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Abstract
Machine learning models are expected to work well on new data they have not seen
during training. This ability is often called generalisation. To test this in advance, a model
is usually evaluated on unseen test data split randomly from the dataset. However, random
splits have been proven to overestimate the performance of models. This work introduces
a more challenging data split to improve generalisation evaluation, specifically addressing
out-of-distribution generalisation in Natural Language Processing. The method leverages
the internal representations of language models, capturing task-specific properties of the
data that are most important for the model. Hate speech detection, a socially-relevant
task, where generalisation is critical, is used as an illustrative task to develop and test
the proposed splitting method. The proposed split reveals dramatic drops in test set
performance in comparison to a random split for different models and datasets. Moreover,
while the data split is always based on a specific model, it proves similarly challenging
for other models. Therefore, creating a data split in the proposed way is an effective way
to evaluate the robustness of language models.
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Chapter 1

Introduction

Machine learning models are usually deployed on data the model has not seen before.
Therefore, models are trained not only to perform well on the data they encounter
during training but also on new, unseen data. This ability to “successfully transfer
representations, knowledge, and strategies” is referred to as generalisation (Hupkes
et al., 2023, p.2).

In Natural Language Processing (NLP), unseen data can include text from different
time periods (Lazaridou et al., 2021), authors (Huang and Paul, 2019), and dialects
(Ziems et al., 2022) as well as words and phrases that were not seen during training
(Elangovan, He, and Verspoor, 2021). The data that a model encounters after training is
often unknown a priori. Performing successfully on this data in spite of such distributional
changes is called out-of-distribution (o.o.d.) generalisation. In this work, this will mostly
be referred to simply as generalisation. With all these potential data shifts, how can the
ability to generalise be measured? Despite a lack of consensus in the field (Hupkes et al.,
2023), common ground is that generalisation should be evaluated on a test set and that
this test set needs to be different from the training data.

This is frequently achieved by splitting a dataset into train, validation and test sets.
The training data is used to optimise the parameters, often called weights, of the model.
The validation data is used to select the hyperparameters that control the training. Finally,
the test data is used to measure the generalisation performance of the model.

Researchers often propose a standardised data split when introducing new datasets.
This enables a straightforward and comparable way to measure models’ abilities
to generalise. However, Gorman and Bedrick (2019) argue that standardised splits
overestimate a model’s performance in comparison to splitting the data randomly.
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Chapter 1. Introduction 2

(a) Random Split (b) New Split

Figure 1.1: Comparison between a random split and the proposed (new) data split
based on hidden representations of a language model. The plots show the hidden
representation of all examples in the dataset reduced to two dimensions by UMAP
(McInnes, Healy, and Melville, 2020).

A random split assumes that the data are independent and identically distributed
(i.i.d.) and that the split therefore suffices to evaluate models’ generalisation capabilities.
Unfortunately, this approach will likely also overestimate model performance in practice
(Søgaard et al., 2021), as the i.i.d. assumption often does not hold when dealing
with distributions that shift over time (Lazaridou et al., 2021) or come from different
applications (Malinin et al., 2021). The assumption also does not hold when there are
sampling dependencies, for example, several posts from the same author or from the
same conversation (Arango, Pérez, and Poblete, 2019).

This work aims to go beyond the random split method by developing a process
that produces more challenging data splits, which can better evaluate generalisation
performance. A particularly hard split will approximate the worst distributional shifts
that might arise in practice. In this way, it can help with measuring just how well
models will perform in worst cases, and therefore also with developing models that
are more robust to distributional shifts. However, often it is hard to detect what data is
out-of-distribution (Arora, Huang, and He, 2021), and especially what distributional
shifts might be the most challenging for a specific model.

To humans, properties of the data such as input length (Varis and Bojar, 2021),
spelling mistakes (Ebrahimi et al., 2018) or overlap between excerpts of sentences
(Broscheit, Do, and Gaspers, 2022) might seem challenging and have indeed been
examined. However, other properties of the data might only be challenging for language
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models and not necessarily for humans. Therefore, other work has relied on the outputs
of a model, such as the log-likelihood of predictions (Godbole and Jia, 2022), to produce
challenging splits. This work, in contrast, lies between relying on the surface form of
the inputs and relying on the outputs of a model. A model’s internal representations are
leveraged to create a data split specifically designed for the provided model. Internal
representations capture what is important to a model, so separating examples in the
model’s internal embedding space is likely to create more challenging splits than relying
directly on the inputs or outputs of a model. In computer vision, latent representations
are used to detect o.o.d. examples in a dataset (Rabanser, Günnemann, and Lipton, 2019;
Roth et al., 2022), making a split based on these likely to be challenging.

To obtain the train-test split, the internal representations are clustered and whole
clusters are assigned to either the train or the test set (whilst maintaining the overall
target class distributions). Fig. 1.1 provides an illustrative example of how a data split
like that can differ from an i.i.d. split. Clustering has been used to split datasets in prior
work by Broscheit, Do, and Gaspers (2022). However, the authors there cluster n-gram
feature representations, rather than hidden representations.

Hate speech detection is used as the testing ground for developing the splitting
approach. The term hate speech describes a “deliberate attack directed towards a specific
group of people motivated by aspects of the group’s identity” (de Gibert et al., 2018,
p. 13). Detection of hate speech is not only socially relevant but also interesting for the
problem at hand because performance on this task is often overestimated. Since the
advent of large language models, performance on hate speech detection datasets gives
the impression that the problem is close to being solved (Vidgen et al., 2019). However,
despite this progress, recent work points out that hate speech detection models still
suffer from generalisation problems, such as overfitting to specific terms (Dixon et al.,
2018; Waseem, Thorne, and Bingel, 2018; Kennedy et al., 2020; Palmer et al., 2020),
or specific social media users (Arango, Pérez, and Poblete, 2019). This work aims to
develop a data-splitting method that can reveal this discrepancy. The proposed method
is developed on a binary classification task based on hate speech data from Reddit (Qian
et al., 2019) and later tested on a three-way classification task based on hate speech data
from Gab and Twitter (Mathew et al., 2020).

Training state-of-the-art models to detect hate speech with the proposed data split
reveals significantly decreased generalisation performance on the test set in comparison
to using a random split. The resulting data split leads to a harder test set, while the train
set is not incomplete in the sense that models trained on this train set still perform well
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on independent test data. Moreover, the data splits that are obtained with the hidden
representations of a particular model are also challenging for other language models,
demonstrating the potential for using a single split to compare different models. Apart
from providing a more accurate assessment of the generalisation capabilities of existing
models, the splits could also be helpful in the development of more robust model
architectures and training techniques in future work, thereby contributing to the large
body of research in generalisation improvement (Feng et al., 2021; Pyysalo et al., 2021;
Naik, Lehman, and Rosé, 2022, among others).

Note that many works in this area focus on the more specific problem of domain
adaptation (Miller, Laparra, and Bethard, 2021; Ramesh Kashyap et al., 2021; Nishida
and Matsumoto, 2022, among others). While the proposed method could split a dataset
along domain lines, this is neither the goal of the approach nor is it explicitly encouraged.
Additionally, domain adaptation often knows the target domain a priori, and work
focuses on adapting a trained model to the new domain. In contrast, the proposed
data-splitting approach is designed to evaluate the general robustness of models to
unforeseen distributional shifts.

The rest of this work is structured as follows. Chapter 2 takes a deeper look at prior
work on generalisation and hate speech detection. Chapter 3 introduces the proposed
data-splitting approach in detail, including the clustering methods used, the datasets, and
the experimental setup. Chapter 4 presents model evaluation results on the produced data
splits, Chapter 5 analyses the splits in detail, and Chapter 6 finishes with a discussion
and conclusion.

Warning: This work includes posts that contain hate speech, which may be offensive
or upsetting to some readers.



Chapter 2

Background and Related Work

2.1 Generalisation

A lot of work points in the direction that models with high or even human-like scores
(Chowdhery et al., 2022, among others) on i.i.d. splits do not generalise as robustly as
the results would suggest (Lake and Baroni, 2017; McCoy, Pavlick, and Linzen, 2019;
Kim and Linzen, 2020; Sinha et al., 2021; Razeghi et al., 2022). For example, McCoy,
Pavlick, and Linzen (2019) demonstrate that models overly rely on heuristics, such as
the appearance of certain words, to make their predictions. Gardner et al. (2020) also
find that models sometimes depend on simple decision rules to perform well on test data,
without actually understanding the task. This is further supported by Kaushik, Hovy,
and Lipton (2019), who find that classifiers with impressive results in sentiment analysis
and natural language inference (NLI) tasks often fail on examples from the dataset that
are modified to carry an opposite meaning. Perhaps less surprising is that models tend
not to generalise well to different domains (Michel and Neubig, 2018; Malinin et al.,
2021).

An alternative to standardised or random splits is to gather new data to test
generalisation. This can be data from a different domain; for example, for the popular
NLP benchmarks GLUE (Wang et al., 2018) and Super-GLUE (Wang et al., 2019) an
out-of-distribution test set has been presented by Yang et al. (2022). Another possibility
to gather new data is to synthetically create a test set that is linguistically inspired by
using formal languages and different levels of recursions in the test set (Kim and Linzen,
2020). However, this does not represent natural language generalisation scenarios.

Another popular way to gather new data for testing generalisation is to create
adversarial examples, i.e., examples that are designed to trick the model. Human-written

5
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adversarial examples for various NLP tasks, including hate speech detection, are collected
in the Dynabench platform (Kiela et al., 2021). However, there are also automatically
generated adversarial examples (Zhang et al., 2020). Task-specific adversarial datasets
include datasets for NLI with special kinds of negation (Gururangan et al., 2018) or based
on heuristics (McCoy, Pavlick, and Linzen, 2019). For text classification, adversarial
examples can be made by changing only one character of the input (Chen et al., 2019) or
by swapping characters and tokens in the input based on a model’s gradients (Ebrahimi
et al., 2018). All of these approaches lead to lower scores and reveal different flaws in
language models.

Creating new data in the above ways is a fruitful way to test generalisation, but data
collection and annotation are costly. Splitting existing datasets in a non-i.i.d. manner is
a more efficient approach. Such a non-i.i.d. data split can be based on the input of the
language models: For example, a data split that minimises the word overlap between
the train and test sets already presents a challenge for language models (Elangovan,
He, and Verspoor, 2021). Familiar words appearing in new contexts in the test set can
also be challenging (Keysers et al., 2019). Similar findings hold for data splits based
on dependency parsing, where new linguistic structures appear in the test set (Søgaard,
2020). Along the same lines, Broscheit, Do, and Gaspers (2022) split a spoken language
understanding dataset based on the distributional drift in the input for a language
model. Yet another way to re-split the dataset is to test temporal generalisation by using
documents with a more recent timestamp in the test set (Lazaridou et al., 2021).

Generalisation can also be tested with output-based non-i.i.d. splits: In NLI, Naik
et al. (2018) analyse the predictions of a model to find challenging phenomena in the
dataset and they then use these phenomena to construct test sets. For text classification
tasks, Godbole and Jia (2022) re-split a dataset based on the predicted log-likelihood for
each example, using low-likelihood examples in the test set.

The data split method proposed in this work lies in between the input-based and
output-based data-splitting methods, relying on the internal representations of the model.

