
Leveraging Metadata in Ischaemic Stroke MRI

Segmentation Using FiLM Conditioning Layers

Ilakya Prabhakar

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2023



Abstract

Stroke cases have reached epidemic levels, with 1 in 4 adults over the age of 25 standing

to have one within their lifetime. Accurately segmented lesions imaged with MRI not

only assist in making early intervention decisions, but are vital for establishing accurate

long term prognosis and rehabilitation plans. Automatic segmentation algorithms can

both scale to create large neuroimaging datasets which aid rehabilitation research, and

on an individual level they ensure precise outcomes where time is of the essence. Image

segmentation algorithms tend to be unimodal in nature [1, 2], only considering the

image as an input. To investigate the effect of incorporating multi-modal information,

this dissertation uses the ATLAS dataset [3], as it provides annotated ischaemic stroke

lesions alongside patient and image metadata (such as stroke laterality, and days post

stroke MRI was taken). This research explores the effects of conditioning a baseline

U-Net [1] model with these different types of metadata, using a technique called Feature-

wise Linear Modulation (FiLM) [4] to modulate image features in the network with

tabular patient and image metadata. The aim is to investigate what types of metadata are

useful to condition a network with, and if there are specific cases where conditioning

with metadata helps more than others. It is found that incorporating a mix of available

and derived (from ground truth) metadata results in an increase in Dice score of 7.3%

over baseline. Even though FiLM layers cannot directly encode spatial information,

spatial metadata such as Stroke Location and Stroke Laterality prove the most effective

available metadata to condition the network with, implying that lesions have distinct

visual features in different anatomical regions. Conditioning networks with metadata is

also found to have the most improvement over the baseline for cases where lesions are

almost entirely missed.
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Chapter 1

Introduction

Worldwide, stroke stands to be the leading cause of adult disability, and second leading

cause of death [5], with ischaemic stroke 1 specifically comprising 87% of all cases.

With up to two thirds of all strokes leading to severe disability, early interventions

in the acute stage along with accurate prognosis at the post-acute stage are vital for

long term recovery and rehabilitation. Medical images, whether MRI or CT, play

a crucial part, especially with a growing body of research establishing connections

between anatomical lesion location and eventual stroke outcome [6]. This knowledge

can be used to guide further therapeutic decisions, and assess potential for long-term

recovery of motor/speech capabilities. Lesion delineation on a medical image (a task

herein referred to as ‘segmentation’) is usually manually performed by a radiologist,

however, the process is painstakingly slow and the quality varies greatly depending

on the neuroimaging experience of the annotator. Some patients can end up waiting

24 hours to receive a clinical image analysis, which in the acute stages is a critical

amount of time. Thus, the motivation for automatic and accurate lesion segmentation is

clear - automatic segmentation can both scale across large neuroimaging datasets to aid

rehabilitation research, and on an individual patient level it ensures fast and accurate

clinical outcomes in time critical cases.

State of the art medical image segmentation models use deep learning algorithms

based on convolutional neural networks [1, 2] due to their ability to learn hierarchical and

spatially invariant image features. These models typically rely on smaller datasets with

preprocessing methods that apply extensive data augmentation, so as to extract all the

available information in each image [2]. However, often image and patient metadata is

1Ischaemic stroke, is a type of stroke that occurs when there is a sudden blockage or narrowing of an
artery supplying blood to the brain. The alternative type of stroke is called a ‘hemorrhagic stroke’ which
occurs when there is bleeding in or around the brain.
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Chapter 1. Introduction 2

neglected as an information source when performing automatic segmentation. Metadata

can include information pertaining to the MRI itself, such as the scanner type, or can

also be patient specific information such as how long after stroke onset the MRI has been

acquired. It is logical that this supplementary information would aid in the automatic

segmentation task - supported by the findings of Boonn et al. [7] who report that

radiologists themselves greatly benefit from information such as patient history, but are

hindered by the time it takes to acquire this. This dissertation will therefore investigate

the efficacy of leveraging this metadata in ischaemic stroke lesion segmentation by

using a multi-modal deep learning model.

Multi-modal 2 approaches to image segmentation have been attempted in other

fields. In the task of object detection in autonomous vehicles, Person et al. [8] combine

classic image segmentation with a CNN with LiDAR point cloud data to create a fusion

model with decision trees. In the task of video classification by content, Trzcinski finds

that incorporating both visual and textual features into the model results in a model

improvement from the baseline single-modality model of up to 95% [9]. The motivation

for exploiting all the available information in a segmentation task is clear. A successful

approach to incorporating multi-modal information in a deep learning task is introduced

by Perez et al. [4] by using Feature-wise Linear Modulation (FiLM) layers. These

layers allow for feature-wise enhancement/suppression, conditioned on an arbitrary

input. These layers apply an affine transformation to the intermediate features in the

CNN, and the parameters of this transformation are defined by the output of a network

which processes the conditioning information - the image and patient metadata in this

case. 3

The dataset used in this dissertation will be the publicly available ATLAS (Anatom-

ical Tracings of Lesions After Stroke) dataset [3]. The ATLAS dataset is a manually

segmented set of T1-weighted MRI images, created in order to promote research for

automated lesion segmentation of brain MRI scans. This dataset is chosen due to the

accompanying range of diverse metadata that is provided, including aspects such as

chronicity (number of days post stroke that the MRI was acquired), laterality (side

of stroke), anatomical region and image acquisition parameters. This research will

integrate FiLM conditioning layers into a state-of-the-art biomedical segmentation deep

learning model, the U-Net [1], in order to investigate the effect of incorporating the

2In this dissertation we take multi-modal to refer to combining image with tabular numerical or textual
data, as opposed to combining different modalities of imaging.

3This paragraph is taken verbatim from Section 1 of the IPP report.
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metadata present in the ATLAS dataset on lesion segmentation accuracy.

There are two strands of investigation. The first concerns the metadata itself. The

hypothesis is that certain types of metadata might be more effective to include than

others, with others potentially having a negative impact. Thus, an evaluation will be

conducted to establish the quantitative and qualitative effect of including each metadata

type on resulting segmentation predictions.

• What kinds of metadata help when input into a segmentation model, and why?

• Are there particular lesions for which the additional metadata benefits the auto-

matic segmentation model more so than others, and what are their characteristics?

Part of this controlled evaluation will be to derive metadata from the annotated ground

truth itself, to establish an upper bound on how useful injected metadata can be in

improving predictions. Examples of derived metadata include average lesion pixel

intensity, lesion volume, or lesion location. These quantities can be roughly mapped to

real clinical data such as chronicity (related to lesion pixel intensity) and symptom loca-

tions (related to lesion location/size). The second strand of investigations concerns the

architectural integration of the FiLM layers themselves. The conditioning layers can be

placed on only some, or all layers of the U-Net. It is hypothesised that the conditioning

layer placement will also have an effect on model performance. Thus the core research

question is: What effect does both the type of metadata, and layer positioning of FiLM

layers have on model performance during stroke lesion segmentation?

