benefit more tailored

and effective treatment planning. Due to this distinction being a recent inclusion in the

ICD-11, there is much ambiguity in the literature with regards to which PTSD type is

being discussed, making it difficult to clearly identify if the literature is more relevant

to cases of prolonged, ongoing trauma or sudden, more classical PTSD trauma.

Ultimately, this dissertation aims to provide insight on cPTSD processes and symp-

toms, and to provide avenues for further research that could help in progressing treat-

ment. Our focus being on why treatments may not always be effective (treatment

failure/dropout), and how cPTSD mechanisms may differ to more classical PTSD.

We begin by reviewing typical approaches of computational PTSD models, we then

review the literature of relevant models, discussing what they can explain and their

shortcomings. We then re-implement the main models of Kaye et al. [16], reproducing

results and noting the extent to which they can explain mechanisms of cPTSD. We also

perform our own additional investigations on how model behaviour reacts to early life

stress (ELS). Finally, we provide details on potential model extensions that can add

value to explaining mechanisms of the disorder.



Chapter 2

Background

Many key questions remain in order for PTSD to be better understood. The underlying

mechanisms of the disorder need to be clarified for treatments of each PTSD type to

be improved, and for clinicians to be able to accurately predict which individuals are

more susceptible to developing the disorder after experiencing trauma. Some important

research questions that remain include [5]:

• Why (at a neurobiological level) do some individuals fully recover from traumatic

experiences and others do not?

• Can we predict how different people will react to trauma and/or treatment?

• How does severity and duration of trauma affect likelihood and severity of PTSD?

There have been various different approaches taken in modelling PTSD mechanisms

and framing these important questions. Much of the literature takes on one or more of

these approaches: predictive coding, Bayesian inference, and reinforcement learning.

The predictive coding framework views the brain as a predicting machine that

minimises prediction errors to correctly update predictions based on sensory input.

PTSD is proposed to cause a breakdown in this framework that is reflected in symptom

clusters. Aitchison and Lengyel note that while predictive coding offers a framework

for implementing prediction error based learning updates, Bayesian inference provides

a possible calculus for computing such predictions [3]. In Bayesian inference, prior

beliefs about the environment/sensory input are tested and updated when new evidence

is received, where the posterior updates follow Bayes theorem. The prior belief is

combined with the likelihood of observed data given the prior belief, and is normalised

by the overall probability of observing the data, giving a valid posterior. This process

repeats using the latest posterior as the new prior, generating an endless cycle of belief
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Chapter 2. Background 4

updates about the environment. Intense trauma can change an individuals internal model

such that powerful, maladaptive priors reflect PTSD symptom clusters.

Reinforcement learning (RL) models generate agents that learn a set task in real

time through trial and error, along with delayed rewards. They are typically applied to

model learning or decision making, e.g. avoidance or fear learning and are well suited to

be fit to behavioural tasks, with their adaptability allowing us to identify differences in

the neural functions of learning processes in individuals with PTSD. These models are

typically combined with neuroimaging data from the areas of the brain associated with

learning and decision-making (e.g. the amygdala), allowing for a deeper understanding

of the mechanistic processes of learning related to the disorder [7]. However, current

RL approaches are usually hindered by basic assumptions of outcomes in the related

behavioural tasks, which may not account for the broad spectrum of outcomes in reality.

Predictive coding approaches to PTSD are typically theoretical and not applied

to data due to the complexity of retrieving such information (e.g. how do we extract

accurate information about ones internal belief system?). However, they do provide a

thorough base for theory on the underlying mechanisms of PTSD and can be applied to

explain a variety of symptom clusters [30]. The following literature review focuses on

RL models of PTSD that relate more directly, and can be compared to, the main RL

model explored in this dissertation.

2.1 Literature Review - Reinforcement Learning Models

Radell et al. suggest that a fully comprehensive model of PTSD should provide novel

predictions and potential explanations for the underlying mechanisms of all symptom

clusters of the disorder [19]. However, the complexity of the disorder, along with

the current lack of understanding the underlying mechanisms, make this unifying

model difficult to define. Most computational models of PTSD instead focus on

adaptations within one of the symptom clusters: fear learning, hyperarousal, avoidance,

cognition & mood, and intrusive memories. With RL models commonly applied to

behavioural data, symptom clusters where it is easier to extract such data are favoured,

namely: fear learning, hyperarousal, and avoidance. Models related to disorders sharing

symptomatology with PTSD are included from which we can draw parallels to PTSD

mechanisms. The lack of distinction between PTSD types within the literature makes it

difficult to specify which models relate to cPTSD. Efforts have been made to include

relevant literature with the potential to describe mechanisms associated with cPTSD.
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2.1.1 Kaye et al. (2023) - TD-Momentum Threat Prediction Model

Kaye et al. [16] propose a fear learning model of estimating threat which incorporates

associative and non-associative responses to threat across different contexts. They

implement a Temporal Difference learning model (TD) with the addition of a momentum

term, mt . Threat in context c at time t is computed as follows.

Tc,t = Tc,t−1 +α(ut − γ1Tc,t−1)+ f mt (2.1)

mt = mt−1 + γ2 ∑
c={A,B,...}

α(ut −Tc,t−1) (2.2)

γ1 is the decay rate of associative prediction errors, α is the learning rate. The momentum

at time t, mt , is computed from the sum of all decayed prediction errors across all

contexts. Scaling constant f and momentum decay rate γ2 control how much momentum

influences learning.

Momentum was first proposed by Eldar et al. [10] as a way of representing mood in

Bipolar Disorder (section 2.1.5). Eldar et al. proposed that mood corresponds to the

overall momentum of recent outcomes, where its biasing influence on the perception

of outcomes accounts for environmental dependencies, therefore “correcting” learning.

Applied here by Kaye et al., momentum (Eq. 2.2) allows for threat prediction errors

in any given context to affect predictions in all contexts. In other words, this term

corresponds to the “mood” of an agent, given recent experiences.

Comparing to a basic TD model and fitting to real data from a contextual rodent

study (discussed in chapter 3), the authors showed how this TD-Momentum model

represented fear learning better than the simpler model. Kaye et al. also note the

addition of this momentum term may provide potential reasons for PTSD treatment

failure (exposure therapy). However, the model is only evaluated generally by the

authors. In chapter 3 we re-implement the models and evaluate them with a focus on

how early life stress can effect threat perception. We also explore any links to cPTSD.

2.1.2 Homan et al. (2019) & Brown et al. (2018) - Associability

Models of Fear Learning and Hyperarousal

Homan et al. create a fear learning hyrbid model of Rescorla-Wagner/Pearce-Hall

models [14] used to explain conditioned threat responses for two groups of combat

veterans (PTSD and healthy controls). The task for both groups was to learn pairings

of pictures of faces and electric shocks. The authors identified a correlation between
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the magnitude of prediction errors and the severity of symptoms in PTSD individuals,

where highly symptomatic individuals were more influenced by larger prediction errors.

The associability term gives a value to the attention that each specific cue receives,

depending on its historic accuracy of predicting the outcome. Associability effectively

turns the learning rate from a constant into a dynamic parameter. Unreliable cues

receive larger associability as time moves on, as they are more likely to be unreliable in

the future, and are thus updated preferentially as new information comes in.

Brown et al. [7] propose a similar hybrid Rescorla-Wagner/Pearce-Hall model,

focusing on hyperarousal symptoms and investigating potential reasons for dispropor-

tionate reactions to unexpected stimuli. The authors fit results from a loss learning

task performed by a group of combat veterans who had to choose between two stimuli

with monetary income and learn the “better” option over time. Brown et al. showed

that veterans with PTSD have an increased learning response to surprising events, i.e.

an increased learning rate for unexpected events that inherently cause larger predic-

tion errors. PTSD individuals typically received increased associability weights for

unexpected cues during loss learning, meaning that loss learning in these individuals

was more heavily influenced by unexpected outcomes related to these cues. Similar

to Homan et al., associability represents the attention that each cue is given by the

participant. Thus, loss learning was more heavily influenced by attention given to

surprising outcomes, with PTSD individuals more likely to allocate additional attention

to unexpected outcomes, which could provide reason for exaggerated responses to

unexpected stimuli (hyperarousal). The expected value of a stimulus A, QA, is updated

as follows,

QA
t+1 = QA

t +α ·κA
t ·δt (2.3)

α represents the (fixed) learning rate, δt represents the prediction error at time t. The

associability of stimulus A is represented by κA
t , updated as follows.

κ
A
t+1 = (1−η)κA

t +η|δt | (2.4)

The associability weight parameter, 0 ≤ η ≤ 1, controls how much historic prediction

errors influence the future associability of each cue.

The model was found to predict participant choices better than models without asso-

ciability, suggesting that attention-based learning may be a key aspect in the underlying

mechanisms of PTSD and may assist in refining treatment targeting. Similar to the

momentum term used by Kaye et al., associability allows for an agent to take advantage

of prediction errors gathered across its lifetime. In other words, both associability and
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momentum terms add value to their respective models by allowing agents to utilise past

experiences when generating future predictions.

Comparing these terms, momentum (Eq. 2.2) sums the decayed historic prediction

errors of threat across all contexts to influence prediction, whilst maintaining a constant

learning rate. Associability (Eq. 2.4) creates a more dynamic learning rate (seen in Eq.

2.3), where learning for more unreliable cues is updated preferentially. These terms

provide us with an opportunity to explore the extent to which past experiences can

influence future fear learning processes. In relation to cPTSD and childhood trauma

specifically, investigating how these terms react to prolonged stressors in early life

stages and how these influence the extinguishing of learned fear responses could prove

to be key in developing the understanding of cPTSD. We propose a model combining

associability with the momentum model of Kaye et al. in Chapter 4.

2.1.3 Ross et al. (2018) - General PTSD Learning Deficits

Ross et al. [23] explored how much PTSD is associated with general reinforcement

learning, outside of the context of learned fear stimuli. The authors investigated

variations in prediction errors between a group of PTSD individuals and a group of

control individuals. Participants were shown two images of houses and were required

to identify which was unlocked in order to maximise monetary reward. Results were fit

to several adaptions of the classical Rescorla-Wagner model (Eq. (2.5)).

Vt+1 =Vt +δ∗α (2.5)

The expected value of a choice is represented by Vt , the prediction error δ= (outcomet −
Vt), and α represents the learning rate ranging from 0− 1. The authors found that a

risk-sensitive, anti-correlated model fitted participant behaviour best. “risk-sensitive”

implies separate learning rates are used for positive and negative prediction errors.

“anti-correlated” implies that updates to the expected value of the unchosen stimulus

are in the opposite direction of the prediction error. Choice estimate values are then

updated via Eq. (2.6) and Eq. (2.7), where α+/− = α+ if δ ≥ 0 or α− otherwise.

VChosen
t+1 =VChosen

t +α
+/−
Chosenδ (2.6)

VUnchosen
t+1 =VUnchosen

t −α
+/−
Unchosenδ (2.7)

Although no significant differences in parameter values across these adult groups

were found, previous cognitive flexibility investigations using this model have been
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performed on adolescents that found a significantly increased learning rate for negative

prediction errors compared to adults [13]. Therefore, we propose that this model may

have further implications (and provide more distinct results between groups) when

applied to childhood trauma and cPTSD.

Comparing to previous models, this model is similar to the associability model

of Brown et al., where associability can be portrayed as weighting learning such that

unreliable cues are updated preferentially and influence learning more than others.

Ross et al. do not include this weighted learning as such, although there are separate

learning rates for positive and negative prediction errors, no specific cues are updated

preferentially. The momentum model is also the only approach to explicitly incorporate

non-associative learning (via the momentum term).

2.1.4 Yanamori et al. (2023) - Anxiety Related Approach-Avoidance

Yanamori et al. [31] investigated anxiety-related approach-avoidance, proposing that

anxiety may increase avoidance responses (decrease approach responses) in an approach-

avoidance task, which may be explained by increased sensitivity to punishments rather

than rewards. In other words, anxious people are more likely to avoid pursuing reward

than to pursue a reward associated with potential punishment. Although based on

anxiety-related avoidance, the concepts used have parallels to PTSD-related avoidance.

Yamamori et al. conducted a “Restless Bandit” behavioural task where participants

aimed to maximise rewards while avoiding punishments. Participants chose one of two

images that resulted in either a reward or no reward. Options were grouped as “safe”

and “conflict” (unknown to participants), where “conflict” options sometimes resulted

in screaming sounds (punishment) and could be any combination of reward/no reward

and punishment/no punishment (4 possible outcomes). “safe” options never resulted in

punishment and were, on average, less likely to produce reward over “conflict” options.

“conflict” options thus represented more reward but also the potential of punishment.

Participant choices were fit to variations of the Q-learning algorithm [28]. The

model with specific learning rates and specific outcome sensitivity parameters for

rewards and punishments fit behavioural data best. Probability estimates of outcomes

are progressively updated as action outcomes are observed. These estimates are used by

participants to choose an option that maximises subjective value, e.g. option most likely

to result in reward, or option most likely to result in no punishment. The probability

estimates of observing an outcome, o = {reward, punishment}, of a chosen option,
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a = {con f lict,sa f e}, were updated via the below:

Qo
t+1(a) = Qo

t (a)+α · [ot −Qo
t (a)] (2.8)

Learning rate α is split into reward- and punishment-specific learning rates, αr and αp

that imply a similar risk-sensitive approach to Ross et al., however, learning rates are

chosen based on outcome, rather than sign of prediction error. Probability estimates are

then merged into action weights, W , at every trial, with outcome sensitivity parameter,

β, separated into reward- and punishment-specific parameters, βr and βp.

W = β
r ·Qr −β

p ·Qp (2.9)

The action weights then form the basis of which choice is made between options,

modelled with a softmax function,

P(a) =
W (a)

∑iW (i)
(2.10)

The sensitivity parameters βr,βp capture the extent to which each outcome impacts

choice and allow for asymmetries in how individuals value reward and punishment to be

captured. The “reward-punishment sensitivity index”, βr/βp, provides a unique index

for each individual as to where they lie on the approach vs avoidance spectrum, higher

values correspond to approach preference, and lower values to avoidance preference.

The authors found that punishment learning rate αp and reward-punishment sensitiv-

ity index βr/βp were negatively correlated with task-induced anxiety. This indicates that

anxious individuals were slower in updating estimates of punishment probability, and

that they placed more weight on punishment relative to reward when choosing between

options (reward was biased by potential for punishment). This explains the effect of

task-induced anxiety on avoidance behaviours, and may be useful in providing further

insight into mechanisms that drive avoidance. As anxiety disorders are often comorbid

with PTSD [6], similar experiments could be conducted on PTSD individuals exploring

if parameter values for PTSD individuals are similar to those in this anxiety-related

study. Differences in parameter values may provide insight on differences between the

mechanisms of these disorders and provide potential explanation for comorbidity.

2.1.5 Eldar et al. (2016) - Momentum Model of Mood in Bipolar

Disorder

Here we detail the momentum model by Eldar et al. [10], which is implemented by

Kaye et al. in the main model of this dissertation. This model aims to describe mood in
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a computational model of bipolar disorder (BD). It is known that BD can stem from

prolonged childhood trauma (cPTSD) and individuals often suffer from both disorders

[6]. Also, cPTSD is often misdiagnosed as BD due to similar symptoms, as such we

can draw parallels to cPTSD mechanisms.

Eldar et al. propose that experiences affect mood, which in turn influences future

experiences. They suggest that mood is the overall momentum of recently experienced

outcomes, and that its biased influence on outcome perception allows for the “correction”

of learning, accounting for environmental dependencies. The model is based on an

adjusted form of the Rescorla-Wagner model (Eq. (2.5)), this standard form assumes

different states are independent of each other. However, Eldar et al. suggest that if

different states are not independent of each other, and multiple states can be similarly

affected by some environmental factor, then an adjustment is required that updates

expectations of all states affected by this factor, when a prediction error is experienced

in any one of the states. The momentum term is introduced to represent this:

mt+1 = mt +α((outcomet −V s
t )−mt) (2.11)

Momentum assumes that states close in space and time are affected similarly. The term

is combined with Eq. (2.5) to create the momentum model for mood (Eq. 2.12), where

ft is a scaling factor. This model allows for expectation of reward in a given state to

reflect outcomes experienced in all states.

vs
t+1 = vs

t +α( ft ∗mt +(outcomet − vs
t )) (2.12)

The authors apply behavioural data (gathered by Eldar and Niv [9]) from BD individuals

who played a different slot machine before and after a wheel-of-fortune draw that they

either won or lost. Participants who reported high emotional instability were asked to

report how their mood varied throughout the experiment. The wheel-of-fortune outcome

was shown to influence mood in these individuals. Those who won the wheel-of-fortune

preferred the second slot machine (after the win, played in a better mood), while those

who lost the wheel-of-fortune preferred the first slot machine (before the loss, played

while in a better mood), showing how outcomes that may not be directly related to future

stimuli can influence interpretation of future stimuli (i.e. mood influences learning).

Kaye et al. implement this concept of mood into a model investigating the fear

learning aspect of PTSD, whereby they propose that trauma experienced in any context

should hold some influence over threat predictions in other contexts that are close in

space and time. We now move on to the evaluation of this main paper.



Chapter 3

Re-implementation & Evaluation of

Kaye et al. (2023)

The majority of previous RL models of PTSD focus on associative learning, describing

the disorder as a deficiency in extinction learning of conditioned fear responses thought

to rely on RL mechanisms, i.e. future predictions are influenced by errors between

predictions and actual outcomes (prediction errors). Many studies build upon the

classical Rescorla-Wagner model [21] which accurately describes associative learning.

However, Kaye et al. note that these studies do not incorporate non-associative learning,

and thus fail to account for how repeated trauma (across different contexts) can influence

future threat predictions. There is currently a lack of knowledge surrounding how non-

associative learning in PTSD can be described computationally, as well as how this

process may be implemented neurobiologically.

The authors propose a novel RL model to advance this knowledge, combining the

basic Temporal Difference (TD) RL model and the mood model by Eldar et al. [10]

(section 2.1.5). Kaye et al. suggest that the estimation of frequency of trauma may be

influential to PTSD adaptations in the brain, instead of simply threat associations with

specific cues. The authors first propose a Bayesian model for estimating frequency of

threat, to understand how well an agent can perform based on its own experiences. Two

RL models are then created; the simpler TD model, and the TD-Momentum model

(our main focus). These RL models are fit to data from a stress-enhanced fear-learning

(SEFL, section 3.2) model of rodents to assess if the TD-Momentum model provides an

improved fit to threat learning.

11
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3.1 Bayesian Baseline Model

Kaye et al. propose that an agent in an environment must estimate future likelihood of

trauma based upon previous experiences, which can be defined in a Bayesian process.

This Bayesian model is used as a baseline for threat estimation from the perspective of

an “ideal observer” that utilises all information of a stimulus (in the given context) to

estimate threat as best as possible. This allows us to measure how much information an

agent can accumulate over a lifetime when subjected to traumatic events.

A simple probabilistic model was used to test the performance of an ideal Bayesian

observer in an information-poor environment, i.e. where agents have no previous

knowledge of the environment and must learn from scratch. The model runs for 700

timesteps where, at each step, attacks occur with probability pa and death occurs with

probability pd (given an attack occurs). This procedure is repeated for all timesteps,

or until an attack results in death. If an agent survives a timestep, it continues to

learn and this procedure repeats at the next timestep (model structure is shown in

Appendix A, Fig. A.1). Agents have no power over the environment and do not know

the fixed probabilities of attack (pa) or death (pd), these are set by researchers. During

simulations, if the actual probability of death is set too high, agents will not gain enough

experience over their lifetime in order to produce good estimates. Therefore, agents

must maximise the information available in order to produce accurate estimates.

3.1.1 Bayesian Attack Rate Estimation Model

In the attack model for Bayesian estimation, attacks are binomially distributed over the

agent lifetimes (700 timesteps), with a probability of attack pa = 0.2 and a probability

of death given attack pd = 0.01. Both pa and pd agent estimates are calculated via

Bayes theorem, based on a sequence of attacks, xt.

p(pa, pd|xt) =
p(xt|pa, pd)p(pa, pd)∫

p(xt, pa, pd)dxt
(3.1)

Upon new observations, posterior estimates are updated through an affine invariant

Markov Chain Monte Carlo (MCMC) sampler [11]. As time progresses, the previously

evaluated posterior becomes the new prior and estimation is repeated. As agents have

no starting knowledge, we set a flat initial prior at t = 0. The MCMC sampler was fit

using the below likelihood function to estimate the posteriors of pa and pd .

ln(L(xt, pa, pd)) = ∑
attacks

ln(pa(1− pd))+ ∑
non−attacks

ln(1− pa)+ ∑
deaths

ln(pa ∗ pd)

(3.2)
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The affine invariant MCMC sampler, first proposed by Goodman and Weare [12], is

applied due to its efficiency in exploring skewed posterior distributions. Here, agent

posterior estimates are predicted to be positively skewed between 0 and 1, with more

estimations being near the real value of pa. This estimator generates the best estimate

available to an ideal Bayesian observer, with the information available at each timestep

3.1.1.1 Bayesian Attack Rate Estimation Model - Implementation of Methods

In terms of implementing models, all code was written in Python (Version 3.9 [27])

using various packages. Attack sequences of 700 timesteps based on figure A.1 were

simulated for use in the MCMC Sampler, code for these simulations is given in Appendix

B.1. The “EnsembleSampler” function from the “emcee” [11] package was used to

generate the MCMC sampler with 30 walkers, “num steps”=60, “burnin” = 0.3 and a

“moves” argument of “Stretch move” with stretch parameter = 2. Code for the MCMC

implementation and related plots can be found in Appendix B.2 - B.3.

Kernel Density Estimation (KDE) was applied to results of the MCMC sampler

using the “gaussian kde” function of the “stats” package [1]. Suitable bandwidths were

selected for the pa and pd distributions to generate smooth posteriors. A “gaussian filter”

was applied so that contour plots of pa against pd were readable.

3.1.2 Auto-regressive Time Series

Auto-correlated attack rate time series were also generated to create attack sequences

used as input to the Bayesian model, following the auto-regressive (AR) process below.

pa,t = cpa,t−1 +N (0,0.01) (3.3)

Attack rate at timestep t is denoted pa,t , the correlation for successive timesteps is

represented by c, additional noise N (0,0.01) is sampled from a normal distribution

with mean µ = 0 and standard deviation σ = 0.01. The resulting time series of unique

pa at each timestep is used to generate attack and death sequences for input to the

MCMC sampler. Whilst pa varies at each timestep, pd = 0.01 remains constant. This

process generates attack sequences where pa ≈ 0.01, as pa,0 = 0 (initial pa).

3.1.2.1 Auto-regressive Time Series - Implementation of Methods

AR time series simulations used the “ArmaProcess” function of the “statsmodels.tsa”

package [25]. This function requires “ar” and “ma” arguments which represent
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coefficients for the auto-regressive and moving-average lag polynomials, respectively

(zeroth lag always set to 1). To implement the AR process in Eq. (3.3), arguments are

set to ar = [1,−c] and ma = [1], where c values must be negated in the ar argument,

e.g. for c = 0.7 we set ar = [1,−0.7]. As we require a strictly non-negative probability

of attack, pa, in the binomial distribution, time series must be clipped between 0 and 1

before generating attack sequences (related code detailed in Appendix B.5).

We generated 10,000 separate lifetime (700 timesteps) attack rate time series, used

to create 10,000 separate attack sequences consisting of 0’s (no attack) and 1’s (attack).

Each sequence was used as input to the MCMC sampler, testing how the model reacts

to varying AR correlation coefficients c (related code in Appendix B.6).

3.1.3 Bayesian Model - Re-implementation

Here we re-implement this Bayesian model and reproduce plots similar to those of

Kaye et al.. Fig. 3.1 shows posteriors generated from MCMC sampler results of a

typical sequence of attacks over an agent lifetime, created using a single AR time

series of attack probability (correlation constant c = 0.7). This shows estimates of the

probability of attack (pa) to be very accurate, with real attack rates generated by the

AR time series being pa ≈ 0.01, our pa posterior estimates are clearly centred around

this value, ranging between 0 - 0.02, indicating low variance. The accuracy of pd

posterior estimates is very poor in comparison, with estimates over a much wider range,

showing non-convergence to a confident estimate and indicating the model is poor at

estimating lethality of attacks. This is intuitive when considering the model structure;

an agent cannot provide further information for posterior updates after death (Fig. A.1).

This Bayesian model progressively improves its estimates over time, becoming more

confident in estimating attack frequency throughout its life (seen in Appendix A Fig.

A.2, variance in model estimates decreases over time, showing convergence for pa

estimates). The correlation in AR time series can influence precision of Bayesian model

attack estimates, larger auto-correlation (c = 0.999) results in larger variance in pa

estimates (flatter, wider posteriors) and less accuracy in results. Lower auto-correlation

(c = 0.7) results in lower variance in pa estimates (sharper, thinner posteriors) and more

accuracy in results (seen in Appendix A, Fig. A.3 showing “average” MCMC sampled

densities for 10,000 simulated AR time series with various values of correlation).

Kaye et al. then briefly discuss links to childhood trauma, comparing an early life

stress (ELS) scenario to one of lifetime stress. We re-create a similar plot in Fig. 3.2,
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Figure 3.1: Estimated posteriors for pa and

pd for typical attack sequence generated

from AR time series of attack rates with

c = 0.7. The Bayesian estimator approxi-

mates pa very accurately (pa ≈ 0.01), how-

ever estimates lethality of attacks poorly,

as agents gain no information after death.

Figure 3.2: ELS scenario (red) with n = 15

attacks in early life and lifetime scenario

(blue) of n = 15 attacks across life. The

ELS scenario shows larger threat predic-

tions and increased variance across its

lifetime, showing the Bayesian model can

naturally represent the impact of ELS.

where n = 15 attacks are uniformly distributed in the first half of life to represent ELS,

and across the entire lifetime for the lifetime scenario. Attacks in early life can cause

mean and overall variance of threat estimations to be larger (red) compared to attacks

spread across a lifetime (blue), showing how the Bayesian model can naturally represent

the disproportionate impact of early life trauma (see Appendix B.7 for related code).

3.1.4 Bayesian Model - Additional Investigations

We now extend upon the findings of Kaye et al. by applying our own ELS scenarios

and analysing how the model reacts. We investigated the effects of ELS clusters of 3

attacks compared to random attacks over a lifetime (see Appendix B.8 for related code).

For the ELS scenario, 5 equally spaced ELS clusters of 3 attacks were administered

(over adjacent timesteps, totalling 15 attacks), while the lifetime scenario consisted

of 5 attacks randomly over a lifetime. Clustered attacks represent more significant or

prolonged traumatic ELS compared to single attacks. Fig. 3.3 shows the ELS scenario

has larger mean and variance of threat estimations compared to the lifetime scenario.

However, this may be due to the ELS scenario simply having more attacks. We

also compare the clustered ELS scenario to a lifetime scenario with the same number
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of attacks. Fig. 3.4 shows mean threat predictions in the lifetime scenario all increase

slightly as expected. However, variance in lifetime threat estimation remains similar to

lifetime variance in Fig. 3.3. The mean threat estimations in the ELS scenario, as well

as variance, still remain significantly larger than those in the lifetime scenario.

Figure 3.3: 5 equally spaced 3-clustered

attacks (red-ELS), compared to 5 random

attacks over lifetime (blue-lifetime)

Figure 3.4: 5 equally spaced 3-clustered

attacks (red-ELS), compared to 15 random

attacks in lifetime (blue-lifetime)

Comparing the clustered ELS scenarios in Figs. 3.3 and 3.4 to random single ELS

attacks in Fig. 3.2 (all red plots), we observe that the clustered scenario threat estimates

maintain larger variance and mean in comparison to the single attack scenario. In other

words, these simulations show that clustered attacks in early life can cause the Bayesian

estimator to be less accurate and predict higher threat than random single attacks in early

life. However, as these plots show single simulations, they may not generalise to every

scenario of clustered vs single attacks. In any case, there is a clear disproportionate

effect on threat estimates caused by any early life attacks, clustered or single.

3.1.4.1 Bayesian Model Implications for cPTSD

In terms of cPTSD implications, our investigations correspond to comparing types of

early life trauma to trauma experienced over a lifetime. Findings suggest that individuals

exposed to clusters of ELS predict higher threat across their lifetime compared to those

who suffered less prolonged ELS, or less intense trauma spread across their lifetime.

These increased threat predictions represent an increased perception of threat in the

world throughout day-to-day life which may provide explanation for the dysfunctional

physical and emotional responses prevalent in cPTSD, classified by symptom clusters.
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Physical symptoms may be represented by an increased state of hyperarousal (star-

tle response) and hypervigilance to sensory inputs. Emotional symptoms would be

represented by emotional dysregulation during various situations. For example, in-

creased emotional reactivity to small stressors, where an individual may react with

intense negative emotion to a minor stressor (e.g. being easily overwhelmed by a minor

inconvenience). Another possible representation may be a persistent, deep sense of

mistrust of the world in general, caused by persistent elevated threat level. Symptoms

may then lead to impairment in important areas of social functioning (occupational,

family, educational) and may also be linked to difficulties maintaining relationships.

It could also be argued that this increased perception of threat may lead to avoidance

of reminders of the trauma itself, or even to avoidance of small stressors unrelated to the

original trauma that, when encountered, may trigger these aforementioned symptoms.