2.2 Hate Speech

Hate speech detection is used as the testbed for developing the proposed generalisation
evaluation approach. Hate speech is widely used as an umbrella term for harmful, abusive
and offensive language (Waseem et al., 2017). The authors divide hate speech along two
dimensions: explicit-implicit and directed-generalised. For example, “Go kill yourself”
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is explicit and directed, whereas “most of them come north and are good at just mowing
lawns” is implicit and generalised (Waseem et al., 2017, p.3). Another subdivision of
hate speech, specifically of harmful stereotypes, is given by the Stereotype Content
Model (Fiske et al., 2002, SCM). SCM classifies stereotypes along two dimensions:
the intent of the target group (friendly or hostile), and the ability of the target group to
carry out its intent. Fraser, Nejadgholi, and Kiritchenko (2021) develop a model to map
hate speech to SCM classes. However, not all hate speech involves stereotypes; it also
includes objectification and threats (Anzovino, Fersini, and Rosso, 2018).

There exists a wide range of hate speech datasetss: Hate speech can come from
different domains and address various topics, such as gender, religion, nationality, or
race. Some datasets are topic-specific, whilst others are topic-generic. Topic-generic
datasets encompass a wider range of topics and since work on hate speech detection
has been growing (Vidgen et al., 2019), multiple topic-generic benchmark datasets
(Waseem, 2016; Founta et al., 2018; Vidgen et al., 2021a, and others) have popped up.
Most of these datasets rely on data from social media platforms, such as Reddit (Qian
et al., 2019; Vidgen et al., 2021a), Twitter (ElSherief et al., 2021), Gab (Qian et al.,
2019; Mathew et al., 2020), or Stormfront (de Gibert et al., 2018), but synthetic datasets
also exist (Vidgen et al., 2021b). On the other hand, topic-specific datasets focus on
a particular topic or selection of topics, such as hate speech against women (Fersini,
Nozza, and Rosso, 2018), or hate speech against immigrants and women (Basile et al.,
2019). This work uses topic-generic datasets, as these offer a wider distribution of
examples and generalisation across them is more interesting to look at.

The hate speech datasets are designed for different purposes: Hate speech tasks can
involve detection, identification of the topic or target group, or generation of responses
(Qian et al., 2019). This work is restricted to hate speech classification; an example in
the dataset can be assigned a positive (hate) label or a negative (noHate) label.

Hate speech detection can be a challenging task, especially when using data from
social media platforms. Examples often include spelling mistakes, colloquial terms,
humour, irony, sarcasm (Vidgen et al., 2019), and hate symbols (Qian et al., 2019).
However, recent advances in NLP, including contextualised word embeddings and large
language models, have led to impressive results (Fortuna and Nunes, 2018; Vidgen
et al., 2019). State-of-the-art models mostly involve the use of transformers (Vaswani
et al., 2017; Liu, Li, and Zou, 2019). For example, Caselli et al. (2021) further pretrain
a BERT model (Devlin et al., 2019) using hate speech data prior to fine-tuning on hate
speech classification tasks.
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Despite impressive results, non-i.i.d. generalisation has proven to be challenging
for hate speech detection (Yin and Zubiaga, 2021). One problem when generalising is
the low proportion of hate examples in a dataset; models trained on a more balanced
class distribution often generalise better even if the distribution does not mirror reality
(Swamy, Jamatia, and Gambäck, 2019). Hate speech models also seem to overfit easily.
Arango, Pérez, and Poblete (2019) find that models tend to overfit to specific users
and perform well on the test set simply because it contains posts from the same users
as the train set. Other traps for overfitting are the use of specific terms (Dixon et al.,
2018; Kennedy et al., 2020) or slurs and pejorative terms (Waseem, Thorne, and Bingel,
2018; Kurrek, Saleem, and Ruths, 2020; Palmer et al., 2020) in hate speech. Therefore,
when hate speech does not involve overt swear words or triggering words, then models
often fail to detect hate speech (ElSherief et al., 2021). Models also do not generalise
well between different sources of data, such as when switching between examples from
Fox News, Twitter or Wikipedia (Karan and Šnajder, 2018). Talat, Thorne, and Bingel
(2018) point out that differing data sampling and annotation methodologies can make
generalisation evaluation difficult, especially when annotators and researchers come
from different cultures and have different understandings of hate speech. Nejadgholi and
Kiritchenko (2020) find topic biases in topic-generic datasets also lead to challenging
generalisation scenarios, and Bourgeade et al. (2023) examine topic-generic and topic-
specific generalisation in hate speech, testing models trained on topic-generic and
topic-specific datasets on different topics of hate speech.

In response to these generalisation issues, recent works combine existing hate speech
datasets in order to improve generalisation performance (Fortuna, Bonavita, and Nunes,
2018; Salminen et al., 2020; Chiril et al., 2022; Bourgeade et al., 2023). However,
this inevitably leads to larger datasets, in turn leading to higher computational effort.
Moreover, Nejadgholi and Kiritchenko (2020) find that the inconsistent definition of
hate-speech across datasets makes generalisation hard to evaluate, so combining existing
datasets is a challenging task in itself.

While many of these approaches are effective ways to evaluate generalisation, they
are also costly. Augmenting datasets requires more data, and evaluating whether a model
overfits to different users, posts, data sources etc. requires annotations of these properties.
However, these characteristics are often not available due to privacy requirements or
because the annotations were simply not included with the dataset release. Therefore,
this work aims to find a data split that can evaluate generalisation without any such
annotations, relying instead only on a model’s internal representations.



Chapter 3

Dataset and Methodology

The goal of this work is to contribute to a better evaluation of o.o.d. generalisation.
Therefore, this work proposes data-splitting methods that lead to challenging data splits.
The datasets used are introduced in Section 3.1 and the methodology to obtain the splits
is presented in Section 3.2. The datasets concern hate speech detection.

3.1 Datasets

This section presents two hate speech datasets. The first is used as a development dataset
to develop the splitting method(s), find working hyperparameter settings and choose
interesting data splits. To ensure that the chosen splitting method does not overfit on this
particular dataset, it is then evaluated on another dataset, the test dataset.

3.1.1 Development Dataset

The proposed data-splitting method is developed on the Reddit hate speech detection
dataset from Qian et al. (2019). This dataset is topic-generic and as such contains a
wider range of examples than a topic-specific dataset. This makes it a good testbed
for analysing the robustness and generalisation ability of language models. Moreover,
with a size of 22,317 examples, it is large enough to draw meaningful conclusions
without leading to prohibitively long training times. Each example in the dataset is
labelled as either hate (23.5%) or noHate (76.5%). The dataset was collected from ten
different subreddits by retrieving potential hate speech posts using hate keywords taken
from ElSherief et al. (2018). The hate keywords correspond roughly to the following
categories: archaic, class, disability, ethnicity, gender, nationality, religion, and sexual

9
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orientation. The data is structured in conversations that consist of at most 20 comments
by the same or different authors. These comments were manually annotated with hate or
noHate, with each annotator assigned five conversations.

3.1.2 Test Dataset

The HateXplain dataset (Mathew et al., 2020) is used to test the data-splitting method.
It contains 20,148 examples taken from Twitter and Gab. Posts from the combined
collection were filtered based on a lexicon of hate keywords and phrases by Davidson
et al. (2017), Mathew et al. (2019), and Ousidhoum et al. (2019). The selected posts were
then manually annotated. In contrast to the development dataset, HateXplain examples
are labelled as either hateful (31%), offensive (29%) or normal (40%), as proposed
by Davidson et al. (2017). Offensive speech differs from hate speech in that it uses
offensive terms, but without directing these against any person or group in particular.
The following examples from the dataset illustrate this difference: fuck the nigger bitches
(hate), lmao gay haircut (offensive).

All offensive and hate examples are annotated with the group or community that
they affect or target. These communities include, among others, Africans, Jewish
People, Homosexuals and Women. For example, the hate post above is annotated with the
communities African, Woman, whereas the offensive post is annotated with Homosexuals.
While the models are still trained on the three-way classification task, the communities
are used for further analysis in Chapter 5. The possibility to use the communities for
this analysis is one of the reasons for choosing this dataset as the test dataset, alongside
being topic-generic and of a feasible size.

3.2 Methodology

This section describes the proposed data-splitting approach for creating challenging
train-test splits in order to improve the evaluation of o.o.d. generalisation. The pipeline
can be described in three steps. In Step 1, the method extracts the latent representations
of inputs from a language model that was finetuned on the task. In Step 2, the data is
clustered based on these representations and clusters are assigned to either the train
or the test set. In Step 3, language models are then trained and evaluated on this new
train-test-split. Additionally to the obtained test set, the language models are also
evaluated on independent test data, that was set aside for this purpose. An overview
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Step 1 Step 2 Step 3

90% obtain hidden
representations

10% independent 
test data

train data
validation data

test 
data

Train on: train data
Test on:
- validation data
- test data
- independent test data

clustering

Figure 3.1: Pipeline of the proposed data-splitting approach.

of this pipeline is illustrated in Fig. 3.1. The key idea behind the approach is to create
train and test sets with different semantic properties relevant to the task. Since language
models store semantic properties in their hidden representations, inputs with similar
properties are placed closer in the embedding space (Thompson and Mimno, 2020;
Grootendorst, 2022). Therefore, assigning clusters to the train and test sets separates the
examples in the embedding space.

In what follows, the different steps are explained in detail. Section 3.2.1 describes
different ways of obtaining latent representations (Step 1), and Section 3.2.2 outlines
different clustering and splitting approaches (Step 2). Section 3.2.3 introduces the
language models used to obtain the representations and to evaluate the splitting method
(Step 3). Finally, Section 3.3 gives an overview of the experimental setup.

3.2.1 Obtaining Latent Representations

The internal representations of language models are used to cluster and split the data.
To obtain task-specific representations, a language model is first finetuned for the given
task. Note that some of the data (10%) are needed as a validation set for finetuning in
order to optimise hyperparameters and decide when to stop training. This validation
set is not used any further for creating the data split. The train-test split is based on the
remaining 90% of the data. However, the finetuning validation data is used later for
further analysis as an independent data sample (Section 4.2.3). To avoid any confusion,
the finetuning validation data is called independent test data, depicted in orange in the
pipeline overview in Fig. 3.1.

The finetuned language model is then used to extract latent representations. But how
can a single latent representation be obtained for each input example? This work uses
transformer language models (Vaswani et al., 2017; Devlin et al., 2019; Liu et al., 2019)
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(Section 3.2.3 elaborates on the exact models used). Transformers map each (sub)word
of the input to context-sensitive representations. Each layer of the model maintains the
input length and outputs a corresponding representation for each (sub)word of the input.
The input to the model consists of the tokenised input sentence, along with a special
symbol, the class token. The latent representation of the class token after the final layer
is then used to decide on the class for the entire input. The representation of the class
token is also commonly used as a representation for the whole input sentence (May
et al., 2019; Qiao et al., 2019, among others), and this work does the same.

There exist other ways to extract sentence embeddings from Transformer models
such as Sentence-BERT (Reimers and Gurevych, 2019). However, since this work is
interested in the task-specific latent representations of the model and not in the sentence
embedding itself, the latent representation of the class token is used.

Latent representations from language models are usually high-dimensional. However,
when measuring the distance of points in high-dimensional data, distance metrics tend
to fail to capture the concept of proximity or distance (Beyer et al., 1999; Aggarwal,
Hinneburg, and Keim, 2001). Moreover, distance metrics applied to full-dimensional
transformer-based hidden representations can be overly influenced by individual di-
mensions (Timkey and Schijndel, 2021). Since distance measurement is important for
clustering, experiments are also conducted with lower dimensional representations.
Specifically, the latent representations for the data split are obtained in the following
three ways:

1. The latent representations from the last hidden layer before the classification layer of
the language model are extracted. This yields a representation for each input word,
including the additional class token. Only the class token representation is kept.