The paper is structured as such: in the second chapter we introduce the task of

medical image segmentation and describe at a high level the concepts involved. Multi-

modal approaches to image segmentation are then discussed, leading into a mathematical

explanation of the specific approach of using FiLM conditioning layers. Chapter 3

focuses on the methodology of the research undertaken. First, the dataset is introduced

with some preliminary analysis conducted into the metadata. Synthetic metadata is

then derived from ground truth and lesion characteristics, with clinical justifications

provided for each derived value. The model architecture, training scheme, and parameter

choices are next explained in detail, and the chapter ends with a description of how

results are evaluated. Chapter 4 presents results from all conducted experiments with

accompanying theoretical analysis, and the final chapter gives the conclusions of the

dissertation along with suggestions for future research directions.



Chapter 2

Background

2.1 Ischaemic Stroke Imaging

Ischaemic stroke occurs when there is a disruption of blood flow to a specific part of the

brain, caused by a blockage or narrowing of a blood vessel, often due to a blood clot or a

buildup of fatty deposits in the arteries that supply blood to the brain. The lack of blood

flow results in a lack of oxygen and nutrients and in turn damages brain cells in the

affected area. To view the extent of this damage and plan intervention and rehabilitation

strategies, both Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)

are used. In this thesis, MRI images will be used, specifically T1-Weighted MRI. On

T1-weighted MRI images, ischaemic strokes typically appear as areas of low signal

intensity, which means they appear darker compared to surrounding normal brain tissue.

The terms used to describe axes within the brain are shown in Fig. 2.1, and will be used

throughout the dissertation. MRI images are typically oriented in RAS+ space, where

the Right, Anterior and Superior directions are the positive axial directions in 3D space.

Figure 2.1: Conventional neurological terms used to describe different planes and

directional axes within the brain.

4



Chapter 2. Background 5

2.2 Biomedical Image Segmentation

In the field of computer vision, image segmentation refers to the process of dividing

a digital image into multiple segments, in order to transform it into something more

representative and easier to analyse, depending on the task at hand. In the biomedical

context, this usually involves detecting the boundaries of anatomical structures, lesions,

or organs for diagnostic or therapeutic purposes. Segmentation datasets are comprised

of pairs of image and ‘ground truth’ (Fig. 2.2) wherein the ground truth is a pixel-level

label array of identical size to the image in question and the label value indicates which

structure or lesion the associated pixel belongs to. In a binary segmentation task there

is only one foreground label of interest. For medical images, the ground truth is usually

costly to obtain, requiring clinical experts to painstakingly trace regions of the 3D image

both slice-by-slice, and pixel-by-pixel. Thus, automated methods for biomedical image

segmentation usually rely on small datasets and methods of extracting all possible

salient features from these.

(a) Original MRI (b) Ground truth (c) MRI with overlay

Figure 2.2: Image and ground truth pair taken from the ATLAS dataset [3].

The most popular deep learning model for biomedical image segmentation is the

U-Net [1], named as such for its U-shaped autoencoder architecture and popularised due

to its effectiveness and simplicity to implement. Most state-of-the-art improvements

have been variations of this architecture [2][10].

The autoencoder design, shown in Fig. 2.3, comprises a contracting path that

compresses image representations into a latent space of much lower dimensionality, and

a decoder path which consists of transposed convolutional layers to upsample the latent

representation. The input is a 2D or 3D image, and output is a segmentation map. The

almost symmetric expanding path allows for a high resolution pixelwise output. Skip

connections between the contracting and expanding paths are a key component of the



Chapter 2. Background 6

Input MRI 

volume

Output segmentation

prediction

Figure 2.3: Diagram depicting U-Net architecture, taken from [1].

U-net, and ensure that the output segmentation can be a combination of both higher

resolution features, and also very deep latent feature representations. This allows the

network to accurately segment, by bypassing the need to fully decode exact pixels and

lines from a compressed latent representation. The standard loss function in the U-Net

for a segmentation task is computed by first applying a pixel-wise softmax to the output

predictions, and then comparing these pixel-wise to the ground truth using the cross

entropy loss function (Eqn 3.1). This essentially treats the segmentation problem as a

pixel-wise classification problem. 1

2.3 Multi-Modal Inputs to Segmentation Networks

When radiologists use medical images to make clinical decisions, these are often con-

textualised with patient specific information from electronic health records (EHRs)

before coming to a diagnosis [7]. Despite this, within deep learning image segmentation

research there is a bias towards unimodal architectures which only use the images

themselves as inputs. This is partly due to the lack of publicly available datasets which

include patient and demographic information - datasets usually have a requirement of

keeping patients anonymous, and also there is a lot of work required to curate this addi-

tional metadata which often comes from different sources to the image itself. However,

it is also due to the lack of definitively successful performance when incorporating this

information into existing unimodal architectures.

1This paragraph is taken from the Section 2.2 of the IPP.



Chapter 2. Background 7

2.3.1 Feature Concatenation

Previous work using multi-modal inputs has used the technique of feature concatenation

- shown in Fig. 2.4. This is a method of combining representations from different

modalities without having to train separate models. Features are extracted separately

for each modality, and concatenated or stacked before entering the classifier or decoder

stage of the network, thus the ability to use the same target label is retained, even with

multiple input types.

Figure 2.4: Diagram depicting example process of feature concatenation with multi-

modal inputs.

Fig. 2.4 shows the image features being extracted by a CNN, whereas the tabular

metadata features are extracted with a multi-layer perceptron (MLP). The different

approaches are due to the different input types. CNNs are able to capture spatial

information in a translationally invariant manner due to the way the convolution function

works. Put simply, spatial patterns such as textures and edges can be captured no matter

where they appear in the image. This also means the intermediate representations are

efficient due to parameter sharing. MLPs on the other hand are very dense, as each layer

is fully connected, resulting in high parametric inefficiency. This works for smaller

sized inputs such as tabular data, but would be very inefficient for images - aside from

this they can only accept 1D vectors as inputs.

Although this method is straightforward to implement, it does suffer significant

drawbacks. The simple concatenation operation treats both modalities as the same in

how it sees them, so does not effectively capture the interactions between both types.

Careful preprocessing must be done to ensure the features from each modality lie in the
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same ranges, otherwise there will be large weight imbalances. The ratio of input size to

feature size must also be considered to ensure that one input modality is not favoured to

another in its representation.

2.3.2 FiLM Conditioning Layers

Perez et al. [4] introduce an approach named Feature-Wise Linear Modulation (FiLM)

as an alternative approach to incorporating metadata into a network. The key notional

difference to feature concatenation is that metadata is allowed to modulate or condition

network features, rather than simply being added onto them. The FiLM conditioning

layers are a generalisation of conditional batch normalisation (CBN), a method which

has been used in numerous applications such as speech recognition [11] and image

stylisation [12].

Basic batch normalisation (BN) involves modulating mini batches of the output

feature maps from layers through learned trainable scalars γ and β. For a mini-batch of

feature maps B = {Fc, ...Fn}N
c=1, the batch normalised output is defined by

BN(Fc|γc,βc) = γc
Fc −E[B]√
Var[B]+ ε

+βc, (2.1)

where the parameters γ and β are learned in the optimisation process and exist

to restore the representational power of the network. ε is a constant damping factor.