3.2 Stress-Enhanced Fear-Learning Model

Here we define the Stress-Enhanced Fear-Learning (SEFL) model of rodents which

produces behavioural data used for fitting to the RL models of threat. The SEFL has

been shown to result in long-lasting enhancement of fear behaviour in rodents [20].

Stressed mice were subject to 15 unpredictable footshocks in context A on day 1 over

90 minutes, with random inter-shock intervals of 4 to 8 minutes. Mice were transferred

to context B (with completely different sensory characteristics) for 10 minutes on day 6

and administered a single footshock after 5 minutes. On day 7, mice were returned to

context B for a further 10 minutes with no footshocks. A group of control mice were

not exposed to any footshocks (unstressed) on day 1 in context A, but had the same

experience as stressed mice on days 6 and 7. Freezing was defined to be complete

cessation of movement (other than breathing), and was measured for all mice across all

days. Stressed mice showed an increased average freezing percentage across days 6 and

7 compared to unstressed mice, shown in Figs. A.4 and A.5 of Appendix A.1.

“Freezing” is a voluntary defence mechanism in rodents where the animal is com-

pletely immobile in response to potential threat. The raw freezing time series created

for each mouse is binary, where 1 marks observed freezing behaviour and 0 marks no

freezing. This is transformed into “smoothed freezing”, used as input for the models.

Smoothing is a pre-processing technique to assist in time series analysis of freezing in

which the percentage of freezing within consecutive time intervals is calculated, giving

a smoother view of freezing variation over time. Kaye et al. use a 15s sliding window
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smoothing, i.e. average freezing is calculated over 15s fixed intervals, the window is

then moved on 1s and freezing percentage is calculated again, creating a time series of

moving average values between 0 and 1 (an example of this smoothed freezing is shown

in Fig. 3.7). We perform a similar smoothing to the raw freezing data, generating our

own smoothed freezing sequences (related code can be found in Appendix C.2).

3.3 Reinforcement Learning (RL) Models

We now introduce the RL models applied by Kaye et al. that aim to explain the neural

processes of fear learning in PTSD. The free parameters in each model allow for fitting

to the stressed and control (unstressed) mice groups from the SEFL, allowing for

hypotheses and conclusions to be drawn from comparisons across groups. We begin by

re-implementing the models and reproducing similar plots before performing additional

investigations on TD-Momentum model behaviour and response to ELS.

Fitting the TD and TD-Momentum models to the contextual SEFL experiment data,

Kaye et al. tested if threat momentum was a source of PTSD symptoms, rather than just

the specific association with traumatic events. Parameters for both models were fit via

maximum likelihood, minimising the negative log likelihood (NLL) function of each

model. The maximum likelihood fit for each model (of each mouse) was compared

using BIC scores to identify the best fitting model for each mouse. Inputs to models

were binary time series of attack sequences (1s indicating attacks, 0s no attack), threat

was fit for both contexts across all three days, where the threat variable in models

(output) was re-scaled to (0.1, 0.9) to match the real smoothed freezing probabilities.

3.3.1 Parameter Recovery

Parameter recovery was performed for both models prior to fitting. Generative model

functions were built and two scenarios for parameter sampling were carried out: one set

from multivariate normal distributions (with no covariance), and one set from random

choices of potential parameter value in lists provided by Kaye et al..

The multivariate normal distribution had means equal to the midpoints of each

respective parameter value list, with suitable variances to ensure sampled values were

spread across the complete range of values for each parameter. Parameter values sam-

pled from the lists were simply random choices from each list. 100 simulations were run

for each sampling scenario and parameters were recovered via maximum likelihood fit,
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minimising the NLL function of each model using the “differential evolution” function

with a “polish = True’ parameter from the “scipy.optimize” package [15]. The inclusion

of “polish” means the “L-BFGS-B” method is applied to the best population member,

slightly improving results. Differential evolution was found to be the best optimisation

method for both models. Related code can be found in Appendices C.4-C.5 (TD model),

and Appendix D.4-D.5 (TD-Momentum model).

Recovery was very successful for the basic TD model, with Pearson correlation

coefficients between sampled and recovered parameter values for both α and γ1 parame-

ters being close to rα ≈ rγ1 ≈ 1 (perfect recovery), showing the TD model function and

related TD NLL function were implemented correctly (Figs. A.7, A.6 in Appendix A).

Recovery for the TD-Momentum model was successful for α with correlation consis-

tently returning values rα ≈ 1. Recovery for γ1 was not as successful, with correlation

in the range 0.57 < rγ1 < 0.87. Recovery for γ2 and f parameters was less successful

with correlations coefficients in the ranges 0.38 < rγ2 < 0.69 and 0.2 < r f < 0.61 (Figs.

A.8, A.9 in Appendix A), this weaker recovery may be due to the parameters having a

similar effect on threat estimations, hindering the minimiser from accurately minimising

the NLL, thus returning non-minimal values. No apparent correlation between fitted

parameters was found, suggesting this poor recovery is not due to the parameters trading

variance with each other. Kaye et al. do not note any parameter recovery in their study,

it may be the case that recovery was not performed. In any case, we do not have any

recovery figures or thresholds to compare our findings to. Overall, our findings show

that both models and related NLL functions are correctly implemented.

3.3.2 TD Model

The Temporal Difference (TD) model, adjusted from Sutton and Barto [26], follows the

update rule:

Tc,t = Tc,t−1 +α(ut − γ1Tc,t−1) (3.4)

Threat at time t in context c is denoted Tc,t , learning rate is represented by α and controls

how much the prediction error (ut − γ1Tc,t−1) updates future threat estimations, decay

rate is represented by γ1 and controls how much we discount the value of future rewards.

Threat is learned from a sequence of unconditioned stimuli, ut , as input, in this case

a sequence of attacks (0 for no shock, 1 for shock). Parameter values are bounded as

follows: 0.05 ≤ α ≤ 0.9 and 0.9 ≤ γ1 ≤ 0.99999. This update rule describes associative

threat learning for PTSD.
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Figure 3.5: Typical TD threat estimation,

single attack in context A and B, no attacks

in C. Threat prediction for context C does

not increase from 0. Dashed lines indicate

moves from context A to B to C.

Figure 3.6: Typical TD-Momentum threat

estimation for similar scenario. All threat

estimations are affected when an attack oc-

curs in any context. All threat in context C

is due to attacks in other contexts.

3.3.3 TD Model - Re-implementation

The TD model allows us to model threat estimations for agents within the context

in which attacks occur. This model assumes that threat prediction in each context is

independent of other contexts, as such, there is no means for threat estimations to “carry

across” contexts. Fig. 3.5 shows a simulation of a single attack in contexts A and B,

with no attacks in C. Starting in context A, dashed lines represent transitions between

contexts (A to B and B to C). There is no increase in contexts B and C threat when an

attack occurs in A (the sharp increase in threat), similarly for A and C when an attack

occurs in B. Predictions in any context remain constant upon leaving that context.

The TD model thus captures the associative fear learning of the disorder, allowing

agents to associate traumatic experiences with the context in which they occurred.

However, the simple TD model neglects the fact that an agent may have had previous

experiences in other contexts that may influence future threat predictions across novel

contexts. Kaye et al. argue that these past experiences influence an agents current

view of the world (or “mood” as referred to by Eldar et al. [10]), which needs to be

incorporated for threat estimation to represent both associative and non-associative

learning. They present the TD-Momentum model to express this.
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3.3.4 TD-Momentum Model

The TD-Momentum model is an extension of the TD model with the addition of a

“momentum” term, introduced by Eldar et al. [10] (section 2.1.5). The inclusion of

momentum allows for prediction errors in any context to influence estimations in novel

contexts, incorporating non-associative fear learning. The update rule is defined as:

Tc,t = Tc,t−1 +α(ut − γ1Tc,t−1)+ f mt (3.5)

mt = mt−1 + γ2 ∑
c={A,B,...}

α(ut −Tc,t−1) (3.6)

Momentum at time t, mt , is computed from the sum of decayed prediction errors across

all contexts, with decay rate 0 ≤ γ2 ≤ 0.8. Scaling constant 0.01 ≤ f ≤ 3.0 controls

how much momentum influences threat prediction updates. Inputs are sequences of

attacks and outputs are threat prediction sequences across all contexts.

3.3.5 TD-Momentum Model - Re-implementation

For the TD-Momentum model, threat estimations in unique contexts are no longer

independent. Fig. 3.6 shows an example of an agent exposed to a similar simulation

to Fig. 3.5. Comparing to the TD model in Fig. 3.5, attacks in any context influence

estimations in all other contexts and Context C threat also increases, even though no

attacks occur here; these effects are due to momentum. Estimations also plateau slowly

when leaving a context, rather than abruptly plateauing like the TD model.

3.3.5.1 Re-implementation - Fitting to SEFL Data

We now reproduce the fitting and model comparison performed by Kaye et al. An

example of fitting the smoothed freezing to the TD-Momentum model is shown in Fig.

3.7 (single stressed mouse ID G:34). This shows smoothed freezing behaviour observed

on each day (top row), as well as the related TD-Momentum fitted threat (bottom row).

The TD-Momentum model fits threat well, and shows the disproportionate freezing

response of stressed mice to a single footshock on day 6 in context B. Kaye et al. note

that this sensitised behaviour on day 6 is explained by the momentum term, which

allows threat estimates to be linked across context A on day 1 and context B on day 6.

For unstressed mice, TD and TD-momentum fits were very similar due to these mice

not experiencing any shocks on day 1, thus not showing the same level of sensitised

threat to the single shock on day 6 seen in stressed mice.
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Figure 3.7: Observed smoothed freezing of stressed mouse (ID: G34) (top row) and

corresponding TD-Momentum fitted threat (bottom row) across all days of the experiment.

Blue and orange lines represent threat estimates in contexts A and B, respectively.

Vertical lines represent input (footshocks) in contexts A (green) and B (red).

Fig. 3.8 shows the model comparison for all mice. Bayes Information Criterion

(BIC) scores for maximum likelihood fits of each model were computed for each mouse

and the difference (BICT D−BICT D Momentum) was taken to evaluate the preferred model.

Stressed mice favoured the TD-Momentum model (14/15 mice), and control (unstressed)

mice favoured the basic TD model (16/18 mice).

Taking the approach that the momentum model may be favoured as it allows for

influence across contexts, we could argue that unstressed mice may have previously

experienced threatening events in other contexts (before the experiment) that influence

the freezing responses observed in the SEFL study. As such, it would be intuitive to

hypothesise that all mice should have favoured the TD-Momentum model.

This leads to the question of how long momentum should persist after a series of

events. Kaye et al. found this to depend on how long trauma itself persists. When

attacks are correlated in time, including momentum provided a better estimation of

true threat level in an environment. When attacks are uncorrelated, they found that

momentum holds no advantage and the optimal f = 0 reduces to the basic TD model

(Fig. A.10 Appendix A). As unstressed mice experience uncorrelated attacks (no

attacks) on day 1, the f parameter tends towards 0, making the two models equivalent.

As the TD-Momentum model has 4 parameters and the TD model has 2, the BIC
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Figure 3.8: Model comparison for 15 stressed (red) and 18 unstressed (blue) mice. BIC

scores were computed from the maximum likelihood fits of both models for each mouse.

scores for unstressed mice penalise the TD-momentum model more heavily, leading

to the majority of control mice favouring the TD model. Stressed mice experienced

correlated attacks on day 1, including the momentum term predicted increased freezing

in the novel context (B) which resulted in a better fit, with momentum accounting for

improved predictions compared to the TD model (related code in Appendices C.2-C.3

& D.2-D.3).

3.3.6 TD-Momentum Model - Additional Investigations

3.3.6.1 Additional Investigations - Model Behaviour

We now extend upon the findings of Kaye et al. with an analysis of TD-Momentum

model behaviour, focusing on the additional parameters of momentum decay rate (γ2)

and scaling ( f ). Low values for these parameters encourage a slow summation of

prediction errors across contexts and a normal observation of threat estimates summing

to influence other contexts. However, larger values result in oscillatory behaviour of

threat estimations across all contexts, with γ2 being largely responsible for this as it

controls the decay rate of summed prediction errors within the momentum term.

Fig. 3.9 shows TD-Momentum threat in response to 6 random ELS attacks. Typical

values of f = 0.2,α = 0.07,γ1 = 0.9999 were used with the upper bound value of

γ2 = 0.8. This large γ2 value causes context B threat to be larger in general. As

momentum decreases after exiting context A, threat in both contexts reduces, threat
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Figure 3.9: Maximum value of γ2 = 0.8

causes oscillatory behaviour in threat es-

timations across all contexts. Attacks only

occur in context A (blue highlight).

Figure 3.10: Similar to Fig 3.9, with γ2 =

0.15. Small values of γ2 can cause threat

predictions to increase after reaching 0 for

context B, even with no attacks.

in context B returns to 0 before a sudden increase into oscillatory behaviour. Fig.

3.10 shows that increasing γ2 to as small as γ2 = 0.15 can cause strange behaviour

in estimations, where threat increases slightly after context B threat has reached zero.

Maximising both parameters f = 3 and γ2 = 0.8 results in extreme oscillatory behaviour

for threat estimation which, in real life, would correspond to individuals experiencing

cyclical periods of heightened sense of threat followed by periods of low sense of threat.

3.3.6.2 Additional Investigations - ELS Scenarios

Here we extend the findings of Kaye et al. by investigating the effects of repeated

ELS on the TD momentum model. This has links to extinction learning (the basis for

exposure therapy); the process by which associative threat responses are reduced by

re-exposure to the original trauma context with no threat stimulus. This produces small,

negative prediction errors that reduce threat in the trauma context over time.

Fig. 3.11 shows an ELS scenario of 6 random attacks in context A (none in context

B). If the original context of repeated trauma is only visited briefly (e.g. for the duration

of the trauma), after which it is exited, threat in both contexts plateaus at high level,

explaining sensitisation (increase in response) to repeated threat. Threat level will not

decrease further until the original trauma context is returned to and extinction learning

can re-start, reducing threat in all contexts (via reduced momentum). Fig. 3.12 shows

how threat estimations change when the original trauma context is re-entered, allowing

for extinction learning to begin again. Threat for both contexts reduces more rapidly
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Figure 3.11: ELS of 6 random attacks in

context A influences momentum and thus

threat estimations in both contexts (blue for

A, orange for B). Moving from context A to

B, threat estimations both plateau.

Figure 3.12: Similar to figure 3.11, however

here we re-enter context A briefly before

moving back to context B. Threat in both

contexts decreases via momentum due to

re-visiting trauma context A.

while in the original trauma context, even a short return to the original trauma context

can have a large impact due to the larger prediction errors influencing momentum,

context B threat actually returns to 0 following the re-entry. The rate of threat reduction

depends on parameter values; larger learning rates, α, result in more rapid decrease.

We also investigate potential reasons for habituation, the phenomenon in which

threat response decreases when exposed to repeated trauma. This has been shown

to have links to numbing symptoms seen in cPTSD [17]. We compare ELS clusters

followed by smaller singular threat with a scenario of singular, evenly spaced ELS.

Fig. 3.13 shows threat estimates for an agent exposed to 5 singular, evenly spaced ELS

instances in context A (none in context B). Threat in context A increases to around the

same level after each attack, threat in context B slowly increases after each attack due

to momentum. Upon entering context B, both threat levels reduce towards 0.

Fig. 3.14 shows the clustered ELS scenario where the first attack is replaced by

a cluster of 4 attacks close in time, these represent more intense trauma in very early

life. This cluster is followed by 4 single evenly spaced attacks. The initial cluster has a

large impact on overall future threat estimations, whereby it creates a bias towards such

intense threat and single attacks then result in a lower threat estimation in comparison

to Fig. 3.13. This decrease in threat for prolonged trauma shows how habituation can

occur in the model due to intensely clustered ELS. Momentum in the clustered ELS

scenario influences context B threat largely, increasing in response to the cluster but
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Figure 3.13: Single ELS scenario results in

threat estimation in both contexts increas-

ing with every attack (sudden spike).

Figure 3.14: Clustered ELS scenario shows

decreased response to single attacks, rep-

resenting habituation in both contexts.

then slowly decreasing overall in response to singular attacks. This contrasts greatly to

the single ELS scenario, where context B threat continually increases with every attack.

3.3.6.3 Additional Investigations - Implications for cPTSD

Here we review our previous findings with regards to implications for cPTSD and

childhood trauma. Reviewing the oscillatory behaviour (Figs 3.9 and 3.10) related to

variations in the γ2 parameter, low γ2 values appear “healthy”, providing a natural sum-

ming of all historic contextual prediction errors, and a good account of non-associative

threat learning. However, the oscillatory behaviour caused by large γ2 values may be

representative of fear learning maladaptations that result in issues with affect regula-

tion and emotional reactivity typical of cPTSD, leading to heightened emotional and

physical responses to small stressors. If this oscillatory behaviour began at an early age

due to ELS, this would naturally lead to persistent disturbances in many aspects of life

(family, social, educational). The duration of momentum persistence would also impact

the timescale of such symptoms.

Oscillatory behaviour of threat predictions may also explain failures in extinction

learning, and thus provides explanation for the large percentage of treatment dropout

and failure for exposure therapy. When behaviour is on a downwards “recovery” slope,

where extinction learning is functioning correctly, exposure to small stressors may

be successful in reducing the learned threat response and the patient may seem to

be recovering. However, when an oscillation occurs causing an upward “relapse”

slope, exposure to small stressors may amplify and result in sensitisation (a drastically
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increased threat level), causing a failure in treatment and a persistent sense of heightened

fear even after therapy. Individuals may then also avoid future therapy due to sustained

elevated fear.

Regarding the ELS scenarios in Figs. 3.11 and 3.12, these provide potential expla-

nations for the symptom clusters of avoidance and alterations in arousal and reactivity.

These figures show threat to plateau at high levels due to momentum if the original

trauma context is not returned to. This persistent elevated sense of threat may influence

avoidance behaviours, i.e. contexts and situations may be avoided due to them being

reminiscent of trauma. The remaining momentum due to the original trauma context

then cannot be reduced as individuals avoid the context itself as well as reminders,

meaning that threat remains at a fixed (albeit different) level for all contexts. Repeated,

prolonged trauma across various contexts would amplify this effect, where individuals

may avoid reminders of all original trauma contexts and thus avoid any opportunity for

the combined momentum to reduce. This could be particularly prevalent in victims of

childhood trauma and cPTSD, due to these individuals experiencing more prolonged

trauma. Indeed, for those who experienced abuse from a trusted person (e.g. a fam-

ily member) where abuse frequently took place in a childhood home, avoidance of

reminders of this place would be an example of how momentum is unable to decrease.

Thus causing a higher sense of threat in contexts with little association to the original

trauma context, prompting heightened emotional (mistrust) and physical (hyperarousal)

responses to events that may not be related to the original trauma.

Finally, we saw in Figs. 3.13 and 3.14 how habituation can occur in the model

due to intensely clustered ELS. We noted how threat in context B was maintained at

a particularly low level (via momentum), slightly decreasing as time moved on even

though trauma was still occurring repeatedly. Threat in non-trauma contexts remaining

at a low level (even decreasing) indicates that even though events are still occurring

which may be extremely traumatic, the individuals perception of such events is no

longer classing them as threatening, and so they are not affecting threat predictions in

other contexts as they would in a “healthy” individual. In other words, this unresponsive

momentum term could be viewed as the individual becoming accustomed to such

trauma, habitualising their responses and effectively numbing them to such traumatic

events in all contexts, leading to the emotional numbing symptoms typical of cPTSD.
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3.3.6.4 Additional Investigations - Conclusion

To summarise, the TD-Momentum model presented by Kaye et al. incorporates the

associative and non-associative aspects of fear learning in PTSD, where momentum

allows for threat in any context to influence threat prediction across all other contexts.

Various ELS scenarios were investigated, and we proposed that the TD-Momentum

model can be representative of various dysfunctions in fear learning which may be

reason for several symptom clusters in cPTSD. We also investigated the oscillatory

behaviour caused by momentum with larger values of the γ2 parameter, noting that

we may expect “healthy” individuals to be associated with lower values, and more

symptomatic, “unhealthy” individuals to be associated with larger values. A moderately

influential, “healthy” momentum term would represent appropriate non-associative fear

learning across various contexts. However, highly influential, “unhealthy” momentum

biases fear learning, causing oscillatory behaviour which may be linked to issues with

affect regulation in cPTSD. Additional research into how this parameter varies across

control and disorder groups may provide further explanations. If differences in the γ2

parameter (or any other parameter for that matter) are found, this could provide avenues

for the application of this model as a tool for determining disorder risk and/or trajectory.

In terms of creating a human behavioural task to investigate this (where results

are fit to the TD-Momentum model), it’s important to note that Kaye et al. define a

single value function that simply estimates threat and has no “choice” to make. This

could be adapted however, the value function of threat prediction could be applied

to choices made in a human behavioural experiment where a task may be to learn

threatening images over the course of several days (e.g. threatening images mixed

among non-threatening images, varying in vagueness/difficulty). TD-Momentum fits

could then be computed and differences between subject groups (control vs PTSD)

compared to provide potential distinctions between levels of disorder severity, or even

PTSD/cPTSD. Following the success of previous studies [7][14][23], combining be-

havioural data with neuroimaging may help to elucidate links between the model and

how the neuromodulatory implementation of processes is represented in the brain.

Kaye et al. note the binary expression of attack and threat estimation as a drawback

(0 for no shock/no freezing, 1 for shock/freezing). Obviously for humans the perception

of attacks and threat is not so simple; both can be based over a broad spectrum that may

vary across individuals. The authors propose that more precise manipulations of threat

prediction errors over time may improve model validation.



Chapter 4

Extending the TD-Momentum Model of

Kaye et al. (2023)

In this chapter we propose extensions to the TD-Momentum model that add value and

explainability to improve the understanding of the disorder. We take several different

approaches, noting motivation and advantages/disadvantages for each.

4.1 Incorporating Associability in TD-Momentum Model

Here we investigate the properties of the associability term proposed by Brown et al.

[7] (section 2.1.2), and incorporate this into the TD-Momentum model.

Both the TD and TD-Momentum model base learning on updates via prediction

errors; agents learn when a prediction is different to the actual outcome. Brown

et al. incorporate this prediction error based learning with a dynamic associability

term, assigning trial-by-trial associability values to each cue that scale over time with

the historic prediction errors associated with that cue. Cues with a history of being

unreliable/surprising receive larger associability which increases the dynamic learning

rate related to that cue, causing a larger response. Thus, learning in this model is gated

by the trial-by-trial associability value of each cue.

Incorporating this into the TD-Momentum model for threat prediction, where spe-

cific cues were given associability values by Brown et al., we propose that separate

contexts are given associability values. The associability value of each context repre-

sents its influence to learning, and scales with the history of prediction errors that have

occurred within that context. Therefore, contexts in which more traumatic events occur

result in larger prediction errors and receive larger associability. Here, associability can

29
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be viewed as a context-dependent momentum, that only (directly) influences learning

within its related context.

Brown et al. define associability to represent the attention given to a cue over time,

they found that learning in individuals with PTSD was modulated by this attention-based

learning, as they exhibited an increased learning response (increased learning rate) to

unexpected cues. We hypothesise that such individuals may have similar sensitised

learning responses to high associability contexts (highly traumatic contexts).

4.1.1 Associability TD-Momentum Model Form

Combining Eq. (2.1) and Eq. (2.3), the proposed model takes the form below. Momen-

tum is updated identically to the standard TD-Momentum model, and the trial-by-trial

associability value of context c at time t is denoted κc,t with a lower bound of 0.05.

Tc,t = Tc,t−1 +ακc,t−1(ut − γ1Tc,t−1)+ f mt (4.1)

mt = mt−1 + γ2 ∑
c={A,B,...}

α(ut −Tc,t−1) (4.2)

Prediction errors for each context are computed similar to the standard TD-Momentum

model. Associability for each context is updated at each time step as follows,

κc,t+1 = (1−η)κc,t +η|ut − γ1Tc,t−1| (4.3)

The associability weight parameter, 0 ≤ η ≤ 1, controls how much historic prediction

errors influence future associability values (this is general and not unique per context).

4.1.2 Implications of Associability TD-Momentum

As associability essentially creates unique, dynamic learning rates for each context, this

model provides us with insights into how different contexts (traumatic/non-traumatic)

influence learning dynamically over time. If threat learning were modulated by attention-

based learning where traumatic contexts are more influential to learning, this model may

explain why strong maladaptive cPTSD priors are so difficult to target via treatment.

Fig. 4.1 shows an example simulation with an input of 10 random attacks in context

A (none in context B), associability for each context is initialised at 1 (similar to

Brown et al. [7]). Associability of context A returns to the lower bound 0.05 rapidly

after attacks, while associability of context B remains at the lower bound throughout.

However, an example of the sensitised learning influence of traumatic context A is seen
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Figure 4.1: Identical parameters and attack sequence to TD-Momentum Simulation in

4.2. Associability TD-Momentum threat (left) with associability weight parameter η = 0.2

and related associability values (right). Associability model generates smoother threat

predictions than TD-Momentum, with threat being much similar between both contexts.

in the highlighted box. Two attacks occur here in quick succession, threat in context

A increases more due to the second attack than threat in context B (left plot), this can

be explained by associability. Context A associability κA does not reach 0 before the

second attack occurs (right plot), causing a larger spike in associability for context A

when the second attack is experienced. This results in a larger dynamic learning rate

at this time, meaning that context A threat increases by a larger amount compared to

context B threat.

The associability of each context can indirectly effect learning in all other contexts

through the momentum term (computed from the decayed sum of prediction errors

across all contexts). As traumatic, unpredictable contexts have larger associability

values (thus larger dynamic learning rates), the prediction errors generated in these

contexts will be more influential to learning compared to those generated in less trau-

matic, predictable contexts. Meaning they will contribute more to momentum, i.e.

trauma in unpredictable contexts will influence momentum more than the same trauma

in predictable contexts.

This may cause threat estimations in more predictable contexts to be heavily in-

fluenced (via momentum) by unpredictable contexts, which could explain why threat

predictions for both contexts in our simulation are so similar (Fig. 4.1). Prolonged

childhood trauma would strengthen the large overpowered associability values for trau-
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matic contexts, as this would ensure they maintain high associability values, amplifying

this effect, perhaps even bringing threat predictions in all contexts to the same level as

the original trauma context.

This model provides a method for investigating the increased effect of salient

traumatic contexts, why individuals with PTSD can be so affected by reminders of

the context of the trauma, and may explain extinction learning failures in treatment.

For cPTSD, it offers a potential explanation for issues with affect regulation (e.g.

heightened emotional reactivity to small stressors/contexts unrelated to original trauma).

Associability creates a dynamic learning rate for each context that is the same for

both positive and negative prediction errors within that context. Meaning, there is

no difference between learning from positive or negative prediction errors in a given

context. As learning in PTSD individuals may be modulated by unexpected experiences

[14], incorporating separate learning rates for positive and negative prediction errors

may lead to an improved representation of cPTSD learning. This is explored in the next

section.

4.2 Incorporating Outcome-Sensitivity in TD-Momentum

Model

Here we incorporate the “risk-sensitive” element of the RL model proposed by Ross et

al. (section 2.1.3), although here we term the approach as “outcome-sensitive”. The

motive here being that PTSD individuals may learn differently based on whether an

outcome is better or worse than their prediction (i.e. the sign of the prediction error

signifying good news or bad news). As such, splitting the single learning rate of the

TD-Momentum model into separate positive and negative learning rates may provide

an improved representation of learning. This model explores how threat learning may

be modulated by how one perceives outcomes. Including momentum here incorporates

non-associative learning, allowing for prediction errors in any context to influence threat

in all other contexts.

4.2.1 Outcome-Sensitive TD-Momentum Model Form

The form is identical to the original model, with the learning rate used depending on the

sign of the prediction error (ut − γ1Tc,t−1). Separate learning rates are reflected within

the momentum term where we have inserted the γ1 decay rate to ensure prediction errors
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are consistent between momentum calculation and the main update rule.

Tc,t = Tc,t−1 +α
+/−(ut − γ1Tc,t−1)+ f mt (4.4)

mt = mt−1 + γ2 ∑
c={A,B,...}

α
+/−(ut − γ1Tc,t−1) (4.5)

Learning rate is: α+ when the prediction error is positive (larger than expected

outcome), and α− when the prediction error is negative (smaller than expected outcome).

Thus, large, unexpected threat outcomes cause positive prediction errors here, so α+

relates to learning from very traumatising experiences.

4.2.2 Implications of Outcome-Sensitive TD-Momentum

Hauser et al. [13] implemented a similar outcome-sensitive RL model investigating

developmental aspects of cognitive flexibility (the ability to adapt to unplanned events)

in adolescents, they compared adolescents and adults who performed a probabilistic

reversal learning task. They found that adolescents had increased sensitivity to negative

predictions errors compared to adults (where the outcome is less than expected, i.e. a

punishment). These findings may also translate to the threat learning context. Although,

we expect that in this scenario, where we have assigned a positive learning rate to

larger than expected outcomes (large threat or trauma), that learning is more sensitive

to positive prediction errors, as these represent more intense, unexpected trauma. Fig.

4.2 shows a simulation of this model. The larger α+ is used following underestimated

outcomes (attacks) and causes large increases in threat estimation in comparison to the

original TD-Momentum model.