2. The latent representations are obtained as in 1. and are then embedded into lower-
dimensional spaces. The non-linear dimensionality reduction algorithm UMAP
(McInnes, Healy, and Melville, 2020) is used as it presents no computational
restrictions on the dimension of the embedding space and McInnes, Healy, and
Melville (2020) argue that it preserves the global structure of the data better than other
popular dimensionality reduction algorithms. UMAP has also been used in other
recent NLP literature for this purpose (Grootendorst, 2022). The UMAP algorithm
can be roughly described by two steps: A graph representation of the data is computed
and then a lower dimensional representation is obtained by finding a close topological
representation to the original one, optimised with a cross-entropy loss.
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3. After the last hidden layer, and before the classification layer, an additional bottleneck
is added to the model. The bottleneck consists of a linear layer that compresses the
latent representations into a smaller dimension. As in 1., only the representation for
the class token is extracted. This dimensionality reduction approach is more in line
with the goal of this work, i.e., using the hidden representations of the model as
task-specific features. In contrast, UMAP is task-agnostic.

In the first case, where the full representations are extracted, the latent representations
have 𝑑 = 768 dimensions for a standard BERT model (Devlin et al., 2019). For the second
and third cases, this work experiments with three different dimensions, 𝑑 = 10, 𝑑 = 50 and
𝑑 = 200. The following naming convention is used for splits: [model]-[dimensionality
reduction method]-[dimension]. For example, BERT-bottleneck-50 refers to splitting
based on the 50-dimensional bottleneck representations of a BERT model. Splits without
dimensionality reduction are referred to as [model]-full-dimensional.

3.2.2 Clustering and Splitting the Data

The previous section presented Step 1 of the pipeline – obtaining latent representations.
This section presents Step 2 – clustering the data based on the latent representations and
assigning the clusters to the train and test sets.

Each representation from Step 1 gives the position of an input example in the latent
embedding space. The examples are clustered in this space using the k-means algorithm
(Lloyd, 1982). K-means is chosen due to its efficiency and simplicity, and its use in
previous work on clustering language model embeddings (Sia, Dalmia, and Mielke,
2020). Since k-means is not a deterministic algorithm (the initial cluster centres are
chosen randomly), results are reported for three different random seeds. Hyperparameters
of the k-means clustering can be found in Table A.3

After clustering, each cluster is assigned to either the train or the test set. In order
to obtain a data split that is suitable for evaluating generalisation on the given task,
two constraints are important when assigning the clusters: 1) The test data has a fixed
size: This work chooses the size of the test set to be 10% of the data. 2) The train and
test set need to have equal class distributions: Class imbalance usually leads to lower
performance for the minority class and using equal class distributions in the train and test
sets excludes class imbalance as a confounding factor when examining the performance
of the novel data splits. A partition of the dataset that fulfils these constraints will be
referred to as target in this work.
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Reaching a target test set is not straightforward when assigning clusters to the train
and test sets: Clusters might be too big for the test set or contain only examples of one
class. Therefore, two different algorithms are designed to decide how to split the clusters
to reach a target test set. The first approach aims to assign whole clusters to the train and
test sets, dividing up as few clusters as possible. This approach will be referred to as
subset-sum-split. The second approach, referred to as closest-split, aims to put as much
distance as possible between the train and test set examples. This is done by placing
clusters that are spatially close into the same set. Note that both algorithms lead to an
under-representation of parts of the latent space in the model’s training set, but while
the subset-sum-split achieves this locally, the closest-split achieves this globally. The
algorithms are explained in detail below.

3.2.2.1 Algorithm 1: Subset-Sum-Split

The aim of the subset-sum-split is to assign whole clusters to the train and test sets and,
if possible, not to divide a cluster between the two. When a cluster is divided between
the train and test sets, the model can learn how to deal with the cluster more easily.

The constraints on the class and test ratios explained above, and the additional
constraint of keeping whole clusters together can be described by the Subset Sum
Problem (Kellerer, Pferschy, and Pisinger, 2004). The standard Subset Sum Problem is
to decide whether a subset of a list of natural numbers exists that sums up to a given
target value. This problem is NP-hard but can be solved with dynamic programming in
pseudo-polynomial time. In this setting, the Subset Sum Problem can be modified to
a multidimensional Subset Sum Problem: The multidimensional target consists of the
number of desired test examples for each class in the dataset, for example, the target
(25,75) means that the test set should contain 25 hate and 75 noHate examples. The
task is then to select a subset of the clusters, such that the number of examples for each
class sums up to the desired target. To improve the chances of reaching the desired
target, the Subset Sum Problem is solved for 𝑘 = 3 to 𝑘 = 50 clusters and the solution
closest to the desired target using the smallest 𝑘 is taken as the test set. If the closest
solution does not match the exact target sum, examples from another cluster are used
to complete the test set. The algorithm is summarised in Algorithm 1. Note that the
clusters in the test set do not necessarily lie close to each other in space, as this is not a
constraint for this algorithm .
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Algorithm 1 Subset-Sum-Split
1: Input: 𝑛 latent representations Set 𝑋 = {𝑥𝑖}𝑛𝑖=1

2: target sum← Tuple (𝑛 ·hate ratio · test ratio, 𝑛 ·noHate ratio · test ratio)
3: split shortlist← Set
4: for 𝑐 = 2 to Maximum Number of Clusters do
5: clusters← List kmeans(𝑋 , 𝑐)
6: class frequencies← List get class frequencies(clusters) ⊲ List of tuples
7: subset sum← Tuple find closest subset sum(class frequencies, target sum)
8: test clusters← List get clusters(subset sum, clusters)
9: difference← Int sum(target sum - subset sum) ⊲ Outer sum over the tuple

10: split shortlist← Set split shortlist ∪ {(𝑐, difference, test clusters) }
11: end for
12: final test clusters← List get best test clusters(split shortlist)

⊲ Best means least clusters with the lowest difference to target sum
13: test examples← Set get examples(final test clusters, 𝑋)
14: while class frequencies(test clusters) ≤ target sum do ⊲ No exact solution
15: test examples← Set test examples ∪ { example from another cluster}
16: end while
17: train examples← Set𝑋 \ test examples
18: return train examples, test examples

3.2.2.2 Algorithm 2: Closest-Split

In contrast to the subset-sum-split, the closest-split aims to put as much distance as
possible between the train set clusters and the test set clusters. This leads to an even
bigger under-representation of parts of the latent space in the training set.

Once the clusters have been determined, their centroids are calculated. The cluster
that lies farthest away from all the other clusters is identified and added to the test
set. Cosine similarity between cluster centroids is used as the distance measure. If the
size of the farthest cluster exceeds the target test set size, the next farthest cluster is
taken instead. Then, successively, the nearest cluster to any of the clusters already in
the test set is added as long as the size of the test set does not exceed the target size.
In essence, this is nearest neighbour clustering with the cluster centroids. When this
nearest-neighbour clustering is finished, individual examples that are closest to one
of the test set centroids are added to the test set until the target size is reached. As
with subset-sum-clustering, the algorithm is performed for 𝑘 = 3 to 𝑘 = 50 clusters, and
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Algorithm 2 Closest-Split
1: Input: 𝑛 latent representations Set 𝑋 = {𝑥𝑖}𝑛𝑖=1

2: target sum← Tuple (𝑛 ·hate ratio · test ratio, 𝑛 ·noHate ratio · test ratio)
3: split shortlist← Set
4: for 𝑐 = 2 to Maximum Number of Clusters do
5: clusters, centres← List, List kmeans(X, c)
6: class frequencies← List get class frequencies(clusters) ⊲ List of tuples
7: meta centre← Tuple mean(centres)
8: dist to meta centre← List cosine sim(centre, meta centre) for all centres
9: farthest cluster← Cluster argmaxcluster dist to meta centre

10: while class frequencies(farthest cluster) > target sum do
11: candidate← Clusterget next farthest cluster(dist to meta centre)
12: end while
13: test clusters← Set
14: while class frequencies(test clusters∪ {candidate}) ≤ target sum do
15: test clusters← Set test clusters∪ {candidate}
16: clusters← Set clusters \ {candidate}
17: candidate← Clusterget closest cluster(clusters, test clusters)
18: end while
19: split shortlist← Set split shortlist ∪ test clusters
20: end for
21: final test clusters← Setget best test clusters(split shortlist)

⊲ Best means least clusters with the lowest difference to target sum
22: test examples← Set get examples(final test clusters, 𝑋)
23: while class frequencies(test clusters) ≤ target sum do ⊲ No exact solution
24: test examples← Set test examples ∪ { closest example from correct class}

⊲ distance = cosine sim(· ,mean(test examples))
25: end while
26: train examples← Set𝑋 \ test examples
27: return train examples, test examples

the data split with the fewest individual examples additionally added is chosen. The
algorithm is illustrated in Algorithm 2.

In contrast to the subset-sum-split, the closest-split has a polynomial (quadratic)
runtime and is therefore significantly faster.
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3.2.3 Models Used to Create and Evaluate the Data Splits

This work uses transformer language models (Vaswani et al., 2017; Devlin et al.,
2019) to obtain hidden representations and to test the new train-test split. In general,
transformers are fully-connected neural networks that have been enhanced with an
attention mechanism (Vaswani et al., 2017). For classification tasks, encoder-only models
are used. In encoder-only transformers, the attention mechanism is self-attention, which,
roughly speaking, enhances the representation of each input word with information
about its context. Transformers are pretrained in an unsupervised manner and are then
finetuned in a supervised manner on a specific task. Specifically, this work uses BERT
models (Devlin et al., 2019). BERT models are bidirectional encoders that are pretrained
on two tasks, masked language modelling (MLM) and next sentence prediction (NSP).
They obtained state-of-the-art performance on a variety of tasks (Devlin et al., 2019),
and even though they are now outperformed by other models, they are still widely used
and analysed. The following four variants are used in this work:

• Bert-Base(-Cased) is the smaller of the two standard BERT models as proposed in
Devlin et al. (2019). It was pretrained on the BooksCorpus (Zhu et al., 2015) and
English Wikipedia.

• Bert-Medium (Turc et al., 2019; Bhargava, Drozd, and Rogers, 2021) is a more
compact BERT-model that has less than half as many parameters as BERT without a
big performance drop.

• HateBert (Caselli et al., 2021) is a Bert-Base-Uncased model that was further
pretrained on abusive Reddit data using the MLM objective. As a result, it performs
slightly better on three hate speech datasets (Basile et al., 2019; Caselli et al., 2020;
Zampieri et al., 2020) than a normal BERT model.

• RoBERTa (Liu et al., 2019) has a similar architecture to BERT, trained with bigger
batches and more than ten times as much data. Moreover, the pretraining tasks are
slightly modified: Masking is performed dynamically; different words are masked
every time an input sequence is fed into the model. The NSP objective is removed.

A detailed description of the models’ sizes and numbers of parameters can be found
in Table A.1 in Appendix A. The hyperparameters used for finetuning are listed in
Table A.2. Generally, the hyperparameters were adopted from the HateBert finetuned
models (Caselli et al., 2021), but due to computational restrictions, the models had to
be trained with reduced batch sizes. To compensate for this, models were trained with
more epochs with the option of early stopping.
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3.3 Experimental Setup

This section presents the experiments used to develop and evaluate the data-splitting
method proposed in Section 3.2. The experiments are divided into three phases: First,
experiments that serve as baselines for further experiments and allow comparison with
the language model results from the literature on the standard data split; second, several
different dataset splitting methods are developed and tested on the development dataset
(presented in Section 3.1.1). Third, the method that works best is then applied to a new,
external test dataset (presented in Section 3.1.2) and evaluated to ensure that the method
does not only work for the development dataset.