CBN extends this method to ‘ground’ the features by incorporating information from

metadata. γ and β are adjusted by conditioning them on a separate input vector em

generated from the encoded metadata. ∆γ and ∆β are introduced as terms to modulate the

learned parameters, and are generated by passing the embeddings through a multi-layer

perceptron (MLP),

∆γ = MLP(em) ∆β = MLP(em). (2.2)

These predictions are then added to the learned parameters to give the final parameters

used in the batch normalisation γ̂ and β̂,

γ̂c = γc +∆γ β̂c = βc +∆β. (2.3)

CBN offers a computationally efficient way of incorporating multi-modal infor-

mation into a network - only two more parameters are required per layer, making

the method very scalable. FiLM conditioning layers generalise the CBN method by

removing the strict normalisation that precedes the affine transformation. The FiLM
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generator passes the encoded metadata em through an MLP, such that it directly outputs

the learned γc and βc directly when given an input.

γc = MLP(em) βc = MLP(em). (2.4)

The FiLM layer then performs the feature map transformation. For convolutional

networks, each feature channel is modulated by a different γc,βc pair, with these values

remaining consistent across spatial location within the feature map. This takes the form:

FiLM(Fc|γc,βc) = γcFc +βc. (2.5)

The authors investigate the placement of the FiLM layers, and find that their effect

can be decoupled from that of the normalisation layers, with no significant improvement

when placed directly after normalisation (as in CBN) compared to being placed else-

where. Thus, the method is decoupled from the normalisation to allow for more general

and versatile use. A large draw of the FiLM method is its flexibility and efficiency -

with only two extra parameters per feature, a large range of interactions can be modelled

between the metadata and original input. Feature concatenation however, scales with

both the size of the features and number of features, without capturing interactions

between the modalities of inputs. This dissertation will use this method due to the

flexibility of being able to condition on different types of inputs - both numerical and

textual in tabular format. 2

2.4 Related Work

There has been previous research into using multi-modal inputs in the context of medical

imaging. Results using the feature concatenation method of incorporating multi modal

information into networks have been varied, with some reporting a drop or no change

in performance, and others reporting improvements. Höhn et al use patient metadata

of age, sex and anatomical site of lesion to classify skin cancer diagnoses, finding

that feature concatenation is less successful than unimodally classifying the images

using a CNN [13]. Here, the CNN itself renders very accurate classifications and

thus the authors hypothesise that the integration of data that correlates less well with

classifications would only degrade performance. Interestingly, they find that in the

specific cases of low image classification confidence, replacing these decisions with a

2This section is partly adapted from Section 2.3 of the IPP.
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unimodal metadata-only classification decision gave an overall higher accuracy. Ou et al.

attempt to diagnose skin lesions with both smartphone images and 21 different clinical

characteristics including age, lesion location, and lesion diameter [14]. Although

they find that feature concatenation offers an improvement in model accuracy over a

unimodal image classifier, their method of fusing modality features using an attention

mechanism performs even better, as it is able to represent and exploit the correlations

between modalities.

FiLM layers have also been used in other medical imaging applications. Lemay et

al. incorporate FiLM layers into a 2D U-Net architecture to make use of information

about the tumor type during spinal cord tumor segmentation, and also make use of

organ type in multi-organ segmentation [15]. They find that the use of this metadata

in the spinal cord segmentation task offers a 5.1% improvement in Dice scores, and

that the multi-class FiLMed network performs comparably to the single-class U-Net.

Chartsias et al. use FiLM layers in only the decoder half of their architecture, in order

to separate out disentangled representations of cardiac images, by modality factors and

anatomical factors [16]. They show these representations to be useful in synthesising

CT from MRI, and vice versa. Jacenków et al. incorporate FiLM layers preceded by

a feature-wise attention mechanism to incorporate spatial information into a cardiac

structure segmentation task, naming this method INSIDE [17]. The spatial information

consists of slice location, and cardiac phase. They found that although the INSIDE

method always performed as good as, or slightly better than the baseline, it offered the

largest improvement when training with smaller subsets of the data.3

As with the feature concatenation method, findings are inconsistent, with some

authors concluding that FiLM layers do not always offer improvements. Vincent et

al. incorporate MRI contrast as metadata using FiLM layers, and find that this offers

no improvement in Dice score compared to a well optimised U-Net implementation

[18]. Sheth et al. investigate the use of CBN, a variation of FiLM layers combined

with normalisation (see Section 2.2.2), and find that in certain multi-modal tasks the

visual features alone without metadata are superior for a generalisable model [19].

They evaluate this through the task of tumour type classification of histology images,

with additional metadata including age, gender, and size of tumor cells. They find

that although CBN outperforms simple BN when using this metadata as conditioning

input, it actually encourages the network to learn less representative visual features.

The classification accuracy when using only metadata as input to classify tumour type is

3This paragraph is taken from Section 3 of the IPP.
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already so high, that using it to condition an image-based CNN encourages the network

to learn shortcuts between metadata and labels. Although overall accuracy is high, the

resulting network is one that generalises poorly.

A key gap in the research that this dissertation will attempt to address is a lack of

clear comparisons between incorporating different types of metadata. Most authors

either include all available metadata [13, 14, 20], or only use one source [15, 18]. This

dissertation will go further in comparing the effect of incorporating different types of

metadata by using the FiLM method. By doing so, the link between the relevance of

metadata, and effectiveness of incorporating it can be established more thoroughly.



Chapter 3

Methodology

3.1 ATLAS Dataset

The dataset explored in this research will be the publicly available ATLAS dataset

R2.0 [3]. This version of the dataset contains 655 manually annotated T1-weighted

MRI scans with corresponding metadata, with no normal (healthy) scans present. T1-

weighted MRI enhances the signal of fatty tissue, whilst suppressing that of water [21],

and is the most effective MRI modality in showing post-acute infarcts. The dataset

is collected from 44 different research cohorts, with every scan corresponding to the

first timepointed scan since stroke, and thus each scan being of a unique patient. Each

scan is annotated by an expert radiologist, with a second radiologist then performing a

quality control check across all manual segmentations.

3.1.1 Existing Dataset Metadata

The metadata provided with the dataset contains the following:

• Lesion Characteristics - This includes the laterality and location (anatomical

region) of the lesion. Laterality, referred to in the dataset metadata as ‘Stroke

Hemisphere’, defines the side of the primary stroke location, and can belong to

‘Left’, ‘Right’ or ‘Other’ (‘Other’ pertaining to central regions such as in the

brainstem and cerebellum). Location provides the precise neurological region

of the lesion. It includes regions such as the occipital lobe, temporal lobe and

cerebellum (see Table 3.1). Both are given ‘Primary’ and ‘Secondary’ entries to

denote the characteristics of primary and secondary lesions if more than one is

present.

12



Chapter 3. Methodology 13

• Chronicity - This is the number of days post stroke that the MRI is acquired. For

some scans, the exact number is not available and the only information is that the

scan occurred over 180 days post stroke.