By introducing positive and negative learning rates, momentum updates will vary

based on whether the outcome prediction is over-estimated or under-estimated, leading

to differences in how non-associative threat is learned compared to the standard TD-

momentum model. Fig. 4.2 shows how threat in context B is larger than in the standard

simulation, in line with the larger α+ used. Thus, threat transferred through non-

associative learning is influenced by these outcome-sensitive learning rates, and could

lead to drastic variations of threat in unrelated contexts. This may have links to the

increased reactivity to minor stressors unrelated to original trauma, typical of PTSD.

Investigating differences in learning sensitivity (positive and negative learning rates)

between PTSD/control individuals who experience various threatening outcomes may

provide insight on how learning mechanisms behave when outcomes are perceived
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Figure 4.2: TD-Momentum plot (left) with parameters: α = 0.05,γ1 = 0.9999,γ2 =

0.05, f = 0.1. Risk-Sensitive TD Momentum threat (right): α− = 0.05,α+ = 0.2. 10

random attacks across life in context A, none in B. Positive prediction errors use the

larger α+ causing larger overall threat and increases across both contexts (right).

differently by different groups. By reviewing any distinct group differences, this could

provide the basis for a tool to determine PTSD risk and/or disorder trajectory.

A potential pitfall for this model (and the previous associability model) is the binary

representation of inputs (0 for no attack, 1 for attack). This basic manipulation of threat

sequences may result in lack of precision for fitted parameters. A model that can take

a more continuous representation of threat as input allows for more complex threat

sequences to be explored (e.g. between -1 and 1), and may provide more insight on

fitting to behavioural data. A potential is explored in the final extension.

4.3 Incorporating Valence-Partitioning in TD-Momentum

Model

Liebenow et al. [18] and Sands et al. [24] propose Valence Partitioning (VP) as a

methodology for decoupling the algorithmic representation of rewards and punishments.

They found that VP RL was effective at predicting dynamic changes in human choice

behaviour and subjective experience. Consequently, they suggest that VP RL can be

effective in deriving insights on mechanisms related to psychiatric disorders.

Standard TD learning treats punishment and reward as opposite ends of a single

reward spectrum. Liebenow et al. propose this may not accurately reflect the true
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processes of how learning (and associated behaviour) operates. VP TD learning main-

tains the successful process of TD learning, but implements two independent, parallel

positive and negative valence systems. Liebenow et al. [18] apply a continuous outcome

scale between -1 and +1, where -1 represents maximum punishment and +1 represents

maximum reward. A valence threshold is set at 0, i.e. rewards are positively valenced

and punishments are negatively valenced. Positively valenced outcomes are processed

via the positively valenced system, and negatively valenced outcomes are processed via

the negatively valenced system. These parallel systems allow for asymmetric represen-

tations of learning from positively and negatively valenced outcomes. We use VP RL

here to capture any asymmetries in learning due to PTSD, exploring if threat learning is

modulated by how individuals valence different outcomes.

4.3.1 Valence-Partitioned TD-Momentum Model Form

Determining which valence system processes the outcome, how prediction errors are

computed, and which learning rate is used, depends only on the valence of the outcome.

Valenced prediction errors are generated as shown in Eqs. (4.6) and (4.7). Outcome

values are within −1 ≤ ut ≤ 1, where 1 represents the most safe, pleasant outcomes, and

-1 represents the most threatening outcomes (0 represents a null outcome). If outcome

valence is not within the receptive field of a system (where we have set a threshold = 0),

the outcome is treated as a null outcome for that system. Prediction error in context c at

time t for each valence system is computed as follows:

δ
P
c,t =

ut + γPV P
c,t+1 −V P

c,t i f ut > 0

0+ γPV P
c,t+1 −V P

c,t i f ut ≤ 0
(4.6)

δ
N
c,t =

|ut |+ γNV N
c,t+1 −V N

c,t i f ut < 0

0+ γNV N
c,t+1 −V N

c,t i f ut ≥ 0
(4.7)

Two value functions are generated, one for appetitive values (Positive system - Eq.

(4.8) processes pleasant outcomes) and one for aversive values (Negative system - Eq.

(4.9) processes threatening outcomes).

V P
c,t+1 =V P

c,t +α
P ·δP

c,t + f mP
t (4.8)

V N
c,t+1 =V N

c,t +α
N ·δN

c,t + f mN
t (4.9)
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Separate momentum terms are created for positively and negatively valenced out-

comes across all contexts. Update form remains the same, only we include the corre-

sponding positive- or negative-specific prediction errors (δP
c,torδN

c,t) and learning rates

(αP or αN) based on valence of the outcome.

mP
t = mP

t−1 + γ2 ∑
c={A,B,...}

α
P
δ

P
c,t (4.10)

mN
t = mN

t−1 + γ2 ∑
c={A,B,...}

α
N

δ
N
c,t (4.11)

Appetitive and aversive value functions are then combined to create the overall

threat prediction in any context at any given time.

Tc,t =V P
c,t −V N

c,t (4.12)

4.3.2 Implications of Valence-Partitioned TD-Momentum

Tracking the distinct valenced value functions and momentum terms will show us how

behaviour of pleasantness/threat predictions across contexts varies between stimuli

classed as “pleasant“ and “threatening“, i.e. positive and negative valence. Differences

in group behaviour (PTSD/control) observed could provide explanations for how dif-

ferent stimuli can affect predictions over a lifetime and why symptom timescale and

severity may differ between individuals (or groups). Regarding the distinct positively-

and negatively-valenced momentums, we would expect the negatively valenced mo-

mentum to be larger and more influential to learning across all contexts as it represents

the non-associative threat across all contexts from threatening outcomes. Comparing

valenced momentum terms to the original single momentum will show, specifically, how

much threatening outcomes can influence non-associative learning across all contexts,

compared to positive outcomes.

A simulation of the VP TD-Momentum model with a larger negative learning rate

is shown in Fig. 4.3, exposed to 10 positive (0.5, 1) and 10 negative outcomes (-1, -0.5),

representing a broader spectrum of pleasant/threatening outcomes compared to previous

extensions. This manipulation of outcomes leads to more diverse pleasant/threatening

estimations in both contexts. Context B predictions (due to momentum) are small in

value, oscillating around the neutral outcome of 0 due to the combination of positive

and negative outcomes. The larger αN parameter shows a disproportionate effect on

learning from negatively valenced outcomes compared to positively valenced, shown

by the downward spikes being more pronounced. The related VP value functions
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Figure 4.3: Valence-Partitioned TD-Momentum fit with identical parameters to TD Mo-

mentum Simulation in Fig. 4.2, and αP = 0.05, αN = 0.2. 10 positive (pleasant)

outcomes and 10 negative (threat) stimuli. Larger negative learning rate α− causes

negative outcomes to influence learning more.

for both contexts, as well as the valenced momentum terms can be found in Figs.

A.14, and A.15 of Appendix A. As expected, the value functions for context B are

much lower in absolute value compared to context A; the negatively valenced value

functions for both contexts are larger than the positively valenced, with the negatively

valenced value function for trauma context A being disproportionately large (due to

events occuring here) (Fig. A.14 left, orange). The negatively valenced momentum

from threatening outcomes is larger and more influential to learning than the positively

valenced momentum (Fig. A.15, orange) as expected and noted above. This is reflected

in the overall fit on Fig. 4.3, negative valenced outcomes effect momentum more and

thus are more influential to context B threat compared to positively valenced outcomes.

The threshold value of 0 may be subjective and investigations into fitting this to

individuals/groups may provide insight on the heightened (or lessened, i.e. habituation)

sensitivity to threats in PTSD. For example, this threshold value may be dysfunctionally

large (e.g. 0.3) for highly symptomatic individuals, meaning they perceive small, pleas-

ant outcomes as negative outcomes, processing them through the negatively valenced

system, causing the negatively valenced system to influence learning more.

Although not applied by Liebenow et al. or Sands et al., we could include sensi-

tivity parameters for positively and negatively valenced outcomes (βP,βN), similar to

parameters proposed by Yanamori et al. (section 2.1.4). Overall pleasantness/threat

prediction is then Tc,t = βPV P
c,t −βNV N

c,t . An index similar to the “reward-punishment

sensitivity index” of Yanamori et al. could then be created for each individual, which we
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label the “valence sensitivity index” βP/βN , giving a unique value to each participant

corresponding to where they lie on the positive vs negative valence sensitivity spec-

trum. Higher values correspond to individuals whose learning is more influenced by

positively valenced outcomes, while lower values correspond to those more influenced

by negatively valenced outcomes. Further investigations into this VP TD-Momentum

model may provide more complex insights into the underlying mechanisms of cPTSD.

4.4 TD-Momentum Extensions Summary

We have presented three different approaches to extending the TD-Momentum model, in-

corporating concepts from various RL models of associability, outcome-sensitivity, and

valence partitioning in order to offer further insight into the disorder. The momentum

term is maintained in all extensions, allowing for non-associative threat learning.

Associability (brown et al. [7] and Homan et al. [14]) was integrated with the

motive that trial-by-trial associability values, which are influenced by a contexts history

of prediction errors, may modulate learning in each context. Considering the heightened

learning resulting from high associability cues found by Brown et al., (also shown in our

simulation) this approach suggests that similar attention-based modulation of learning

may exist in threat learning across various contexts.

The outcome-sensitive (Ross et al. [23]) integration explores how learning rates

may vary between individuals for positive and negative prediction errors, where PTS-

D/cPTSD may be linked with heightened sensitivity to one set of prediction errors.

The integration of valence-partitioning (Liebenow et al. [18] and Sands et al.

[24]) creates separately valenced value functions positively- and negatively-valenced

outcomes which are combined to create an overall pleasantness/threat prediction. This

aims to capture how asymmetries in learning may be based on how individuals valence

outcomes differently.

By applying results of relevant behavioural tasks performed by control and disorder-

affected participants we can analyse variations of parameters and model behaviour

between groups. Applying such behavioural data to these proposed extensions is thus

key in indicating how much value they can add with regards to explaining the disorder,

and will reveal how associability, outcome-sensitivity, and valence partitioning can

influence threat prediction learning.



Chapter 5

Conclusion

The aim of this dissertation has been to re-implement the TD-Momentum model pro-

posed by Kaye et al. [16], assess the capability of this model for explaining mechanisms

of cPTSD, and provide potential model extensions that can add value and further insight.

We re-implemented the Bayesian baseline model proposed by Kaye et al. and found

it predicted the probability of attack well, showing how a simulated ideal observer may

perform in a Bayesian setting when predicting attack rate over a lifetime. Through ELS

scenarios we showed how various types of trauma in early life can cause a dispropor-

tionate affect on threat prediction, with clustered attacks in early life causing larger

mean estimates and variance in predictions.

TD and TD-Momentum RL models were then re-implemented and fit to data col-

lected by an SEFL experiment. Mouse freezing data was fit and the model comparison

showed that stressed mice favoured the TD-Momentum model while unstressed mice

favoured the simpler TD model. We concluded similar to Kaye et al., that the stressed

mice prefer the inclusion of the momentum term due to the incorporation of non-

associative learning, i.e. momentum allows for threat predictions from the stressful day

1 context A to influence predictions across days 6 and 7 in context B.

Following this, we extended the findings of Kaye et al. by performing our own

investigations into TD-Momentum model behaviour and how ELS scenarios affect

predictions across contexts. We suggest that the oscillatory behaviour built into the

momentum term due to certain parameter values may reflect differences between healthy

and highly symptomatic individuals, where more oscillatory behaviour in momentum

may have links to issues with affect regulation typically seen in cPTSD. The ELS

scenarios showed that clustered attacks experienced in early life seem to have a larger

disproportionate impact on threat learning within the original trauma context (similar

39
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to the Bayesian model), as well as in novel contexts via momentum. We found that

clustered attacks administered in early life may also result in habituation to future

attacks, which may be linked with the emotional numbing effects seen in cPTSD.

We also found similar results to Kaye et al. in relation to how extinction learning can

be negatively affected by the momentum term, and may affect treatments like exposure

therapy by generating a sensitised effect, rather than habituation. We suggest that a

maintained high sense of threat in a recently exited trauma context, due to increased

momentum, may cause threat in other contexts to be maintained at a higher rate than

usual, resulting in symptom clusters such as increased reactivity/arousal and avoidance

which may lead to difficulties in various aspects of life.

After exploring how much the TD-Momentum model can explain we offered three

potential extensions which may add value and provide us with a tool for investigating

symptoms, individual risk and implications to treatments. Proposed methodologies

included: an associability term to act as a context-dependent momentum, the inclusion

of outcome-sensitivity to assign different learning rates for positive/negative prediction

errors, and the idea of partitioning positive (pleasant outcomes) and negative (threatening

outcomes) learning based on valence of the outcome at each timestep.

These extensions aim to combat some of the pitfalls of the standard TD-Momentum

model, such as: the heightened influence to learning that some (traumatic) contexts may

have (associability model addresses this), the uniform view of how different outcomes

may influence prediction more/less (constant learning rate for all outcomes, outcome-

sensitive model addresses this), and the fact that learning from safe, pleasant outcomes

and threatening outcomes may be processed by entirely different systems, based on how

individuals interpret outcomes (valence partitioning addresses this).

Ultimately, further investigation into these extensions (and similar computational

models) will improve the understanding of the underlying mechanisms of cPTSD, which

is vital in defining the distinct differences and similarities between PTSD and other

psychiatric disorders. These findings will be key in discovering the best methods for

risk assessment, treatment planning and mapping trajectory of the disorder. Although

computational psychiatry is still at a youthful stage, there is an increasing amount of

research being published in this field. The findings from such research hope to someday

(in the near future) be applied for clinical uses to improve the quality of life for all those

affected by such mental health problems.
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Appendix A

Additional Plots

Figure A.1: Bayesian Probabilistic model of trauma attack estimation (re-created from

Kaye et al. [16]). Attacks continue until agent death or end of timesteps.

45
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Figure A.2: Variance in pa estimation decreases over the course of a lifetime, showing

how the Bayesian model progressively improves and becomes more confident in its

estimates. This plot shows the variance in pa over a lifetime for a typical sequence,

similar to that used in Fig. 3.1 (related code in Appendix B.4)

Figure A.3: Densities “averaged” over 10,000 simulations of AR time series for each

correlation value. Larger AR correlation results in larger variance for threat predictions

of pa. Sharper, more precise predictions are given by c = 0.7, while flatter, less precise

predictions given by c = 0.999.
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Figure A.4: Average freezing of 15 stressed and 18 unstressed mice across day 6 of the

SEFL experiment.

Figure A.5: Average freezing of 15 stressed and 18 unstressed mice across day 7 of the

SEFL experiment.
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Figure A.6: TD model parameter recovery Pearson correlation coefficients and p-values

for multivariate sampled parameter values

Figure A.7: TD model parameter recovery Pearson correlation coefficients and p-values

for list sampled parameter values

Figure A.8: TD-Momentum model parameter recovery Pearson correlation coefficients

and p-values for multivariate sampled parameter values

Figure A.9: TD-Momentum model parameter recovery Pearson correlation coefficients

and p-values for list sampled parameter values
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Figure A.10: Variations of auto-correlation in the AR process producing attack rates

used to generate attack sequences shows how including momentum assists in extracting

more information about the true attack rate (light blue indicates highest autoregression,

dark blue indicates lowest autoregression) (figure by Kaye et al. [16])

Figure A.11: Associability TD-Momentum model with η = 0.001. Very low values of η

reduce this extended model to the original TD-Momentum model.
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Figure A.12: Associability TD-Momentum model with η = 0.01. Increasing the value of

η changes the shape of threat predictions acorss both contexts, reducing overall threat

predictions and creating smoother predictions

Figure A.13: Associability TD-Momentum model with η = 0.9999. Very high values of η

generate threat predictions for both contexts that are very similar. Context B threat is

only slightly below that of the trauma context A.
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Figure A.14: Individual positive and negative VP value functions for each context (left -

A, right - B). These are Eq. (4.8) and Eq. (4.9).

Figure A.15: Individual positively and negatively valenced momentum functions (blue -

positive, orange - negative) relating to Eq. (4.10) and Eq. (4.11). Note how the negatively

valenced momentum, containing the prediction errors of negative trauma outcomes,

is larger and more influential than the positively valenced momentum of positive, non-

traumatic outcomes.



Appendix B

Bayesian Model Python Code

B.1 Bayesian Model - Attack & Death Simulations

1 import numpy as np

2 import pylab as pl

3 import scipy as sp

4 import scipy.stats as stats

5 import matplotlib.pyplot as plt

6 import matplotlib; matplotlib.use(’Qt5Agg’)

7 import emcee

8 from emcee import moves

9 import random

10 from scipy.ndimage import gaussian_filter

11 from matplotlib.colors import Normalize

12 from statsmodels.tsa.arima_process import ArmaProcess

13

14 def sim_sequences(pa, pd, num_time_steps):

15 ’’’

16 Simulates attack and death sequences based on binomial

distribution , with constant pa and pd across timesteps.

17

18 :param prob_attack: Probability of attack

19 :param prob_death: Probability of death given attack happens

20 :param num_time_steps: Total number of trials or timesteps where

attack can occur

21

22 :return: attacks , deaths which are arrays corresponding to

sequences of attacks and deaths (0 is no attack/no death ,

23 1 is attack/death)

52
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24 ’’’

25 # Simulating attack sequence where attacks are binomially

distributed

26 attacks = np.random.binomial(1, pa, num_time_steps)

27

28 # Death sequence based on prob of death given attack

29 deaths = np.random.binomial(1, pd, num_time_steps) * attacks

30

31 return attacks , deaths

B.2 Bayesian Model - MCMC Sampler

1 ### Bayesian model fitting procedure ###

2 # Now we move onto the Bayesian model fitting procedure.

3

4 # ’gwmcmc’ function in matlab , here we use the emcee package in

Python -

5 # Goodman and Weares Affine Invariant Markov chain Monte Carlo (MCMC

) Ensemble sampler

6

7 def ln_likelihood(params , attacks , deaths):

8 ’’’

9 Computes natural log of the joint likelihood

10

11 :param params: Values for pa, pd

12 :param attacks: Attack sequence

13 :param deaths: Death sequence

14

15 :return: Log-likelihood

16 ’’’

17 pa, pd = params

18

19 # Compute number of attacks and deaths

20 num_attacks = np.sum(attacks)

21 num_deaths = np.sum(attacks * deaths)

22

23 # Calculate log-likelihood

24 ln_likelihood = num_attacks * np.log(pa * (1 - pd)) + (len(

attacks) - num_attacks) * np.log(1 - pa) + num_deaths * np.log(pa

* pd)

25
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26 return ln_likelihood

27

28 def ln_prior(params):

29 ’’’

30 Computes natural log of prior

31

32 :param params: Values for pa, pd

33

34 :return: Log-prior

35 ’’’

36 pa, pd = params

37

38 # Flat prior (uniform distribution), same for both pa and pd as

both are probabilities

39 p_min = 0 # Lower limit on range of values

40 p_max = 1 # Upper limit on range of values

41

42 # If pa, pd between correct range , 0-1, return prior = 1.0 (log-

prior = 0), else 0 (log-prior = -inf)

43 if p_min < pa < p_max and p_min < pd < p_max:

44 return 0.0

45 else:

46 return -np.inf

47

48

49 def ln_posterior(params , attacks , deaths):

50 ’’’

51 Computes natural log of the joint posterior

52

53 :param params: Values for pa, pd

54 :param attacks: Attack sequence

55 :param deaths: Death sequence

56

57 :return: Log-posterior

58 ’’’

59 # Compute prior from function above

60 ln_prior_val = ln_prior(params)

61

62 # If function is NOT finite , return prob of 0 (log-prior = -inf)

63 if not np.isfinite(ln_prior_val):

64 return -np.inf

65
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66 # Posterior = Prior * Likelihood (Log-Prior + Log-Likelihood)

67 ln_posterior_val = ln_prior_val + ln_likelihood(params , attacks ,

deaths)

68

69 return ln_posterior_val

70

71

72 def fit_bayesian_model(attacks , deaths , num_walkers , num_steps ,

burn_in , step_size):

73 ’’’

74 Fits Bayesian model using Affine Invariant MCMC Sampler from

emcee package.

75

76 :param attacks: Attack sequence

77 :param deaths: Death sequence

78 :param num_walkers: Number of walkers

79 :param num_steps: Number of steps

80 :param burn_in: Percentage of initial steps to remove as burn -in

81 :param step_size: Step size to use in Strech_move parameter of

sampler

82

83 :return: Samples from chain created by sampler , i.e. progressive

estimates for pa and pd

84 ’’’

85 # Define number of dims , i.e. pa and pd

86 num_dimensions = 2

87

88 # Initialise positions for the walkers

89 initial_positions = np.random.rand(num_walkers , num_dimensions)

90

91 # Set up the MCMC sampler with StretchMove - corresponds to "

stepsize" = 2 in paper (matlab equivalent)

92 stretch_move = moves.StretchMove(a=step_size)

93 sampler = emcee.EnsembleSampler(num_walkers , num_dimensions ,

ln_posterior , args=(attacks , deaths),

94 moves=[stretch_move])

95

96 # Running burn -in phase , throwing these away so use _ as

placeholder variables

97 num_burn_in_steps = int(burn_in * num_steps)

98 _, _, _ = sampler.run_mcmc(initial_positions , num_burn_in_steps ,

progress=True)
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99

100 # Resetting the sampler

101 sampler.reset()

102

103 # Running production phase

104 sampler.run_mcmc(None , num_steps , progress=True)

105

106 # Retrieving MCMC samples from chain

107 samples = sampler.get_chain(discard=num_burn_in_steps , flat=True

)

108

109 return samples

B.3 Bayesian Model - Posterior Plots

1 def bayesian_plots(samples):

2 ’’’

3 Takes output of fit_bayesian_model and recreates plots for fig 2

C in paper. Uses kernel density estimation (kde)

4 to smoothen posterior distributions for pa and pd.

5

6 :param samples: Output of fit_bayesian_model (estimations of pa

and pd from MCMC Sampler)

7

8 :return: Figure of 3 plots , p(attack), p(death|attack), p(attack

) vs p(death|attack)

9 ’’’

10 # Create figure and axes

11 fig, axes = plt.subplots(2, 2, sharex=’col’)

12

13 # First plot - p(attack)

14 kde1 = stats.gaussian_kde(samples[:, 0], bw_method =0.2)

15 x1 = np.linspace(0, 0.025, 1000)

16 y1 = kde1(x1)

17 axes[0, 0].fill_between(x1, y1, color=’skyblue’, alpha=0.5)

18 axes[0, 0].plot(x1, y1, label=’p(attack) posterior’, color=’

skyblue’)

19 axes[0, 0].set_xlim(0, 0.025)

20 axes[0, 0].set_ylabel(’p(attack)’)

21 axes[0, 0].legend(loc=’upper right’, fontsize=’small’)

22



Appendix B. Bayesian Model Python Code 57

23 # Second plot - contour plot of p(attack) against p(death|attack

)

24 hist , xedges , yedges = np.histogram2d(samples[:, 0], samples[:,

1], bins=25)

25 smooth_hist = gaussian_filter(hist.T, sigma=1)

26 axes[1, 0].contourf(xedges[:-1], yedges[:-1], smooth_hist , cmap=

’Blues’)

27 #axes[1, 0].set_xlim(0, 0.025)

28 # Determine the minimum and maximum values for the x-axis

29 x_min = np.min(samples[:, 0])

30 #x_max = np.max(samples[:, 0])

31

32 # Set the x-axis limit based on the data range

33 axes[1, 0].set_xlim(x_min , 0.025)

34

35 axes[1, 0].set_ylabel(’p(death|attack)’)

36 axes[1, 0].set_xlabel(’p(attack)’)

37

38 # Third plot - p(death|attack)

39 kde3 = stats.gaussian_kde(samples[:, 1], bw_method =0.5)

40 x3 = np.linspace(0, 0.8, 1000) # changed from 1000 to 60

41 y3 = kde3(x3)

42 axes[1, 1].fill_between(x3, y3, color=’skyblue’, alpha=0.5)

43 axes[1, 1].plot(x3, y3, label=’p(death|attack) posterior’, color

=’skyblue’)

44 axes[1, 1].set_xlabel(’p(death|attack)’)

45 axes[1, 1].legend(loc=’upper right’, fontsize=’small’)

46

47 # Remove top right empty plot

48 fig.delaxes(axes[0, 1])

49

50 # Adjust spacing between subplots

51 plt.tight_layout()

52 plt.show()

53

54

55 attacks , deaths = sim_sequences(0.01, 0.2, 700)

56 num_walkers = 30

57 num_steps = 60

58 burn_in = 0.3

59 step_size = 2

60
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61 samples = fit_bayesian_model(attacks , deaths , num_walkers , num_steps

, burn_in , step_size)

62 bayesian_plots(samples)

B.4 Bayesian Model - Variance in Threat Over Time

1 def variance_over_time(samples , colour , x_offset):

2 ’’’

3 Takes output of fit_bayesian_model , i.e. samples from MCMC

sampler , and returns plot showing the variance in

4 estimates over time. Groups use all available data up until the

end of the respective group.

5

6 :param samples: Output of fit_bayesian_model , samples from MCMC

sampler

7 :param colour: Colour scheme for plot

8 :param x_offset: Use when comparing more than 1 sequence ,

separates plots for clarity

9

10

11 :return: Plot showing variance in estimates over lifetime

12 ’’’

13 x = np.linspace(0, 1, np.size(samples[:, 0]))

14 y = samples[:, 0]

15

16 # Divide sample pa’s into groups to plot with error bars

17 num_groups = 8

18 group_size = len(y) // num_groups

19

20 # Empty sets to store group means and stds

21 means = []

22 stds = []

23

24 # Compute mean and std dev for each group - each group will use

info up until the last index of the group

25 for i in range(1, num_groups + 1):

26 end_idx = i * group_size

27 group = y[:end_idx]

28 means.append(np.mean(group))

29 stds.append(np.std(group))

30
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31 # Compute the x values for the last of each group

32 group_last_x = x[group_size - 1::group_size]

33

34 # Add the x-axis offset - only used for plotting two sequences

together , e.g. the ELS and lifetime scenarios

35 group_last_x += x_offset

36

37 # Compute colors based on x-values

38 cmap = plt.get_cmap(colour)

39 norm = Normalize(vmin=np.min(x), vmax=np.max(x))

40 colors = cmap(norm(group_last_x))

41

42 # Plot the error bars with colormap

43 for x_val , mean , std, color in zip(group_last_x , means , stds ,

colors):

44 plt.errorbar(x_val , mean , yerr=std, fmt=’o’, color=color ,

alpha=0.5, label=’95% CI’)

45

46 # Add colors to the points

47 sc = plt.scatter(group_last_x , means , c=colors , cmap=cmap)

48

49 # Add legend , labels , limits

50 plt.ylim(0, 0.6)

51 plt.xlabel(’Time (fraction of lifetime)’, fontsize=15)

52 plt.ylabel(’Estimated attack rate’, fontsize=15)

53 plt.title(’Variance in $p_a$ decreasing over time’, fontsize=15)

54 plt.xticks(fontsize=14)

55 plt.yticks(fontsize=14)

56 plt.show()

57

58

59 samples = fit_bayesian_model(attacks , deaths , num_walkers , num_steps

, burn_in , step_size)

60

61 variance_over_time(samples , colour = ’cool’, x_offset=0)

B.5 Bayesian Model - AR Time Series

1 def AR_PROCESS(c):

2 ’’’
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3 Uses ArmaProcess function in tsa package to create a

autocorrelated attack rate time series from an AR process.

4

5 :param c: Chosen correlation coefficient to be used

6

7 :return: Attack rate time series of 700 time steps.

8 ’’’

9 ar_coeff = np.array([1, -c]) # coeffs for AR process

10 ma_coeff = np.array([1]) # equivalent to [1, 0], i.e. no

moving average , only AR process

11 AR_PROCESS = ArmaProcess(ar_coeff , ma_coeff).generate_sample(

nsample=700, scale=0.01) # scale param is noise std

12

13 # Clip the AR process between 0 and 1

14 clipped_AR_PROCESS = np.clip(AR_PROCESS , 0, 1)

15

16 return clipped_AR_PROCESS

B.6 Bayesian Model - Posterior Comparisons for Vari-

ous c Coefficients in AR Time Series

1 def average_density_many_ts(c, num_runs):

2 ’’’

3 Creates "average" density for many runs of time series. i.e.

creates an "average" of the plots created in the

4 bayesian_plots function over num_runs number of simulations of

time series.

5

6 :param c: Chosen correlation coefficient to be used

7 :param num_runs: Number of runs to compute "average" density

over

8

9 :return: Outputs stacked densities over amount of numruns , plots

"average" posterior in bayesian_plots

10 ’’’

11 # Create an empty array to store the results

12 results = np.empty((num_runs , 1260, 2)) # (1260, 2) is shape

of output from estimates_from_ts

13

14 # Run the function multiple times
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15 for i in range(num_runs):

16 results[i] = estimates_from_ts(c)

17

18 # Calculate the average DENSITY of the results array

19 # Correct way to take mean over densities , not the variables:

20 stacked_values = np.column_stack((np.ravel(results[:, :, 0]), np

.ravel(results[:, :, 1])))

21 bayesian_plots(stacked_values)

22

23 return stacked_values

24

25 average = average_density_many_ts(c = 0.7, num_runs = 10)

26

27 # Here , we turn to the supplementary material word doc, and recreate

supp fig 2 and 3A

28

29 # Supp Fig 2C: Dispersion of estimated pa over time for varying

correlation coefficients (c=0.7 - 0.99)

30 # Additional - Supp Fig 2C - Dispersion of estimated attack rate for

varying correlation (c) values:

31

32 n = 10000

33 c_values = np.linspace(0.7, 0.999, 5)

34

35 variances = np.empty_like(c_values)

36 std_devs = np.empty_like(c_values)

37 densities = {}

38

39 for t, c in enumerate(c_values):

40 dens = average_density_many_ts(c, n)[:,0]

41 densities[t] = dens

42 variances[t] = np.std(dens)

43 std_devs[t] = np.var(dens)

44

45 # This provides us with a different view on sup fit 2C, here we’ve

performed 10,000 sims per auto -correlation value

46 # We can see that the largest value c=0.999 does indeed provide us

with the largest standard deviation and variance

47 # for estimated attack rate across all 10,000 runs. All other c vals

are quite similar , indicating that c vals closer

48 # to 1 provide more variability in attack rate estimation.

