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Abstract

With the growing use of technology and increasing demand for energy, understanding electric-

ity usage patterns has become crucial for effective energy management. This project aims to

focus on the comprehensive analysis of the IDEAL household energy dataset combined with

external data sources to uncover intricate household electricity consumption patterns and de-

rive meaningful insights. These insights are then further used to construct predictive models

capable of forecasting the average monthly electricity consumption and its associated costs for

households. Through meticulous data exploration, integration, and advanced modeling tech-

niques, this initiative significantly contributes to advancing our understanding of energy usage

dynamics. The outcomes of this research empower households with valuable tools to proac-

tively manage their electricity consumption and make informed decisions for a more sustainable

future.
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Chapter 1

Introduction

1.1 Household Energy Use and Management

The rapid pace of urbanization and growing concerns about environmental sustainability have

intensified the focus on energy consumption patterns in residential households. Electricity

usage is a crucial component of modern society, with almost every aspect of our daily lives

relying on it. However, as technology continues to advance and households become more

complex with the use of smart home devices, electric vehicles, solar energy, etc., the need to

understand the factors that influence household electricity usage and costs is rapidly increas-

ing. In this context, the availability of rich historical datasets like the IDEAL dataset[10] and

REFIT dataset[21] provides an unprecedented opportunity to delve into the intricate dynamics

of energy use, unraveling hidden relationships that hold the key to informed decision-making

and sustainable living.

The broad foundations of this study are centered around the various factors that influence

energy consumption and the challenges of managing electricity demand. Energy consumption

is influenced by a wide range of factors such as user behavior, energy tariffs, carbon emissions

etc. Understanding the influence of these factors on energy consumption is critical to develop-

ing effective energy management strategies. By understanding the various factors that influence

energy consumption and the challenges of managing electricity demand, this project embarks

on a comprehensive exploration of the IDEAL historical dataset[10], a valuable repository of

household energy-related information, integrates it with tariffs and carbon intensity data with

the aim of extracting meaningful insights. Additionally, it also seeks to develop a predictive

machine learning tool to predict a household’s average monthly consumption and the cost of

electricity using current tariffs to further get insights on the features that drive the average con-

sumption of a household and to find out what has changed in the past few years, especially with
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the advent and increasing use of smart home automation, electric vehicles and other advance-

ments.

The proposed project seeks to achieve this goal by gathering user constraints and leveraging

the IDEAL energy dataset[10] to identify patterns and insights that can help users manage their

energy consumption more effectively. The project’s scope includes gathering user requirements

and constraints, leveraging relevant historical data from the IDEAL dataset, analyzing the data

through data mining techniques, integrating the carbon intensity API[14] with it and visualizing

the results in a user-friendly way through different plots and additionally training a model

that uses these features to predict consumption. The machine learning tool as well as the

visualisations can be viewed through a user interface in a web application.

1.2 Rationale and Significance

The significance of the study lies in its innovative approach to understanding electricity con-

sumption patterns and its potential to provide valuable insights to users which can be further

used to give recommendations to users on how to save energy, reduce costs, minimize carbon

emissions or a combination of these based on their energy goals. The proposed research builds

on current state-of-the-art data mining techniques[21][7], integrating external data sources with

user requirements to generate customised insights that are both informative and actionable. The

project also highlights the importance of gathering user constraints and requirements, making

it a user-centric approach to energy savings.

The outcomes of this project can have immediate applications for individuals and busi-

nesses looking to leverage the insights and patterns identified and also to reduce their energy

consumption and costs, as well as for policymakers interested in promoting sustainable en-

ergy practices[3]. The insights gained from this study can help explore the impact of differ-

ent factors and household practices on energy consumption and the effectiveness of different

energy-saving strategies.
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Chapter 2

Background

The use of data-driven approaches for energy management has gained significant attention in

recent years. Previous studies have shown that energy consumption patterns can be learned

from historical data and usage patterns. For example, studies by Gajowniczek et al.(2015)[9]

and Ashouri et al.(2018)[1] used a combination of data mining techniques and user feedback

to identify energy-saving opportunities in households. Similarly, a study by Tureczek et al.

(2018)[9] used data from smart meters to analyze energy consumption patterns and identify

opportunities for energy conservation. Another study by Silva et al.[3] proposed a demand

response mechanism that takes into account user preferences and real-time electricity prices to

optimize energy consumption.

Energy management tools have been developed to help individuals and organizations mon-

itor and reduce their energy consumption. For example, the Energy Star Portfolio Manager[5]

is a tool developed mainly for Canadian buildings that allows building owners and managers to

track and manage their energy usage. Data mining techniques have also been applied to energy

consumption data to identify patterns and develop predictive models[9]. In particular, time

series analysis[12] and clustering algorithms[18] have been used to identify recurring patterns

in energy consumption data. These techniques have been used to develop energy forecasting

models and to identify energy-saving opportunities.