• Scanner - This is the scanner model type.

The labels available for Primary/Secondary Stroke Hemisphere, Primary/Secondary

Stroke Location and Scanner are shown in Table 3.1. It should be noted that for

Primary/Secondary Stroke Hemisphere and Scanner, labels are mutually exclusive

whereas for Stroke Location multiple labels can be assigned.

Scanner Primary/Secondary Stroke Hemisphere Primary/Secondary Stroke Location

GE 750 Discovery Right Basal Ganglia

GE Signa Excite Left Brainstem

GE Signa HD-X Other Brainstem/Pons

Philips Caudate

Philips Achieva Cerebellum

Siemens Allegra Frontal Lobe

Siemens Magnetom Skyra Hippocampus

Siemens Prisma Insula

Siemens Skyra Occipital Lobe

Siemens Sonata Pallidum

Siemens Trio Parietal Lobe

Siemens TrioTim Putamen

Siemens Verio Temporal Lobe

Siemens Vision Thalamus

Table 3.1: Table showing all possible values categorical metadata types can take.

For this research to be well motivated, it must be clinically feasible that this metadata

can be gained from just the patient, or the scan, so that it can then be used in an automatic

segmentation model. In the case of laterality, this can be inferred from the patient

symptoms. In general, strokes affecting one side of the brain can lead to symptoms

on the opposite side of the body as the brain’s hemispheres control opposite sides of

the body. Thus, significant paralysis or weakness in the right side of the body with

moderate weakness in the left side would imply a primary left stroke hemisphere and

secondary right stroke hemisphere. Similarly, stroke location can also be inferred from

patient symptoms.

Fig. 3.1 shows different regions of the brain with the human function they corre-

spond to. It then follows that a degradation in specific functions can map to specific
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Figure 3.1: Diagram showing anatomical regions of the brain with the associated human

trait they correspond to.

lesion locations. However, as well as the link between lesion characteristics and symp-

toms, ultimately it is true that even if a radiologist is required to provide this high

level metadata, there would still be a considerable time saving compared to manu-

ally segmenting a lesion slice by slice, and thus the motivation for incorporating this

information into the automatic segmentation task holds.

3.1.2 Derived Metadata

Due to the mixed results and previous lack of success in using FiLM layers for seg-

mentation [17, 22], as well as using the metadata provided in the ATLAS dataset, this

thesis will investigate the use of synthesised metadata which is derived directly from

ground truth. It is hoped that incorporating this information will help to establish an

upper limit of how ‘useful’ metadata must be in relation to the images for the FiLM

method to prove successful. All derived values have a clinical link and justification -

either they are correlated to information that is readily available when imaging stroke,

or they are linked to information that can be easily marked by a clinician.

Derived values include:

• Mean Lesion Pixel Intensity - This is calculated by masking the normalised MRI

image with the ground truth array, and then calculating the mean pixel intensity

of the masked array. The link here is with the readily available ‘Chronicity’

information. Stroke images acquired in later chronic phases have a different

appearance on T1-weighted images. As the tissue in the affected area undergoes

atrophy and degeneration, the signal intensity on T1-weighted images decreases,

causing the lesion to appear hypointense (darker). Newer ischaemic lesions which

occur in the acute phase of a stroke (within first 48 hours), typically appear as
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hyperintense (bright) on T1-weighted images. This is because the tissue in the

affected area is still swollen and contains excess water, which increases the signal

intensity on T1-weighted images. This difference in appearance can be seen in

Fig. 3.2.

• Lesion Centre of Mass - This is calculated by finding the centre of mass of all

labelled lesion pixels as (x, y, z) coordinates. It is plausible that a centre of mass

value could easily be generated from a radiologist drawing rough bounding boxes

around lesions, rather than marking them pixel by pixel. A downside of using this

value is that it does not take into account the different centres of mass of separate

lesions.

• Lesion Volume - This is provided in the dataset, but treated as a derived value as

it is derived directly from the ground truth. It is given as an integer in terms of

voxels cubed. Exact lesion volume is not possible to be inferred without an exact

segmentation, however, if it can be shown that incorporating the numerical values

have a significantly positive effect, further experiments can be run with stratified

labels (Very Small, Small, Medium etc.), as it is plausible that a radiologist could

mark these reasonably quickly.

Figure 3.2: Acute lesion (left) on MRI taken 1 day after stroke onset and chronic lesion

(right) on MRI taken 670 days after stroke onset. Note lower intensity for chronic lesion.

Table 3.2 shows a summary of all investigated MRI metadata, with their data type,

ranges if continuous, and number of classes if categorical. Class labels can be found

in Table 3.1 Derived metadata values are shown by the shaded rows. Although Lesion

Volume is provided with the dataset, it is treated from herein as a derived value, as it

can only be derived directly from a segmentation and not independently of it.
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Metadata Type Range Nr. of Categories

Primary Stroke Hemisphere Categorical - 3

Secondary Stroke Hemisphere Categorical - 3

Primary Stroke Location Multi-Label Categorical - 14

Secondary Stroke Location Multi-Label Categorical - 12

Scanner Type Categorical - 14

Lesion Volume Continuous 13 - 496656 voxels -

Chronicity Continuous 1 - 10806 days -

Mean Lesion Pixel Intensity Continuous -0.635 - 2.040 -

Lesion Centre of Mass Continuous List (14, 21,7) - (71,85,71) -

Table 3.2: Table showing all types of investigated metadata, synthesised metadata

and their corresponding ranges/categories. Lesion centre of mass is given for mris

resampled to an image size of 88x112x96 pixels, as used to train all models. Derived

values are shown by the shaded rows.

3.1.3 Preliminary Metadata Analysis

The lesion laterality metadata is first investigated to verify how accurate and useful the

labels inherently are. To do so, the ground truth arrays are summed through the coronal

axis for all volumes in the training and validation sets for each pair of Primary Stroke

Hemisphere and Secondary Stroke Hemisphere values. Dataset images are already

registered to the MNI-152 template, so no further registration is required to verify

laterality. Results are shown in Fig. 3.3.

We can see lesions tend to be concentrated in the frontal half of the brain when

given ‘Right’ or ‘Left’ labels for laterality, and more in the occipital area when given

the ‘Other’ label. Interestingly, for lesions labelled ‘Other’, there seems to be a bias

towards left-sided lesions. Fig. 3.3 verifies that the ground truths are well separated

for different lateralities, with the most variation between volumes occurring when the

Primary and Secondary lateralities do not agree. A Primary stroke hemisphere label

of ‘Other’ is potentially the most informative, as the ground truths across all volumes

appear concentrated within the smallest area - around the Brainstem or Cerebellum, thus

it is hypothesised this label would provide the most useful information to the network.

The distribution of the two continuous metadata variables, chronicity and lesion vol-

ume, is shown in Fig. 3.4. They follow a similar distribution, with values concentrated

on the lower end, and the upper quartile of values having a very large range. If there are

not enough examples of large or late imaged lesions in the training set, it could be that
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Figure 3.3: Colour denotes number of pixels containing lesion at that location, summed

along the dorsal/ventral axis for subsets of volumes with different Primary (P) and

Secondary (S) Stroke Hemisphere label combinations. All plots are in RAS+ space at a

resolution of 2x2x2 mm/pixel.

this information proves arbitrary to condition the network with.