49
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50 # Average pa posteriors for 10,000 sims on each c value:

51

52 def posterior_comparison(c_vals , estimates):

53 ’’’

54 Takes output of average_density_many_ts function , i.e. 10,000

sims of various c values and creates pa posterior

55 plot for comparison. Shows increased variability in estimation

for larger c values.

56

57 :param c_vals: List of associated c values

58 :param estimates: Dictionary containing densities of each c

value generated via average_density_many_ts

59

60 :return: Plot comparing pa estimations

61 ’’’

62 colors = [’skyblue’, ’green’, ’orange’, ’purple’, ’yellow’] #

List of colors for each plot

63 labels = [’c = {}’.format(np.round(t, 3)) for t in c_vals] #

Labels for the legend

64

65 for t in range(len(estimates)):

66 # Posterior for p(attack)

67 kde1 = stats.gaussian_kde(estimates[t], bw_method =0.2)

68 x1 = np.linspace(0, 0.05, 1000)

69 y1 = kde1(x1)

70 plt.fill_between(x1, y1, color=colors[t], alpha=0.5)

71 plt.plot(x1, y1, label=labels[t], color=colors[t])

72

73 plt.xlim(0, 0.05)

74 plt.xlabel(’p(attack)’)

75 plt.title(’Average densities of 10,000 simulations’)

76 plt.legend(loc=’upper right’, fontsize=’small’)

77

78 plt.show()

79 posterior_comparison(c_values , densities)

B.7 Bayesian Model - ELS Example

1 def sim_scenarios(pd, num_time_steps , num_attacks):

2 ’’’



Appendix B. Bayesian Model Python Code 63

3 Simulates attack and death sequences for two scenarios ,

random_lifetime and random_els. Limiting the number

4 of attacks to be equal for both scenarios = num_attacks.

5

6 :param prob_attack: Probability of attack

7 :param prob_death: Probability of death given attack happens

8 :param num_time_steps: Total number of trials or timesteps where

attack can occur

9

10 :return: attacks , deaths which are arrays corresponding to

sequences of attacks and deaths (0 is no attack/no death ,

11 1 is attack/death)

12 ’’’

13 # Lifetime Random Scenario:

14 rand_life_attacks = np.zeros(num_time_steps)

15 life_indices = np.random.choice(num_time_steps , num_attacks ,

replace=False)

16

17 # Input attacks (1s) in random chosen timesteps

18 rand_life_attacks[life_indices] = 1

19 rand_life_deaths = np.random.binomial(1, pd, num_time_steps) *

rand_life_attacks

20

21

22 # ELS Random Scenario:

23 rand_els_attacks = np.zeros(num_time_steps)

24 half_num_time_steps = int((num_time_steps)/2)

25 els_indices = np.random.choice(half_num_time_steps , num_attacks ,

replace=False)

26 #els_indices = np.random.randint(0, half_num_time_steps , size=

num_attacks)

27

28 # Input attacks (1s) in random chosen timesteps

29 rand_els_attacks[els_indices] = 1

30 rand_els_deaths = np.random.binomial(1, pd, num_time_steps) *

rand_els_attacks

31

32 return rand_life_attacks , rand_life_deaths , rand_els_attacks ,

rand_els_deaths

33

34 # Now put this into fit_bayesian_model(attacks , deaths , num_walkers ,

num_steps , burn_in , step_size)
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35 scenarios = sim_scenarios(pd = 0.2, num_time_steps = 700,

num_attacks = 5)

36

37 life_attack_seq , life_death_seq = scenarios[0], scenarios[1]

38 els_attack_seq , els_death_seq = scenarios[2], scenarios[3]

39

40 num_walkers = 30

41 num_steps = 60

42 burn_in = 0.3

43 step_size = 2

44

45 life_bayesian_fit = fit_bayesian_model(life_attack_seq ,

life_death_seq , num_walkers , num_steps , burn_in , step_size)

46 els_bayesian_fit = fit_bayesian_model(els_attack_seq , els_death_seq ,

num_walkers , num_steps , burn_in , step_size)

47

48 # Plug these into variance_over_time(samples) to get FIG 3B

49 life_variance = variance_over_time(life_bayesian_fit , colour = ’

Blues’, x_offset = 0.015)

50 els_variance = variance_over_time(els_bayesian_fit , colour = ’Reds’,

x_offset = 0)

B.8 Bayesian Model - Clustered ELS Attacks

1 def els_clustered(pd, num_time_steps , num_attacks , sims):

2 ’’’

3 Simulates attack and death sequences for two scenarios , attacks

are clustered randomly or uniformly.

4 These are then put into variance over time plot to show how

threat prediction varies. Results are averaged across

5 "sims" number of different runs (different lifetime and els

attack sequences).

6

7 :param prob_attack: Probability of attack

8 :param prob_death: Probability of death given attack happens

9 :param num_time_steps: Total number of trials or timesteps where

attack can occur

10

11 :return: attacks , deaths which are arrays corresponding to

sequences of attacks and deaths (0 is no attack/no death ,

12 1 is attack/death)
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13 ’’’

14 life_sims = np.zeros((sims , 1260, 2)) # burnin: 0.1->1620,

0.2->1440, 0.3->1260

15 els_sims = np.zeros((sims , 1260, 2))

16

17 for s in range(sims):

18 # Lifetime Random Scenario:

19 rand_life_attacks = np.zeros(num_time_steps)

20 indices = np.random.choice(num_time_steps , num_attacks ,

replace=False)

21 print(indices)

22 # Input attacks (1s) in random chosen timesteps

23 rand_life_attacks[indices] = 1

24 rand_life_deaths = np.random.binomial(1, pd, num_time_steps)

* rand_life_attacks

25

26

27 # ELS clustered Scenario: random clusters of 3 attacks

simultaneously (over 3 timesteps)

28 clus_els_attacks = np.zeros(num_time_steps)

29 half_num_time_steps = int(num_time_steps/2)

30 #indices = np.random.choice(half_num_time_steps , num_attacks

, replace=False) # RANDOM SPACING

31

32 indices = np.linspace(0, half_num_time_steps , num_attacks ,

dtype=int) # EQUAL SPACING

33 print(indices)

34

35 # Input attacks (1s) in random chosen timesteps

36 clus_els_attacks[indices] = 1

37 next_ind = [x+1 for x in indices]

38 print(next_ind)

39 clus_els_attacks[next_ind] = 1

40 next_ind = [x+1 for x in next_ind]

41 print(next_ind)

42 clus_els_attacks[next_ind] = 1

43

44 #print(next_ind)

45

46 rand_els_deaths = np.random.binomial(1, pd, num_time_steps)

* clus_els_attacks

47 #print(np.sum(clus_els_attacks))
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48 #print(np.sum(rand_life_attacks))

49

50 num_walkers = 30

51 num_steps = 60

52 burn_in = 0.3

53 step_size = 2

54

55 life_bayesian_fit = fit_bayesian_model(rand_life_attacks ,

rand_life_deaths , num_walkers , num_steps , burn_in , step_size)

56 els_bayesian_fit = fit_bayesian_model(clus_els_attacks ,

rand_els_deaths , num_walkers , num_steps , burn_in , step_size)

57

58 life_sims[s,:,:] = life_bayesian_fit

59 els_sims[s,:,:] = els_bayesian_fit

60

61 # Average over sims for each step

62 life_means = np.mean(life_sims , axis=0)

63 els_means = np.mean(els_sims , axis=0)

64 #print(np.shape(life_sims))

65 #print(np.shape(els_sims))

66 # Generating plots for avg variance over time

67 life_variance = variance_over_time(life_means , colour=’Blues’,

x_offset =0.015)

68 els_variance = variance_over_time(els_means , colour=’Reds’,

x_offset=0)

69

70 return life_sims , els_sims

71

72 life_sims , els_sims = els_clustered(pd = 0.01, num_time_steps = 700,

num_attacks = 5, sims=1)
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TD Model Python Code

C.1 Preprocessing SEFL Data

1 import numpy as np

2 from sklearn.preprocessing import MinMaxScaler

3 from scipy.optimize import minimize

4 from scipy.optimize import differential_evolution

5 import pandas as pd

6 import scipy.stats

7

8

9 import scipy.io as sio

10 mat_contents = sio.loadmat(’Supp_Mat’)

11

12 ### EXTRACTING ALL DETAILS ###

13

14 animals = mat_contents["sefl_behavior_day1"]["animal"].reshape(-1)

15 stress_type_index = mat_contents["sefl_behavior_day1"]["stress"].

reshape(-1)

16 day1_freezing_ts = mat_contents["sefl_behavior_day1"]["

freezing_time_series"].reshape(-1)

17 day1_smoothed_freezing = mat_contents["sefl_behavior_day1"]["

smoothed_freezing"].reshape(-1)

18 day6_animal_index = mat_contents["sefl_behavior_day1"]["day6_index"

].reshape(-1)

19 day7_animal_index = mat_contents["sefl_behavior_day1"]["day7_index"

].reshape(-1)

20

21

67
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22 # Storing all details:

23 details_df = pd.DataFrame({

24 "animal": animals ,

25 "stress": stress_type_index ,

26 "day1_freezing_time_series": day1_freezing_ts ,

27 "day1_smoothed_freezing": day1_smoothed_freezing ,

28 "day6_index": day6_animal_index ,

29 "day7_index": day7_animal_index

30 })

31

32 # Remove invalid rows:

33 # Mouse 3 removed - not in day7 file - G11

34 # Mouse 9 removed - no data - G17

35 # Mouse 25 removed - no data in day6 file - G33

36 # Mouse 28 removed - too many shocks - G36

37 # Mouse 35 removed - too many shocks - G9

38

39 indexes_to_remove = [2, 8, 24, 27, 34]

40 details_df = details_df.drop(indexes_to_remove)

41 # Rest row indexes are removing

42 details_df = details_df.reset_index(drop=True)

43

44 # Adjusting df to be nicer to work with:

45 for i in range(len(details_df["animal"])):

46 details_df["animal"][i] = details_df["animal"][i][0]

47 details_df["stress"][i] = details_df["stress"][i][0][0]

48 details_df["day6_index"][i] = details_df["day6_index"][i][0][0]

49 details_df["day7_index"][i] = details_df["day7_index"][i][0][0]

50 details_df["day1_freezing_time_series"][i] = details_df["

day1_freezing_time_series"][i].tolist()

51 details_df["day1_smoothed_freezing"][i] = details_df["

day1_smoothed_freezing"][i].tolist()

52

53 # Changing lower case g to upper case to match day6 and day7 animal

names:

54 details_df["animal"] = details_df["animal"].str.replace(r’ˆg’, ’G’)

55

56 # Day 1 Shocks:

57 day1_shock_times = mat_contents["sefl_behavior_day1"]["shock_times"

].reshape(-1)

58 # Removing rows of relevant indexes:

59 day1_shock_times = np.delete(day1_shock_times , indexes_to_remove)
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60

61

62 # Now creating the actual attack sequences (0s and 1s every timestep

) - 33 mice

63 day1_attack_sequences = np.zeros((33, 162000))

64

65 for m in range(33):

66 times = day1_shock_times[m]

67 # Adjust from 1-based indexing

68 indexes = times -1

69

70 # Add attack (1) at each index accordingly

71 for i in indexes:

72 day1_attack_sequences[m, int(i)] = 1

73

74 # Convert each row of day1_attack_sequences into a list

75 attack_sequences_list = [row.tolist() for row in

day1_attack_sequences]

76

77 # Create the DataFrame with each list as a row

78 day1_attack_sequences = pd.DataFrame({"attack_sequence":

attack_sequences_list})

79 # Sanity check: check for several mice that attacks are in right

place:

80 #np.where(np.array(day1_attack_sequences["attack_sequence "][0]) ==

1) # Mouse G1

81

82

83 # Now attach this to details_df

84 details_df.insert(2, "day1_attack_sequences", day1_attack_sequences)

85 #details_df["day1_attack_sequences"] = day1_attack_sequences

86

87

88

89 # Extracting day6 and day7 freezing time series and smoothed

freezing for these mice:

90 day6_animal = mat_contents["sefl_behavior_day6"]["animal"].reshape

(-1)

91 day6_freezing_ts = mat_contents["sefl_behavior_day6"]["

freezing_time_series"].reshape(-1)

92 day6_smoothed_freezing = mat_contents["sefl_behavior_day6"]["

smoothed_freezing"].reshape(-1)
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93

94 day6_details_df = pd.DataFrame({

95 "animal": day6_animal ,

96 "day6_freezing_time_series": day6_freezing_ts ,

97 "day6_smoothed_freezing": day6_smoothed_freezing

98 })

99

100 # Adjusting df to be nicer to work with:

101 for i in range(len(day6_details_df["animal"])):

102 day6_details_df["animal"][i] = day6_details_df["animal"][i

][0][0][0]

103 day6_details_df["day6_freezing_time_series"][i] =

day6_details_df["day6_freezing_time_series"][i].tolist()

104 day6_details_df["day6_smoothed_freezing"][i] = day6_details_df["

day6_smoothed_freezing"][i].tolist()

105

106 # Day7

107 day7_animal = mat_contents["sefl_behavior_day7"]["animal"].reshape

(-1)

108 day7_freezing_ts = mat_contents["sefl_behavior_day7"]["

freezing_time_series"].reshape(-1)

109 day7_smoothed_freezing = mat_contents["sefl_behavior_day7"]["

smoothed_freezing"].reshape(-1)

110

111 day7_details_df = pd.DataFrame({

112 "animal": day7_animal ,

113 "day7_freezing_time_series": day7_freezing_ts ,

114 "day7_smoothed_freezing": day7_smoothed_freezing

115 })

116

117 # Adjusting df to be nicer to work with:

118 for i in range(len(day7_details_df["animal"])):

119 day7_details_df["animal"][i] = day7_details_df["animal"][i

][0][0][0]

120 day7_details_df["day7_freezing_time_series"][i] =

day7_details_df["day7_freezing_time_series"][i].tolist()

121 day7_details_df["day7_smoothed_freezing"][i] = day7_details_df["

day7_smoothed_freezing"][i].tolist()

122

123

124 # Now joining day6 and day7 details into main details_df:

125 # Merging day6_details_df onto details_df based on "animal" column
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126 details_df = pd.merge(details_df , day6_details_df[["animal", "

day6_freezing_time_series"]], on="animal", how="left")

127 details_df = pd.merge(details_df , day6_details_df[["animal", "

day6_smoothed_freezing"]], on="animal", how="left")

128

129

130 # Merging day7_details_df onto details_df based on "animal" column

131 details_df = pd.merge(details_df , day7_details_df[["animal", "

day7_freezing_time_series"]], on="animal", how="left")

132 details_df = pd.merge(details_df , day7_details_df[["animal", "

day7_smoothed_freezing"]], on="animal", how="left")

133

134 # Now details_df has all details I require , I can fit data for all

days for the correct mice:

135 stressed_mice_details = details_df[details_df["stress"] == 1].copy()

136 stressed_mice_details = stressed_mice_details.reset_index(drop=True)

137

138 unstressed_mice_details = details_df[details_df["stress"] == 0].copy

()

139 unstressed_mice_details = unstressed_mice_details.reset_index(drop=

True)

C.2 TD Model - Smoothed Freezing & Fitting SEFL Data

1 def TD_model_init(init , u, alpha , gamma1):

2 ’’’

3 Evaluates TD model threat at each timestep

4

5 :param u: Input (sequence of unconditioned stimuli , i.e.

sequences of footshocks , 0s and 1s), for different

6 contexts , i.e A and B (day 1 is context A, day 6 and 7 is

context B).

7 :param alpha: Learning rate

8 :param gamma1: Decay rate for threat

9

10 :return: TD model threat estimation levels over all timesteps

11 ’’’

12 T = np.zeros_like(u)

13 T[0] = init

14 for t in range(1, len(T)):

15 T[t] = T[t-1] + alpha * (u[t] - gamma1 * T[t-1])
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16

17 # Scaling between 0.1 and 0.9

18 scaler = MinMaxScaler(feature_range=(0.1, 0.9))

19 T = scaler.fit_transform(T.reshape(-1, 1)).flatten()

20

21 return T

22

23 def NLL_td(params , init , stimuli , threats):

24 ’’’

25 Calculates NLL for one set of parameters given a sequence of

attacks and threat predictions for the TD model.

26 The likelihood calculation uses the PMF of a Bernoulli

distribution to calculate the log probability of observing

27 the given threat probability "threat" based on the current value

of T.

28

29 :param params: Array of parameters alpha and gamma1

30 :param init: initialisation for threat sequence (eg end of day 1

context A for day 6 context A

31 :param stimuli: Sequence of shocks (attacks)

32 :param threats: Sequence of threat predictions

33

34 :return: Negative Log-Likelihood of one set of parameters.

35 ’’’

36 alpha , gamma1 = params

37 log_likelihood = 0.0

38

39 T = TD_model_init(init = init , u = stimuli , alpha = alpha ,

gamma1 = gamma1)

40

41 eps = 1e-10

42 T = np.clip(T, 0+eps, 1-eps)

43

44 for t in range(len(stimuli)):

45 # Assuming threat distribution is Bernoulli - this appears

to work as needed

46 # Uses probability mass function (PMF) of a Bernoulli

distribution: considers threats as probabilities , i.e.

47 # each ’threat’ represents the prob of observing a shock.

48 log_likelihood += threats[t] * np.log(T[t]) + (1 - threats[t

]) * np.log(1 - T[t])

49
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50 nll = -log_likelihood

51

52 return nll

53

54 def smoothing(raw_time_series , window_size):

55 smoothed_time_series = []

56 half_window = window_size // 2

57

58 # Pad the time series

59 padded_time_series = np.pad(raw_time_series , (half_window ,

half_window), mode=’edge’)

60

61 for i in range(len(raw_time_series)):

62 window_values = padded_time_series[i : i + window_size]

63 smoothed_value = np.mean(window_values) # Average of window

64 smoothed_time_series.append(smoothed_value)

65

66 return np.array(smoothed_time_series)

67

68

69

70

71

72 ### FITTING CONTEXT A DAY 1 ### STRESSED

73

74 # Storing MANUAL smoothed freezing data for each mouse

75 day1_stressed_smoothed_freezing = np.zeros((len(

stressed_mice_details), len(stressed_mice_details["

day1_freezing_time_series"][0])))

76

77 # Applying smoothing function to each mouse freezing time series

78 for i in range(len(stressed_mice_details)):

79 raw_time_series = stressed_mice_details["

day1_freezing_time_series"][i]

80 smoothed_time_series = smoothing(raw_time_series , window_size =

15)

81 day1_stressed_smoothed_freezing[i, :] = smoothed_time_series

82

83 day1_stressed_freezing = day1_stressed_smoothed_freezing

# (15, 162000) use as prediction input

84 day1_stressed_attacks = stressed_mice_details["day1_attack_sequences

"]
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85 day1_stressed_attacks = np.array(day1_stressed_attacks.to_list())

# (15, 162000) use as stimuli input

86 initial = 0

87

88 initial_vals = np.array((0.5, 0.95))

89 bounds = [(0.05,0.9), (0.9,1)]

90

91 # Minimization for MICE

92 for m in range(0, len(stressed_mice_details)):

93 # Compute minimization for each participant

94 result = differential_evolution(NLL_td , x0=initial_vals , bounds=

bounds ,

95 args=(initial , day1_stressed_attacks[m:m

+ 1].reshape(-1), day1_stressed_freezing[m:m + 1].reshape(-1)),

96 polish=True)

97

98 print(f’n_iter: {result.nit} - success: {result.success} - nll {

result.fun}’)

99

100 # Store in results dataframe:

101 TD_stressed_results["Day 1 Context A NLL"][m] = result.fun

102 alpha , gamma1 = result.x

103 TD_stressed_results["Day 1 Context A Params"][m] = [alpha ,

gamma1]

104

105

106

107 ### FITTING CONTEXT B DAY 1 ### STRESSED

108 day1_stressed_attacks_B = np.zeros_like(day1_stressed_attacks)

# (15, 162000) use as stimuli input

109 initial = 0

110

111 # Minimization for MICE

112 for m in range(0, len(stressed_mice_details)):

113 # Compute TD threat fit from parameters for this day, compute

NLL

114 a, g = TD_stressed_results["Day 1 Context A Params"][m]

115 day1_stressed_freezing_B = TD_model_init(init=initial , u=

day1_stressed_attacks_B[m,:], alpha= a, gamma1=g) # (15, 162000)

use as threat input

116

117 params = [a, g]
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118 nll = NLL_td(params=params , init=initial , stimuli=

day1_stressed_attacks_B[m,:], threats=day1_stressed_freezing_B)

119 # Store in results dataframe:

120 TD_stressed_results["Day 1 Context B NLL"][m] = nll

121

122

123

124

125

126 ### FITTING CONTEXT B DAY 6 ### STRESSED

127 # Storing MANUAL smoothed freezing data for each mouse

128 day6_stressed_smoothed_freezing = np.zeros((len(

stressed_mice_details), len(stressed_mice_details["

day6_freezing_time_series"][0])))

129

130 # Applying smoothing function to each mouse freezing time series

131 for i in range(len(stressed_mice_details)):

132 raw_time_series = stressed_mice_details["

day6_freezing_time_series"][i]

133 smoothed_time_series = smoothing(raw_time_series , window_size =

15)

134 day6_stressed_smoothed_freezing[i, :] = smoothed_time_series

135

136 day6_stressed_freezing = day6_stressed_smoothed_freezing

# (15, 18000) use as prediction input

137 day6_stressed_attacks_B = np.zeros_like(day6_stressed_freezing)

# (15, 18000) use as stimuli input

138

139 for m in range(len(day6_stressed_attacks_B)):

140 day6_stressed_attacks_B[m,8999] = 1

141 initial = 0

142

143 initial_vals = np.array((0.5, 0.95))

144 bounds = [(0.05,0.9), (0.9,1)]

145 # Minimization for MICE

146 for m in range(0, len(stressed_mice_details)):

147 # Compute minimization for each participant

148 result = differential_evolution(NLL_td , x0=initial_vals , bounds=

bounds ,

149 args=(initial , day6_stressed_attacks_B[m:

m + 1].reshape(-1), day6_stressed_freezing[m:m + 1].reshape(-1)),

150 polish=True)
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151

152 print(f’n_iter: {result.nit} - success: {result.success} - nll {

result.fun}’)

153

154 # Store in results dataframe:

155 TD_stressed_results["Day 6 Context B NLL"][m] = result.fun

156 alpha , gamma1 = result.x

157 TD_stressed_results["Day 6 Context B Params"][m] = [alpha ,

gamma1]

158

159

160

161

162 ### FITTING CONTEXT A DAY 6 ### STRESSED

163 day6_stressed_attacks_A = np.zeros_like(day6_stressed_attacks_B)

# (15, 162000) use as stimuli input

164

165 # Minimization for MICE

166 for m in range(0, len(stressed_mice_details)):

167 # Finding initial for each mouse

168 a_prev , g_prev = TD_stressed_results["Day 1 Context A Params"][m

]

169 initial = TD_model_init(init=0, u=day1_stressed_attacks[m,:],

alpha=a_prev , gamma1=g_prev)[-1]

170

171 # Compute TD threat fit from parameters for this day, compute

NLL

172 a, g = TD_stressed_results["Day 6 Context B Params"][m]

173 day6_stressed_freezing_A = TD_model_init(init=initial , u=

day6_stressed_attacks_A[m,:], alpha= a, gamma1=g) # (15, 162000)

use as threat input

174

175 params = [a, g]

176 nll = NLL_td(params=params , init=initial , stimuli=

day6_stressed_attacks_A[m,:], threats=day6_stressed_freezing_A)

177 # Store in results dataframe:

178 TD_stressed_results["Day 6 Context A NLL"][m] = nll

179

180

181

182

183
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184

185 ### FITTING CONTEXT B DAY 7 ### STRESSED

186 # Storing MANUAL smoothed freezing data for each mouse

187 day7_stressed_smoothed_freezing = np.zeros((len(

stressed_mice_details), len(stressed_mice_details["

day7_freezing_time_series"][0])))

188

189 # Applying smoothing function to each mouse freezing time series

190 for i in range(len(stressed_mice_details)):

191 raw_time_series = stressed_mice_details["

day7_freezing_time_series"][i]

192 smoothed_time_series = smoothing(raw_time_series , window_size =

15)

193 day7_stressed_smoothed_freezing[i, :] = smoothed_time_series

194

195

196 day7_stressed_freezing = day7_stressed_smoothed_freezing

# (15, 18000) use as prediction input

197 day7_stressed_attacks_B = np.zeros_like(day7_stressed_freezing)

# (15, 18000) use as stimuli input

198

199 initial_vals = np.array((0.5, 0.95))

200 bounds = [(0.05,0.9), (0.9,1)]

201 # Minimization for MICE

202 for m in range(0, len(stressed_mice_details)):

203 # Getting initial for each mouse:

204 a_prev_prev , g_prev_prev = TD_stressed_results["Day 1 Context A

Params"][m]

205 initial_prev = TD_model_init(init=0, u=day1_stressed_attacks_B[m

,:], alpha=a_prev_prev , gamma1=g_prev_prev)[-1]

206

207 a, g = TD_stressed_results["Day 6 Context B Params"][m]

208 initial = TD_model_init(init=initial_prev , u=

day6_stressed_attacks_B[m,:], alpha=a, gamma1=g)[-1]

209

210 # Compute minimization for each participant

211 result = differential_evolution(NLL_td , x0=initial_vals , bounds=

bounds ,

212 args=(initial , day7_stressed_attacks_B[m:

m + 1].reshape(-1), day7_stressed_freezing[m:m + 1].reshape(-1)),

213 polish=True)

214
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215 print(f’n_iter: {result.nit} - success: {result.success} - nll {

result.fun}’)

216

217 # Store in results dataframe:

218 TD_stressed_results["Day 7 Context B NLL"][m] = result.fun

219 alpha , gamma1 = result.x

220 TD_stressed_results["Day 7 Context A Params"][m] = [alpha ,

gamma1]

221

222

223

224

225 ### FITTING CONTEXT A DAY 7 ### STRESSED

226 day7_stressed_attacks_A = np.zeros_like(day7_stressed_attacks_B)

# (15, 18000) use as stimuli input

227

228 # Minimization for MICE

229 for m in range(0, len(stressed_mice_details)):

230 # Finding initial for each mouse

231 a_prev_prev , g_prev_prev = TD_stressed_results["Day 1 Context A

Params"][m]

232 initial_prev = TD_model_init(init=0, u=day1_stressed_attacks[m

,:], alpha=a_prev_prev , gamma1=g_prev_prev)[-1]

233

234 a_prev , g_prev = TD_stressed_results["Day 6 Context B Params"][m

]

235 initial = TD_model_init(init=initial_prev , u=

day6_stressed_attacks_A[m,:], alpha=a_prev , gamma1=g_prev)[-1]

236

237 # Compute TD threat fit from parameters for this day, compute

NLL

238 a, g = TD_stressed_results["Day 7 Context A Params"][m]

239 day7_stressed_freezing_A = TD_model_init(init=initial , u=

day7_stressed_attacks_A[m,:], alpha= a, gamma1=g) # (15, 162000)

use as threat input

240

241 params = [a, g]

242 nll = NLL_td(params=params , init=initial , stimuli=

day7_stressed_attacks_A[m,:], threats=day7_stressed_freezing_A)

243 # Store in results dataframe:

244 TD_stressed_results["Day 7 Context A NLL"][m] = nll

245



Appendix C. TD Model Python Code 79

246

247

248

249

250

251 ### NOW FOR UNSTRESSED ###

252

253

254

255

256

257

258 ### FITTING CONTEXT A DAY 1 ### UNSTRESSED

259

260 # Storing MANUAL smoothed freezing data for each mouse

261 day1_unstressed_smoothed_freezing = np.zeros((len(

unstressed_mice_details), len(unstressed_mice_details["

day1_freezing_time_series"][0])))

262

263 # Applying smoothing function to each mouse freezing time series

264 for i in range(len(unstressed_mice_details)):

265 raw_time_series = unstressed_mice_details["

day1_freezing_time_series"][i]

266 smoothed_time_series = smoothing(raw_time_series , window_size =

15)

267 day1_unstressed_smoothed_freezing[i, :] = smoothed_time_series

268

269 day1_unstressed_freezing = day1_unstressed_smoothed_freezing

# (15, 162000) use as prediction input

270 day1_unstressed_attacks = np.zeros_like(day1_unstressed_freezing)

271 initial = 0

272

273 initial_vals = np.array((0.5, 0.95))

274 bounds = [(0.05,0.9), (0.9,1)]