3.3.1 Baselines

The first experiments obtain a baseline. For the test dataset (Mathew et al., 2020), the
models are trained and evaluated on the standard split as proposed for the dataset. Since
no standard split is given on the development dataset (Qian et al., 2019), a random split
is used to compare the performance of the models in this work to the literature so as
to ensure that the models act as expected on the standard (or random) split. Another
random baseline is obtained with 90% of the data (10% are set aside as independent test
data) in order to compare the new splits against a fair random baseline since one would
expect a small deterioration of performance when training the model with fewer data.

3.3.2 Development Dataset - Experiments

The experiments on the development dataset include an extensive hyperparameter search
and testing of design choices to determine the best dataset-splitting method, i.e. the
method that produces the most challenging data split for evaluating generalisation.

Specifically, the data-splitting framework (as introduced in Section 3.2) comes with
several different choices for each component of the algorithm:

• Obtaining the hidden representations: Hidden representations are obtained after
finetuning the language models on the dataset. Four different numbers of hidden
dimensions are considered: 10, 50, 200 and the full set of dimensions as internally
used by the model. The dimensionality reduction is either performed by UMAP or
achieved through the addition of a new bottleneck layer before finetuning the model.

• Assigning clusters to the train or test set: Both proposed cluster assignment
algorithms (subset-sum-split and closest-split) are tested.
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For each of the above (14) combinations, four different language models (presented
in Section 3.2.3) are used to extract hidden representations, which are in turn clustered
with three different cluster seeds. When finetuning language models on the new data
splits, every model is run with three different initialisations for the classification head.

The splitting approach so far has relied on task-specific finetuned representation.
To analyse whether task-specific representations are needed to create challenging data
splits for the task, the dataset is also split based on hidden representations obtained
from the pretrained models. Pretrained language model embeddings capture general,
task-agnostic information about the inputs. Therefore, the experiments described above
are repeated with the pretrained hidden representations. Note that a bottleneck cannot
be used for dimensionality reduction here, as it would require further (pre-)training.

3.3.3 Test Dataset - Experiments

Having conducted the experiments on the development dataset, the design choices for the
splitting method are narrowed down for the test dataset, by keeping the most successful
parameters: only full- and 50-dimensional representations are considered further. Finally,
two additional sets of experiments are conducted using only the best-performing
combination – bottleneck-50 closest-split:

• Independent Test Set Performance: Decreased model performance on the new data
split could either mean that the new test set is particularly challenging or that the new
train set is no longer informative enough to learn the task. To rule out the latter case,
the finetuned models are tested on the independent test data that was set aside earlier.

• Cross-Model Performance: Obtaining a dataset split for individual models is costly.
Therefore it is also examined, whether a split obtained by the hidden representations
of a specific model is also challenging for other language models.

As for the development dataset, all experiments are conducted with four different
language models and three different classification head initialisations.

3.3.4 Evaluation Metrics

Accuracy, hate F1-score (macro F1-score for the test dataset) and Roc Auc score are
reported in all of the experiments. This is in line with the associated dataset papers
(Qian et al., 2019; Mathew et al., 2020). Finally, the accuracy on the validation set is
recorded to assess the model’s ability to generalise on part of the train set.
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Results

This section presents the experimental results of this work. The goal of all the experiments
is to find a dataset split that is more challenging than a random data split to test the model
for robust generalisation. Different splitting methods are explored on a development
dataset (Section 4.1) and the most promising methods are then also evaluated on a test
dataset (Section 4.2).

4.1 Results for the Development Dataset

The development dataset (Qian et al., 2019) is a hate speech dataset that consists of two
classes, hate and noHate.

4.1.1 Baseline Results Using Random Splits

A series of baseline experiments are conducted to establish that the models used in this
work perform as expected based on the relevant literature. Qian et al. (2019) do not
present a standard data split when introducing their dataset. Instead, they report results
on a random split for an SVM model and an RNN model (Cho et al., 2014). To check
the performance of the models in this work, the data was split with three different seeds
and the average performance on these splits is reported. Note that in addition to these
baselines obtained using the whole dataset, baselines are also obtained using only 90%
of the data. This is done to provide a more comparable baseline for the proposed split
methods, which also split 90% of the data (as introduced in Section 3.2.1). The SVM
and RNN of Qian et al. (2019) reach F1 scores of 75.5 and 77.5 respectively on the
dataset. Unsurprisingly, the transformer language models BERT (Devlin et al., 2019),

20
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model valid acc. test acc. f1 roc auc

SVM (Qian et al., 2019) – – 75.7 81.1
RNN (Qian et al., 2019) – – 77.5 79.4

BERT-base (100%) 94.6 ± 0.21 91.55 ± 0.13 82.24 ± 0.34 94.32 ± 0.27
BERT-base (90%) 91.69 ± 0.07 91.25 ± 0.11 81.96 ± 0.5 94.35 ± 0.18
BERT-medium (100%) 94.3 ± 0.23 91.63 ± 0.2 82.27 ± 0.45 94.35 ± 0.17
BERT-medium (90%) 91.84 ± 0.07 91.2 ± 0.15 81.58 ± 0.66 94.45 ± 0.16
HateBert (100%) 94.12 ± 0.06 91.87 ± 0.16 82.72 ± 0.38 95.06 ± 0.07
HateBert (90%) 92.02 ± 0.07 91.51 ± 0.13 82.34 ± 0.59 95.14 ± 0.15
RoBERTa (100%) 94.4 ± 0.12 91.67 ± 0.2 82.5 ± 0.49 94.63 ± 0.15
RoBERTa (90%) 91.8 ± 0.09 91.37 ± 0.16 82.15 ± 0.61 94.32 ± 0.21

Table 4.1: Results for the development dataset on random splits using 100% and
90% of the data. Random splits are generated using three different seeds and models
are trained with three initialisation seeds, mean and standard errors are reported.

BERT-Medium (Turc et al., 2019), HateBert (Caselli et al., 2021) and RoBERTa (Liu
et al., 2019) perform significantly better with F1 scores of around 82 and roc auc scores
also up to 14 points higher than the SVM and RNN. Perhaps more surprising is that
HateBert only marginally outperforms BERT-base, even though it has been especially
pretrained for hate speech detection. Training the model with only 90% of the data leads
to a small decrease of around 0.4 points.

4.1.2 Subset-Sum-Splits are More Challenging

The subset-sum-split (introduced in Section 3.2.2.1) puts clusters based on hidden
representations in either the train or the test set. The hypothesis is that an under-
representation of parts of the embedding space leads to a challenging data split to test
generalisation. Indeed, the empirical results show significant performance drops when
training language models on this split. The performance differences compared to using
a random split are shown in Fig. 4.1.

On most of the subset-sum-splits the performance drops to an accuracy between
75% and 85% in comparison to the random split baseline of 91%. However, some data
splits do not seem to be more challenging than a random split; with one even showing a
performance increase to 95% accuracy (RoBERTa-umap-10 split).
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Figure 4.1: Performance of language models trained on the subset-sum-split of the
development dataset. Random split performance, indicated by the solid horizontal
lines, is used as a baseline. The error bars show the standard error between cluster
seeds.

In terms of F1 scores for the hate class, the performance drops drastically for
most of the splits. The models opt for the hate class very rarely, leading to lower
hate recall rates and decreased overall performance. Some data splits, for example
the HateBert-full-dimensional split, even lead to a performance that is on par with
a random guessing baseline. Splits obtained with lower dimensional representations
(lighter colours in Fig. 4.1) generally lead to greater decreases in performance. Moreover,
obtaining the dimensionality reduction with the help of UMAP seems to help further
decrease performance. On the other hand, decreasing the dimensionality of the hidden
representations with UMAP also leads to higher variance between cluster seeds, as the
error bars indicate.

The language models all seem to behave similarly on the harder test datasets, with
RoBERTa models reacting a little more robustly than the other models.

4.1.3 Closest-Splits are More Challenging than Subset-Sum-Splits

The closest-split aims to put even more distance between the train and test sets by sorting
the clusters globally. In this way, the split under-represents one large area of the latent
space in the training set. The underlying hypothesis is that this leads to even greater
and more consistent performance drops. And indeed, this is seen in the results. The
decreases in performance compared to a random split are depicted in Fig. 4.2.
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Figure 4.2: Performance of language models trained on the closest-split of the
development dataset. Random split performance, indicated by the solid horizontal
lines, is used as a baseline. The error bars show the standard error between cluster
seeds.

For most of the closest-splits, performance drops from the random split accuracy of
91% to an accuracy between 65% to 75%. This might not seem too low, however, since
the dataset is imbalanced, predicting only the noHate class already leads to an accuracy
of 76.5% (dotted line in the plot). Looking at the F1 scores, it seems that this is indeed
what happens. The F1 scores are mostly between 0 and 25, indicating a large discrepancy
between the performance on the different classes. In contrast to the subset-sum-split,
the closest-split leads to a consistent decrease across all models and all latent space
representations, with not a single split leading to increased scores. Moreover, there is
also less variance between cluster seeds, with the exception of the data splits obtained
from the UMAP-reduced latent representations with 10 and 50 dimensions.

4.1.4 Task-Specific Embeddings are Crucial for the Data Split

The previous two sections have shown that splitting the data in a model’s internal
embedding space leads to decreased test set performance. However, it is not clear,
whether task-specific embeddings are needed to create challenging data splits for the
task, or whether using more general pretrained embeddings would lead to similar drops
in performance. Pretrained embeddings capture information about language in general,
and the language model that produces these pretrained embeddings has not been exposed
to the task. If model performance drops significantly less when splitting based on the
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pretrained embeddings, then task-specific (finetuned) embeddings are needed to produce
more challenging data splits.

In fact, for the (pretrained) closest-split, the models show almost no decrease in
model performance. When the full-dimensional data split is used, BERT-base and
BERT-medium show a decrease in accuracy of 7%, while HateBert and RoBERTa do
not show a decrease. When using UMAP dimensionality reduction, none of the models
shows a performance decrease at all. For the (pretrained) subset-sum-split, models show
either no or only a really small decrease in performance (−3% accuracy). This indicates
that task-specific features are crucial for creating challenging splits with the proposed
data-splitting methods.

Detailed results can be found in Table B.2 and Table B.1 in Appendix B.

4.2 Results for the Test Dataset

Having tested different splitting methods on the development dataset, the question arises
whether these findings are specific to the development dataset or perhaps even specific
to binary classification. The results in this section reveal that the same tendencies can be
replicated on another dataset. The test dataset from (Mathew et al., 2020), which includes
three classes (hate, offensive, normal), is examined. In the previous section, experiments
were conducted with a total of 14 splits. Based on those results, the following six splits
are selected for the test set: the closest-split and the subset-sum-split for each of umap-50,
bottleneck-50 and full-dimensional.

4.2.1 Baseline Results Using Random Splits

The test dataset (Mathew et al., 2020) comes with a standard data split and a BERT-base
baseline. Therefore, this work also evaluates the four language models that are used
for the experiments on this standard split. As before, a random split baseline on 90%
of the data is also calculated for comparison. The baselines are presented in Table 4.2.
Mathew et al. (2020) report a test accuracy of 69% for a BERT-base-uncased model. The
language models in this work perform similarly: the BERT-base-cased model is 0.6%
worse than reported, and HateBert and RoBERTa perform at around 68%. However,
the smaller Bert-Medium model only reaches 64.6% accuracy. Taking into account a
smaller batch size during training due to computational restrictions and the standard
error on the results, the baselines on the standard split are reasonable in comparison to
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split model valid acc test acc f1 roc auc

stand. BERT-base * – 69.0 67.4 84.3

stand.