The correlation between chronicity and mean pixel intensity is investigated by

plotting them against each other for different subsets of chronicity and lesion volume

values- Fig. 3.5. The hyperintense acute lesions (within 24 hours of stroke onset) can

clearly be seen in Fig. 3.5a, clustering in a vertical line at the origin. The trend is much

stronger for both images with smaller lesions, and those which have been acquired

within a year of stroke onset, shown by the higher Pearson coefficients for these subsets.

This should be considered when analysing the results of incorporating Mean Lesion

Pixel Intensity using conditioning layers.
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(a) Chronicity (b) Lesion Volume

Figure 3.4: Boxplot and histogram of Chronicity and Lesion Volume values for every

volume in training set. Mean value of Chronicity is 511 days, mean value of Lesion

Volume is 4264 voxels cubed.
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(a) Chronicity under 365 days
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(b) Chronicity over 365 days
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(c) Lesion Volume below 4264 voxels (median)
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(d) Lesion Volume above 4264 voxels (median)

Figure 3.5: Trends between Chronicity and Mean Pixel Intensity for different dataset

splits of Chronicity and Lesion Volume values. Mean Lesion Pixel Intensity is plotted as

a standardised value.
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3.1.4 Metadata Encoding and Preprocessing

Metadata is provided with the dataset in tabular format, with a mix of categorical text

values and numerical continuous values. Neural networks require a numerical input,

therefore the categorical values must first be numerically encoded and then concatenated

with continuous values into a single vector. One-hot encoding is used for categorical

data to ensure that categorical variables are represented in a meaningful way. This

converts each categorical value into a binary vector of 1s and 0s with a separate binary

vector created for each unique category. This representation prevents the algorithm from

assigning any inherent order or magnitude to the categories. A downside of one-hot

encoding can be that dimensionality of data greatly increases for data with many distinct

categories, however as seen in Table 3.2, the maximum number of categories for any

one metadata variable is 14 which is of negligible size compared to the size of the image

inputs (88x112x96).

NA values when using one-hot encoding are easily dealt with, with 0 values in

each unique category binary vector. The only categorical metadata types which have

NA values are Secondary Stroke Hemisphere and Secondary Stroke location when

only a single lesion is present in the ground truth. Thus the encoding of all zeros

signals this to the network. For the continuous metadata types, NA values must be

manually filled. Centre of Mass and Mean Lesion Intensity are calculated directly from

ground truth, and thus have no missing values. Lesion Volume NA values are filled by

deriving these directly from the ground truth. Lastly, Chronicity NA values are filled

in using the mean value, which is 511 days. Continuous values are standardised to a

mean of 0 and standard deviation of 1. Standardising the features ensures that each

feature contributes equally to the learning process, otherwise features with larger scales

would dominate the learning process. Standardization helps this by creating a more

balanced optimization landscape, allowing the algorithm to converge more quickly and

reliably. It is chosen over normalisation (where values are normalised to lie in the range

[0,1]) due to the distributions observed in Fig. 3.4. If normalisation was chosen, many

values concentrated on the lower end of the scales would be normalised to zero, just to

accommodate the few outliers at the upper end of the scale.
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3.2 Model Architecture

3.2.1 FiLMed U-Net Model

The baseline model used for experiments is a standard U-Net [1] (See Chapter 2.2).

Metadata is then encoded as in Chapter 3.1.4, and input to the network through the

FiLM generator which generates the parameters βc and γc to modulate the feature

maps by. The full architecture is shown in Fig. 3.6 for a ‘late fusion’ version of the

architecture wherein FiLM layers are only placed in the decoder half of the network.

The decoder is responsible for generating the final segmentation, whereas the encoder

is responsible for generating latent representations of the image. By applying FiLM

conditioning in the decoder only, the model can adapt its behavior based on the given

context, without affecting the lower-level features learned by the encoder. This is even

more justified for the U-Net as opposed to a standard autoencoder due to the skip

connections - unmodulated features from the encoder are concatenated with decoder

features before passing through FiLM layers rather than already modulated features

being concatenated and then remodulated through another FiLM layer. Both late fusion

and complete fusion, where FiLM layers are placed at every network layer, will be

investigated to see if certain types of metadata work better with a certain method.

Figure 3.6: Diagram showing a FiLMed U-Net. To demonstrate how metadata can be

injected at different locations, late fusion is depicted where FiLM layers are only placed

in the decoder half of the network. Base diagram from [23].
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3.2.1.1 Training Details

Training is conducted on a machine equipped with an Intel Core i9 processor (3.5 GHz,

12 cores), 64 GB of RAM, and an NVIDIA GeForce RTX 2080 Ti GPU. The scripts

used to create the model and run training are written in Python and PyTorch version

2.0.1. Model hyperparameters used for model training are shown in Table. 3.3, and

are optimised to achieve the best baseline performance. Batch size is maximised for

training with the dataset on the above machine. A grid search is conducted for learning

rates between 1e−5 and 1e−1 to find the best value, and then a one cycle scheduler is

added to modulate the learning rate over the course of training. Models are initially run

for 150 epochs to find that around the 60th epoch, validation scores begin to plateau,

therefore 75 epochs is chosen as the total training time. For every new model that is

run, training curves are visually assessed to ensure that validation scores also plateau

around the same time, in case metadata models take longer to converge.

The loss function chosen to optimise the network with is an average of Dice Loss

and Binary Cross Entropy (BCE) Loss. Dice Loss is calculated as 1 - Dice Score (see

Chapter 3.3.1). The formula for calculating the BCE loss for a single pixel is:

LBCE =−(y log(p)+(1− y) log(1− p)) (3.1)

where y is a binary indicator indicating whether the predicted class is correct or not,

and p is the probability of the pixel lying in the correct class. The loss is calculated for

every pixel in an image, and then an average taken.

As BCE loss is evaluated on individual pixels, the misclassification of larger lesions

will contribute more than small ones. Dice loss suffers the opposite problem as it is

calculated on a per-volume basis; a small misclassification in a small lesion will result

in the same loss as a very large misclassification in a larger lesion. Hence, the losses

are averaged to counteract the limitations of one another.

3.2.2 Metadata Prediction Model

In order to investigate how much information from each type of metadata is already

encoded in the images alone, the task is reversed to see if there is a link between the

ability to infer the metadata already from the images using a CNN, and the performance

increase by injecting this same metadata using FiLM. The aim is to establish how ‘new’

each type of metadata is to the model, and thus how useful different types should be

to condition the network with. It is hypothesised that if the model is able to predict a
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Hyperparameter Value

Network Depth 4

Batch Size 3

Learning Rate Scheduler OneCycleLR

Max Learning Rate 0.01

Optimiser AdamW

Training Epochs 75

Image Size (88, 112, 96)

Loss Function Dice and BCE Loss

Table 3.3: Training hyperparameters for metadata FiLMed models.

metadata type with incredibly high accuracy already, it will not be useful to condition

the network with, as the information is already encoded in the images. To do so, a

model architecture is used that utilises the encoder half of the U-Net with a linear layer

as the final layer, trained such that the compressed representation is now the encoded

metadata vector - shown in Fig. 3.7. The prediction of each individual metadata type is

treated as a separate task, with different models trained to predict each one.