275

276 # Minimization for MICE

277 for m in range(0, len(unstressed_mice_details)):

278 # Compute minimization for each participant

279 result = differential_evolution(NLL_td , x0=initial_vals , bounds=

bounds ,

280 args=(initial , day1_unstressed_attacks[m:

m + 1].reshape(-1), day1_unstressed_freezing[m:m + 1].reshape(-1)
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),

281 polish=True)

282

283 print(f’n_iter: {result.nit} - success: {result.success} - nll {

result.fun}’)

284

285 # Store in results dataframe:

286 TD_unstressed_results["Day 1 Context A NLL"][m] = result.fun

287 alpha , gamma1 = result.x

288 TD_unstressed_results["Day 1 Context A Params"][m] = [alpha ,

gamma1]

289

290

291

292 ### FITTING CONTEXT B DAY 1 ### UNSTRESSED

293 day1_unstressed_attacks_B = np.zeros_like(day1_unstressed_attacks)

# (15, 162000) use as stimuli input

294 initial = 0

295

296 # Minimization for MICE

297 for m in range(0, len(unstressed_mice_details)):

298 # Compute TD threat fit from parameters for this day, compute

NLL

299 a, g = TD_unstressed_results["Day 1 Context A Params"][m]

300 day1_unstressed_freezing_B = TD_model_init(init=initial , u=

day1_unstressed_attacks_B[m,:], alpha= a, gamma1=g) # (15,

162000) use as threat input

301

302 params = [a, g]

303 nll = NLL_td(params=params , init=initial , stimuli=

day1_unstressed_attacks_B[m,:], threats=

day1_unstressed_freezing_B)

304 # Store in results dataframe:

305 TD_unstressed_results["Day 1 Context B NLL"][m] = nll

306

307

308

309

310

311 ### FITTING CONTEXT B DAY 6 ### UNSTRESSED

312 # Storing MANUAL smoothed freezing data for each mouse

313 day6_unstressed_smoothed_freezing = np.zeros((len(
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unstressed_mice_details), len(unstressed_mice_details["

day6_freezing_time_series"][0])))

314

315 # Applying smoothing function to each mouse freezing time series

316 for i in range(len(unstressed_mice_details)):

317 raw_time_series = unstressed_mice_details["

day6_freezing_time_series"][i]

318 smoothed_time_series = smoothing(raw_time_series , window_size =

15)

319 day6_unstressed_smoothed_freezing[i, :] = smoothed_time_series

320

321 day6_unstressed_freezing = day6_unstressed_smoothed_freezing

# (15, 18000) use as prediction input

322 day6_unstressed_attacks_B = np.zeros_like(day6_unstressed_freezing)

# (15, 18000) use as stimuli input

323

324 for m in range(len(day6_unstressed_attacks_B)):

325 day6_unstressed_attacks_B[m,8999] = 1

326 initial = 0

327

328 initial_vals = np.array((0.5, 0.95))

329 bounds = [(0.05,0.9), (0.9,1)]

330 # Minimization for MICE

331 for m in range(0, len(unstressed_mice_details)):

332 # Compute minimization for each participant

333 result = differential_evolution(NLL_td , x0=initial_vals , bounds=

bounds ,

334 args=(initial , day6_unstressed_attacks_B[

m:m + 1].reshape(-1), day6_unstressed_freezing[m:m + 1].reshape

(-1)),

335 polish=True)

336

337 print(f’n_iter: {result.nit} - success: {result.success} - nll {

result.fun}’)

338

339 # Store in results dataframe:

340 TD_unstressed_results["Day 6 Context B NLL"][m] = result.fun

341 alpha , gamma1 = result.x

342 TD_unstressed_results["Day 6 Context B Params"][m] = [alpha ,

gamma1]

343

344
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345

346

347 ### FITTING CONTEXT A DAY 6 ### UNSTRESSED

348 day6_unstressed_attacks_A = np.zeros_like(day6_unstressed_attacks_B)

# (15, 162000) use as stimuli input

349

350 # Minimization for MICE

351 for m in range(0, len(unstressed_mice_details)):

352 # Finding initial for each mouse

353 a_prev , g_prev = TD_unstressed_results["Day 1 Context A Params"

][m]

354 initial = TD_model_init(init=0, u=day1_unstressed_attacks[m,:],

alpha=a_prev , gamma1=g_prev)[-1]

355

356 # Compute TD threat fit from parameters for this day, compute

NLL

357 a, g = TD_unstressed_results["Day 6 Context B Params"][m]

358 day6_unstressed_freezing_A = TD_model_init(init=initial , u=

day6_unstressed_attacks_A[m,:], alpha= a, gamma1=g) # (15,

162000) use as threat input

359

360 params = [a, g]

361 nll = NLL_td(params=params , init=initial , stimuli=

day6_unstressed_attacks_A[m,:], threats=

day6_unstressed_freezing_A)

362 # Store in results dataframe:

363 TD_unstressed_results["Day 6 Context A NLL"][m] = nll

364

365

366

367

368

369

370 ### FITTING CONTEXT B DAY 7 ### UNSTRESSED

371 # Storing MANUAL smoothed freezing data for each mouse

372 day7_unstressed_smoothed_freezing = np.zeros((len(

unstressed_mice_details), len(unstressed_mice_details["

day7_freezing_time_series"][0])))

373

374 # Applying smoothing function to each mouse freezing time series

375 for i in range(len(unstressed_mice_details)):

376 raw_time_series = unstressed_mice_details["
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day7_freezing_time_series"][i]

377 smoothed_time_series = smoothing(raw_time_series , window_size =

15)

378 day7_unstressed_smoothed_freezing[i, :] = smoothed_time_series

379

380

381 day7_unstressed_freezing = day7_unstressed_smoothed_freezing

# (15, 18000) use as prediction input

382 day7_unstressed_attacks_B = np.zeros_like(day7_unstressed_freezing)

# (15, 18000) use as stimuli input

383

384 initial_vals = np.array((0.5, 0.95))

385 bounds = [(0.05,0.9), (0.9,1)]

386 # Minimization for MICE

387 for m in range(0, len(unstressed_mice_details)):

388 # Getting initial for each mouse:

389 a_prev_prev , g_prev_prev = TD_unstressed_results["Day 1 Context

A Params"][m]

390 initial_prev = TD_model_init(init=0, u=day1_unstressed_attacks_B

[m,:], alpha=a_prev_prev , gamma1=g_prev_prev)[-1]

391

392 a, g = TD_unstressed_results["Day 6 Context B Params"][m]

393 initial = TD_model_init(init=initial_prev , u=

day6_unstressed_attacks_B[m,:], alpha=a, gamma1=g)[-1]

394

395 # Compute minimization for each participant

396 result = differential_evolution(NLL_td , x0=initial_vals , bounds=

bounds ,

397 args=(initial , day7_unstressed_attacks_B[

m:m + 1].reshape(-1), day7_unstressed_freezing[m:m + 1].reshape

(-1)),

398 polish=True)

399

400 print(f’n_iter: {result.nit} - success: {result.success} - nll {

result.fun}’)

401

402 # Store in results dataframe:

403 TD_unstressed_results["Day 7 Context B NLL"][m] = result.fun

404 alpha , gamma1 = result.x

405 TD_unstressed_results["Day 7 Context A Params"][m] = [alpha ,

gamma1]

406
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407

408

409

410 ### FITTING CONTEXT A DAY 7 ### UNSTRESSED

411 day7_unstressed_attacks_A = np.zeros_like(day7_unstressed_attacks_B)

# (15, 18000) use as stimuli input

412

413 # Minimization for MICE

414 for m in range(0, len(unstressed_mice_details)):

415 # Finding initial for each mouse

416 a_prev_prev , g_prev_prev = TD_unstressed_results["Day 1 Context

A Params"][m]

417 initial_prev = TD_model_init(init=0, u=day1_unstressed_attacks[m

,:], alpha=a_prev_prev , gamma1=g_prev_prev)[-1]

418

419 a_prev , g_prev = TD_unstressed_results["Day 6 Context B Params"

][m]

420 initial = TD_model_init(init=initial_prev , u=

day6_unstressed_attacks_A[m,:], alpha=a_prev , gamma1=g_prev)[-1]

421

422 # Compute TD threat fit from parameters for this day, compute

NLL

423 a, g = TD_unstressed_results["Day 7 Context A Params"][m]

424 day7_unstressed_freezing_A = TD_model_init(init=initial , u=

day7_unstressed_attacks_A[m,:], alpha= a, gamma1=g) # (15,

162000) use as threat input

425

426 params = [a, g]

427 nll = NLL_td(params=params , init=initial , stimuli=

day7_unstressed_attacks_A[m,:], threats=

day7_unstressed_freezing_A)

428 # Store in results dataframe:

429 TD_unstressed_results["Day 7 Context A NLL"][m] = nll

C.3 TD Model - Computing BIC Scores

1 ### BIC SCORES FOR TD MODEL ###

2

3 # BIC = 2 * NLL + p*log(n)

4
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5 # where p = number of params , n = number of observations (162000

day1 and 18000 for day 6 and 7)

6 p = 2

7 # Stressed BIC

8 TD_stressed_results["BIC Score"] = None

9 for m in range(len(TD_stressed_results)):

10 Day1_NLL = (TD_stressed_results["Day 1 Context A NLL"][m] +

11 TD_stressed_results["Day 1 Context B NLL"][m])

12

13 Day6_NLL = (TD_stressed_results["Day 6 Context A NLL"][m] +

14 TD_stressed_results["Day 6 Context B NLL"][m])

15

16 Day7_NLL = (TD_stressed_results["Day 7 Context A NLL"][m] +

17 TD_stressed_results["Day 7 Context B NLL"][m])

18

19 Day1_BIC = 2 * Day1_NLL + p * np.log(162000)

20

21 Day6_BIC = 2 * Day6_NLL + p * np.log(18000)

22

23 Day7_BIC = 2 * Day7_NLL + p * np.log(18000)

24

25 TD_stressed_results["BIC Score"][m] = Day1_BIC + Day6_BIC +

Day7_BIC

26

27 # Unstressed BIC

28 TD_unstressed_results["BIC Score"] = None

29 for m in range(len(TD_unstressed_results)):

30 Day1_NLL = (TD_unstressed_results["Day 1 Context A NLL"][m] +

31 TD_unstressed_results["Day 1 Context B NLL"][m])

32

33 Day6_NLL = (TD_unstressed_results["Day 6 Context A NLL"][m] +

34 TD_unstressed_results["Day 6 Context B NLL"][m])

35

36 Day7_NLL = (TD_unstressed_results["Day 7 Context A NLL"][m] +

37 TD_unstressed_results["Day 7 Context B NLL"][m])

38

39 Day1_BIC = 2 * Day1_NLL + p * np.log(162000)

40

41 Day6_BIC = 2 * Day6_NLL + p * np.log(18000)

42

43 Day7_BIC = 2 * Day7_NLL + p * np.log(18000)

44
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45 TD_unstressed_results["BIC Score"][m] = Day1_BIC + Day6_BIC +

Day7_BIC

C.4 TD Model - Multivariate Sampled Parameter Recov-

ery

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.optimize import minimize

4 import scipy

5 import pandas as pd

6 from scipy.optimize import differential_evolution

7

8

9 # Model Param lists (taken from paper supplementary material)

10 # Loading matlab file from paper - creates dict "mat_contents" which

stores all variables

11 import scipy.io as sio

12 mat_contents = sio.loadmat(’Supp_Mat’)

13

14

15 def day_1(shocks):

16 ’’’

17 Evaluates day1 of SEFL experiment.

18

19 :return: Outputs sequence of 15 shocks randomly over 90 mins

(5400 secs)

20 ’’’

21 min_shock_int = 4 * 1800

22 max_shock_int = 6 * 1800

23 # 90 mins = 5400 secs

24 day_1 = np.zeros (162000)

25

26 all_shock_intervals = []

27 while np.sum(day_1) < shocks:

28 # Generate random interval between 4 and 8 mins

29 shock_interval = np.random.randint(min_shock_int ,

max_shock_int)

30 # Add this to the list of all interval times

31 all_shock_intervals.append(shock_interval)
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32 # Calculate the shock index by summing cumulative intervals

33 shock_index = np.sum(all_shock_intervals)

34 # Add shock to day_1 array

35 day_1[shock_index] = 1

36 return day_1

37

38 def NLL_td(params , stimuli , threats):

39 ’’’

40 Calculates NLL for one set of parameters given a sequence of

attacks and threat predictions for the TD model.

41 The likelihood calculation uses the PMF of a Bernoulli

distribution to calculate the log probability of observing

42 the given threat probability "threat" based on the current value

of T.

43

44 :param params: Array of parameters alpha and gamma1

45 :param stimuli: Sequence of shocks (attacks)

46 :param threats: Sequence of threat predictions

47

48 :return: Negative Log-Likelihood of one set of parameters.

49 ’’’

50 alpha , gamma1 = params

51 T_prev = 0.0

52 log_likelihood = 0.0

53

54 for u, threat in zip(stimuli , threats):

55

56 T = T_prev + alpha * (u - gamma1 * T_prev)

57

58 # Getting some invalid log values , divisions by 0 so adding

small value to stop this

59 eps = 1e-10

60 T = np.clip(T, 0+eps, 1-eps)

61

62 # Assuming threat distribution is Bernoulli - this appears

to work as needed

63 # Uses probability mass function (PMF) of a Bernoulli

distribution: considers threats as probabilities , i.e.

64 # each ’threat’ represents the prob of observing a shock.

65 log_likelihood += np.log((T ** threat) * ((1 - T) ** (1 -

threat)))

66
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67 T_prev = T

68

69 nll = -log_likelihood

70

71 return nll

72

73

74 def TD_model(u, alpha , gamma1):

75 ’’’

76 Evaluates TD model threat at each timestep

77

78 :param u: Input (sequence of unconditioned stimuli , i.e.

sequences of footshocks , 0s and 1s), for different

79 contexts , i.e A and B (day 1 is context A, day 6 and 7 is

context B).

80 :param alpha: Learning rate

81 :param gamma1: Decay rate for threat

82

83 :return: TD model threat estimation levels over all timesteps

84 ’’’

85 T = np.zeros_like(u)

86 for t in range(1, len(T)):

87 T[t] = T[t-1] + alpha * (u[t] - gamma1 * T[t-1])

88

89 return T

90

91 # Use this now to generate 100 simulations and fit params

92 # Draw 100 sets of param values from suitable dist , e.g.

multivariate normal distribution

93 # Set covariance to 0, choose small numbers for variance.

94 # Check values before using. Clip to 0 and 1.

95

96 alpha_mean = 0.5

97 gamma1_mean = 0.95

98 means = [alpha_mean , gamma1_mean]

99

100 alpha_var = 0.03

101 gamma1_var = 0.001

102 covs = np.zeros((2,2))

103 covs[0,0] = alpha_var

104 covs[1,1] = gamma1_var

105
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106 sample_params = np.random.multivariate_normal(mean=means , cov=covs ,

size=100)

107 sample_params[:,0] = np.clip(sample_params[:,0], 0, 1)

108 sample_params[:,1] = np.clip(sample_params[:,1], 0.9, 1)

109

110

111 ’’’

112 # Plot showing parameter values for reference

113 fig, ax = plt.subplots(2)

114 fig.suptitle("Sampled Parameter Values")

115 # add a big axes , hide frame

116 fig.add_subplot(111, frameon=False)

117 # hide tick and tick label of the big axes

118 plt.tick_params(labelcolor=’none’, top=False , bottom=False , left=

False , right=False)

119 plt.grid(False)

120 x = np.linspace(0, 100, 100)

121 ax[0].plot(x, sample_params[:,0], "r+", label="Sampled $alpha$")

122 ax[1].plot(x, sample_params[:,1], "bo", label="Sampled $gamma_1$")

123 plt.xlabel("Simulation (Individual Mouse)")

124 plt.ylabel("Sampled Parameter Value")

125 ax[1].legend(fontsize ="8")

126 ax[0].legend(fontsize ="8")

127 plt.show()

128 ’’’

129

130 # Now create simulations of attacks and corresponding threat

predictions for each pair of params:

131 sampled_attacks = np.zeros((100, 162000))

132 sampled_predictions = np.zeros((100, 162000))

133

134 for index , (a, g1) in enumerate(zip(sample_params[:,0],

sample_params[:,1])):

135 # Generate day 1 sequence of attacks for each

136 attacks = day_1(15)

137 # Generate threat predictions from this simulated sequence of

attacks

138 predictions = TD_model(u = attacks , alpha = a, gamma1 = g1)

139

140 # Add to sampled attacks/preds arrays

141 sampled_attacks[index , :] = attacks

142 sampled_predictions[index , :] = predictions
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143

144 np.sum(sampled_predictions , axis=1)

145

146 # Fitting parameter values to these simulations (see if we can

recover params)

147 initial_vals = np.array((0.5, 0.95))

148 bounds = [(0.05,0.9), (0.9,1)]

149

150 opt_sampled_data = np.zeros((len(sampled_predictions[:,0]), 2))

151

152 # Minimization for simulations (Mice)

153 for m in range(0, len(sampled_predictions[:,0])):

154 # Compute minimization for each participant

155 result = differential_evolution(NLL_td , x0=initial_vals ,

156 bounds=bounds ,

157 args=(sampled_attacks[m:m + 1].

reshape(-1), sampled_predictions[m:m + 1].reshape(-1)),

158 strategy=’best1bin’, polish=True

)

159

160 print(f’n_iter: {result.nit} - success: {result.success} - nll {

result.fun}’)

161

162 alpha , gamma1 = result.x

163 # Add results to opt_params storing opt param values for each

participant

164 opt_sampled_data[m, 0] = alpha

165 opt_sampled_data[m, 1] = gamma1

166

167 # Now, to see if these match up fairly well (as they should) to the

real simulated params used

168 #Alpha params

169 multivariate_sim_alpha = sample_params[:,0]

170 fitted_simulated_alpha = opt_sampled_data[:,0]

171 alpha_pearson = scipy.stats.pearsonr(multivariate_sim_alpha ,

fitted_simulated_alpha)

172

173 # gamma1 params

174 multivariate_sim_gamma1 = sample_params[:,1]

175 fitted_simulated_gamma1 = opt_sampled_data[:,1]

176 gamma1_pearson = scipy.stats.pearsonr(multivariate_sim_gamma1 ,

fitted_simulated_gamma1)
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C.5 TD Model - List Sampled Parameter Recovery

1 # Extracting lists form supplementary information

2 alpha_list = mat_contents["learning_rate_list"][0].tolist()

3 gamma1_list = mat_contents["decay_list"][0].tolist()

4

5 sample_params = np.zeros((100, 2))

6

7 for s in range(100):

8 sample_params[s, 0] = np.random.choice(alpha_list)

9 sample_params[s, 1] = np.random.choice(gamma1_list)

10

11

12 # Now create simulations of attacks and corresponding threat

predictions for each set of params

13

14 sampled_attacks = np.zeros((100, 162000))

15 sampled_predictions = np.zeros((100, 162000))

16

17 for index , (a, g1) in enumerate(zip(sample_params[:,0],

sample_params[:,1])):

18 # Generate day 1 sequence of attacks for each

19 attacks = day_1(15)

20 # Generate threat predictions from this simulated sequence of

attacks

21 predictions = TD_model(u = attacks , alpha = a, gamma1 = g1)

22

23 # Add to sampled attacks/preds arrays

24 sampled_attacks[index , :] = attacks

25 sampled_predictions[index , :] = predictions

26

27 # Sanity check

28 np.sum(sampled_predictions , axis=1)

29

30 # Fitting parameter values to these simulations (see if we can

recover params)

31 initial_vals = np.array((0.5, 0.95))

32

33 bounds = [(0.05, 0.9), (0.9, 1)]

34

35 opt_sampled_data = np.zeros((len(sampled_predictions[:,0]), 2))

36
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37 # Minimization for simulations (Mice)

38 for m in range(0, len(sampled_predictions[:,0])):

39 # Compute minimization for each participant

40 result = differential_evolution(NLL_td , x0=initial_vals ,

41 bounds=bounds ,

42 args=(sampled_attacks[m:m + 1].

reshape(-1), sampled_predictions[m:m + 1].reshape(-1)),

43 strategy=’best1bin’, polish=True

)

44

45 alpha , gamma1 = result.x

46 # Add results to opt_params storing opt param values for each

participant

47 opt_sampled_data[m, 0] = alpha

48 opt_sampled_data[m, 1] = gamma1

49

50

51 # This results in poor recovery , many pairs don’t change from

initial values!

52 #Alpha params

53 selected_sim_alpha = sample_params[:,0]

54 fitted_simulated_alpha = opt_sampled_data[:,0]

55 alpha_pearson = scipy.stats.pearsonr(selected_sim_alpha ,

fitted_simulated_alpha)

56

57 # gamma1 params

58 selected_sim_gamma1 = sample_params[:,1]

59 fitted_simulated_gamma1 = opt_sampled_data[:,1]

60 gamma1_pearson = scipy.stats.pearsonr(selected_sim_gamma1 ,

fitted_simulated_gamma1)



Appendix D

TD-Momentum Model Code

D.1 TD-Momentum Model - Example of SEFL Model Fit

& Related Freezing (Fig 3.7)

1 import numpy as np

2 from scipy.optimize import minimize

3 import scipy.io as sio

4 mat_contents = sio.loadmat(’Supp_Mat’)

5 import matplotlib.pyplot as plt

6

7

8 ### PRE-PROCESSING START ###

9

10 # DAY1: 162000 steps , 38 mice

11 # Day 1 Freezing

12 # This is the first mice freezing! [:,1] for next etc, 38 total.

Shape to be (38, 162000), 162000 timesteps

13

14 day1_freezing = np.zeros((38, 162000))

15

16 for m in range(38):

17 day1_freezing[m,:] = mat_contents["sefl_behavior_day1"]["

smoothed_freezing"][:,m][0]. reshape(-1)

18

19 # Remove rows for removed mice

20 day1_freezing = np.delete(day1_freezing , 8, axis=0)

21 day1_freezing = np.delete(day1_freezing , 33, axis=0)

22 day1_freezing = np.delete(day1_freezing , 26, axis=0)

93
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23

24

25 # Day 1 Shocks:

26 # 38 total

27 # Mouse 9 removed - no data

28 # Mouse 28 removed - too many shocks

29 # Mouse 35 removed - too many shocks

30 day1_shock_times = mat_contents["sefl_behavior_day1"]["shock_times"]

31 # Remove indexes from day1_shock_times

32 day1_shock_times_modified = np.delete(day1_shock_times , 8, axis=1)

33 day1_shock_times_modified = np.delete(day1_shock_times_modified , 33,

axis=1)

34 day1_shock_times_modified = np.delete(day1_shock_times_modified , 26,

axis=1)

35

36 day1_shock_times = np.zeros((35, 15))

37

38 for m in range(35):

39 day1_shock_times[m,:] = day1_shock_times_modified[:,m][0].

reshape(-1)

40

41 # Now creating the actual attack sequences (0s and 1s every timestep

)

42 day1_attack_sequences = np.zeros((35, 162000))

43

44 for m in range(35):

45 times = day1_shock_times[m,:]

46 indexes = times -1

47

48 for i in indexes:

49 day1_attack_sequences[m, int(i)] = 1

50

51

52 # Array of stress type for each mouse , 0 is unstressed , 1 is

stressed (unstressed are controls = no shocks on day1)

53 day1_stress_type = np.zeros(38)

54

55 for m in range(38):

56 day1_stress_type[m] = mat_contents["sefl_behavior_day1"]["stress

"][0][m][0][0]

57

58 # Removing rows for removed mice
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59 day1_stress_type = np.delete(day1_stress_type , 8, axis=0)

60 day1_stress_type = np.delete(day1_stress_type , 33, axis=0)

61 day1_stress_type = np.delete(day1_stress_type , 26, axis=0)

62

63 # Final arrays for stressed and unstressed mice indexes

64 stressed_indexes = np.where(day1_stress_type == 1)[0].tolist()

65 unstressed_indexes = np.where(day1_stress_type == 0)[0].tolist()

66

67

68 ### PRE-PROCESSING END ###

69

70

71

72 ### EXTRACTING EXAMPLE MOUSE FOOTSHOCKS TO FEED INTO NEW SCALED TD

MOM MODEL TO REPROUCE FIG5A ###

73

74

75 def TD_momentum_model_days1_6_7(init , contexts , alpha , gamma1 ,

gamma2 , f):

76 ’’’

77 Evaluates TD Momentum model threat at each timestep in each

context only , no changing contexts , assumes the same

78 agent in one contex for the whole time , creates threat in other

context as momentum term only.

79

80 :param init: Provides initialisation points for threat readings

in both contexts (days 6 and 7)

81 :param contexts: Sequences of unconditioned stimuli across all

contexts. e.g. sefl(sims = 2)[1] for 2nd mouse sim

82 :param u: Key of chosen context to compute TD momentum model for

. (day1 , day6 , day7)

83 :param alpha: Learning rate

84 :param gamma1: Decay rate for threat

85 :param gamma2: Decay rate for momentum across all contexts

86 :param f: Scaling Constant for momentum term

87

88 :return: TD Momentum model threat estimation levels over all

timesteps

89 ’’’

90 # Initialise momentum array

91 m = np.zeros_like(contexts[:,0])

92
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93 T_A = np.zeros_like(contexts[:,0])

94 T_B = np.zeros_like(contexts[:,1])

95

96 # Set initialisation

97 T_A[0] = init[0]

98 T_B[0] = init[1]

99

100 for t in range(1, len(contexts[:,0])):

101 # Set PE to 0 at every time step before computing PE for

current step

102 PE = 0

103 PE += alpha * (contexts[:, 0][t] - T_A[t - 1])

104 PE += alpha * (contexts[:, 1][t] - T_B[t - 1])

105

106 m[t] = m[t-1] + gamma2 * PE

107 m[t] = np.clip(m[t], 0, 1) # NEWLY ADDED 25/07/23

108

109 T_A[t] = T_A[t - 1] + alpha * (contexts[:, 0][t] - gamma1 *

T_A[t - 1]) + f * m[t]

110 T_B[t] = T_B[t - 1] + alpha * (contexts[:, 1][t] - gamma1 *

T_B[t - 1]) + f * m[t]

111

112 T_A[t] = np.clip(T_A[t], 0, 1)

113 T_B[t] = np.clip(T_B[t], 0, 1)

114

115 return T_A, T_B

116

117 # Freezing and attacks for ALL mice (35)

118 day1_stressed_freezing = day1_freezing[stressed_indexes]

119 day1_stressed_attacks = day1_attack_sequences[stressed_indexes]

120

121

122 ### DAY 1 ###

123 # Taking first stressed mouse as example , extracting shock sequence

for day 1: 0

124 mouse_1_day1_context_A = day1_stressed_attacks [10]

125 mouse_1_day1_context_B = np.zeros_like(mouse_1_day1_context_A)

126

127 # Day 1 threat

128 day1_contexts_stacked = np.column_stack((mouse_1_day1_context_A ,

mouse_1_day1_context_B))

129 x = np.linspace(0, 90, len(mouse_1_day1_context_A))
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130

131 init_day1 = [0, 0]

132 A_threat_day1 , B_threat_day1 = TD_momentum_model_days1_6_7(init =

init_day1 , contexts = day1_contexts_stacked , alpha =0.000015,

133 gamma1 =

0.9999, gamma2 = 0.01, f = 0.1)

134

135

136 ### Day 6 ###

137 # in both contexts for 10 mins , single shock in context B halfway

through

138

139 mouse_1_day6_context_A = np.zeros (18000) #

18000 timesteps on day 6 and day 7 (10 mins exposure)

140 mouse_1_day6_context_B = np.zeros_like(mouse_1_day6_context_A)

141 mouse_1_day6_context_B [8999] = 1 #

Single attack at halfway point

142

143 # day 6 threat:

144 day6_contexts_stacked = np.column_stack((mouse_1_day6_context_A ,

mouse_1_day6_context_B))

145 x = np.linspace(0, 10, len(mouse_1_day6_context_A))

146

147 init_day6 = [A_threat_day1[-1], B_threat_day1[-1]]

148 A_threat_day6 , B_threat_day6 = TD_momentum_model_days1_6_7(init =

init_day6 , contexts = day6_contexts_stacked , alpha =0.000015,

149 gamma1 =

0.9999, gamma2 = 0.01, f = 0.1)

150

151

152 ### DAY 7 ###

153 mouse_1_day7_context_A = np.zeros (18000) #

18000 timesteps on day 6 and day 7 (10 mins exposure)

154 mouse_1_day7_context_B = np.zeros_like(mouse_1_day7_context_A)

155

156 day7_contexts_stacked = np.column_stack((mouse_1_day7_context_A ,

mouse_1_day7_context_B))

157 x = np.linspace(0, 10, len(mouse_1_day7_context_A))

158

159 init_day7 = [A_threat_day6[-1], B_threat_day6[-1]]

160 A_threat_day7 , B_threat_day7 = TD_momentum_model_days1_6_7(init =

init_day7 , contexts = day7_contexts_stacked , alpha =0.000015,
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161 gamma1 =

0.9999, gamma2 = 0.01, f = 0.1)

162

163

164

165 # Scale function for 6 arrays: Contexts A and B for days 1, 6 and 7

166 def combined_rescale_example(arrs , new_min , new_max):

167 combined_min = min(np.min(arr) for arr in arrs)

168 combined_max = max(np.max(arr) for arr in arrs)