BERT-base 67.45 ± 0.36 68.38 ± 0.35 66.06 ± 0.44 84.04 ± 0.19
BERT-med. 63.93 ± 1.2 64.58 ± 0.99 62.32 ± 1.45 81.79 ± 0.96
HateBert 68.12 ± 0.16 68.0 ± 0.37 65.97 ± 0.36 84.06 ± 0.23
RoBERTa 67.32 ± 0.3 67.83 ± 0.42 65.98 ± 0.26 84.03 ± 0.27

rand.

BERT-base 67.66 ± 0.31 68.25 ± 0.28 66.0 ± 0.36 83.6 ± 0.14
BERT-med. 62.46 ± 0.49 62.85 ± 0.42 60.18 ± 0.42 79.98 ± 0.34
HateBert 67.91 ± 0.32 68.51 ± 0.28 66.25 ± 0.35 84.46 ± 0.15
RoBERTa 66.45 ± 0.51 66.4 ± 0.56 64.1 ± 0.9 82.19 ± 0.61

Table 4.2: Results for the test dataset on the standard (stand.) split and on random
(rand.) splits using 90% of the data. Random splits are generated using three different
seeds and models are trained with three initialisation seeds, mean and standard
errors are reported. Results marked with * are taken from Mathew et al. (2020).

the reported baseline. Results on the random split (averaged over three different random
seeds) are slightly lower in comparison to the standard split, which is not surprising
given that the random split uses only 90% of the data.

4.2.2 The Data Split is also Effective on the Test Dataset

The results for the subset-sum-split and closest-split on the test dataset show the same
trends as on the development dataset, supporting the hypothesis that the splitting method
works independently of the dataset. As before, the closest-split leads to greater and
more consistent decreases in performance, also with less variance across random cluster
seeds. The results are shown in Fig. 4.3.

For the subset-sum-split (Fig. 4.3a), both the accuracy and the F1 scores of the tested
language models drop around 15 points in comparison to training on a random split. In
contrast to the development set, there is no major difference between F1 and accuracy
scores. This is most likely due to the fact that the three classes in the test dataset are
rather balanced. Detailed results for the subset-sum-split can be found in Table B.3 in
Appendix B.
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Figure 4.3: Performance of language models trained on the subset-sum-split and
closest-split of the test dataset. Random split performance, indicated by the solid
horizontal lines, is used as a baseline. The error bars show the standard error between
cluster seeds.

Training models on the closest-split leads to more drastic performance drops
(Fig. 4.3b). The accuracies of the language models drop to around 35%, with F1 scores
dropping even lower. The most affected by the data split is the BERT-medium model
with an accuracy of 27.74 and an F1 score of 21.56 for the bottleneck-50 split.

Generally, the splits that use a bottleneck to reduce the dimension of the latent
representations (blue in Fig. 4.3) lead to the most challenging data splits. Therefore,
further experiments with independent test data and cross model splits are conducted
with the closest-splits obtained by this setting.



Chapter 4. Results 27

model split valid acc test acc f1 roc auc

BERT-base
random 67.66 ± 0.31 68.25 ± 0.28 66.0 ± 0.36 83.6 ± 0.14
closest 72.44 ± 0.75 29.73 ± 0.41 27.14 ± 0.17 46.53 ± 0.47
ind. test – 67.05 ± 1.05 64.83 ± 1.32 82.61 ± 0.89

BERT-med.
random 62.46 ± 0.49 62.85 ± 0.42 60.18 ± 0.42 79.98 ± 0.34
closest 68.27 ± 0.32 27.77 ± 0.56 21.56 ± 0.34 45.79 ± 0.21
ind. test – 63.2 ± 0.54 60.77 ± 0.81 80.22 ± 0.32

HateBert
random 67.91 ± 0.32 68.51 ± 0.28 66.25 ± 0.35 84.46 ± 0.15
closest 72.1 ± 0.33 30.19 ± 0.61 21.66 ± 0.49 49.8 ± 1.0
ind. test – 67.05 ± 1.05 64.83 ± 1.32 82.61 ± 0.89

RoBERTa
random 66.45 ± 0.51 66.4 ± 0.56 64.1 ± 0.9 82.19 ± 0.61
closest 70.86 ± 0.33 34.22 ± 1.62 29.5 ± 1.29 51.48 ± 3.94
ind. test – 67.24 ± 0.28 65.4 ± 0.38 82.95 ± 0.25

Table 4.3: Results on the test dataset. The models are trained on the closest-split
train data and tested on the closest-split test data (closest) and on an independent
test set (ind. test). These results are compared to models that are trained and tested
on a random split (random). The mean and standard error are calculated across
different model initialisations and cluster seeds.

4.2.3 Closest-Split Models Perform Well on Independent Data

The splitting methods proposed in this work lead to decreased performance, showing
that the language models are not able to generalise as robustly as on random data splits.
The question remains whether the test set obtained by the new splitting methods is harder
or whether the new splitting method leads to very simple or perhaps even incomplete
training sets, thereby preventing the models from learning the task. The following results
strengthen the hypothesis that the test set is indeed harder.

One measure to examine whether the models learn something during training is to
examine the performance on the validation set (a part of the train set that is used to
estimate a model’s ability to generalise during training). The validation accuracy for the
models trained on closest-split and subset-split is for most splits around 5 points higher
than the accuracy on the validation set of the random data split. This shows that the
models are indeed able to learn during training. Moreover, the even increased validation



Chapter 4. Results 28

score hints towards the assumption that the test set is indeed more difficult and using the
difficult examples only for testing makes the train and validation sets easier. Validation
accuracies for models trained on the closest-split with a bottleneck of dimension 50 are
reported in Table 4.3, for all other splits the reader is referred to Table B.3 and Table B.4
in Appendix B.

A second measure to examine whether the model failed to learn the task is testing it
on the independent test data. Specifically, the models that were trained on the closest-split
are tested on data that was not used to create the data split. This data was set aside earlier
and has never been seen by a model during training. Results for these experiments are
reported in Table 4.3. All models that have been trained on the closest-split achieve
similar accuracy on the independent test data as the models trained and tested on random
data, with BERT and HateBERT achieving a slightly lower performance than on the
random split, and BERT-medium and RoBERTA a slightly higher performance. This
also supports the hypothesis that the data-splitting method does not split the data in a
way that the model is not able to learn from the training data. On the contrary, the model
trained on the closest-split data performs just as well on the independent test data.

4.2.4 Closest-Splits are Challenging for Other Models

Having shown that closest-splits indeed find a harder test set that leads to decreased
performance on the task without hindering the model in learning the task, this section
addresses the question of whether the method only works as a model-specific approach,
or whether a split that uses representations from one model is also challenging for
other models. Since the ultimate goal of the new data split is to improve the evaluation
of generalisation, data splits that are challenging for more than one model are more
practical because 1) the data-splitting pipeline only needs to be carried out with one
model and 2) multiple models can be assessed and compared with the same split.

The results of the cross-model evaluations can be seen in Table 4.4. They show
that data splits obtained on the hidden representations of one model are indeed also
challenging for other models, although not as challenging as the personalised data
splits. For example, a closest-split with BERT-base hidden representations leads to a
performance drop of 38.5 accuracy points for the same BERT-base model (in comparison
to the random split performance of 68.25%). But accuracy still drops by 30%, 34.7% and
30.7% respectively when BERT-medium, HateBert and RoBERTa models are trained
on this data split. The same trend can be observed for the F1- and roc auc scores.
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model split valid acc test acc f1 roc auc

BERT-
base

random 67.66 ± 0.31 68.25 ± 0.28 66.0 ± 0.36 83.6 ± 0.14
BERT-b. 72.44 ± 0.75 29.73 ± 0.41 27.14 ± 0.17 46.53 ± 0.47
BERT-m. 72.09 ± 0.14 38.57 ± 0.33 36.59 ± 0.54 58.42 ± 0.25
HateB. 72.12 ± 0.32 33.51 ± 0.32 27.73 ± 0.64 52.34 ± 0.1
RoB. 70.94 ± 0.2 37.52 ± 0.21 31.07 ± 0.34 59.17 ± 0.74

BERT-
medium

random 62.46 ± 0.49 62.85 ± 0.42 60.18 ± 0.42 79.98 ± 0.34
BERT-m. 68.27 ± 0.32 27.77 ± 0.56 21.56 ± 0.34 45.79 ± 0.21
BERT-b. 66.53 ± 0.22 30.56 ± 0.38 28.19 ± 0.38 48.8 ± 0.16
HateB. 66.55 ± 0.8 31.75 ± 0.54 26.3 ± 0.26 50.43 ± 0.11
RoB. 66.15 ± 0.64 35.13 ± 0.32 29.73 ± 0.58 57.66 ± 0.08

Hate-
Bert

random 67.91 ± 0.32 68.51 ± 0.28 66.25 ± 0.35 84.46 ± 0.15
HateB. 72.1 ± 0.33 30.19 ± 0.61 21.66 ± 0.49 49.8 ± 1.0
BERT-b. 71.27 ± 0.34 35.24 ± 0.14 32.08 ± 0.26 53.11 ± 0.26
BERT-m. 71.52 ± 0.35 40.54 ± 0.63 38.53 ± 0.88 59.0 ± 0.59
RoB. 70.23 ± 0.49 38.75 ± 0.32 32.41 ± 0.55 60.83 ± 0.12

Ro-
BERTa

random 66.45 ± 0.51 66.4 ± 0.56 64.1 ± 0.9 82.19 ± 0.61
RoB. 70.86 ± 0.33 34.22 ± 1.62 29.5 ± 1.29 51.48 ± 3.94
BERT-b. 69.77 ± 0.75 33.16 ± 0.52 31.04 ± 0.62 48.75 ± 0.4
BERT-m. 70.15 ± 1.0 38.21 ± 0.64 36.96 ± 0.33 57.3 ± 1.49
HateB. 73.04 ± 0.18 34.82 ± 0.06 30.02 ± 0.3 51.48 ± 0.27

Table 4.4: Results for the test dataset on a bottleneck-50 closest-split. Comparison of
models trained on the data split obtained with their respective hidden representations
(in bold) and on data splits obtained from hidden representations of other models.
The mean and standard error are calculated across different model initialisations and
cluster seeds.

Generally, the BERT-medium split seems to be the hardest with an average accuracy
of 31.3% across the four models, followed by BERT-base (34.83%), RoBERTa (35.10%)
and HateBert (36.18%). But even the least challenging split by HateBert leads to a
significant performance drop across all models, making closest-split an interesting
approach for evaluating the generalisation ability of models.
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Analysis

The performance of models deteriorates heavily when the closest-split is used to
split the data, making the closest-split an interesting method for evaluating o.o.d.
generalisation. This section analyses the splits that it generates; first by looking at
the hidden representations, and then at the properties of the resulting train and test
sets. Since the closest-split with hidden representations obtained with a bottleneck of
dimension 𝑑 = 50 leads to the biggest performance decreases, this setting is used in the
analysis below.

5.1 Analysis of the Latent Representations

The closest-split uses hidden representations of a language model and puts clusters
of these into either the train or the test set. This is done by placing clusters that are
spatially close into the same set. While the clustering is conducted on high-dimensional
representations, an illustration reduced to two dimensions can give an intuition of
the data split. Dimensionality reduction to two dimensions is performed by UMAP
(McInnes, Healy, and Melville, 2020).