Figure 3.7: Diagram showing architecture used for metadata prediction. Base diagram

from [23].

For predicting continuous metadata values, Mean Squared Error (MSE) is used as

a loss function, with R2 Score (regression coefficient) as an evaluation metric. The

R2 Score quantifies the proportion of variance in the target variable (in this case the

ground truth metadata), that is explained by the inputs (in this case the model metadata

predictions). A score of 1 would indicate the predictions perfectly match ground truth,

and 0 implies no correlation.
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For predicting categorical metadata values, Binary Cross Entropy Loss (Eqn. 3.1) is

used to optimise the model, and F1 Score is used to evaluate predictions. Accuracy is

a non-optimal metric to use for this, as in class-imbalances cases, high accuracy can

be achieved by simply predicting the majority class for all instances whilst performing

poorly on the minority class. As the metadata values are one-hot encoded, all input

values are binary, and thus both micro and macro averaging for F1 Score give the

same results. The same hyperparameters are used as in Table 3.3, except for the

aforementioned loss functions and the learning rate. When conducting a learning rate

grid search, a value of 1e−3 is found to be optimal.

3.3 Experiments and Evaluation

Experiments will be conducted both by varying the type of metadata the network is

conditioned with, and whether complete fusion (FiLM at every layer) or late fusion

(FiLM in decoder only) is used. This way, the effect of each individual type of metadata

can be evaluated and compared. A model incorporating all metadata, and also random

noise as metadata, will also be trained for further comparison. The baseline is taken to

be a simple U-Net model with no FiLM conditioning or metadata input.

Each model is evaluated by performing 3 cross validation runs with separate valida-

tion sets, split 80:20 training to validation. This gives 524 volumes in each training set,

and 131 in each validation set. For every run, the Dice score (see Chapter 3.3.1) for the

best performing model over all epochs on the validation set is taken. These 3 values

are then averaged, with the standard deviation also calculated to be able to compare the

significance of differences between model runs.

3.3.1 Dice Score

To evaluate the accuracy of model predictions compared to ground truth for each volume

in the validation set, the Sørensen–Dice coefficient (herein referred to as the Dice score)

is used. The formula is given as such:

D =
2|Y ∩ Ŷ |
|Y |+ |Ŷ |

(3.2)

where Y is the ground truth array and Ŷ is the binarised (i.e. thresholded) model

segmentation prediction. Thus, |Y ∩ Ŷ | represents the intersection of the two arrays,

and |Y |+ |Ŷ | the sum of the volumes of both ground truth and prediction - this is not
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the same as the union of both arrays. The Dice score is the most common metric used

in image segmentation, as it essentially measures the similarity between two sets. A

limitation of using the Dice coefficient to evaluation segmentation performance is its

variance in evaluating errors for small and large segmentations. A single pixel error in a

small segmentation has the same effect as completely omitting a large lesion, which

may not be desired behaviour. The Dice score is calculated separately for every volume

in the validation set and averaged to get a representative value for model performance.

3.3.2 Decision Trees

The Dice score is useful as a high level metric to compare the average model perfor-

mance across all lesions, however we would also like to investigate the characteristics

of the individual cases where metadata FiLMed models exhibit superior predictive per-

formance. Some authors have used decision tree analysis for CNN prediction analysis

in order to increase the explainability of the learned visual features of the CNN [24, 25].

However, since we have access to a set of features pertaining to the dataset already - the

metadata - we can use decision tree regression to predict the performance of a model

across a dataset (using Dice scores), given only the metadata. This will expose specific

metadata characteristics that result in FiLMed model improvements or deterioration

compared to the baseline. Of course, this could be inferred by manually inspecting all

predictions, however decision tree analysis gives us a more efficient and visual way to

do this.

Decision tree regression is a machine learning algorithm that can be used for

predicting continuous values based on a set of input features. For this specific analysis,

we can take the input features to be the encoded metadata vector for each image, and the

continuous variable to predict as the Dice score from a particular model’s segmentation

prediction, or the improvement in Dice score from baseline. The algorithm constructs a

tree-like structure, where each node represents a decision based on a specific feature’s

value, and each leaf node represents a predicted numeric value for the target variable.

The goal is to divide the feature space into regions that correspond to different target

values. This visualisation will give clear insight into the metadata characteristics that

result in certain predictions having higher or lower Dice scores.

Decision tree regression works by recursively dividing the dataset based on the

value of one feature at a time, whilst enforcing similarity between the target values in

each subset of the divide. The most common splitting criteria is mean squared error,
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which measures the average squared difference between predicted and actual values. To

run inference and make a prediction, the algorithm traverses the tree depending on the

feature values and decisions at each node until reaching a leaf node, where the value is

used as the regression output.

For implementation, the open source scikit-learn DecisionTreeRegression class

is used. The max tree depth is set to 3 for interpretability, and minimum number of

samples in each leaf node to 3 to combat against overfitting. Mean squared error is used

to optimise the node splits. Fig. 3.8 shows an example of a regression decision tree.

Figure 3.8: Example decision tree. Top line in each node shows the feature and feature

value the node is split on. Value of the node shows the average Dice score for all values

falling within the subset of samples beneath it. Saturation of node colour corresponds to

magnitude of predicted Dice score. In this example, Right Primary Stroke Hemisphere

lesions over a volume of 300 would receive the most accurate segmentations from the

model being evaluated.
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Results and Analysis

4.1 Metadata FiLMed Model Results

Table 4.1 shows the average Dice scores for all trained metadata FiLMed models.

Best models are indicated in bold for late fusion, complete fusion, and also for single

metadata and multiple metadata models. As well as the baseline model with no metadata

or FiLM layers, a model is also trained with a length 30 random binary vector attached

to each input MRI as metadata. This acts as another type of baseline, to verify that the

metadata FiLMed models are learning representative information from the conditioning

rather than any increase in performance being due to added model complexity.

The best performing model is one that incorporates all available metadata (including

derived values), using complete fusion - where FiLM layers are placed at every layer

of the network, and offers on average a 7.3% absolute increase in performance over

the baseline model. Incorporating stroke location with complete fusion gives the

best result for non-derived metadata, with a 6.3% absolute increase in performance.

Interestingly, all models incorporating only one type of metadata, except the Lateralities

model, showed better performance with a late fusion architecture. Models incorporating

multiple types of metadata however, show better performance when using complete

fusion. Injecting multiple types of metadata might require the network to have the

flexibility to modulate all feature maps throughout the network, rather than only those

in the decoder, so as to be able to represent the complex relationships between metadata

values themselves as well as between the metadata and MRIs - Fig. 3.5 demonstrates

the non-linear relationship between different metadata values.