169 rescaled_arrs = [(arr - combined_min) * (new_max - new_min) / (

combined_max - combined_min) + new_min for arr in arrs]

170 return rescaled_arrs

171

172 # Scaling all days/contexts together:

173 scale_arrays = [A_threat_day1 , B_threat_day1 , A_threat_day6 ,

B_threat_day6 , A_threat_day7 , B_threat_day7]

174

175 A_threat_day1 , B_threat_day1 , A_threat_day6 , B_threat_day6 ,

A_threat_day7 , B_threat_day7 = combined_rescale_example(

scale_arrays , 0.1, 0.9)

176

177

178 ### G34 FREEZING DATA ###

179 ### DAY 1 ###

180

181 mouse_1_day1_freezing = mat_contents["sefl_behavior_day1"]["

smoothed_freezing"][:,25][0]. reshape(-1)

182 mouse_1_day1_freezing = mouse_1_day1_freezing * 100

183 x = np.linspace(0, 90, len(mouse_1_day1_freezing))

184

185 ### DAY 6 ###

186 mouse_1_day6_freezing = mat_contents["sefl_behavior_day6"]["

smoothed_freezing"][:,25][0]. reshape(-1)

187 mouse_1_day6_freezing = mouse_1_day6_freezing * 100

188 x = np.linspace(0, 10, len(mouse_1_day6_freezing))

189

190 ### DAY 7 ###

191 mouse_1_day7_freezing = mat_contents["sefl_behavior_day7"]["

smoothed_freezing"][:,24][0]. reshape(-1)

192 mouse_1_day7_freezing = mouse_1_day7_freezing * 100

193 x = np.linspace(0, 10, len(mouse_1_day7_freezing))

194
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195

196

197

198

199 # Plotting RL Momentum Threat example and actual smoothed freezing

200 fig, axes = plt.subplots(2, 3, figsize=(15, 10))

201

202 # Plotting TD-Momentum Threat data for each day

203 days = [1, 6, 7]

204 for i, day in enumerate(days):

205 if day == 1:

206 x = np.linspace(0, 90, len(mouse_1_day1_context_A))

207 else:

208 x = np.linspace(0, 10, len(mouse_1_day6_context_A)) if day

== 6 else np.linspace(0, 10, len(mouse_1_day7_context_A))

209

210 # Plot the threat data and context data on the top row axes

211 axes[1, i].plot(x, A_threat_day1 if day == 1 else A_threat_day6

if day == 6 else A_threat_day7 , label="A")

212 axes[1, i].plot(x, B_threat_day1 if day == 1 else B_threat_day6

if day == 6 else B_threat_day7 , label="B")

213 axes[1, i].plot(x, mouse_1_day1_context_A if day == 1 else

mouse_1_day6_context_A if day == 6 else mouse_1_day7_context_A ,

label="A input", alpha=0.20)

214 axes[1, i].plot(x, mouse_1_day1_context_B if day == 1 else

mouse_1_day6_context_B if day == 6 else mouse_1_day7_context_B ,

label="B input", alpha=0.20)

215 axes[1, i].set_xlabel("Time (mins)", fontsize=15)

216 axes[1, i].set_ylabel("TD-Momentum Threat", fontsize=15)

217 axes[1, i].set_ylim(0, 1)

218 axes[1, i].legend()

219

220 if i != 0:

221 axes[1, i].set_yticklabels ([])

222 axes[1, i].set_ylabel("")

223

224 # Hide the x-axis labels for the top row

225 plt.setp(axes[0, :], xticks=[])

226

227 # Plotting Freezing data for each day

228 for i, day in enumerate(days):

229 if day == 1:
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230 x = np.linspace(0, 90, len(mouse_1_day1_freezing))

231 freezing_data = mouse_1_day1_freezing

232 else:

233 x = np.linspace(0, 10, len(mouse_1_day6_freezing)) if day ==

6 else np.linspace(0, 10, len(mouse_1_day7_freezing))

234 freezing_data = mouse_1_day6_freezing if day == 6 else

mouse_1_day7_freezing

235

236 # Plot the freezing data on the bottom row axes

237 axes[0, i].plot(x, freezing_data , label="Freezing", color="r",

alpha=0.6)

238 axes[0, i].set_title(f"Day {day} - Context A", fontsize=15)

239 axes[0, i].set_ylabel("Freezing (%)", fontsize=15)

240 axes[0, i].set_ylim(0, 100)

241 axes[0, i].legend()

242

243 if i != 0:

244 axes[0, i].set_yticklabels ([])

245 axes[0, i].set_ylabel("")

246

247 if i == 1:

248 axes[0, i].set_title(f"Day {day} - Context B", fontsize=15)

249

250 if i == 2:

251 axes[0, i].set_title(f"Day {day} - Context B", fontsize=15)

252

253 plt.tight_layout()

254 plt.show()

D.2 TD-Momentum Model - Fitting SEFL Data

1 import numpy as np

2 from sklearn.preprocessing import MinMaxScaler

3 from scipy.optimize import minimize

4 from scipy.optimize import differential_evolution

5 import pandas as pd

6 import scipy.stats

7 import matplotlib.pyplot as plt

8

9 import scipy.io as sio

10 mat_contents = sio.loadmat(’Supp_Mat’)
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11

12 # Copying versions of TD for use of TD Mom model and to stored

results:

13

14 TD_Mom_stressed_results = pd.DataFrame.copy(TD_stressed_results)

15 TD_Mom_unstressed_results = pd.DataFrame.copy(TD_unstressed_results)

16

17 TD_Mom_stressed_results[TD_Mom_stressed_results.columns [1:]] = None

18 TD_Mom_unstressed_results[TD_Mom_stressed_results.columns [1:]] =

None

19

20

21 ### Defining functions required ###

22 def combined_rescale(arr1 , arr2 , new_min , new_max):

23 combined_min = min(np.min(arr1), np.min(arr2))

24 combined_max = max(np.max(arr1), np.max(arr2))

25 rescaled_arr1 = (arr1 - combined_min) * (new_max - new_min) / (

combined_max - combined_min + 1e-10) + new_min

26 rescaled_arr2 = (arr2 - combined_min) * (new_max - new_min) / (

combined_max - combined_min + 1e-10) + new_min

27 return rescaled_arr1 , rescaled_arr2

28

29 def TD_momentum_model_init(init , contexts , alpha , gamma1 , gamma2 , f)

:

30 ’’’

31 Evaluates TD Momentum model threat at each timestep in each

context only , no changing contexts , assumes the same

32 agent in one contex for the whole time , creates threat in other

context as momentum term only.

33

34 :param init: Provides initialisation points for threat readings

in both contexts (days 6 and 7)

35 :param contexts: Sequences of unconditioned stimuli across all

contexts. e.g. sefl(sims = 2)[1] for 2nd mouse sim

36 :param u: Key of chosen context to compute TD momentum model for

. (day1 , day6 , day7)

37 :param alpha: Learning rate

38 :param gamma1: Decay rate for threat

39 :param gamma2: Decay rate for momentum across all contexts

40 :param f: Scaling Constant for momentum term

41

42 :return: TD Momentum model threat estimation levels over all
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timesteps

43 ’’’

44 # Initialise momentum array

45 m = np.zeros_like(contexts[:,0])

46

47 T_A = np.zeros_like(contexts[:,0])

48 T_B = np.zeros_like(contexts[:,1])

49

50 # Set initialisation

51 T_A[0] = init[0]

52 T_B[0] = init[1]

53

54 for t in range(1, len(contexts[:,0])):

55 # Set PE to 0 at every time step before computing PE for

current step

56 PE = 0

57 PE += alpha * (contexts[:, 0][t] - T_A[t - 1])

58 PE += alpha * (contexts[:, 1][t] - T_B[t - 1])

59

60 m[t] = m[t-1] + gamma2 * PE

61 m[t] = np.clip(m[t], 0, 1)

62

63 T_A[t] = T_A[t - 1] + alpha * (contexts[:, 0][t] - gamma1 *

T_A[t - 1]) + f * m[t]

64 T_B[t] = T_B[t - 1] + alpha * (contexts[:, 1][t] - gamma1 *

T_B[t - 1]) + f * m[t]

65

66 T_A[t] = np.clip(T_A[t], 0, 1)

67 T_B[t] = np.clip(T_B[t], 0, 1)

68

69 T_A, T_B = combined_rescale(T_A, T_B, 0.1, 0.9)

70

71 return T_A, T_B

72

73 def NLL_td_mom(params , init , stimuli , threats , u):

74 alpha , gamma1 , gamma2 , f = params

75 log_likelihood = 0.0

76

77 T_A, T_B = TD_momentum_model_init(init = init , contexts =

stimuli , alpha = alpha , gamma1 = gamma1 , gamma2 = gamma2 , f = f)

78

79 eps = 1e-10
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80 T_A = np.clip(T_A, 0+eps, 1-eps)

81 T_B = np.clip(T_B, 0+eps, 1-eps)

82

83 if u == 0:

84 Tu = T_A

85

86 if u == 1:

87 Tu = T_B

88

89 for t in range(len(stimuli[:,0])):

90 log_likelihood += threats[t, u] * np.log(Tu[t]) + (1 -

threats[t, u]) * np.log(1 - Tu[t])

91

92 nll = -log_likelihood

93

94 return nll

95

96 def smoothing(raw_time_series , window_size):

97 smoothed_time_series = []

98 half_window = window_size // 2

99

100 # Pad the time series

101 padded_time_series = np.pad(raw_time_series , (half_window ,

half_window), mode=’edge’)

102

103 for i in range(len(raw_time_series)):

104 window_values = padded_time_series[i : i + window_size]

105 smoothed_value = np.mean(window_values) # Average of window

106 smoothed_time_series.append(smoothed_value)

107

108 return np.array(smoothed_time_series)

109

110

111

112

113

114

115 ### FITTING CONTEXT A DAY 1 ### STRESSED

116

117 initial = [0,0]

118 initial_vals = np.array((0.5, 0.95, 0.4, 1.5))

119 bounds = [(0.05, 1), (0.9, 1), (0, 0.8), (0, 3)]
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120

121 # Minimization for MICE

122 for m in range(0, len(stressed_mice_details)):

123 # Compute minimization for each participant

124 B_shocks = np.zeros_like(day1_stressed_attacks[m:m + 1].reshape

(-1))

125 contexts_stacked = np.column_stack((day1_stressed_attacks[m:m +

1].reshape(-1), B_shocks))

126

127 result_A = differential_evolution(NLL_td_mom , x0=initial_vals ,

bounds=bounds ,

128 args=(initial , contexts_stacked ,

day1_stressed_freezing[m:m + 1].reshape((162000, 1)), 0),

129 polish=True)

130

131 print(f’A: n_iter: {result_A.nit} - success: {result_A.success}

- nll {result_A.fun}’)

132

133 # Store in results dataframe:

134 TD_Mom_stressed_results["Day 1 Context A NLL"][m] = result_A.fun

135 alpha , gamma1 , gamma2 , f = result_A.x

136 TD_Mom_stressed_results["Day 1 Context A Params"][m] = [alpha ,

gamma1 , gamma2 , f]

137

138

139

140

141 ### FITTING CONTEXT B DAY 1 ### STRESSED

142 day1_stressed_attacks_B = np.zeros_like(day1_stressed_attacks)

# (15, 162000) use as stimuli input

143 initial = [0,0]

144

145 # Minimization for MICE

146 for m in range(0, len(stressed_mice_details)):

147 # Compute minimization for each participant

148 B_shocks = np.zeros_like(day1_stressed_attacks[m:m + 1].reshape

(-1))

149 contexts_stacked = np.column_stack((day1_stressed_attacks[m:m +

1].reshape(-1), B_shocks))

150

151 # Compute TD threat fit from parameters for this day, compute

NLL
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152 a, g1, g2, f = TD_Mom_stressed_results["Day 1 Context A Params"

][m]

153 day1_stressed_freezing_B = TD_momentum_model_init(init = initial

, contexts = contexts_stacked ,

154 alpha=a,

gamma1=g1, gamma2=g2, f=f)[1]

155

156 params = [a, g1, g2, f]

157 threats_stacked = np.column_stack((day1_stressed_freezing[m],

day1_stressed_freezing_B))

158 nll = NLL_td_mom(params=params , init=initial , stimuli=

contexts_stacked , threats=threats_stacked , u=1)

159 # Store in results dataframe:

160 TD_Mom_stressed_results["Day 1 Context B NLL"][m] = nll

161

162

163

164

165

166

167 # Adjust NLL for day 6 - remove u param

168 def NLL_td_mom(params , init , stimuli , threats):

169 alpha , gamma1 , gamma2 , f = params

170 log_likelihood = 0.0

171

172 T_A, T_B = TD_momentum_model_init(init = init , contexts =

stimuli , alpha = alpha , gamma1 = gamma1 , gamma2 = gamma2 , f = f)

173

174 eps = 1e-10

175 T_A = np.clip(T_A, 0+eps, 1-eps)

176 T_B = np.clip(T_B, 0+eps, 1-eps)

177

178

179 Tu = T_B

180

181 for t in range(len(stimuli[:,0])):

182 log_likelihood += threats[t, 0] * np.log(Tu[t]) + (1 -

threats[t, 0]) * np.log(1 - Tu[t])

183

184 nll = -log_likelihood

185

186 return nll
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187

188

189

190

191

192 ### FITTING CONTEXT B DAY 6 ### STRESSED

193

194 initial_vals = np.array((0.5, 0.95, 0.4, 1.5))

195 bounds = [(0.05, 1), (0.9, 1), (0, 0.8), (0, 3)]

196

197 # Minimization for MICE

198 for m in range(0, len(stressed_mice_details)):

199 # Setting up initial starting point for threat

200 a_prev , g1_prev , g1_prev , f_prev = TD_Mom_stressed_results["Day

1 Context A Params"][m]

201 initial_prev = [0,0]

202 B_shocks_prev = np.zeros_like(day1_stressed_attacks[m:m + 1].

reshape(-1))

203 contexts_stacked_prev = np.column_stack((day1_stressed_attacks[m

:m + 1].reshape(-1), B_shocks_prev))

204

205 initial_B = TD_momentum_model_init(init = initial_prev , contexts

= contexts_stacked_prev ,

206 alpha=a,

gamma1=g1, gamma2=g2, f=f)[1][-1]

207

208 initial_A = TD_momentum_model_init(init = initial_prev , contexts

= contexts_stacked_prev ,

209 alpha=a,

gamma1=g1, gamma2=g2, f=f)[0][-1]

210

211 # Compute minimization for each participant

212 A_shocks = np.zeros_like(day6_stressed_attacks_B[m:m + 1].

reshape(-1))

213 contexts_stacked = np.column_stack((A_shocks ,

day6_stressed_attacks_B[m:m + 1].reshape(-1)))

214 initial = [initial_A , initial_B]

215

216 result_B = differential_evolution(NLL_td_mom , x0=initial_vals ,

bounds=bounds ,

217 args=(initial , contexts_stacked ,

day6_stressed_freezing[m:m + 1].reshape((18000, 1))),
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218 polish=True)

219

220 print(f’A: n_iter: {result_B.nit} - success: {result_B.success}

- nll {result_B.fun}’)

221

222 # Store in results dataframe:

223 TD_Mom_stressed_results["Day 6 Context B NLL"][m] = result_B.fun

224 alpha , gamma1 , gamma2 , f = result_B.x

225 TD_Mom_stressed_results["Day 6 Context B Params"][m] = [alpha ,

gamma1 , gamma2 , f]

226

227

228 # Back to original NLL for day 6 context A

229 def NLL_td_mom(params , init , stimuli , threats , u):

230 alpha , gamma1 , gamma2 , f = params

231 log_likelihood = 0.0

232

233 T_A, T_B = TD_momentum_model_init(init = init , contexts =

stimuli , alpha = alpha , gamma1 = gamma1 , gamma2 = gamma2 , f = f)

234

235 eps = 1e-10

236 T_A = np.clip(T_A, 0+eps, 1-eps)

237 T_B = np.clip(T_B, 0+eps, 1-eps)

238

239 if u == 0:

240 Tu = T_A

241

242 if u == 1:

243 Tu = T_B

244

245 for t in range(len(stimuli[:,0])):

246 log_likelihood += threats[t, u] * np.log(Tu[t]) + (1 -

threats[t, u]) * np.log(1 - Tu[t])

247

248 nll = -log_likelihood

249

250 return nll

251

252 ### FITTING CONTEXT A DAY 6 ### STRESSED

253

254 # Minimization for MICE

255 for m in range(0, len(stressed_mice_details)):
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256 # Setting up initial starting point for threat

257 a_prev , g1_prev , g1_prev , f_prev = TD_Mom_stressed_results["Day

1 Context A Params"][m]

258 initial_prev = [0,0]

259 B_shocks_prev = np.zeros_like(day1_stressed_attacks[m:m + 1].

reshape(-1))

260 contexts_stacked_prev = np.column_stack((day1_stressed_attacks[m

:m + 1].reshape(-1), B_shocks_prev))

261

262 initial_A = TD_momentum_model_init(init = initial_prev , contexts

= contexts_stacked_prev ,

263 alpha=a,

gamma1=g1, gamma2=g2, f=f)[0][-1]

264

265 initial_B = TD_momentum_model_init(init = initial_prev , contexts

= contexts_stacked_prev ,

266 alpha=a,

gamma1=g1, gamma2=g2, f=f)[1][-1]

267

268 # Compute TD Mom threat fit from parameters for this day,

compute NLL

269 A_shocks = np.zeros_like(day6_stressed_attacks_B[m:m + 1].

reshape(-1))

270 contexts_stacked = np.column_stack((A_shocks ,

day6_stressed_attacks_B[m:m + 1].reshape(-1)))

271 initial = [initial_A , initial_B]

272

273 a, g1, g2, f = TD_Mom_stressed_results["Day 6 Context B Params"

][m]

274 day6_stressed_freezing_A = TD_momentum_model_init(init = initial

, contexts = contexts_stacked ,

275 alpha=a,

gamma1=g1, gamma2=g2, f=f)[0]

276

277 params = [a, g1, g2, f]

278 threats_stacked = np.column_stack((day6_stressed_freezing_A ,

day6_stressed_freezing[m]))

279 nll = NLL_td_mom(params=params , init=initial , stimuli=

contexts_stacked , threats=threats_stacked , u=0)

280 # Store in results dataframe:

281 TD_Mom_stressed_results["Day 6 Context A NLL"][m] = nll

282
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283

284

285

286

287 # Adjust NLL for day 7 - remove u param

288 def NLL_td_mom(params , init , stimuli , threats):

289 alpha , gamma1 , gamma2 , f = params

290 log_likelihood = 0.0

291

292 T_A, T_B = TD_momentum_model_init(init = init , contexts =

stimuli , alpha = alpha , gamma1 = gamma1 , gamma2 = gamma2 , f = f)

293

294 eps = 1e-10

295 T_A = np.clip(T_A, 0+eps, 1-eps)

296 T_B = np.clip(T_B, 0+eps, 1-eps)

297

298

299 Tu = T_B

300

301 for t in range(len(stimuli[:,0])):

302 log_likelihood += threats[t, 0] * np.log(Tu[t]) + (1 -

threats[t, 0]) * np.log(1 - Tu[t])

303

304 nll = -log_likelihood

305

306 return nll

307

308

309 ### FITTING CONTEXT B DAY 7 ### STRESSED

310

311

312 initial_vals = np.array((0.5, 0.95, 0.4, 1.5))

313 bounds = [(0.05, 1), (0.9, 1), (0, 0.8), (0, 3)]

314

315 # Minimization for MICE

316 for m in range(0, len(stressed_mice_details)):

317 # Setting up initial starting point for threat

318 a_prev_prev , g1_prev_prev , g2_prev_prev , f_prev_prev =

TD_Mom_stressed_results["Day 1 Context A Params"][m]

319 initial_prev_prev = [0,0]

320 B_shocks_prev_prev = np.zeros_like(day1_stressed_attacks[m:m +

1].reshape(-1))
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321 contexts_stacked_prev_prev = np.column_stack((

day1_stressed_attacks[m:m + 1].reshape(-1), B_shocks_prev_prev))

322

323 initial_prev_A = TD_momentum_model_init(init = initial_prev_prev

, contexts = contexts_stacked_prev_prev ,

324 alpha=

a_prev_prev , gamma1=g1_prev_prev ,

325 gamma2=g2_prev_prev , f=

f_prev_prev)[0][-1]

326

327 initial_prev_B = TD_momentum_model_init(init = initial_prev_prev

, contexts = contexts_stacked_prev_prev ,

328 alpha=

a_prev_prev , gamma1=g1_prev_prev ,

329 gamma2=g2_prev_prev , f=

f_prev_prev)[1][-1]

330

331

332 initial_prev = [initial_prev_A , initial_prev_B]

333 a_prev , g1_prev , g2_prev , f_prev = TD_Mom_stressed_results["Day

6 Context B Params"][m]

334 A_shocks_prev = np.zeros_like(day6_stressed_attacks_B[m:m + 1].

reshape(-1))

335 contexts_stacked_prev = np.column_stack((A_shocks_prev ,

day6_stressed_attacks_B[m:m + 1].reshape(-1)))

336

337 initial_A = TD_momentum_model_init(init=initial_prev , contexts=

contexts_stacked_prev ,

338 alpha=a_prev , gamma1=

g1_prev ,

339 gamma2=g2_prev , f=f_prev)

[0][-1]

340

341 initial_B = TD_momentum_model_init(init=initial_prev , contexts=

contexts_stacked_prev ,

342 alpha=a_prev , gamma1=

g1_prev ,

343 gamma2=g2_prev , f=f_prev)

[1][-1]

344

345 # Compute minimization for each participant

346 initial = [initial_A , initial_B]
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347 A_shocks = np.zeros_like(day7_stressed_attacks_A[m:m + 1].

reshape(-1)) # doesn’t matter if A or B, both filled with

zeros

348 contexts_stacked = np.column_stack((A_shocks ,

day7_stressed_attacks_B[m:m + 1].reshape(-1)))

349

350 result_B = differential_evolution(NLL_td_mom , x0=initial_vals ,

bounds=bounds ,

351 args=(initial , contexts_stacked ,

day7_stressed_freezing[m:m + 1].reshape((18000, 1))),

352 polish=True)

353

354 print(f’B: n_iter: {result_B.nit} - success: {result_B.success}

- nll {result_B.fun}’)

355

356 # Store in results dataframe:

357 TD_Mom_stressed_results["Day 7 Context B NLL"][m] = result_B.fun

358 alpha , gamma1 , gamma2 , f = result_B.x

359 TD_Mom_stressed_results["Day 7 Context A Params"][m] = [alpha ,

gamma1 , gamma2 , f]

360

361

362

363

364

365 # Back to original NLL for day 7 context A

366 def NLL_td_mom(params , init , stimuli , threats , u):

367 alpha , gamma1 , gamma2 , f = params

368 log_likelihood = 0.0

369

370 T_A, T_B = TD_momentum_model_init(init = init , contexts =

stimuli , alpha = alpha , gamma1 = gamma1 , gamma2 = gamma2 , f = f)

371

372 eps = 1e-10

373 T_A = np.clip(T_A, 0+eps, 1-eps)

374 T_B = np.clip(T_B, 0+eps, 1-eps)

375

376 if u == 0:

377 Tu = T_A

378

379 if u == 1:

380 Tu = T_B
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381

382 for t in range(len(stimuli[:,0])):

383 log_likelihood += threats[t, u] * np.log(Tu[t]) + (1 -

threats[t, u]) * np.log(1 - Tu[t])

384

385 nll = -log_likelihood

386

387 return nll

388 ### FITTING CONTEXT A DAY 7 ### STRESSED

389

390 for m in range(0, len(stressed_mice_details)):

391 # Setting up initial starting point for threat

392 a_prev_prev , g1_prev_prev , g2_prev_prev , f_prev_prev =

TD_Mom_stressed_results["Day 1 Context A Params"][m]

393 initial_prev_prev = [0, 0]

394 B_shocks_prev_prev = np.zeros_like(day1_stressed_attacks[m:m +

1].reshape(-1))

395 contexts_stacked_prev_prev = np.column_stack((

day1_stressed_attacks[m:m + 1].reshape(-1), B_shocks_prev_prev))

396

397 initial_prev_A = TD_momentum_model_init(init=initial_prev_prev ,

contexts=contexts_stacked_prev_prev ,

398 alpha=a_prev_prev , gamma1=

g1_prev_prev ,

399 gamma2=g2_prev_prev , f=

f_prev_prev)[0][-1]

400

401 initial_prev_B = TD_momentum_model_init(init=initial_prev_prev ,

contexts=contexts_stacked_prev_prev ,

402 alpha=a_prev_prev , gamma1=

g1_prev_prev ,

403 gamma2=g2_prev_prev , f=

f_prev_prev)[1][-1]

404

405 a_prev , g1_prev , g2_prev , f_prev = TD_Mom_stressed_results["Day

6 Context B Params"][m]

406 A_shocks_prev = np.zeros_like(day6_stressed_attacks_B[m:m + 1].

reshape(-1))

407 contexts_stacked_prev = np.column_stack((A_shocks_prev ,

day6_stressed_attacks_B[m:m + 1].reshape(-1)))

408 initial_prev = [initial_prev_A , initial_prev_B]

409
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410 initial_A = TD_momentum_model_init(init=initial_prev , contexts=

contexts_stacked_prev ,

411 alpha=a_prev , gamma1=g1_prev ,

412 gamma2=g2_prev , f=f_prev)

[0][-1]

413

414 initial_B = TD_momentum_model_init(init=initial_prev , contexts=

contexts_stacked_prev ,

415 alpha=a_prev , gamma1=g1_prev ,

416 gamma2=g2_prev , f=f_prev)

[1][-1]

417

418 # Compute minimization for each participant

419 A_shocks = np.zeros_like(day7_stressed_attacks_A[m:m + 1].

reshape(-1))

420 contexts_stacked = np.column_stack((A_shocks ,

day7_stressed_attacks_B[m:m + 1].reshape(-1)))

421 a, g1, g2, f = TD_Mom_stressed_results["Day 7 Context A Params"

][m]

422

423 initial = [initial_A , initial_B]

424

425 day7_stressed_freezing_A = TD_momentum_model_init(init=initial ,

contexts=contexts_stacked , alpha=a, gamma1=g1,

426 gamma2=g2, f=f

)[0]

427

428 params = [a, g1, g2, f]

429 threats_stacked = np.column_stack((day7_stressed_freezing_A ,

day7_stressed_freezing[m]))

430 nll = NLL_td_mom(params=params , init=initial , stimuli=

contexts_stacked , threats=threats_stacked , u=0)

431 # Store in results dataframe:

432 TD_Mom_stressed_results["Day 7 Context A NLL"][m] = nll

433

434

435

436

437 ### NOW FOR UNSTRESSED ###

438

439

440
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441 ### FITTING CONTEXT A DAY 1 ### UNSTRESSED

442

443 initial = [0,0]

444 initial_vals = np.array((0.5, 0.95, 0.4, 1.5))

445 bounds = [(0.05, 1), (0.9, 1), (0, 0.8), (0, 3)]

446

447 # Minimization for MICE

448 for m in range(0, len(unstressed_mice_details)):

449 # Compute minimization for each participant

450 B_shocks = np.zeros_like(day1_unstressed_attacks[m:m + 1].

reshape(-1))

451 contexts_stacked = np.column_stack((day1_unstressed_attacks[m:m

+ 1].reshape(-1), B_shocks))

452

453 result_A = differential_evolution(NLL_td_mom , x0=initial_vals ,

bounds=bounds ,

454 args=(initial , contexts_stacked ,

day1_unstressed_freezing[m:m + 1].reshape((162000, 1)), 0),

455 polish=True)

456

457 print(f’A: n_iter: {result_A.nit} - success: {result_A.success}

- nll {result_A.fun}’)

458

459 # Store in results dataframe:

460 TD_Mom_unstressed_results["Day 1 Context A NLL"][m] = result_A.

fun

461 alpha , gamma1 , gamma2 , f = result_A.x

462 TD_Mom_unstressed_results["Day 1 Context A Params"][m] = [alpha ,

gamma1 , gamma2 , f]

463

464

465

466

467 ### FITTING CONTEXT B DAY 1 ### UNSTRESSED

468 day1_unstressed_attacks_B = np.zeros_like(day1_unstressed_attacks)

# (15, 162000) use as stimuli input

469 initial = [0,0]

470

471 # Minimization for MICE

472 for m in range(0, len(unstressed_mice_details)):

473 # Compute minimization for each participant

474 B_shocks = np.zeros_like(day1_unstressed_attacks[m:m + 1].



Appendix D. TD-Momentum Model Code 115

reshape(-1))

475 contexts_stacked = np.column_stack((day1_unstressed_attacks[m:m

+ 1].reshape(-1), B_shocks))

476

477 # Compute TD threat fit from parameters for this day, compute

NLL

478 a, g1, g2, f = TD_Mom_unstressed_results["Day 1 Context A Params

"][m]

479 day1_unstressed_freezing_B = TD_momentum_model_init(init =

initial , contexts = contexts_stacked ,

480 alpha=a,

gamma1=g1, gamma2=g2, f=f)[1]

481

482 params = [a, g1, g2, f]

483 threats_stacked = np.column_stack((day1_unstressed_freezing[m],

day1_unstressed_freezing_B))

484 nll = NLL_td_mom(params=params , init=initial , stimuli=

contexts_stacked , threats=threats_stacked , u=1)