Some studies have used the IDEAL dataset to investigate different aspects of energy con-

sumption and demand management. For example, some studies used the dataset to develop

a model for predicting household electricity consumption based on weather conditions and

household characteristics[8][15][16]. Another study used the dataset for similar customer iden-

tification based on metadata of household background[15]. In addition, the IDEAL dataset has

also been used in studies related to demand response, energy forecasting, and appliance usage

analysis. These studies demonstrate the potential of the IDEAL dataset in providing valuable
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insights into household energy consumption patterns and supporting the development of ad-

vanced energy management systems.

Also, several advanced models have been proposed which use deep learning techniques for

electricity prediction. For instance, the study by Kim et. al.[16] used the Electricity Load Dia-

grams Dataset from UCI Machine Learning repository[28] which has data from 370 clients and

some of them belong to years as old as 2011. The current project, although makes use of simple

machine learning algorithms but is based on the IDEAL dataset which has more recent data and

also has metadata related to the households, rooms, appliances, tariffs. Thus, this serves as one

of the useful primary studies that employ machine learning to build predictive models using

the IDEAL dataset and is tailored mainly for understanding the energy consumption patterns in

Scotland although it can also be used to make comparisons with other models and other stud-

ies which are based on data collected from other geographical locations. Our proposed study

plans to build on some of these work by gathering survey data from users to know more about

what insights will be useful to them. Most of these studies assume generic requirements and

energy-goals such as reducing energy costs. However, different classes of users might want

insights based on particular needs like appliance distribution analysis, patterns in carbon emis-

sions, monthly costs, electrcity usage trends based on family size (number of residents), etc.

The IDEAL dataset that will be used in this study is unique in itself and there aren’t too many

researches that have leveraged this dataset. This study not only uses the IDEAL dataset but

also incorporates additional data from user constraints and external factors so to perform data

mining tasks to give insights to different classes of users and for companies and researchers

working in this field who can leverage these insights and patterns.
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Chapter 3

Data and User Requirements

3.1 Historical Data - IDEAL dataset

The IDEAL dataset serves as a valuable resource for energy management research, offering a

comprehensive collection of historical data related to household energy consumption. Accessed

through the IdealDataInterface and IdealMetaDataInterface API[11], this dataset incorporates

structured data stored in CSV files, encompassing various aspects of energy usage, home char-

acteristics, meter readings, tariff information, sensor readings, room data, etc. As an extensive

compilation of anonymised data from diverse households in Midlothian, Fife and East Lothian,

the IDEAL dataset provides a rich and diverse source for in-depth historical data analysis. In

this project, the relevant data that has been used includes home characteristics, meter readings

which has multiple meter readings for a single household taken during different dates, tariff

information which specifies the daily standing charge pence and the unit charge per kWh usage

of electricity, appliance data, and room data.

The dataset’s richness lies in the diverse and abundant information it offers. One of the key

strengths of the IDEAL Energy dataset is its real-world relevance. The data is derived from ac-

tual households, making it highly representative of real-life energy consumption behavior. This

authenticity ensures that the insights obtained from the dataset are applicable and actionable in

practical energy management scenarios.

It includes data not just on household consumption through sensor readings but also meta-

data like appliance usage, household demographics like family size and income band, electric-

ity meter readings along with the date they were taken, and tariff details. This wide range of

data enables researchers to analyze multiple dimensions of energy usage patterns and identify

significant factors influencing energy consumption in households. Due to its historical nature,

the IDEAL Energy dataset supports longitudinal analysis over extended periods. Researchers
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can track energy consumption trends over time, identify seasonal variations, and assess the im-

pact of external factors on energy usage. Researchers can draw meaningful conclusions and

make practical recommendations based on the dataset’s authentic and diverse samples. By

mining the dataset, we can identify energy-intensive appliances and equipment in households.

This information can be utilized to devise energy-saving recommendations and promote the

adoption of energy-efficient technologies.

3.2 Gathering User Requirements through Survey

A survey was conducted targeting a small number of students and professionals living in and

around Edinburgh, with diverse housing arrangements, to gather user requirements on data

visualizations and metrics. The survey encompassed various aspects of energy usage and pref-

erences to tailor the system to their specific needs. The survey questionnaires and responses

have been included in Appendix A.

Participants were asked to rank the importance of reducing energy costs, increasing the

use of renewable energy resources, and reducing carbon emissions. Both groups ranked using

renewable energy resources as their top priority, followed by reducing energy costs and then

reducing carbon emissions. This insight underscores the participants’ shared commitment to

sustainable practices while being mindful of cost-saving measures.