The best three non-derived metadata models are Locations with Complete Fusion,

Lateralities and Locations with Complete Fusion, and Chronicity with Late Fusion.

26
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No Fusion Late Fusion Complete Fusion

No Metadata 0.5039 ± 0.0047

Binary Noise 0.5059 ± 0.012 0.5061 ± 0.013

Centre of Mass 0.5183 ± 0.0071 0.5112 ± 0.0048

Lateralities 0.5240 ± 0.0055 0.5136 ± 0.0051

Mean Intensity 0.5315 ± 0.0029 0.5243 ± 0.0148

Volume 0.5229 ± 0.0026 0.5087 ± 0.0088

Locations 0.5257 ± 0.0089 0.5356 ± 0.0157
Chronicity 0.5294 ± 0.0089 0.5229 ± 0.0109

Scanner 0.5154 ± 0.0019 0.4832 ± 0.036

Lats and Locs 0.5280 ± 0.0059 0.5352 ± 0.0076

All Non Derived Met 0.5159 ± 0.0018 0.5248 ± 0.0105

All Metadata 0.5316 ± 0.0066 0.5409 ± 0.0108

Table 4.1: Table of results for all experiments run with inserting different types of metadata

to condition the U-Net. Value shows the average dice score across 3 cross validation

splits, with the standard deviation between runs also shown. Late fusion pertains to

models where FiLM layers are inserted at every level of the decoder half of the network,

whereas in complete fusion FiLM layers are inserted at every level in both encoder and

decoder halves. Models using derived metadata have been highlighted in yellow. Models

using more than one metadata type are shown below the bold line. Top left entry shows

the baseline result with no metadata and no FiLM layers.
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FiLM layers do not directly encode spatial information, as each individual feature map

is given the same affine transformation across the map. However, these results show

that this spatial metadata can still provide new information to the network, implying

that lesions present visually differently, and distinctly, in different areas of the brain.

There also appears to be a trend where complete fusion models display slightly

more variance between runs than using late fusion. This can be seen in Table 4.1 most

prominently for the Mean Intensity, All Metadata and Location FiLMed models. This

is potentially due to a combination of the increased model complexity and also small

validation set size. It is possible that the extra parameters from the conditioning layers

are able to capture slightly more specific patterns in the training data and overfitting

to these, leading to better performance when these patterns are also present in the

validation set, and worse when they are not - resulting in higher variance between data

splits.

Model complexity should also be considered with regards to model run times, shown

in Fig. 4.1. Average epoch time is plotted against different input encoded metadata

vector lengths for late and continuous fusion models, as well as the average total training

time shown for different model types. This illustrates that the model complexity, and

training time, scale with the number of FiLM layers rather than the size of the input

metadata. Although the two best performing models use complete fusion, when taking

into account the variance in performance between model runs, and total training times,

it is perhaps not always the superior method. Late fusion offers a better tradeoff between

increase in performance, and run time.

Figure 4.1: Left plot shows average training epoch time for models trained with different

lengths of metadata conditioning vectors. Right table shows average training time over

75 epochs for a single run, for all three model architectures.
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4.2 Metadata Prediction

Results for predicting metadata from images alone are shown in Fig. 4.2, with sepa-

rate graphs denoting prediction of continuous metadata and prediction of categorical

metadata. Prediction metrics are plotted against the average Dice score achieved when

conditioning models with that same metadata, to establish whether there is a link be-

tween the effect of incorporating metadata for automatic lesion segmentation, and how

much of that metadata is already encoded in the MRI images themselves. It should be

noted that the correlations lie on very different scales - in Fig. 4.2b, R2 scores for contin-

uous metadata are all below 0.35. This shows low predictive performance and implies

that none of these values are encoded in the MRIs already, and thus should improve the

network when injected as metadata as they are ‘new’ and distinct information - which

we can see they do. In Fig. 4.2b, F1 scores are all above 0.7, showing high correlation

between the categorical metadata and images themselves. In the most extreme case of

the Scanner type which can be predicted almost perfectly, this in fact has the opposite

effect when injected into a FiLMed model, offering a decrease in performance over

baseline. However all other categorical metadata values which are predicted with high

accuracy, but not perfectly, still offer a large improvement over the baseline Dice when

used as conditioning inputs to FiLMed models.

(a) Continuous Metadata (b) Categorical Metadata

Figure 4.2: The average Dice score achieved when incorporating different metadata

types is plotted against prediction performance when predicting the corresponding meta-

data value from the MRI only. Baseline dice is shown as a vertical line for comparison.
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4.3 Analysis of Trained Models

4.3.1 Laterality Models

This section draws on the preliminary analysis performed in Chapter 3.1.3 to investigate

the effect of incorporating stroke laterality into a FiLMed model on the resulting

predictions. Predictions on the validation set from the best performing Laterality

FiLMed model are chosen to analyse. Firstly, a kernel density estimation plot in Fig.

4.3 shows the distribution of Dice scores across the validation set for both the baseline

and the Laterality FiLMed model. Here we can clearly see a shifting of mass away

from near zero scores for the Laterality FiLMed model, showing that the incorporation

of Laterality metadata specifically helps in cases where lesions are almost entirely

missed. For volumes where Dice score is already very high however, incorporating this

additional metadata has no effect, which is to be expected. If the Dice score is already

greater than 0.8, it is likely that the laterality of the lesion has already been predicted

correctly and this conditioning metadata would offer no extra information.

These Dice scores are then taken and stratified by their ‘Primary Stroke Hemisphere’

label to find the average Dice score for predictions for each label. Results are shown

in Table 4.2. A notable increase in performance is shown for volumes with a primary

stroke hemisphere labelled ‘Other’. It should be noted that this subset is smaller than

subsets with labels ‘Right’ and ‘Left’ (16, 60 and 54 respectively), however the subset

contains enough volumes for the result to be significant.

Figure 4.3: Kernel density estimation plot for Dice scores over validation set for both

baseline and Laterality FiLMed models.

To inspect this further, predictions for the same laterality subsets for both models are
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Model Primary Stroke Hemisphere

Right Left Other

Baseline 0.5526 0.5385 0.0947

Laterality FiLMed 0.5693 0.5402 0.2812

Table 4.2: Dice scores across one validation set, split by ‘Primary Stroke Hemisphere’

labels. Results for baseline model, and Laterality FiLMed late fusion model are shown.

There is a notable increase in Dice scores for volumes labelled ‘Other’ when incorporating

laterality as conditioning metadata.

visualised in Fig. 4.4. As in Fig. 3.3 in the preliminary analysis, predictions are summed

through the dorsal/ventral axis to verify at a high level if the lesions are being predicted

with the correct laterality. Even though Table 4.2 reports an increase in performance for

models with laterality label ‘Other’, it is hard to visually see this between the laterality

FiLMed model and baseline predictions in Fig. 4.4. Both models seem to completely

miss lesions in the Cerebellum region are of the brain, hence the overall low Dice scores

for ‘Other’ labelled laterality volumes compared to ‘Right’ and ‘Left’. Ultimately, the

translational invariance of FiLM conditioning means that spatial metadata can only have

an effect if this spatial information also encodes visual features, which in the laterality

case may not be true.