485 # Store in results dataframe:

486 TD_Mom_unstressed_results["Day 1 Context B NLL"][m] = nll

487

488

489

490

491

492

493 # Adjust NLL for day 6 - remove u param

494 def NLL_td_mom(params , init , stimuli , threats):

495 alpha , gamma1 , gamma2 , f = params

496 log_likelihood = 0.0

497

498 T_A, T_B = TD_momentum_model_init(init = init , contexts =

stimuli , alpha = alpha , gamma1 = gamma1 , gamma2 = gamma2 , f = f)

499

500 eps = 1e-10

501 T_A = np.clip(T_A, 0+eps, 1-eps)

502 T_B = np.clip(T_B, 0+eps, 1-eps)

503

504

505 Tu = T_B

506

507 for t in range(len(stimuli[:,0])):
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508 log_likelihood += threats[t, 0] * np.log(Tu[t]) + (1 -

threats[t, 0]) * np.log(1 - Tu[t])

509

510 nll = -log_likelihood

511

512 return nll

513

514

515

516

517

518 ### FITTING CONTEXT B DAY 6 ### UNSTRESSED

519

520 initial_vals = np.array((0.5, 0.95, 0.4, 1.5))

521 bounds = [(0.05, 1), (0.9, 1), (0, 0.8), (0, 3)]

522

523 # Minimization for MICE

524 for m in range(0, len(unstressed_mice_details)):

525 # Setting up initial starting point for threat

526 a_prev , g1_prev , g1_prev , f_prev = TD_Mom_unstressed_results["

Day 1 Context A Params"][m]

527 initial_prev = [0,0]

528 B_shocks_prev = np.zeros_like(day1_unstressed_attacks[m:m + 1].

reshape(-1))

529 contexts_stacked_prev = np.column_stack((day1_unstressed_attacks

[m:m + 1].reshape(-1), B_shocks_prev))

530

531 initial_B = TD_momentum_model_init(init = initial_prev , contexts

= contexts_stacked_prev ,

532 alpha=a,

gamma1=g1, gamma2=g2, f=f)[1][-1]

533

534 initial_A = TD_momentum_model_init(init = initial_prev , contexts

= contexts_stacked_prev ,

535 alpha=a,

gamma1=g1, gamma2=g2, f=f)[0][-1]

536

537 # Compute minimization for each participant

538 A_shocks = np.zeros_like(day6_unstressed_attacks_B[m:m + 1].

reshape(-1))

539 contexts_stacked = np.column_stack((A_shocks ,

day6_unstressed_attacks_B[m:m + 1].reshape(-1)))
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540 initial = [initial_A , initial_B]

541

542 result_B = differential_evolution(NLL_td_mom , x0=initial_vals ,

bounds=bounds ,

543 args=(initial , contexts_stacked ,

day6_unstressed_freezing[m:m + 1].reshape((18000, 1))),

544 polish=True)

545

546 print(f’A: n_iter: {result_B.nit} - success: {result_B.success}

- nll {result_B.fun}’)

547

548 # Store in results dataframe:

549 TD_Mom_unstressed_results["Day 6 Context B NLL"][m] = result_B.

fun

550 alpha , gamma1 , gamma2 , f = result_B.x

551 TD_Mom_unstressed_results["Day 6 Context B Params"][m] = [alpha ,

gamma1 , gamma2 , f]

552

553

554 # Back to original NLL for day 6 context A

555 def NLL_td_mom(params , init , stimuli , threats , u):

556 alpha , gamma1 , gamma2 , f = params

557 log_likelihood = 0.0

558

559 T_A, T_B = TD_momentum_model_init(init = init , contexts =

stimuli , alpha = alpha , gamma1 = gamma1 , gamma2 = gamma2 , f = f)

560

561 eps = 1e-10

562 T_A = np.clip(T_A, 0+eps, 1-eps)

563 T_B = np.clip(T_B, 0+eps, 1-eps)

564

565 if u == 0:

566 Tu = T_A

567

568 if u == 1:

569 Tu = T_B

570

571 for t in range(len(stimuli[:,0])):

572 log_likelihood += threats[t, u] * np.log(Tu[t]) + (1 -

threats[t, u]) * np.log(1 - Tu[t])

573

574 nll = -log_likelihood
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575

576 return nll

577

578 ### FITTING CONTEXT A DAY 6 ### UNSTRESSED

579

580 # Minimization for MICE

581 for m in range(0, len(unstressed_mice_details)):

582 # Setting up initial starting point for threat

583 a_prev , g1_prev , g1_prev , f_prev = TD_Mom_unstressed_results["

Day 1 Context A Params"][m]

584 initial_prev = [0,0]

585 B_shocks_prev = np.zeros_like(day1_unstressed_attacks[m:m + 1].

reshape(-1))

586 contexts_stacked_prev = np.column_stack((day1_unstressed_attacks

[m:m + 1].reshape(-1), B_shocks_prev))

587

588 initial_A = TD_momentum_model_init(init = initial_prev , contexts

= contexts_stacked_prev ,

589 alpha=a,

gamma1=g1, gamma2=g2, f=f)[0][-1]

590

591 initial_B = TD_momentum_model_init(init = initial_prev , contexts

= contexts_stacked_prev ,

592 alpha=a,

gamma1=g1, gamma2=g2, f=f)[1][-1]

593

594 # Compute TD Mom threat fit from parameters for this day,

compute NLL

595 A_shocks = np.zeros_like(day6_unstressed_attacks_B[m:m + 1].

reshape(-1))

596 contexts_stacked = np.column_stack((A_shocks ,

day6_unstressed_attacks_B[m:m + 1].reshape(-1)))

597 initial = [initial_A , initial_B]

598

599 a, g1, g2, f = TD_Mom_unstressed_results["Day 6 Context B Params

"][m]

600 day6_unstressed_freezing_A = TD_momentum_model_init(init =

initial , contexts = contexts_stacked ,

601 alpha=a,

gamma1=g1, gamma2=g2, f=f)[0]

602

603 params = [a, g1, g2, f]
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604 threats_stacked = np.column_stack((day6_unstressed_freezing_A ,

day6_unstressed_freezing[m]))

605 nll = NLL_td_mom(params=params , init=initial , stimuli=

contexts_stacked , threats=threats_stacked , u=0)

606 # Store in results dataframe:

607 TD_Mom_unstressed_results["Day 6 Context A NLL"][m] = nll

608

609

610

611

612

613

614

615

616

617

618 # Adjust NLL for day 7 - remove u param

619 def NLL_td_mom(params , init , stimuli , threats):

620 alpha , gamma1 , gamma2 , f = params

621 log_likelihood = 0.0

622

623 T_A, T_B = TD_momentum_model_init(init = init , contexts =

stimuli , alpha = alpha , gamma1 = gamma1 , gamma2 = gamma2 , f = f)

624

625 eps = 1e-10

626 T_A = np.clip(T_A, 0+eps, 1-eps)

627 T_B = np.clip(T_B, 0+eps, 1-eps)

628

629

630 Tu = T_B

631

632 for t in range(len(stimuli[:,0])):

633 log_likelihood += threats[t, 0] * np.log(Tu[t]) + (1 -

threats[t, 0]) * np.log(1 - Tu[t])

634

635 nll = -log_likelihood

636

637 return nll

638

639 ### FITTING CONTEXT B DAY 7 ### UNSTRESSED

640

641
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642 initial_vals = np.array((0.5, 0.95, 0.4, 1.5))

643 bounds = [(0.05, 1), (0.9, 1), (0, 0.8), (0, 3)]

644

645 # Minimization for MICE

646 for m in range(0, len(unstressed_mice_details)):

647 # Setting up initial starting point for threat

648 a_prev_prev , g1_prev_prev , g2_prev_prev , f_prev_prev =

TD_Mom_unstressed_results["Day 1 Context A Params"][m]

649 initial_prev_prev = [0,0]

650 B_shocks_prev_prev = np.zeros_like(day1_unstressed_attacks[m:m +

1].reshape(-1))

651 contexts_stacked_prev_prev = np.column_stack((

day1_unstressed_attacks[m:m + 1].reshape(-1), B_shocks_prev_prev)

)

652

653 initial_prev_A = TD_momentum_model_init(init = initial_prev_prev

, contexts = contexts_stacked_prev_prev ,

654 alpha=

a_prev_prev , gamma1=g1_prev_prev ,

655 gamma2=g2_prev_prev , f=

f_prev_prev)[0][-1]

656

657 initial_prev_B = TD_momentum_model_init(init = initial_prev_prev

, contexts = contexts_stacked_prev_prev ,

658 alpha=

a_prev_prev , gamma1=g1_prev_prev ,

659 gamma2=g2_prev_prev , f=

f_prev_prev)[1][-1]

660

661

662 initial_prev = [initial_prev_A , initial_prev_B]

663 a_prev , g1_prev , g2_prev , f_prev = TD_Mom_unstressed_results["

Day 6 Context B Params"][m]

664 A_shocks_prev = np.zeros_like(day6_unstressed_attacks_B[m:m +

1].reshape(-1))

665 contexts_stacked_prev = np.column_stack((A_shocks_prev ,

day6_unstressed_attacks_B[m:m + 1].reshape(-1)))

666

667 initial_A = TD_momentum_model_init(init=initial_prev , contexts=

contexts_stacked_prev ,

668 alpha=a_prev , gamma1=

g1_prev ,
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669 gamma2=g2_prev , f=f_prev)

[0][-1]

670

671 initial_B = TD_momentum_model_init(init=initial_prev , contexts=

contexts_stacked_prev ,

672 alpha=a_prev , gamma1=

g1_prev ,

673 gamma2=g2_prev , f=f_prev)

[1][-1]

674

675 # Compute minimization for each participant

676 initial = [initial_A , initial_B]

677 A_shocks = np.zeros_like(day7_unstressed_attacks_A[m:m + 1].

reshape(-1)) # doesn’t matter if A or B, both filled with

zeros

678 contexts_stacked = np.column_stack((A_shocks ,

day7_unstressed_attacks_B[m:m + 1].reshape(-1)))

679

680 result_B = differential_evolution(NLL_td_mom , x0=initial_vals ,

bounds=bounds ,

681 args=(initial , contexts_stacked ,

day7_unstressed_freezing[m:m + 1].reshape((18000, 1))),

682 polish=True)

683

684 print(f’B: n_iter: {result_B.nit} - success: {result_B.success}

- nll {result_B.fun}’)

685

686 # Store in results dataframe:

687 TD_Mom_unstressed_results["Day 7 Context B NLL"][m] = result_B.

fun

688 alpha , gamma1 , gamma2 , f = result_B.x

689 TD_Mom_unstressed_results["Day 7 Context A Params"][m] = [alpha ,

gamma1 , gamma2 , f]

690

691

692

693

694

695 # Back to original NLL for day 7 context A

696 def NLL_td_mom(params , init , stimuli , threats , u):

697 alpha , gamma1 , gamma2 , f = params

698 log_likelihood = 0.0
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699

700 T_A, T_B = TD_momentum_model_init(init = init , contexts =

stimuli , alpha = alpha , gamma1 = gamma1 , gamma2 = gamma2 , f = f)

701

702 eps = 1e-10

703 T_A = np.clip(T_A, 0+eps, 1-eps)

704 T_B = np.clip(T_B, 0+eps, 1-eps)

705

706 if u == 0:

707 Tu = T_A

708

709 if u == 1:

710 Tu = T_B

711

712 for t in range(len(stimuli[:,0])):

713 log_likelihood += threats[t, u] * np.log(Tu[t]) + (1 -

threats[t, u]) * np.log(1 - Tu[t])

714

715 nll = -log_likelihood

716

717 return nll

718 ### FITTING CONTEXT A DAY 7 ### UNSTRESSED

719

720 for m in range(0, len(unstressed_mice_details)):

721 # Setting up initial starting point for threat

722 a_prev_prev , g1_prev_prev , g2_prev_prev , f_prev_prev =

TD_Mom_unstressed_results["Day 1 Context A Params"][m]

723 initial_prev_prev = [0, 0]

724 B_shocks_prev_prev = np.zeros_like(day1_unstressed_attacks[m:m +

1].reshape(-1))

725 contexts_stacked_prev_prev = np.column_stack((

day1_unstressed_attacks[m:m + 1].reshape(-1), B_shocks_prev_prev)

)

726

727 initial_prev_A = TD_momentum_model_init(init=initial_prev_prev ,

contexts=contexts_stacked_prev_prev ,

728 alpha=a_prev_prev , gamma1=

g1_prev_prev ,

729 gamma2=g2_prev_prev , f=

f_prev_prev)[0][-1]

730

731 initial_prev_B = TD_momentum_model_init(init=initial_prev_prev ,
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contexts=contexts_stacked_prev_prev ,

732 alpha=a_prev_prev , gamma1=

g1_prev_prev ,

733 gamma2=g2_prev_prev , f=

f_prev_prev)[1][-1]

734

735 a_prev , g1_prev , g2_prev , f_prev = TD_Mom_unstressed_results["

Day 6 Context B Params"][m]

736 A_shocks_prev = np.zeros_like(day6_unstressed_attacks_B[m:m +

1].reshape(-1))

737 contexts_stacked_prev = np.column_stack((A_shocks_prev ,

day6_unstressed_attacks_B[m:m + 1].reshape(-1)))

738 initial_prev = [initial_prev_A , initial_prev_B]

739

740 initial_A = TD_momentum_model_init(init=initial_prev , contexts=

contexts_stacked_prev ,

741 alpha=a_prev , gamma1=g1_prev ,

742 gamma2=g2_prev , f=f_prev)

[0][-1]

743

744 initial_B = TD_momentum_model_init(init=initial_prev , contexts=

contexts_stacked_prev ,

745 alpha=a_prev , gamma1=g1_prev ,

746 gamma2=g2_prev , f=f_prev)

[1][-1]

747

748 # Compute minimization for each participant

749 A_shocks = np.zeros_like(day7_unstressed_attacks_A[m:m + 1].

reshape(-1))

750 contexts_stacked = np.column_stack((A_shocks ,

day7_unstressed_attacks_B[m:m + 1].reshape(-1)))

751 a, g1, g2, f = TD_Mom_unstressed_results["Day 7 Context A Params

"][m]

752

753 initial = [initial_A , initial_B]

754

755 day7_stressed_freezing_A = TD_momentum_model_init(init=initial ,

contexts=contexts_stacked , alpha=a, gamma1=g1,

756 gamma2=g2, f=f

)[0]

757

758 params = [a, g1, g2, f]
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759 threats_stacked = np.column_stack((day7_unstressed_freezing_A ,

day7_unstressed_freezing[m]))

760 nll = NLL_td_mom(params=params , init=initial , stimuli=

contexts_stacked , threats=threats_stacked , u=0)

761 # Store in results dataframe:

762 TD_Mom_unstressed_results["Day 7 Context A NLL"][m] = nll

D.3 TD-Momentum Model - Computing BIC Scores

1 ### BIC SCORES FOR TD Momentum MODEL ###

2

3 # BIC = 2 * NLL + p*log(n)

4

5 # where p = number of params , n = number of observations (162000

day1 and 18000 for day 6 and 7)

6 p = 4

7

8 # Stressed BIC

9 for m in range(len(TD_Mom_stressed_results)):

10 Day1_NLL = (TD_Mom_stressed_results["Day 1 Context A NLL"][m] +

11 TD_Mom_stressed_results["Day 1 Context B NLL"][m])

12

13 Day6_NLL = (TD_Mom_stressed_results["Day 6 Context A NLL"][m] +

14 TD_Mom_stressed_results["Day 6 Context B NLL"][m])

15

16 Day7_NLL = (TD_Mom_stressed_results["Day 7 Context A NLL"][m] +

17 TD_Mom_stressed_results["Day 7 Context B NLL"][m])

18

19 Day1_BIC = 2 * Day1_NLL + p * np.log(162000)

20

21 Day6_BIC = 2 * Day6_NLL + p * np.log(18000)

22

23 Day7_BIC = 2 * Day7_NLL + p * np.log(18000)

24

25 TD_Mom_stressed_results["BIC Score"][m] = Day1_BIC + Day6_BIC +

Day7_BIC

26

27 # Unstressed BIC

28 for m in range(len(TD_Mom_unstressed_results)):

29 Day1_NLL = (TD_Mom_unstressed_results["Day 1 Context A NLL"][m]

+
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30 TD_Mom_unstressed_results["Day 1 Context B NLL"][m])

31

32 Day6_NLL = (TD_Mom_unstressed_results["Day 6 Context A NLL"][m]

+

33 TD_Mom_unstressed_results["Day 6 Context B NLL"][m])

34

35 Day7_NLL = (TD_Mom_unstressed_results["Day 7 Context A NLL"][m]

+

36 TD_Mom_unstressed_results["Day 7 Context B NLL"][m])

37

38 Day1_BIC = 2 * Day1_NLL + p * np.log(162000)

39

40 Day6_BIC = 2 * Day6_NLL + p * np.log(18000)

41

42 Day7_BIC = 2 * Day7_NLL + p * np.log(18000)

43

44 TD_Mom_unstressed_results["BIC Score"][m] = Day1_BIC + Day6_BIC

+ Day7_BIC

D.4 TD-Momentum Model - Multivariate Sampled Param-

eter Recovery

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.optimize import minimize

4 import scipy

5 import pandas as pd

6 from scipy.optimize import differential_evolution

7

8

9 # Model Param lists (taken from paper supplementary material)

10 # Loading matlab file from paper - creates dict "mat_contents" which

stores all variables

11 import scipy.io as sio

12 mat_contents = sio.loadmat(’Supp_Mat’)

13

14 def day_1(shocks):

15 ’’’

16 Evaluates day1 of SEFL experiment.

17
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18 :return: Outputs sequence of 15 shocks randomly over 90 mins

(5400 secs)

19 ’’’

20 min_shock_int = 4 * 1800

21 max_shock_int = 6 * 1800

22 # 90 mins = 5400 secs

23 day_1 = np.zeros (162000)

24

25 all_shock_intervals = []

26 while np.sum(day_1) < shocks:

27 # Generate random interval between 4 and 8 mins

28 shock_interval = np.random.randint(min_shock_int ,

max_shock_int)

29 # Add this to the list of all interval times

30 all_shock_intervals.append(shock_interval)

31 # Calculate the shock index by summing cumulative intervals

32 shock_index = np.sum(all_shock_intervals)

33 # Add shock to day_1 array

34 day_1[shock_index] = 1

35 return day_1

36

37 # Combined scaling function for context A and B

38 def combined_rescale(arr1 , arr2 , new_min , new_max):

39 combined_min = min(np.min(arr1), np.min(arr2))

40 combined_max = max(np.max(arr1), np.max(arr2))

41 rescaled_arr1 = (arr1 - combined_min) * (new_max - new_min) / (

combined_max - combined_min + 1e-10) + new_min

42 rescaled_arr2 = (arr2 - combined_min) * (new_max - new_min) / (

combined_max - combined_min + 1e-10) + new_min

43 return rescaled_arr1 , rescaled_arr2

44

45 # Creating NLL function and performing parameter recovery for

simulated data

46 def TD_momentum_model(contexts , alpha , gamma1 , gamma2 , f):

47 ’’’

48 Evaluates TD Momentum model threat at each timestep in each

context only , no changing contexts , assumes the same

49 agent in one contex for the whole time , creates threat in other

context as momentum term only.

50

51 :param contexts: Sequences of unconditioned stimuli across all

contexts. e.g. sefl(sims = 2)[1] for 2nd mouse sim
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52 :param u: Key of chosen context to compute TD momentum model for

. (day1 , day6 , day7)

53 :param alpha: Learning rate

54 :param gamma1: Decay rate for threat

55 :param gamma2: Decay rate for momentum across all contexts

56 :param f: Scaling Constant for momentum term

57

58 :return: TD Momentum model threat estimation levels over all

timesteps

59 ’’’

60 # Initialise momentum array

61 m = np.zeros_like(contexts[:,0])

62

63 T_A = np.zeros_like(contexts[:,0])

64 T_B = np.zeros_like(contexts[:,1])

65

66

67 for t in range(1, len(contexts[:,0])):

68 # Set PE to 0 at every time step before computing PE for

current step

69 PE = 0

70 PE += alpha * (contexts[:, 0][t] - T_A[t - 1])

71 PE += alpha * (contexts[:, 1][t] - T_B[t - 1])

72

73 m[t] = m[t-1] + gamma2 * PE

74 m[t] = np.clip(m[t], 0, 1)

75

76 T_A[t] = T_A[t - 1] + alpha * (contexts[:, 0][t] - gamma1 *

T_A[t - 1]) + f * m[t]

77 T_B[t] = T_B[t - 1] + alpha * (contexts[:, 1][t] - gamma1 *

T_B[t - 1]) + f * m[t]

78

79 T_A[t] = np.clip(T_A[t], 0, 1)

80 T_B[t] = np.clip(T_B[t], 0, 1)

81

82 #T_A, T_B = combined_rescale(T_A, T_B, 0.1, 0.9)

83

84 return T_A, T_B

85

86

87 def NLL_td_mom(params , stimuli , threats , u):

88 alpha , gamma1 , gamma2 , f = params
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89 log_likelihood = 0.0

90

91 T_A, T_B = TD_momentum_model(contexts = stimuli , alpha = alpha ,

gamma1 = gamma1 , gamma2 = gamma2 , f = f)

92

93 eps = 1e-10

94 T_A = np.clip(T_A, 0+eps, 1-eps)

95 T_B = np.clip(T_B, 0+eps, 1-eps)

96

97 if u == 0:

98 Tu = T_A

99

100 if u == 1:

101 Tu = T_B

102

103 for t in range(len(stimuli[:,0])):

104 log_likelihood += threats[t, u] * np.log(Tu[t]) + (1 -

threats[t, u]) * np.log(1 - Tu[t])

105

106 nll = -log_likelihood

107

108 return nll

109

110

111 ### PARAMETER RECOVERY FOR 100 MULTIVARIATE NORMAL SAMPLES PARAMETER

SETS ### CONTEXT A ###

112 bounds = [(0.05,1), (0.9,1), (0,0.8), (0,3)]

113

114 alpha_mean = 0.5

115 gamma1_mean = 0.95

116 gamma2_mean = 0.45

117 f_mean = 1.5

118 means = [alpha_mean , gamma1_mean , gamma2_mean , f_mean]

119

120 alpha_var = 0.05

121 gamma1_var = 0.001

122 gamma2_var = 0.05

123 f_var = 0.5

124

125 covs = np.zeros((4,4))

126 covs[0,0] = alpha_var

127 covs[1,1] = gamma1_var
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128 covs[2,2] = gamma2_var

129 covs[3,3] = f_var

130

131 sample_params = np.random.multivariate_normal(mean=means , cov=covs ,

size=100)

132 sample_params[:,0] = np.clip(sample_params[:,0], 0.05, 0.9)

133 sample_params[:,1] = np.clip(sample_params[:,1], 0.9, 1)

134 sample_params[:,2] = np.clip(sample_params[:,2], 0, 0.8)

135 sample_params[:,3] = np.clip(sample_params[:,3], 0, 3)

136

137 ’’’

138 # Plot of param values

139 fig, ax = plt.subplots(4)

140 fig.suptitle("Sampled Parameter Values")

141 # add a big axes , hide frame

142 fig.add_subplot(111, frameon=False)

143 # hide tick and tick label of the big axes

144 plt.tick_params(labelcolor=’none’, top=False , bottom=False , left=

False , right=False)

145 plt.grid(False)

146 x = np.linspace(0, 100, 100)

147 ax[0].plot(x, sample_params[:,0], "r+", label="Sampled $alpha$")

148 ax[1].plot(x, sample_params[:,1], "bo", label="Sampled $gamma_1$")

149 ax[2].plot(x, sample_params[:,2], "g*", label="Sampled $gamma_2$")

150 ax[3].plot(x, sample_params[:,3], "+", label="Sampled $f$")

151 plt.xlabel("Simulation (Individual Mouse)")

152 plt.ylabel("Sampled Parameter Value")

153 ax[0].legend(fontsize ="8")

154 ax[1].legend(fontsize ="8")

155 ax[2].legend(fontsize ="8")

156 ax[2].legend(fontsize ="8")

157 plt.show()

158 ’’’

159

160 # Calculate the correlation matrix - check for correlation between

values

161 sampled_corr_matrix = np.corrcoef(sample_params , rowvar=False)

162 print(sampled_corr_matrix)

163

164 # Now create simulations of attacks and corresponding threat

predictions for each set of params

165 sampled_attacks = np.zeros((100, 5400))
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166 sampled_predictions = np.zeros((100, 5400))

167

168 for index , (a, g1, g2, f) in enumerate(zip(sample_params[:,0],

sample_params[:,1], sample_params[:,2], sample_params[:,3])):

169 # Generate day 1 sequence of attacks for each

170 A_shocks = day_1(15)

171 B_shocks = np.zeros_like(A_shocks)

172 # Stack for input to TD-Mom Model

173 contexts_stacked = np.column_stack((A_shocks , B_shocks))

174

175 # Generate threat predictions from this simulated sequence of

attacks

176 predictions = TD_momentum_model(contexts = contexts_stacked ,

alpha = a, gamma1 = g1, gamma2 = g2, f = f)[0]

177

178 # Add to sampled attacks/preds arrays

179 sampled_attacks[index , :] = A_shocks

180 sampled_predictions[index , :] = predictions

181

182 np.sum(sampled_predictions , axis=1)

183 #np.where(np.sum(sampled_predictions , axis=1)==0)

184

185

186 # Fitting parameter values to these simulations (see if we can

recover params)

187 initial_vals = np.array((0.5, 0.95, 0.4, 1.5))

188

189 bounds = [(0.05, 1), (0.9, 1), (0, 0.8), (0, 3)]

190

191 opt_sampled_data = np.zeros((len(sampled_predictions[:,0]), 4))

192

193 # Minimization for simulations (Mice)

194 for m in range(0, len(sampled_predictions[:,0])):

195 # Compute minimization for each participant

196 B_shocks = np.zeros_like(sampled_attacks[m:m + 1].reshape(-1))

197 contexts_stacked = np.column_stack((sampled_attacks[m:m + 1].

reshape(-1), B_shocks))

198

199 result = differential_evolution(NLL_td_mom , x0=initial_vals ,

bounds=bounds ,

200 args=(contexts_stacked ,

sampled_predictions[m:m + 1].reshape((5400, 1)), 0),
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201 strategy=’best1bin’, polish=True

)

202

203 print(f’n_iter: {result.nit} - success: {result.success} - nll {

result.fun}’)

204

205 alpha , gamma1 , gamma2 , f= result.x

206 # Add results to opt_params storing opt param values for each

participant

207 opt_sampled_data[m, 0] = alpha

208 opt_sampled_data[m, 1] = gamma1

209 opt_sampled_data[m, 2] = gamma2

210 opt_sampled_data[m, 3] = f

211

212 #Alpha params

213 multivariate_sim_alpha = sample_params[:,0]

214 fitted_simulated_alpha = opt_sampled_data[:,0]

215 alpha_pearson = scipy.stats.pearsonr(multivariate_sim_alpha ,

fitted_simulated_alpha)

216

217 # gamma1 params

218 multivariate_sim_gamma1 = sample_params[:,1]

219 fitted_simulated_gamma1 = opt_sampled_data[:,1]

220 gamma1_pearson = scipy.stats.pearsonr(multivariate_sim_gamma1 ,

fitted_simulated_gamma1)

221

222 # gamma2 params

223 multivariate_sim_gamma2 = sample_params[:,2]

224 fitted_simulated_gamma2 = opt_sampled_data[:,2]

225 gamma2_pearson = scipy.stats.pearsonr(multivariate_sim_gamma2 ,

fitted_simulated_gamma2)

226

227 # f params

228 multivariate_sim_f = sample_params[:,3]

229 fitted_simulated_f = opt_sampled_data[:,3]

230 f_pearson = scipy.stats.pearsonr(multivariate_sim_f ,

fitted_simulated_f)
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D.5 TD-Momentum Model - List Sampled Parameter Re-

covery

1 ### DIFFERENTIAL EVOLUTION - LIST PARAMS ###

2 alpha_list = mat_contents["learning_rate_list"][0]

3 gamma1_list = mat_contents["decay_list"][0]

4 gamma2_list = mat_contents["momentum_rate_list"][0]

5 f_list = -mat_contents["scaling_list"][0]

6

7 sample_params = np.zeros((100, 4))

8

9 for s in range(100):

10 sample_params[s, 0] = np.random.choice(alpha_list)

11 sample_params[s, 1] = np.random.choice(gamma1_list)

12 sample_params[s, 2] = np.random.choice(gamma2_list)

13 sample_params[s, 3] = np.random.choice(f_list)

14

15 corr_matrix = np.corrcoef(sample_params , rowvar=False)

16 print(corr_matrix)

17

18 # Now create simulations of attacks and corresponding threat

predictions for each set of params

19

20 sampled_attacks = np.zeros((100, 5400))

21 sampled_predictions = np.zeros((100, 5400))

22

23 for index , (a, g1, g2, f) in enumerate(zip(sample_params[:,0],

sample_params[:,1], sample_params[:,2], sample_params[:,3])):

24 # Generate day 1 sequence of attacks for each

25 A_shocks = day_1(15)

26 B_shocks = np.zeros_like(A_shocks)

27 # Stack for input to TD-Mom Model

28 contexts_stacked = np.column_stack((A_shocks , B_shocks))