The survey also probed participants about their usage of electric vehicles, home energy

storage systems, and solar panels. These responses provided valuable data to understand the

potential integration of electric vehicle charging patterns, energy storage utilization, and solar

energy generation into the energy management system.

To enhance the system’s weather forecast-related metrics, participants were asked about

their preferences for metrics to schedule appliances or manage electricity use better. Responses

revealed their interest in real-time weather forecasts and how they can impact energy consump-

tion patterns. Incorporating these metrics will enable users to make informed decisions about

optimizing appliance use based on weather conditions.

Understanding the participants’ priorities on energy usage trends, the survey asked them to

select relevant variables and metrics. Seasonal energy consumption and total carbon emissions

emerged as the most critical factors for users, indicating their concern for understanding their

environmental impact and aligning their energy usage with seasonal variations.

Energy efficiency metrics and benchmarks were also explored. Participants expressed an

interest in tracking energy usage per square foot and energy efficiency ratings, highlighting

their focus on maximizing energy efficiency in their respective living spaces.
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To ensure the energy management system caters to a wide range of users, the survey sought

preferences on visualizations formats and tools. Participants favored bar charts, line charts, and

scatter plots for analyzing energy usage trends data. Their interest in heat maps and histograms

showcased the desire for in-depth insights and understanding energy consumption patterns from

different angles.

Moreover, the survey invited participants to share any additional visualizations they find

useful. Responses included energy consumption breakdowns by appliance type, energy usage

comparison with similar households, and energy-saving tips tailored to their specific living

arrangements.

Incorporating the insights from this comprehensive survey, the energy management system

will be tailored to address users’ specific preferences and needs. By offering a wide range of vi-

sualizations and metrics, and catering to factors like renewable energy usage, energy efficiency,

and weather conditions, the system will empower users in Edinburgh to make informed deci-

sions about their energy consumption, contribute to sustainability efforts, and optimize their

energy costs.

3.3 Other Data - Carbon Intensity, Tariffs

One of the components in this project involves the utilization of the Carbon Intensity API[18]

as a critical data source to compute the average monthly carbon emissions associated with

household energy consumption. This integration serves as a dynamic bridge between the home

data, encompassing crucial details about energy consumption patterns, and the real-time carbon

intensity measurements provided by the API. The process involved making API calls with the

specific dates as periods for which energy consumption was recorded so that the API returns

the actual carbon intensity between the period specified. Thus, this offered a granular under-

standing of the environmental impact at different times. Leveraging this fine-grained carbon

intensity data, the total carbon emissions was calculated for each household by multiplying the

average monthly consumption with the respective carbon intensity, providing a comprehensive

assessment of the carbon footprint associated with their energy use. By quantifying the carbon

emissions for each household and translating them into an average monthly metric, users can

gain a clear and tangible indicator of their environmental contribution.

Simultaneously, for computing the average monthly costs after predicting the consumption,

up-to-date tariff information like the daily standing charge (in pence) and the unit charge per

kWh (in pence) directly sourced from Octopus Energy’s website[5] provided real-time eco-

nomic context to the analysis.
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In the initial dataset, crucial tariff information such as the daily standing charge in pence

and the unit charge per kilowatt-hour (kWh) played a pivotal role in various analyses, including

assessing the relationship between carbon emissions and cost. However, for the specific task of

predicting current costs, it became evident that relying solely on these historical tariffs would

not provide accurate estimations. This realization prompted the acquisition of up-to-date tariff

data from the Octopus Agile website, ensuring that the predictions align with the current pricing

structure.

By integrating the fresh tariff data from the Octopus Agile website with the consumption

results generated by the predictive model, we were able to devise a comprehensive approach for

predicting the current costs of electricity consumption. The consumption predictions, reflecting

the energy usage patterns of households, were combined with the real-time tariff information,

which included the latest daily standing charge and the unit charge per kWh. This dynamic

integration enabled the accurate estimation of current costs, considering the precise pricing

structure in place at the time of the prediction.

This approach ensures that the cost predictions are not anchored to outdated tariff values

but are instead informed by the most current and relevant pricing information available.
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Chapter 4

Data Mining and Generating Insights

4.1 Exploring the IDEAL dataset and APIs

The exploration of the IDEAL Dataset, coupled with its corresponding MetaDataInterface API,

stands as a consequential pursuit to unveil intricate insights from the household energy con-

sumption data. The IDEAL Dataset encapsulates a complex network of structured data, en-

compassing diverse dimensions, including appliances, homes, meter readings, tariffs, and other

salient aspects. To navigate this multifaceted data effectively, the IdealMetaDataInterface API

emerged very useful, facilitating seamless access to data distributed across multiple CSV files.