4.3.2 Decision Tree Analysis

Decision trees are used to analyse the predictive performance of different models across

the metadata features of a validation set. The baseline model is first considered, by

using an encoded vector of all metadata values to predict the baseline dice. The result is

shown in Fig. 4.5a. At every level of the tree, volume is shown to be one of the splitting

features, showing it is a strong predictor of Dice score. This is more of a reflection

of the bias in using Dice score as a metric, than it is the feature importance of lesion

volume. As discussed in Chapter 3.3.1, the Dice metric penalises small errors in both

small and large volumes differently. As larger lesions have a lower surface area to

volume ratio, boundary errors result in a lower decrease in Dice score than boundary

errors for a small lesion. Hence the observed behaviour in Fig. 4.5a - where the highest

average Dice scores are seen for the largest lesions. Therefore in subsequent analysis,

lesion volume is removed from the input metadata vector to give a more representative
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(a) Laterality FiLMed Model Predictions

(b) Baseline Predictions

(c) Ground Truth

Figure 4.4: Segmentations summed through dorsal/ventral axis for subsets of ‘Primary

Stroke Hemisphere’ (P) labels. Top row shows predictions from a FiLMed model using

both Lateralities as metadata conditioning input, middle row shows the baseline predic-

tions, and the bottom row shows the ground truth.

and less biased metadata feature analysis.

Fig. 4.5b shows the same model architecture but now trained with volume removed

from the input metadata vector. Here we can see confirmed the behaviour observed

in Chapter 4.3.1, with poor performance for volumes with primary laterality ‘Other’

(observed in the right side subset below the left node marked ‘pri lat Other ≤ 0.5’).
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(a) Baseline Model

(b) Baseline Model, Vol Removed

Figure 4.5: Decision trees predicting Dice score from metadata alone for baseline

model. ‘value’ corresponds to the predicted Dice score for all samples lying at that

node. Categorical metadata is one-hot encoded, thus ‘label name ≤ 0.5’ means for the

volumes on the right side split the label is present, and for the volumes on the left split it

is not.

The main feature that gives good predictive performance is a primary lesion location of

‘Temporal Lobe’. This is the second largest lobe in the brain after the frontal lobe, so

it could be that there are many lesion examples in this area in the training set to learn

from.

Fig. 4.6a shows a decision tree predicting Dice score for predictions made with a

FiLMed model conditioned with Primary and Secondary Stroke Locations - the best

performing model using non-derived metadata. It can be seen that the model performs

particularly badly on cases imaged earlier than 19 days post stroke - this could be due

to lesions across locations appearing similar in the early stages, and only having distinct

appearances in later stages post stroke. The best performance is seen for lesions lying

in both the Frontal and Temporal Lobes, however, as these are the two largest lobes in
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(a) Locations FiLMed Model, Vol Removed: Dice Score

(b) Locations FiLMed Model, Vol Removed: Percentage Increase from Baseline Dice Score

Figure 4.6: Decision trees predicting Dice score (above) and percentage increase in

baseline Dice score (below) from metadata alone for a FiLMed model conditioned with

Primary and Secondary Stroke Locations.

the brain this could be seen as a proxy decision node for denoting strong performance

on large lesions.

Fig. 4.6b goes further - instead of predicting the Dice score for the Location

FiLMed model, the percentage increase in Dice score over the baseline model is taken

as the predicted value. This shows clearly the metadata characteristics of the volumes

where the lesion segmentation is most improved by incorporating metadata. Following

the decision nodes down to the leaf with the highest percentage increase, we see the

subset of volumes with chronicity under around a year, mean lesion intensity above

around the average (28), and a primary stroke location in the Insula demonstrate the best

improvement. These nodes show that adding stroke location as conditioning information,

allows the network to learn the nonlinear trend observed in Fig. 3.5 between chronicity

and mean lesion intensity. The Insula is one of the smallest regions in the brain - this

large increase in performance for the FiLMed model suggests these lesions have visual

characteristics that are specific to the region that the baseline model fails to capture.



Chapter 5

Conclusion

The research conducted in this dissertation shows that image and patient metadata

can offer an improvement in ischaemia segmentation when used to condition a U-Net

with FiLM layers. This increase in performance can be up to 7.3% from baseline

U-Net performance, which is achieved when incorporating a combination of readily

available image and patient metadata, and metadata derived from ground truth labels.

Discounting models trained with derived metadata, the best performing model is shown

to give a 6.3% improvement by incorporating information about Primary and Secondary

Stroke Locations. Incorporating information about stroke laterality is also shown to be

effective, showing that spatial information can be useful to condition FiLMed networks

with (in contrast to findings from previous research [17]). Although FiLM conditioning

does not directly allow for spatial modulation, this is thought to be due to lesions in

different anatomical regions presenting across volumes with consistently distinct visual

features. Out of the two fusion methods investigated, late fusion is shown to have less

variation in performance between runs with also good trade-off between training time

and performance improvement. However, ultimately it is the models using complete

fusion that show superior performance. The metadata prediction experiments show

that if metadata information is already completely encoded in the images themselves,

such as the scanner type, it can at best offer no improvement over baseline to condition

a U-Net model with, and at worst results in a drop in performance. Lesion location

however, is shown to be largely encoded within the images alone, yet still improves

performance when used as FiLM conditioning input. As shown in Fig. 4.6 where

models with location label ‘Insula’ are predicted with very high accuracy, this is perhaps

due to the metadata input offering large increases in performance in the cases where

certain lesion locations are not already encoded in the images. We also find that this

35



Chapter 5. Conclusion 36

method is most effective at improving very low Dice scores, motivating the use of this

method in lesion segmentation where the consequences of failing to detect a lesion are

severe.

5.1 Future Work

This research has some limitations that could be improved on in future work. The

overall low Dice scores reflect the complexity of the task of automatic ischemic lesion

segmentation, but could be slightly improved with more extensive hyperparameter

tuning than this research timeline allowed for. Paing et al. [26] reach a Dice score

of 0.6087 using a U-Net with the same dataset, although the total training time of

this model is 42.2 hours. It is possible that with optimised hyperparameters for each

different FiLMed model, metadata conditioning with FiLM layers would offer an even

more significant increase in performance.

The original use case of FiLM layers is for visual question answering, where there

is a very direct link between the conditioning information (question about an object in

the image), and image itself. As shown in Fig. 4.2, for stroke ischaemia MRI, there is a

varying relationship between metadata and the MRI images themselves for different

types of metadata. Wolf et al. [27] propose a method that deals with this varying

correlation between images and tabular metadata. The method is similar to FiLM, except

rather than simply allowing the tabular metadata to modulate the network, baseline MRI

features are concatenated with the tabular metadata to generate the FiLM parameters

that layers are then modulated with. This allows for a bi-directional flow of information

between metadata and image features, before feature map modulation occurs. The

authors show this is successful for a disease classification problem, however a future

research direction could be to extend this to the lesion segmentation task presented in

this dissertation.
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