Fig. 5.1 shows such an illustration of the hidden representations of a BERT model,
trained on the development dataset on the binary classification task. The hidden
representations of the model seem to define a decision boundary between the dark hate
class on the left and the lighter noHate class on the right. Only at the top of the noHate
cluster there are also some hate examples. While in a random split, the test examples
are present in all regions of the hidden representations, the closest-split now assigns
examples from exactly this mixed region to the test set (the closest-split uses clusters
that are the farthest away in space from the centre of the hidden representations). While

30
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(a) Random Split (b) Closest-split

Figure 5.1: BERT hidden representations for binary classification (development data)

(a) Random Split (b) Closest-Split

Figure 5.2: RoBERTa hidden representations for tertiary classification (test data)

the decision boundary appears to be quite clear on the train set, this is not the case in the
test set anymore. So this might be a reason, why models struggle to predict the correct
class in the test set (with an F1 score of 14.16 for the same model) but are confident for
examples in the train and validation sets.

The same phenomenon holds for the test dataset, which poses a three-way classi-
fication task. Fig. 5.2 shows the hidden representations of a RoBERTa model trained
on the test dataset. Again, a decision boundary can be observed, with mostly offensive
examples on the left, normal examples in the middle and hate examples on the right.
The decision boundaries are not as exact as on the development dataset. This is reflected
in the lower performance on random splits: random split accuracy is about 90% on the
development dataset, but only 68% on the test dataset. Based on Fig. 5.2, the closest-split
picks a pocket of (mixed) examples between the normal (dark blue) and hate (dark green)
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(a) RoBERTa closest-split (b) BERT closest-split

Figure 5.3: RoBERTa hidden representations, shown here with two different splits
(RoBERTa closest-split and BERT closest-split). The grey area in the right plot depicts
the data examples that are in the same set as in the RoBERTa split.

regions to be the test set. This is then mirrored in the F1 scores of the different classes.
The test example for the hate class lie closest to the corresponding region and the F1
score is the highest at 47.0. Similarly, for the normal class, the F1 score is relatively
high at 38.28. The offensive class, with test examples far away from its corresponding
region, only has an F1 score of 11.88.

Note, that the plots look similar for the other language models, whose hidden
representations are not presented here.

Do these properties also hold, when training a language model on a split obtained
using another language model? Section 4.2.4 has shown a decreased performance in such
a scenario, although the decrease was not as big as when obtaining the split with the same
model. Fig. 5.3 shows an illustration of the hidden representations of a RoBERTa model,
coloured according to a data split obtained by RoBERTa hidden representations (on the
left) and by BERT hidden representations (on the right). The intersection between both
splits is depicted in grey. The phenomenon described above is visible in both scenarios,
albeit clearly weakened on the right: The test set still contains examples in the same
region, but not only. Examples that are close in space for BERT hidden representations
are not necessarily close in space for the RoBERTa hidden representations, and therefore
some examples of the test set are distributed over the whole space. This reflects in the
results when training the models, the RoBERTa model trained on the RoBERTa split
reaches an F1 score of 29.5, whereas the RoBERTa model trained on the BERT split
reaches a slightly higher F1 score of 31.04.
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BERT 94.06 ± 4.04
Bert-Medium 32.95 ± 0.89 95.22 ± 3.01
HateBert 49.28 ± 2.3 26.23 ± 0.91 93.14 ± 2.37
RoBERTa 32.55 ± 11.12 25.39 ± 12.37 34.81 ± 13.64 17.54 ± 12.4

BERT BERT-Medium HateBert RoBERTa

Table 5.1: Test set overlap between closest-splits based on hidden representations
of different models. Values are the percentage overlap between test set examples;
the mean and standard deviation are taken over multiple cluster seeds. The diagonal
represents the test set overlap for the same model across different cluster seeds.

More concretely, Table 5.1 presents the overlap of test set examples between splits
using the latent representations of different models. The BERT and HateBert test sets
have a high overlap of almost 50%, whereas the other model combinations have a lower
overlap of between 25%−35%. While most models have high within-model overlap
across different cluster seeds, above 90%, the RoBERTa splits do not. This means that
even though the data-splitting procedure can end up with very different test sets, the
performance decrease across splits is consistent (as showed in Section 4.2).

5.2 Analysis of the Properties of the Data Split

Having taken a closer look at the dataset split with respect to the latent spaces of the
internal model representations, this section now analyses the data split with respect to
the actual text inputs. Do the test examples substantially differ from the train examples
in terms of length or vocabulary or some other measure? And if there is a noticeable
difference on the text level, is it the same for both datasets? Section 5.2.1 presents a range
of task-agnostic analysis methods for data splits and Section 5.2.2 contains analysis
methods specifically designed for hate speech. Section 5.2.3 presents the results of the
analysis.

5.2.1 Methodology: Task-Agnostic Analysis

Word Overlap: A straightforward way to compare the train and test sets is to examine
how similar they are in terms of word overlap. If a lot of words appear only in the test set
and the model has not seen them during training, then a model might have difficulties
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classifying respective examples. The overlap is calculated following the word overlap
algorithm in Elangovan, He, and Verspoor (2021). More details on this algorithm can
be found in Appendix C.1.

Rare Word Count: It might be particularly challenging for a model if rare words
appear in the test set as such words might also not have been abundant during pretraining,
let alone during finetuning. To examine, whether more rare words appear in the test set
than in the train set, the number of rare words is extracted, following the definition of
Godbole and Jia (2022). Appendix C.1 gives details about this definition.

Sentence Length: For natural language generation tasks, it is known that longer
sentences are harder for language models (Varis and Bojar, 2021). Therefore, the average
sentence length of the train and test sets will be analysed.

5.2.2 Methodology: Task-Specific Analysis

Apart from the task-agnostic analysis methods above, hate-speech-specific analyses are
also performed. This is particularly important in this work, as the split itself is obtained
by clustering task-specific representations.

Targets of Hate Speech: This method aims to analyse the different targets of hate
speech. For the test dataset (Mathew et al., 2020), these targets are annotated as explained
in Section 3.1. If the model has not been exposed to a specific target group during
training, this might lead to difficulties detecting hate speech against this group in the
test set. To this end, the difference between the target distribution in the train and test
sets is analysed. The Kullback-Leibler Divergence (Kullback and Leibler, 1951, KL
Divergence) is calculated for each target in the dataset and then the average is taken over
all targets, weighted by the occurrence of the target in the dataset. Since there is no
upper bound for the KL Divergence, it is scaled to be between 0 and 1 by the function

𝑓 (𝑥) = 1− 𝑒−𝑥 . (5.1)

Additionally, the number of targets that are under-represented in the train set i.e. have
less than 50% of their occurrences in the train set, is computed. Targets that occur in
less than 3% of the data set are excluded.

For the development dataset (Qian et al., 2019), no such target groups are annotated.
However, it is known which posts belonged to the same conversation. Thus, under the
assumption that a conversation has similar hate targets, the split of conversations between
the train and test sets is analysed. Note, that there are significantly more conversations
in the development dataset than targets in the test dataset.
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Hate Keywords: The development dataset and the test dataset have been created
by filtering posts based on hate keywords by simply string-matching the posts with the
keywords. These keywords can be understood as hate speech categories. Similar to the
targets of hate speech, the KL divergence between the keyword distributions of the train
and test sets is computed. The number of underrepresented keyword categories in the
train set is also calculated.

Hate Speech Overlap: In addition to the annotated targets, the overlap between
words associated with hate speech can be measured. If different words are more important
for the hate label of an example in the test set compared to the the train set, models
might have difficulties with generalisation. To this end, a hate speech score is calculated
as proposed by de Gibert et al. (2018). The hate speech score is based on the Pointwise
Mutual Information (PMI), which calculates the correlation of each word 𝑤 with its
respective class ℎ𝑎𝑡𝑒 or 𝑛𝑜𝐻𝑎𝑡𝑒:

𝐻𝑆(𝑤) = 𝑃𝑀𝐼 (𝑤, ℎ𝑎𝑡𝑒) −𝑃𝑀𝐼 (𝑤,𝑛𝑜𝐻𝑎𝑡𝑒) (5.2)

The overlap between the 1500 words with the highest score in the train and test sets
is then calculated to examine whether different predictive features for the hate class
are used in the train and test sets. For the classification task in the test dataset, which
includes the classes hate, offensive and normal, the hate score and the hate score overlap
between train and test sets are calculated for the hate and offensive classes and then
averaged.

5.2.3 Analysis Results

The results of the analyses described above are presented for the development dataset
(Section 5.2.3.1) and the test set (Section 5.2.3.2). Then, Section 5.2.3.3 aims to give
some insight into the properties of the clusters.

5.2.3.1 Analysis Results for the Splits on the Development Dataset

The results of the task-agnostic and task-specific analyses are presented in Table 5.2. For
the development set, there is a moderate correlation between unigram overlap (Pearson
correlation of 0.36 with 𝑝 < 0.01) and the performance of the models: The higher the
overlap of unigrams between the train and test set, the higher the model performance.
This is not unexpected, although one had actually expected a higher correlation based
on the results of Elangovan, He, and Verspoor (2021). They find that for other text
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Analysis Property Dev. Dataset Test Dataset

task-agnostic
Unigram Overlap 0.36 𝑝 < 0.01 0.68 𝒑 < 0.01
Sentence Length −0.06 𝑝 = 0.58 −0.36 𝑝 = 0.03
Rare Words −0.07 𝑝 = 0.51 −0.36 𝑝 = 0.03

task-specific

Hate Speech Overlap 0.13 𝑝 = 0.25 −0.14 𝑝 = 0.43
Split Conversations 0.12 𝑝 = 0.29 –
# Keywords Under-repr. 0.51 𝒑 < 0.01 0.63 𝒑 < 0.01
KL-Div. Keywords Distr. 0.14 𝑝 = 0.19 0.51 𝒑 < 0.01
# Targets Under-repr. – 0.43 𝑝 = 0.01
KL-Div. Targets Distr. – 0.3 𝑝 = 0.08
KL-Div. Data Source Distr. – 0.69 𝒑 < 0.01

Table 5.2: Pearson correlation between different dataset properties and model per-
formance (F1-score). Important correlations are highlighted in bold. Some analysis
methods are dataset-specific and cannot be computed for both datasets.

classification tasks, the unigram overlap between the train and test sets plays a more
significant role. For the data splits in this work, however, the moderate correlation
suggests that unigram overlap is not the key factor.

Sentence length and rare words do not seem to play a role. No significant correlation
can be observed here. Note that the (insignificant) correlations in Table 5.2 are expected
to be negative because the longer the sentences and the more rare words there are in the
test set, the lower the performance.

The task-specific analysis shows that there is a correlation between the number of
underrepresented keyword categories and the dropped performance (Pearson coefficient
of 0.51 with 𝑝 < 0.01). These keyword categories, each corresponding to a separate
hate keyword as explained above, were used to create the dataset. If some of them are
less present in the train set, it might be hard for the model to make the right predictions
for them in the test set. Based on this correlation, one might expect the overlap of words
with high hate speech scores (i.e. words that are important for the hate class) between
the train and test sets to also be high. However, this is not the case, there is no significant
correlation because the keywords do not correspond to the words with high hate speech
scores. One explanation for this could be that hate keywords that are used for extracting
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posts, are used not only to extract the hate speech posts, but are also used to extract the
whole dataset, so the hate keywords are not necessarily predictive of the hate class.

As explained above, the development dataset consists of different Reddit conver-
sations. Whether these conversations are split between the train and test set is not
significant for the performance of the language models.