29

30 # Generate threat predictions from this simulated sequence of

attacks

31 predictions = TD_momentum_model(contexts = contexts_stacked ,

alpha = a, gamma1 = g1, gamma2 = g2, f = f)[0]

32

33 # Add to sampled attacks/preds arrays

34 sampled_attacks[index , :] = A_shocks
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35 sampled_predictions[index , :] = predictions

36

37 np.sum(sampled_predictions , axis=1)

38 # Low alpha and high f give large threat estimates

39

40 # Fitting parameter values to these simulations (see if we can

recover params)

41

42 from scipy.optimize import differential_evolution

43 initial_vals = np.array((0.5, 0.95, 0.4, 1.5))

44

45 bounds = [(0.05, 1), (0.9, 1), (0, 0.8), (0, 3)]

46

47 opt_sampled_data = np.zeros((len(sampled_predictions[:,0]), 4))

48 # Minimization for simulations (Mice)

49 for m in range(0, len(sampled_predictions[:,0])):

50 # Compute minimization for each participant

51 B_shocks = np.zeros_like(sampled_attacks[m:m + 1].reshape(-1))

52 contexts_stacked = np.column_stack((sampled_attacks[m:m + 1].

reshape(-1), B_shocks))

53

54 result = differential_evolution(NLL_td_mom , x0=initial_vals ,

bounds=bounds ,

55 args=(contexts_stacked ,

sampled_predictions[m:m + 1].reshape((5400, 1)), 0),

56 strategy=’best1bin’, polish=True

)

57

58 print(f’n_iter: {result.nit} - success: {result.success} - nll {

result.fun}’)

59 alpha , gamma1 , gamma2 , f= result.x

60 # Add results to opt_params storing opt param values for each

participant

61 opt_sampled_data[m, 0] = alpha

62 opt_sampled_data[m, 1] = gamma1

63 opt_sampled_data[m, 2] = gamma2

64 opt_sampled_data[m, 3] = f

65

66 #Alpha params

67 selected_sim_alpha = sample_params[:,0]

68 fitted_simulated_alpha = opt_sampled_data[:,0]

69 alpha_pearson = scipy.stats.pearsonr(selected_sim_alpha ,
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fitted_simulated_alpha)

70

71 # gamma1 params

72 selected_sim_gamma1 = sample_params[:,1]

73 fitted_simulated_gamma1 = opt_sampled_data[:,1]

74 gamma1_pearson = scipy.stats.pearsonr(selected_sim_gamma1 ,

fitted_simulated_gamma1)

75

76 # gamma2 params

77 selected_sim_gamma2 = sample_params[:,2]

78 fitted_simulated_gamma2 = opt_sampled_data[:,2]

79 gamma2_pearson = scipy.stats.pearsonr(selected_sim_gamma2 ,

fitted_simulated_gamma2)

80

81 # f params

82 selected_sim_f = sample_params[:,3]

83 fitted_simulated_f = opt_sampled_data[:,3]

84 f_pearson = scipy.stats.pearsonr(selected_sim_f , fitted_simulated_f)

D.6 BIC Model Comparison

1 # Unstressed model comparison: BIC_TD - BIC_TD -MOM

2

3 unstressed_comparison = pd.DataFrame({

4 "BIC_TD - BIC_TD -MOM": [None] * len(TD_Mom_unstressed_results)})

5

6 unstressed_comparison["BIC_TD - BIC_TD -MOM"] = TD_unstressed_results

["BIC Score"] - TD_Mom_unstressed_results["BIC Score"]

7

8

9 # Stressed model comparison: BIC_TD - BIC_TD -MOM

10 stressed_comparison = pd.DataFrame({

11 "BIC_TD - BIC_TD -MOM": [None] * len(TD_Mom_stressed_results)})

12

13 stressed_comparison["BIC_TD - BIC_TD -MOM"] = TD_stressed_results["

BIC Score"] - TD_Mom_stressed_results["BIC Score"]

14

15 stressed_comparison["BIC_TD - BIC_TD -MOM"] = stressed_comparison["

BIC_TD - BIC_TD -MOM"]*(-1)

16

17
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18 ### Re-creating fig 5D: Model Comparison Plot

19 # Create a scatter plot

20 plt.figure(figsize=(8, 6))

21

22 # Plot unstressed_comparison on the top

23 plt.scatter(unstressed_comparison , range(len(unstressed_comparison))

, color=’blue’, label=’Unstressed’)

24

25 # Plot stressed_comparison on the bottom

26 plt.scatter(stressed_comparison , range(len(stressed_comparison)),

color=’red’, label=’Stressed’)

27

28 plt.axvline(x=0, color=’black’, linestyle=’-’)

29 plt.axhline(y=-1, color=’black’, linestyle=’-’)

30 plt.xlabel(’$BIC_{TD} - BIC_{TD\ Momentum}$’, fontsize=15)

31 plt.yticks([])

32 plt.title(’Stressed vs. Unstressed Mice Model Comparison’, fontsize

=15)

33 plt.legend()

34

35 # Add arrows with text annotations

36 plt.annotate(’Favours TD Momentum’, xy=(87, -1.7), xytext=(1, -2),

37 arrowprops=dict(facecolor=’black’, arrowstyle=’simple’)

, fontsize=15)

38

39 plt.annotate(’Favours TD’, xy=(-53, -1.7), xytext=(-35, -2),

40 arrowprops=dict(facecolor=’black’, arrowstyle=’simple’)

, fontsize=15)

41 plt.tight_layout()

42 plt.show()
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Extension Simulations Code

E.1 Associability TD-Momentum Model

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def ASSOCIABILITY_TD_MOM(init , contexts , alpha , gamma1 , gamma2 , f,

eta):

5 ’’’

6 Evaluates TD Momentum model threat at each timestep in each

context only , no changing contexts , assumes the same

7 agent in one contex for the whole time , creates threat in other

context as momentum term only.

8

9 :param init: Provides initialisation points for threat readings

in both contexts (days 6 and 7)

10 :param contexts: Sequences of unconditioned stimuli across all

contexts. e.g. sefl(sims = 2)[1] for 2nd mouse sim

11 :param u: Key of chosen context to compute TD momentum model for

. (day1 , day6 , day7)

12 :param alpha: Learning rate

13 :param gamma1: Decay rate for threat

14 :param gamma2: Decay rate for momentum across all contexts

15 :param f: Scaling Constant for momentum term

16 :param eta: Associability weight parameter (between 0 and 1)

17

18 :return: TD Momentum model threat estimation levels over all

timesteps

19 ’’’

136
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20 # Initialise momentum array

21 m = np.zeros_like(contexts[:,0])

22

23 T_A = np.zeros_like(contexts[:,0])

24 T_B = np.zeros_like(contexts[:,1])

25 Kappa_A = np.zeros_like(T_B)

26 Kappa_B = np.zeros_like(T_B)

27

28 # Set initialisation

29 T_A[0] = init[0]

30 T_B[0] = init[1]

31 Kappa_A[0] = 1

32 Kappa_B[0] = 1

33

34

35 for t in range(1, len(contexts[:,0])):

36 # Set PE to 0 at every time step before computing PE for

current step

37 PE = 0

38 PE += alpha * (contexts[:, 0][t] - T_A[t - 1])

39 PE += alpha * (contexts[:, 1][t] - T_B[t - 1])

40

41 m[t] = m[t-1] + gamma2 * PE

42 m[t] = np.clip(m[t], 0, 1)

43

44 Kappa_A[t] = (1 - eta) * Kappa_A[t-1] + eta * (np.abs(

contexts[:, 0][t] - gamma1 * T_A[t - 1]))

45 Kappa_B[t] = (1 - eta) * Kappa_B[t-1] + eta * (np.abs(

contexts[:, 1][t] - gamma1 * T_B[t - 1]))

46

47 # Set lower bound constraint for associability values

48 if Kappa_A[t] < 0.05:

49 Kappa_A[t] = 0.05

50

51 if Kappa_B[t] < 0.05:

52 Kappa_B[t] = 0.05

53

54 T_A[t] = T_A[t - 1] + alpha * Kappa_A[t-1] * (contexts[:,

0][t] - gamma1 * T_A[t - 1]) + f * m[t]

55 T_B[t] = T_B[t - 1] + alpha * Kappa_B[t-1] * (contexts[:,

1][t] - gamma1 * T_B[t - 1]) + f * m[t]

56
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57 T_A[t] = np.clip(T_A[t], 0, 1)

58 T_B[t] = np.clip(T_B[t], 0, 1)

59

60 #T_A, T_B = combined_rescale(T_A, T_B, 0, 1)

61 #Kappa_A , Kappa_B = combined_rescale(Kappa_A , Kappa_B , 0, 1)

62

63 return T_A, T_B, Kappa_A , Kappa_B

64

65

66

67 # Compare to this !

68 def TD_momentum_model(contexts , alpha , gamma1 , gamma2 , f):

69 ’’’

70 Evaluates TD Momentum model threat at each timestep in each

context only , no changing contexts , assumes the same

71 agent in one contex for the whole time , creates threat in other

context as momentum term only.

72

73 :param contexts: Sequences of unconditioned stimuli across all

contexts. e.g. sefl(sims = 2)[1] for 2nd mouse sim

74 :param u: Key of chosen context to compute TD momentum model for

. (day1 , day6 , day7)

75 :param alpha: Learning rate

76 :param gamma1: Decay rate for threat

77 :param gamma2: Decay rate for momentum across all contexts

78 :param f: Scaling Constant for momentum term

79

80 :return: TD Momentum model threat estimation levels over all

timesteps

81 ’’’

82 # Initialise momentum array

83 m = np.zeros_like(contexts[:,0])

84

85 T_A = np.zeros_like(contexts[:,0])

86 T_B = np.zeros_like(contexts[:,1])

87

88

89 for t in range(1, len(contexts[:,0])):

90 # Set PE to 0 at every time step before computing PE for

current step

91 PE = 0

92 PE += alpha * (contexts[:, 0][t] - T_A[t - 1])
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93 PE += alpha * (contexts[:, 1][t] - T_B[t - 1])

94

95 m[t] = m[t-1] + gamma2 * PE

96 m[t] = np.clip(m[t], 0, 1) # NEWLY ADDED 25/07/23

97

98 T_A[t] = T_A[t - 1] + alpha * (contexts[:, 0][t] - gamma1 *

T_A[t - 1]) + f * m[t]

99 T_B[t] = T_B[t - 1] + alpha * (contexts[:, 1][t] - gamma1 *

T_B[t - 1]) + f * m[t]

100

101 T_A[t] = np.clip(T_A[t], 0, 1)

102 T_B[t] = np.clip(T_B[t], 0, 1)

103

104 #T_A, T_B = combined_rescale(T_A, T_B, 0, 1) # NEWLY ADDED

25/07/23

105

106 return T_A, T_B

107

108

109

110 # Create contexts attack sequences

111 #A = day_1(15)

112

113 A = np.zeros(1000)

114 # Insert 25 random 1s at random positions in the array

115 random_indices = np.random.choice(1000, 10, replace=False)

116 A[random_indices] = 1

117

118 B = np.zeros_like(A)

119 # Stack for input to TD-Mom Model

120 contexts_stacked = np.column_stack((A, B))

121 initial = [0, 0]

122

123 #x = np.linspace(0, 90, 162000)

124

125 x = np.linspace(0, 10, 1000)

126

127 y1, y2, y3, y4 = ASSOCIABILITY_TD_MOM(init = initial , contexts =

contexts_stacked , alpha =0.05, gamma1 = 0.9999,

128 gamma2 = 0.05, f = 0.1, eta = 0.01)

129

130
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131 y5, y6 = TD_momentum_model(contexts = contexts_stacked , alpha =0.05,

gamma1 = 0.9999,

132 gamma2 = 0.05, f = 0.1)

133

134

135 fig, axes = plt.subplots(1, 3, figsize=(18, 6))

136

137 # Plot for the first graph

138 axes[1].plot(x, y1, label="A")

139 axes[1].plot(x, y2, label="B")

140 axes[1].plot(x, A, label="A input", alpha=0.20)

141 axes[1].plot(x, B, label="B input", alpha=0.20)

142 axes[1].set_title("Associability TD-Momentum Simulation ($\eta =

0.01$)", fontsize=15)

143 axes[1]. set_xlabel("Time", fontsize=15)

144 axes[1]. set_ylabel("Threat", fontsize=15)

145 axes[1].set_ylim(0, np.max(y1))

146 axes[1].legend(loc="upper right")

147

148 # Plot for the second graph

149 axes[2].plot(x, y3, label="$\kappa_A$")

150 axes[2].plot(x, y4, label="$\kappa_B$")

151 axes[2].plot(x, A, label="A input", alpha=0.20)

152 axes[2].plot(x, B, label="B input", alpha=0.20)

153 axes[2].set_title("Associability Values", fontsize=15)

154 axes[2]. set_xlabel("Time", fontsize=15)

155 axes[2]. set_ylabel("Associability", fontsize=15)

156 axes[2].set_ylim(0, np.max(y3))

157 axes[2].legend(loc="upper right")

158

159 # Plot for the third graph

160 axes[0].plot(x, y5, label="A")

161 axes[0].plot(x, y6, label="B")

162 axes[0].plot(x, A, label="A input", alpha=0.20)

163 axes[0].plot(x, B, label="B input", alpha=0.20)

164 axes[0]. set_xlabel("Time", fontsize=15)

165 axes[0]. set_ylabel("Threat", fontsize=15)

166 axes[0].set_title("TD-Momentum Simulation", fontsize=15)

167 axes[0].set_ylim(0, np.max(y5))

168 axes[0].legend(loc="upper right")

169

170 plt.tight_layout()
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171 plt.show()

E.2 Risk-Sensitive TD-Momentum Model

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def RISK_SENSITIVE_TD_MOM(init , contexts , alpha_pos , alpha_neg ,

gamma1 , gamma2 , f):

5 ’’’

6 Evaluates TD Momentum model threat at each timestep in each

context only , no changing contexts , assumes the same

7 agent in one contex for the whole time , creates threat in other

context as momentum term only.

8

9 :param init: Provides initialisation points for threat readings

in both contexts (days 6 and 7)

10 :param contexts: Sequences of unconditioned stimuli across all

contexts. e.g. sefl(sims = 2)[1] for 2nd mouse sim

11 :param alpha_pos: Learning rate for positive prediction error

12 :param alpha_neg: Learning rate for negative prediction error

13 :param gamma1: Decay rate for threat

14 :param gamma2: Decay rate for momentum across all contexts

15 :param f: Scaling Constant for momentum term:

16

17 :return: TD Momentum model threat estimation levels over all

timesteps

18 ’’’

19 # Initialise momentum array

20 m = np.zeros_like(contexts[:,0])

21

22 T_A = np.zeros_like(contexts[:,0])

23 T_B = np.zeros_like(contexts[:,1])

24

25 # Set initialisation

26 T_A[0] = init[0]

27 T_B[0] = init[1]

28

29 for t in range(1, len(contexts[:,0])):

30 # Selecting learning rate for time step:

31 # For context A:



Appendix E. Extension Simulations Code 142

32 if (contexts[:, 0][t] - gamma1 * T_A[t - 1]) < 0:

33 alpha_A = alpha_neg

34

35 if (contexts[:, 0][t] - gamma1 * T_A[t - 1]) >= 0:

36 alpha_A = alpha_pos

37

38 # For context B:

39 if (contexts[:, 1][t] - gamma1 * T_B[t - 1]) < 0:

40 alpha_B = alpha_neg

41

42 if (contexts[:, 1][t] - gamma1 * T_B[t - 1]) >= 0:

43 alpha_B = alpha_pos

44

45

46 # Set PE to 0 at every time step before computing PE for

current step

47 PE = 0

48 PE += alpha_A * (contexts[:, 0][t] - gamma1 * T_A[t - 1])

49 PE += alpha_B * (contexts[:, 1][t] - gamma1 * T_B[t - 1])

50

51 m[t] = m[t-1] + gamma2 * PE

52 m[t] = np.clip(m[t], 0, 1)

53

54

55 T_A[t] = T_A[t - 1] + alpha_A * (contexts[:, 0][t] - gamma1

* T_A[t - 1]) + f * m[t]

56 T_B[t] = T_B[t - 1] + alpha_B * (contexts[:, 1][t] - gamma1

* T_B[t - 1]) + f * m[t]

57

58 T_A[t] = np.clip(T_A[t], 0, 1)

59 T_B[t] = np.clip(T_B[t], 0, 1)

60

61 #T_A, T_B = combined_rescale(T_A, T_B, 0, 1)

62

63 return T_A, T_B

64

65

66

67 # Compare to this !

68 def TD_momentum_model(contexts , alpha , gamma1 , gamma2 , f):

69 ’’’

70 Evaluates TD Momentum model threat at each timestep in each
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context only , no changing contexts , assumes the same

71 agent in one contex for the whole time , creates threat in other

context as momentum term only.

72

73 :param contexts: Sequences of unconditioned stimuli across all

contexts. e.g. sefl(sims = 2)[1] for 2nd mouse sim

74 :param u: Key of chosen context to compute TD momentum model for

. (day1 , day6 , day7)

75 :param alpha: Learning rate

76 :param gamma1: Decay rate for threat

77 :param gamma2: Decay rate for momentum across all contexts

78 :param f: Scaling Constant for momentum term

79

80 :return: TD Momentum model threat estimation levels over all

timesteps

81 ’’’

82 # Initialise momentum array

83 m = np.zeros_like(contexts[:,0])

84

85 T_A = np.zeros_like(contexts[:,0])

86 T_B = np.zeros_like(contexts[:,1])

87

88

89 for t in range(1, len(contexts[:,0])):

90 # Set PE to 0 at every time step before computing PE for

current step

91 PE = 0

92 PE += alpha * (contexts[:, 0][t] - T_A[t - 1])

93 PE += alpha * (contexts[:, 1][t] - T_B[t - 1])

94

95 m[t] = m[t-1] + gamma2 * PE

96 m[t] = np.clip(m[t], 0, 1) # NEWLY ADDED 25/07/23

97

98 T_A[t] = T_A[t - 1] + alpha * (contexts[:, 0][t] - gamma1 *

T_A[t - 1]) + f * m[t]

99 T_B[t] = T_B[t - 1] + alpha * (contexts[:, 1][t] - gamma1 *

T_B[t - 1]) + f * m[t]

100

101 T_A[t] = np.clip(T_A[t], 0, 1)

102 T_B[t] = np.clip(T_B[t], 0, 1)

103

104 #T_A, T_B = combined_rescale(T_A, T_B, 0, 1) # NEWLY ADDED



Appendix E. Extension Simulations Code 144

25/07/23

105

106 return T_A, T_B

107

108

109

110 # Create context attack sequences

111 A = np.zeros(1000)

112 # Insert 25 random 1s at random positions in the array

113 random_indices = np.random.choice(1000, 10, replace=False)

114 A[random_indices] = 1

115

116 B = np.zeros_like(A)

117 # Stack for input to TD-Mom Model

118 contexts_stacked = np.column_stack((A, B))

119 initial = [0, 0]

120

121 #x = np.linspace(0, 90, 162000)

122

123 x = np.linspace(0, 10, 1000)

124

125 y1, y2 = RISK_SENSITIVE_TD_MOM(init = initial , contexts =

contexts_stacked , alpha_pos = 0.05, alpha_neg = 0.2, gamma1 =

0.9999,

126 gamma2 = 0.05, f = 0.1)

127

128

129 y3, y4 = TD_momentum_model(contexts = contexts_stacked , alpha =0.05,

gamma1 = 0.9999,

130 gamma2 = 0.05, f = 0.1)

131

132

133 fig, axes = plt.subplots(1, 2, figsize=(12, 6))

134

135 # Plot for the first graph

136 axes[0].plot(x, y3, label="A")

137 axes[0].plot(x, y4, label="B")

138 axes[0].plot(x, A, label="A input", alpha=0.20)

139 axes[0].plot(x, B, label="B input", alpha=0.20)

140 axes[0]. set_xlabel("Time", fontsize=15)

141 axes[0]. set_ylabel("Threat", fontsize=15)

142 axes[0].set_title("TD-Momentum Simulation", fontsize=15)



Appendix E. Extension Simulations Code 145

143 axes[0].set_ylim(0, np.max(y3))

144 axes[0].legend(loc="upper right")

145

146 # Plot for the second graph

147 axes[1].plot(x, y1, label="A")

148 axes[1].plot(x, y2, label="B")

149 axes[1].plot(x, A, label="A input", alpha=0.20)

150 axes[1].plot(x, B, label="B input", alpha=0.20)

151 axes[1].set_title("Risk -Sensitive TD-Momentum Simulation", fontsize

=15)

152 axes[1]. set_xlabel("Time", fontsize=15)

153 axes[1]. set_ylabel("Threat", fontsize=15)

154 axes[1].set_ylim(0, np.max(y1))

155 axes[1].legend(loc="upper right")

156

157 plt.tight_layout()

158 plt.show()

E.3 Valence-Partitioned TD-Momentum Model

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4

5 def VP_TD_MOM(init , contexts , alpha_pos , alpha_neg , gamma1 , gamma2 ,

f):

6 ’’’

7 Evaluates TD Momentum model threat at each timestep in each

context only , no changing contexts , assumes the same

8 agent in one contex for the whole time , creates threat in other

context as momentum term only.

9

10 :param init: Provides initialisation points for threat readings

in both contexts (days 6 and 7)

11 :param contexts: Sequences of unconditioned stimuli across all

contexts. e.g. sefl(sims = 2)[1] for 2nd mouse sim

12 :param alpha_pos: Learning rate for positively valenced outcomes

13 :param alpha_neg: Learning rate for negatively valenced outcomes

14 :param gamma1: Decay rate for threat

15 :param gamma2: Decay rate for momentum across all contexts

16 :param f: Scaling Constant for momentum term:
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17

18 :return: TD Momentum model threat estimation levels over all

timesteps

19 ’’’

20 # Initialise momentum arrays

21 m_P = np.zeros_like(contexts[:,0])

22 m_N = np.zeros_like(m_P)

23

24 # Overall Threat in each context

25 T_A = np.zeros_like(contexts[:,0])

26 T_B = np.zeros_like(contexts[:,1])

27

28 # Partitioned values for each context

29 VA_P = np.zeros_like(T_A)

30 VA_N = np.zeros_like(T_A)

31

32 VB_P = np.zeros_like(T_B)

33 VB_N = np.zeros_like(T_B)

34

35 # Set initialisation

36 T_A[0] = init[0]

37 T_B[0] = init[1]

38

39 for t in range(1, len(contexts[:,0])):

40 # Partitioning based on outcome for each context:

41 # For context A:

42 if contexts[:, 0][t] > 0:

43 A_delta_P = contexts[:, 0][t] - gamma1 * VA_P[t - 1]

44

45 if contexts[:, 0][t] <= 0:

46 A_delta_P = 0 - gamma1 * VA_P[t - 1]

47

48 if contexts[:, 0][t] < 0:

49 A_delta_N = np.abs(contexts[:, 0][t]) - gamma1 * VA_N[t

- 1]

50

51 if contexts[:, 0][t] >= 0:

52 A_delta_N = 0 - gamma1 * VA_N[t - 1]

53

54

55 # For context B:

56 if contexts[:, 1][t] > 0:
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57 B_delta_P = contexts[:, 1][t] - gamma1 * VB_P[t - 1]

58

59 if contexts[:, 1][t] <= 0:

60 B_delta_P = 0 - gamma1 * VB_P[t - 1]

61

62 if contexts[:, 1][t] < 0:

63 B_delta_N = np.abs(contexts[:, 1][t]) - gamma1 * VB_N[t

- 1]

64

65 if contexts[:, 1][t] >= 0:

66 B_delta_N = 0 - gamma1 * VB_N[t - 1]

67

68

69

70 # Set PE to 0 at every time step before computing PE for

current step

71 PE_P = 0

72 PE_P += alpha_pos * A_delta_P

73 PE_P += alpha_pos * B_delta_P

74

75 m_P[t] = m_P[t-1] + gamma2 * PE_P

76 #m_P[t] = np.clip(m[t], 0, 1) DO WE NEED THESE? BETWEEN -1

AND 1?

77

78

79 PE_N = 0

80 PE_N += alpha_neg * A_delta_N

81 PE_N += alpha_neg * B_delta_N

82

83 m_N[t] = m_N[t-1] + gamma2 * PE_N

84 #m_P[t] = np.clip(m[t], 0, 1) DO WE NEED THESE? BETWEEN -1

AND 1?

85

86

87 # Positive and negative value functions for each context

88 VA_P[t] = VA_P[t - 1] + alpha_pos * A_delta_P + f * m_P[t]

89 VA_N[t] = VA_N[t - 1] + alpha_neg * A_delta_N + f * m_N[t]

90

91 VB_P[t] = VB_P[t - 1] + alpha_pos * B_delta_P + f * m_P[t]

92 VB_N[t] = VB_N[t - 1] + alpha_neg * B_delta_N + f * m_N[t]

93

94 # Generating overall threat prediction for each context
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95 T_A[t] = VA_P[t] - VA_N[t]

96 T_B[t] = VB_P[t] - VB_N[t]

97

98 #T_A[t] = np.clip(T_A[t], 0, 1) DO WE NEED THESE? BETWEEN

-1 AND 1?

99 #T_B[t] = np.clip(T_B[t], 0, 1) DO WE NEED THESE? BETWEEN

-1 AND 1?

100

101 #T_A, T_B = combined_rescale(T_A, T_B, 0, 1)

102

103 return T_A, T_B, VA_P , VA_N , VB_P , VB_N , m_P, m_N

104

105

106 # Create contexts attack sequences

107 A = np.zeros(1000)

108 # Insert 10 random 1s at random positions in the array

109 random_indices1 = np.random.choice(1000, 5, replace=False)

110 A[random_indices1] = 1

111

112 random_indices2 = np.random.choice(1000, 5, replace=False)

113 A[random_indices2] = 0.5

114

115 random_indices3 = np.random.choice(1000, 5, replace=False)

116 A[random_indices3] = -1

117

118 random_indices4 = np.random.choice(1000, 5, replace=False)

119 A[random_indices4] = -0.5

120

121

122 B = np.zeros_like(A)

123 # Stack for input to TD-Mom Model

124 contexts_stacked = np.column_stack((A, B))

125 initial = [0, 0]

126

127 #x = np.linspace(0, 90, 162000)

128

129 x = np.linspace(0, 10, 1000)

130

131 y1, y2, y5, y6, y7, y8, mp, mn = VP_TD_MOM(init = initial , contexts

= contexts_stacked , alpha_pos = 0.05, alpha_neg = 0.2, gamma1 =

0.9999,

132 gamma2 = 0.05, f = 0.1)
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133

134

135

136 # VP Plot

137 fig, axes = plt.subplots(1, 1, figsize=(6, 3))

138

139 # Plot for the first graph

140 axes.plot(x, y1, label="A")

141 axes.plot(x, y2, label="B")

142 axes.plot(x, A, label="A input", alpha=0.20)

143 axes.plot(x, B, label="B input", alpha=0.20)

144 axes.set_title("Valence -Partitioned TD-Momentum Simulation",

fontsize=15)

145 axes.set_xlabel("Time", fontsize=15)

146 axes.set_ylabel("Threat", fontsize=15)

147 axes.set_ylim(np.min(y1), np.max(y1))

148 axes.legend(loc="upper right")

149

150 plt.tight_layout()

151 plt.show()

152

153 # momentum plot

154 fig, axes = plt.subplots(1, 1, figsize=(6, 3))

155

156 # Plot for the first graph

157 axes.plot(x, mp, label="$mˆP_t$")

158 axes.plot(x, mn, label="$mˆN_t$")

159 axes.plot(x, A, label="A input", alpha=0.20)

160 axes.plot(x, B, label="B input", alpha=0.20)

161 axes.set_title("Valence -Partitioned Momentum Terms", fontsize=15)

162 axes.set_xlabel("Time", fontsize=15)

163 axes.set_ylabel("Momentum Value", fontsize=15)

164 axes.set_ylim(np.min(y1), np.max(y1))

165 axes.legend(loc="upper right")

166

167 plt.tight_layout()

168 plt.show()

169

170

171 # Positive and negative valence functions for each context

172 fig, axes = plt.subplots(1, 2, figsize=(12, 6))

173
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174 # Plot for the first graph

175 axes[0].plot(x, y5, label="$VˆP_A$")

176 axes[0].plot(x, y6, label="$VˆN_A$")

177 axes[0].plot(x, A, label="A input", alpha=0.20)

178 axes[0]. set_xlabel("Time", fontsize=15)

179 axes[0]. set_ylabel("Threat", fontsize=15)

180 axes[0].set_title("Valence -Partitioned Value Functions - Context A",

fontsize=15)

181 #axes[0].set_ylim(0, np.max(y3))

182 axes[0].legend(loc="upper right")

183

184 # Plot for the second graph

185 axes[1].plot(x, y7, label="$VˆP_B$")

186 axes[1].plot(x, y8, label="$VˆN_B$")

187 axes[1].plot(x, B, label="B input", alpha=0.20)

188 axes[1]. set_xlabel("Time", fontsize=15)

189 axes[1]. set_ylabel("Threat", fontsize=15)

190 axes[1].set_title("Valence -Partitioned Value Functions - Context B",

fontsize=15)

191 #axes[1].set_ylim(np.min(y1), np.max(y1))

192 axes[1].legend(loc="upper right")

193

194 plt.tight_layout()

195 plt.show()