5.2.3.2 Analysis Results for the Splits on the Test Dataset

On the test dataset, multiple dataset properties correlate with the test-set performance
when using the proposed data splits. The scores can be seen in Table 5.2. In contrast to
the development dataset, a strong correlation with a coefficient of 0.68, 𝑝 < 0.01 can
be observed for unigram overlap. The other task-agnostic analysis methods (sentence
length and number of rare words) again show no significant correlations.

For the task-specific analysis, there is no correlation between the overlap of words
that are important for the hate (or offensive) class and the test set performance. Given
that there is a significant correlation for word overlap, this is somewhat surprising,
especially because the (insignificant) correlation is even negative. An explanation might
be that the offensive and hate classes include similar words that are predictive of two
different classes. For example, the word bitch is a predictive feature in the hate example
screw the cowgirls nigger bitches and in the offensive example just leave me and my
child alone weird ass bitch.

What seems to be important in the data split, similar to the development dataset, are
the keyword categories that are underrepresented in the train set, giving a correlation of
0.63, 𝑝 < 0.01.

However, another positive, significant correlation exists: The performance decrease
correlates with the distribution shift (measured by the KL divergence) of different data
sources between the train and test set (Pearson coefficient of 0.69 with 𝑝 < 0.001). As
described in Section 3.1.2, the test dataset consists of two data sources, Gab (46%)
and Twitter (54%). Closest-split leads to an imbalance of the two data sources in the
train and test sets, which correlates with decreased performance. For example in the
HateBert-bottleneck-50-closest-split, 75% of the test set consists of Gab examples.
Which data source dominates the test set differs in different closest-splits.
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Set Class Topics

Test
hate nigger, moslem, white, black, jews
offensive nigger, moslem, white, jews, kike
normal moslem, nigger, white, black, people

Train
hate nigger, moslem, white, black, jews
offensive bitch, white, ghetto, woman, faggot
normal white, people, women, raped, violence

Table 5.3: Top 5 topics for different classes in the test dataset. The topics are obtained
from train and test sets of the closest-split with latent representations from HateBert.

5.2.3.3 Properties of the Clusters that Form the Closest-Split

Having looked at the properties of the train and test split, the following paragraphs take
a closer look at the clusters, that form the basis of the proposed splitting approaches.

For closest-split, usually between 10-15 clusters are sufficient to create the split, even
though up to 50 clusters are allowed in the algorithm (for the subset-sum split it is usually
between 20-30). One might expect that when clustering the hidden representations,
the clusters would correspond to one class. This is the case in the binary development
dataset, where one class usually dominates a cluster. For the test dataset, however, often
a similar amount of hate and offensive examples are present in the clusters, though the
number of normal examples again differs.

To get an intuition for the kind of topics that are included in the clusters, topic clusters
are extracted using c-TF-IDF, a modified version of TF-IDF as proposed by Grootendorst
(2022). As an example, Table 5.3 summarises the topics with the highest c-TF-IDF
scores of the clusters in the train and test sets for each class of a HateBert-bottleneck-50
model. Looking at the topics of the clusters in the train and test set, there seems to be a
tendency for offensive and normal classes to have different topics in the train and test
sets, while the hate class has similar ones. A manual analysis of cluster topics for all
cluster splits did not lead to conclusive results. Many of the topics found by c-TF-IDF
seem to coincide with the targets that were annotated, and used for the analysis in the
previous section. No strong correlation between targets and performance was observed
then, which strengthens the result that different targets in the train and test sets are not
the reason for the decreased performance.
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Conclusion

6.1 Conclusion

O.o.d. generalisation is important for language models because the data distribution
a model encounters at deployment time often differs from the data distribution seen
during training. Generalising successfully is especially important for socially-relevant
tasks like hate speech detection.

This work presents a new data-splitting method, designed to test the robustness
of models more rigorously than the often-used random split. Hate speech is used as
the testbed for developing and evaluating the new splitting method. The new data
split, closest-split, is based on models’ internal representations, rather than meta-data
annotations or input text properties. This makes the split task- and dataset-specific,
without relying on costly annotations.

The results in Chapter 4 reveal dramatic drops in test set performance in comparison
to a random split. Closest-split leads to performance drops in a range of different
scenarios in the domain of hate speech detection: for different models and datasets, for
binary and multi-class classification, for a task that models can solve almost perfectly
on a random split and for a task with weaker model performance. Moreover, while each
data split is obtained using the internal representations of a specific model, the splits are
similarly challenging for other models. This means the method can be used to create a
challenging split for use across models.

The analyses in Chapter 5 show that the properties of the train and test sets differ
from dataset to dataset. Since there is no property that clearly correlates with decreased
model performance for both datasets, closest-split cannot be easily replicated based on
these properties, and the latent representations need to be used. This makes closest-split
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an interesting alternative to existing data-splitting approaches, uncovering weaknesses
in models that are otherwise not easily identified.

6.2 Limitations and Future Work

This work uses hate speech detection as the test bed for developing and evaluating a
data-splitting method, but the approach could be applied much more widely to improve
generalisation evaluation for other NLP tasks. Although closest-split is designed to
be task-agnostic, future work should confirm wider applicability. Similarly, the work
has not explored topic-specific datasets. Due to the lower variance across examples,
closest-split might not be as effective for these.

The robustness of the method to different settings seems convincing, producing
challenging splits for different language models, different hidden representation sizes,
between models, etc. However, this work has not explicitly tested the sensitivity of the
method to other hyperparameters. For example, the size of the test set could have an
impact. Since the data splits are based on the internal representations of a model, model
hyperparameters, such as longer training, different regularisation or different scheduling,
could change the hidden representations. This in turn could also lead to different data
splits and different final results.

With regards to the analyses in Chapter 5, although a wide range of data properties
was considered, the possibility that other factors can explain the decreased performance
cannot be ruled out. It is possible that other meta-properties, e.g., the authorship of the
posts, correlate with decreased performance. But further properties are not annotated in
the considered datasets and could therefore not be analysed here.

Future work could investigate whether known measures to improve generalisation
also make models more robust to closest-split. Koufakou et al. (2020), for example,
use features based on a hate lexicon to enhance the embeddings of a BERT model and
achieve better results in cross-domain generalisation. This procedure might help to
classify examples whose keyword categories are under-represented in the closest-split
train set. Another challenging factor in the data split was the shift in data sources between
the train and test sets. Merging different hate speech datasets might address this issue
and improve generalisation (Salminen et al., 2020; Chiril et al., 2022; Bourgeade et al.,
2023). It would be interesting to see whether new insights could be gained into these
generalisation methods using closest-split.
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Arango, Aymé, Pérez, Jorge, and Poblete, Barbara, 2019. Hate speech detection is not
as easy as you may think: a closer look at model validation. Proceedings of the 42nd
international acm sigir conference on research and development in information retrieval
[Online], Sigir’19. Paris, France: Association for Computing Machinery, pp.45–54.
Available from: https://doi.org/10.1145/3331184.3331262.

Arora, Udit, Huang, William, and He, He, 2021. Types of out-of-distribution texts
and how to detect them. Proceedings of the 2021 conference on empirical methods in
natural language processing [Online]. Online and Punta Cana, Dominican Republic:
Association for Computational Linguistics, pp.10687–10701. Available from: https:

//doi.org/10.18653/v1/2021.emnlp-main.835.

Basile, Valerio, Bosco, Cristina, Fersini, Elisabetta, Nozza, Debora, Patti, Viviana, Rangel
Pardo, Francisco Manuel, Rosso, Paolo, and Sanguinetti, Manuela, 2019. SemEval-
2019 task 5: multilingual detection of hate speech against immigrants and women
in Twitter. Proceedings of the 13th international workshop on semantic evaluation
[Online]. Minneapolis, Minnesota, USA: Association for Computational Linguistics,
pp.54–63. Available from: https://doi.org/10.18653/v1/S19-2007.

41

https://doi.org/10.1007/978-3-319-91947-8_6
https://doi.org/10.1145/3331184.3331262
https://doi.org/10.18653/v1/2021.emnlp-main.835
https://doi.org/10.18653/v1/2021.emnlp-main.835
https://doi.org/10.18653/v1/S19-2007


REFERENCES 42

Beyer, Kevin, Goldstein, Jonathan, Ramakrishnan, Raghu, and Shaft, Uri, 1999. When
is “nearest neighbor” meaningful? In: Catriel Beeri and Peter Buneman, eds. Database
theory — icdt’99. Berlin, Heidelberg: Springer Berlin Heidelberg, pp.217–235.

Bhargava, Prajjwal, Drozd, Aleksandr, and Rogers, Anna, 2021. Generalization in nli:
ways (not) to go beyond simple heuristics. arXiv: 2110.01518 [cs.CL].

Bourgeade, Tom, Chiril, Patricia, Benamara, Farah, and Moriceau, Véronique, 2023.
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Appendix A

Experimental Setup - Details

A.1 Language Models

Model Parameter Value

BERT-base-cased

layers 12
hidden size 768
attention heads 12
total parameters 110M

HateBert

layers 12
hidden size 768
attention heads 12
total parameters 110M

BERT-Medium

layers 8
hidden size 512
attention heads 12
total parameters 41.7M

RoBERTa

layers 24
hidden size 1024
attention heads 16
total parameters 355M

Table A.1: Parameters and sizes of language models.

57



Appendix A. Experimental Setup - Details 58

Hyperparameter Value

batch size 4 (biggest possible)
early stopping after 5 epochs
maximum epochs 10 (20 for the larger RoBERTa models)

optimizer AdamW
learning rate 2e-5
adam epsilon 1e-8
scheduling linear schedule with warmup
warm up steps 0

random seeds 42, 55, 83
max. sequence length 512

Table A.2: Hyperparameters for finetuning the language models adopted from Caselli
et al. (2021).

A.2 Clustering

Parameter Value

n clusters 3-50
n initializations with different centroids 10
max. iterations for a run 300
random state 42, 62, 82
algorithm LLoyd

Table A.3: K-Means hyperparameters



Appendix B

Detailed Results

This chapter of the appendix presents some detailed results for the different data splitting
methods.

B.1 Development Dataset

The following results are achieved by models trained on the development dataset (Qian
et al., 2019).

B.1.1 Subset-Sum-Split on Pretrained Embeddings

model subset-split valid acc test acc f1 roc auc

BERT-
base

random 91.69 ± 0.07 91.25 ± 0.11 81.96 ± 0.5 94.35 ± 0.18
full dims 92.18 ± 0.15 89.54 ± 0.15 78.4 ± 0.32 91.45 ± 0.15
umap 10 92.0 ± 0.08 89.93 ± 0.52 78.05 ± 0.97 93.51 ± 0.44
umap 50 92.42 ± 0.23 90.53 ± 0.88 79.69 ± 1.8 93.31 ± 0.79
umap 200 92.07 ± 0.19 90.78 ± 0.84 80.07 ± 1.68 93.98 ± 0.62

Continued on next page
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Table B.1 – continued from previous page

model subset-split valid acc test acc f1 roc auc

Hate-
Bert

random 92.02 ± 0.07 91.51 ± 0.13 82.34 ± 0.59 95.14 ± 0.15
full dims 92.33 ± 0.08 91.04 ± 0.27 81.03 ± 0.54 94.24 ± 0.17
umap 10 91.79 ± 0.15 91.6 ± 0.45 82.39 ± 1.0 94.45 ± 0.5
umap 50 91.89 ± 0.16 92.62 ± 0.44 84.61 ± 0.94 95.56 ± 0.32
umap 200 92.43 ± 0.19 92.42 ± 0.71 83.74 ± 1.65 95.58 ± 0.35

BERT-
medium

random 91.84 ± 0.07 91.2 ± 0.15 81.58 ± 0.66 94.45 ± 0.16
full dims 92.86 ± 0.32 86.66 ± 0.58 72.24 ± 1.13 90.23 ± 0.38
umap 10 92.08 ± 0.2 90.89 ± 0.35 80.48 ± 0.76 94.09 ± 0.33
umap 50 91.82 ± 0.07 89.54 ± 0.4 77.92 ± 0.81 93.12 ± 0.13
umap 200 92.01 ± 0.17 88.64 ± 1.28 75.51 ± 2.64 92.33 ± 1.04

Ro-
BERTa

random 91.8 ± 0.09 91.37 ± 0.16 82.15 ± 0.61 94.32 ± 0.21
full dims 92.36 ± 0.2 90.83 ± 0.27 80.67 ± 0.46 94.02 ± 0.3
umap 10 92.17 ± 0.09 89.65 ± 0.41 78.15 ± 1.06 93.3 ± 0.26
umap 50 92.08 ± 0.18 89.9 ± 0.24 78.13 ± 0.9 93.11 ± 0.22
umap 200 91.42 ± 0.13 90.84 ± 0.85 78.81 ± 2.17 93.37 ± 0.63

Table B.1: Results on the development dataset (Qian et al., 2019) for the subset-sum-
split obtained with pretrained-embeddings. The hidden representations used for this
split are either used with their original dimensionality (full dims), or with decreased
dimensions by UMAP. Note that there is no dimensionality reduction by a bottleneck,
as this would have to be trained before.
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B.1.2 Closest-Split on Pretrained Embeddings

model closest-split valid acc test acc f1 roc auc

BERT-
base

random 91.69 ± 0.07 91.25 ± 0.11 81.96 ± 0.5 94.35 ± 0.18
full dims 92.24 ± 0.12 83.69 ± 0.1 65.41 ± 0.35 86.89 ± 0.2
umap 10 91.09 ± 0.19 93.18 ± 0.15 85.71 ± 0.31 95.36 ± 0.2
umap 50 91.86 ± 0.11 93.82 ± 0.08 86.54 ± 0.17 95.82 ± 0.12
umap 200 91.51 ± 0.1 91.93 ± 0.06 82.31 ± 0.24 94.13 ± 0.23

Hate-
Bert

random 92.02 ± 0.07 91.51 ± 0.13 82.34 ± 0.59 95.14 ± 0.15
full dims 92.33 ± 0.23 90.77 ± 0.21 80.74 ± 0.59 93.92 ± 0.54
umap 10 92.37 ± 0.06 92.01 ± 0.12 82.81 ± 0.3 95.79 ± 0.08
umap 50 92.35 ± 0.37 89.79 ± 0.5 76.85 ± 1.46 93.7 ± 0.05
umap 200 91.77 ± 0.05 90.81 ± 0.1 80.52 ± 0.38 93.44 ± 0.79

BERT-
medium

random 91.84 ± 0.07 91.2 ± 0.15 81.58 ± 0.66 94.45 ± 0.16
full dims 92.79 ± 0.12 80.44 ± 0.66 62.56 ± 0.71 85.79 ± 0.23
umap 10 91.66 ± 0.15 93.32 ± 0.03 85.64 ± 0.1 95.91 ± 0.09
umap 50 91.49 ± 0.11 94.78 ± 0.11 88.74 ± 0.24 96.68 ± 0.13
umap 200 91.5 ± 0.12 93.22 ± 0.43 85.44 ± 0.82 95.32 ± 0.34

Ro-
BERTa

random 91.8 ± 0.09 91.37 ± 0.16 82.15 ± 0.61 94.32 ± 0.21
full dims 92.09 ± 0.1 93.71 ± 0.13 86.73 ± 0.18 95.72 ± 0.11
umap 10 91.72 ± 0.07 84.84 ± 0.17 69.05 ± 0.9 88.87 ± 0.27
umap 50 90.93 ± 0.07 91.1 ± 0.09 81.37 ± 0.16 94.86 ± 0.1
umap 200 91.87 ± 0.26 91.36 ± 1.4 81.42 ± 2.99 93.68 ± 1.2

Table B.2: Results on the development dataset (Qian et al., 2019) for the closest-split
obtained with pretrained-embeddings. The hidden representations used for this
split are either used with their original dimensionality (full dims), or with decreased
dimensions by UMAP. Note that there is no dimensionality reduction by a bottleneck,
as this would have to be trained before.



Appendix B. Detailed Results 62

B.2 Test Dataset

The following results are achieved by models trained on the test dataset (Mathew et al.,
2020).

model subset-split valid acc test acc f1 roc auc

BERT-
base

random 67.66 ± 0.31 68.25 ± 0.28 66.0 ± 0.36 83.6 ± 0.14
full dims 69.8 ± 0.95 47.32 ± 1.43 43.85 ± 1.2 63.33 ± 1.08
bottlen. 50 70.95 ± 0.24 51.33 ± 3.09 49.08 ± 3.07 66.89 ± 2.55
umap 50 68.44 ± 0.38 60.24 ± 2.29 57.51 ± 2.78 75.1 ± 2.12

BERT-
medium

random 62.46 ± 0.49 62.85 ± 0.42 60.18 ± 0.42 79.98 ± 0.34
full dims 66.47 ± 0.27 56.01 ± 3.53 53.09 ± 3.55 70.83 ± 2.72
bottlen. 50 66.74 ± 0.37 49.34 ± 1.06 47.08 ± 1.08 65.65 ± 0.79
umap 50 65.24 ± 0.66 54.57 ± 0.83 51.74 ± 1.4 71.99 ± 0.77

Hate-
Bert

random 67.91 ± 0.32 68.51 ± 0.28 66.25 ± 0.35 84.46 ± 0.15
full dims 70.11 ± 0.53 50.76 ± 1.9 50.21 ± 1.84 69.45 ± 1.72
bottlen. 50 69.77 ± 0.53 51.46 ± 2.64 50.79 ± 2.58 68.42 ± 2.05
umap 50 70.85 ± 0.21 56.66 ± 0.77 51.62 ± 0.88 73.17 ± 0.33

Ro-
BERTa

random 66.45 ± 0.51 66.4 ± 0.56 64.1 ± 0.9 82.19 ± 0.61
full dims 67.24 ± 2.61 47.67 ± 0.92 43.71 ± 1.33 63.94 ± 0.95
bottlen. 50 67.49 ± 2.6 45.57 ± 1.54 42.58 ± 1.77 63.53 ± 1.42
umap 50 67.76 ± 0.35 58.12 ± 1.46 55.42 ± 1.21 72.72 ± 1.12

Table B.3: Results on the test dataset (Mathew et al., 2020) for the subset-sum-
split obtained with finetuned-embeddings. The hidden representations used for this
split are either used with their original dimensionality (full dims), or with decreased
dimensions by either UMAP or an implemented bottleneck (bottlen.).
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model closest-split valid acc test acc f1 roc auc

BERT-
base

random 67.66 ± 0.31 68.25 ± 0.28 66.0 ± 0.36 83.6 ± 0.14
full dims 72.48 ± 0.43 36.65 ± 1.51 27.78 ± 1.17 62.54 ± 2.81
bottlen. 50 70.22 ± 1.56 29.02 ± 0.66 26.54 ± 0.72 45.81 ± 0.75
umap 50 71.8 ± 0.23 37.93 ± 1.33 27.82 ± 2.43 64.33 ± 2.22

BERT-
medium

random 62.46 ± 0.49 62.85 ± 0.42 60.18 ± 0.42 79.98 ± 0.34
full dims 67.21 ± 0.59 31.02 ± 0.23 23.51 ± 1.54 58.28 ± 2.66
bottlen. 50 66.4 ± 0.67 28.17 ± 0.54 22.54 ± 1.02 45.92 ± 0.28
umap 50 66.99 ± 0.23 27.91 ± 0.67 26.28 ± 0.49 49.32 ± 1.21

Hate-
Bert

random 67.91 ± 0.32 68.51 ± 0.28 66.25 ± 0.35 84.46 ± 0.15
full dims 72.37 ± 0.25 41.34 ± 0.3 31.55 ± 1.08 61.05 ± 0.42
bottlen. 50 72.76 ± 0.3 30.14 ± 0.33 21.95 ± 0.35 49.47 ± 0.61
umap 50 72.89 ± 0.3 40.57 ± 0.44 29.77 ± 1.07 58.25 ± 0.35

Ro-
BERTa

random 66.45 ± 0.51 66.4 ± 0.56 64.1 ± 0.9 82.19 ± 0.61
full dims 71.13 ± 0.58 38.3 ± 0.4 32.89 ± 1.25 57.11 ± 0.52
bottlen. 50 71.74 ± 0.42 33.13 ± 0.93 27.74 ± 0.68 51.08 ± 2.24
umap 50 70.5 ± 0.57 34.91 ± 1.72 24.27 ± 0.57 58.48 ± 1.57

Table B.4: Results on the test dataset (Mathew et al., 2020) for the closest-split ob-
tained with finetuned-embeddings. The hidden representations used for this split are
either used with their original dimensionality (full dims), or with decreased dimensions
by either UMAP or an implemented bottleneck (bottlen.).



Appendix C

Analysis

C.1 Methodology

Word Overlap: Following the word overlap algorithm in Elangovan, He, and Verspoor
(2021), the word overlap 𝑜𝑖 for a given test example 𝑡𝑒𝑠𝑡𝑖 is the word overlap with the
most similar training example 𝑡𝑟𝑎𝑖𝑛𝑘 . The word overlap of the whole test set is then the
average over the word overlap of the test examples 𝑜𝑖. For this computation, examples
are represented as a vector with unigram counts (ignoring stopwords), and similarity is
computed as the cosine similarity.

Rare Word Count: Rare words are defined following the definition of Godbole
and Jia (2022): Rare words are words that are not common (i.e. occur at most once per
million words) and are not misspelled (i.e. appear in the word list of common words 1).
For word frequency statistics, Godbole and Jia (2022) rely on Brysbaert and New (2009).
Alternatively, this work also uses the word frequencies more recently collected by Speer
(2022).

1(https://github.com/dwyl/english-words)

64

(https://github.com/dwyl/english-words)

	Introduction
	Background and Related Work
	Generalisation
	Hate Speech

	Dataset and Methodology
	Datasets
	Development Dataset
	Test Dataset

	Methodology
	Obtaining Latent Representations
	Clustering and Splitting the Data
	Models Used to Create and Evaluate the Data Splits

	Experimental Setup
	Baselines
	Development Dataset - Experiments
	Test Dataset - Experiments
	Evaluation Metrics


	Results
	Results for the Development Dataset
	Baseline Results Using Random Splits
	Subset-Sum-Splits are More Challenging
	Closest-Splits are More Challenging than Subset-Sum-Splits
	Task-Specific Embeddings are Crucial for the Data Split

	Results for the Test Dataset
	Baseline Results Using Random Splits
	The Data Split is also Effective on the Test Dataset
	Closest-Split Models Perform Well on Independent Data
	Closest-Splits are Challenging for Other Models


	Analysis
	Analysis of the Latent Representations
	Analysis of the Properties of the Data Split
	Methodology: Task-Agnostic Analysis
	Methodology: Task-Specific Analysis
	Analysis Results


	Conclusion
	Conclusion
	Limitations and Future Work

	References
	Experimental Setup - Details
	Language Models
	Clustering

	Detailed Results
	Development Dataset
	Subset-Sum-Split on Pretrained Embeddings
	Closest-Split on Pretrained Embeddings

	Test Dataset

	Analysis
	Methodology