The dataset is rich in information that researchers, analysts, and developers working on

energy management can use to understand trends, detect patterns, and make better decisions.

The dataset covered many aspects of energy use, from individual appliances, sensors in rooms

within the households, to overall household characteristics, giving a complete understanding of

how energy is used.

The IdealMetaDataInterface API returned the data in the form of pandas’ dataframes which

are versatile data structures that facilitate effortless exploration, transformation, and analysis

of the metadata. This not only streamlined the data pre-processing pipeline but also offered a

flexible environment for conducting in-depth examinations of the metadata’s intricacies.

The MetaData explored and analysed to generate the insights are tabulated in table 2.1.
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MetaData Description Columns

Home Contains data pertaining to the

255 households like number of

residents, income band, etc

home id, residents, in-

come band, energytpe

Tariff Encompasses information about

the pricing structure for home

electricity and gas supply

unit charge pence per kwh,

daily standing charge pence,

home id

Appliance Contains data about large, high-

power and generally fixed or

rarely moved appliances within

the home

appliance id, home id, pow-

ertype, number

Meter

Reading

Contains the meter readings used

to measure energy consumption

and related data for home elec-

tricity and gas meters.

home id, date, provenancede-

tail, energytype, reading

Room Contains all the essential infor-

mation related to all the rooms

within the households

room id, home id

Table 2.1

Each of these metadata was initially stored into separate dataframes before transforming

and integrating into bigger dataframes that encompassed all of this data together without any

missing data or other discrepancies.

4.2 Data transformation and Integration

4.2.1 Handling Missing Data

Handling missing data is a critical aspect of data analysis, and in the IDEAL Energy dataset,

missing values were addressed systematically across various metadata. For houses where

monthly consumption could not be calculated due to unavailable meter readings or other rea-

sons, a robust imputation approach was adopted. The home data was grouped based on income

bands, and the missing values were replaced by the average consumption for the specific in-

come band. This method ensured that the imputed values were consistent with the general
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consumption patterns within each income group, minimizing bias and preserving the overall

data integrity.

Similarly, missing values were observed for tariff-related information, specifically the daily

standing charge in pence and the unit charge in pence per kilowatt-hour (kWh). To handle

these missing values, the decision was made to replace them with overall average values. By

utilizing the overall average, the imputed values remained representative of the dataset’s tariff

characteristics without introducing undue influence from specific outliers.

However, handling missing values for carbon intensities presented a unique challenge. In

certain cases, carbon intensities could not be retrieved for specific dates, primarily due to data

availability limitations within the API. These gaps were often observed for durations exceeding

the allowed 14-day period. In such situations, it was determined that replacing the missing

carbon intensities with average values could potentially introduce inaccuracies and skew the

analysis. As a result, a more conservative approach was taken, and rows with missing carbon

intensity data were dropped from the dataframe entirely. By removing these rows, the analysis

remained focused on the actual carbon intensity values, ensuring precision in environmental

impact assessments.

Overall, the approach to handling missing data in the IDEAL Energy dataset was thought-

ful and tailored to the characteristics of each metadata category. The imputation techniques

for monthly consumption based on income bands maintained a realistic representation of en-

ergy usage patterns for different income groups. Similarly, replacing missing tariff values with

overall averages ensured the tariff data’s continuity without distorting its overall distribution.

However, when dealing with carbon intensity data, an exclusionary strategy was employed, as

retaining actual values was deemed crucial for accurate environmental impact analysis. By im-

plementing these techniques, the IDEAL Energy dataset remains a reliable and comprehensive

resource for energy management research, facilitating precise insights and informed decision-

making for a sustainable and efficient energy future.

4.2.2 Handling Categorical Variables

In the context of the IDEAL dataset, the categorical variable ”income band” represents different

income levels of households. Initially, the income band variable had 15 distinct categories, each

corresponding to a specific income range. However, to simplify the analysis and reduce the

dimensionality of the data, the income band variable was reduced to just 5 broader categories.

The reduction of income band categories was likely based on grouping households with

similar income levels together. For example, the 15 original categories might have been merged
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into broader ranges to create the following 5 categories: Low-Income, Lower-Middle-Income,

Middle-Income, Upper-Middle-Income and High-Income.

Each category encompasses a range of income levels, making it easier to handle and inter-

pret the data. The reduction to 5 categories allows for a more concise representation of income

distribution in the dataset while still capturing the main income variations across households.

After reducing the income band variable to these 5 categories, ordinal encoding[15] was

applied. Ordinal encoding is suitable when there is a natural order or hierarchy among the

categories. In this case, the income band categories were assigned ordinal integer values from

1 to 5, where the lowest-income category (e.g., Low-Income) was assigned the value 1, and the

highest-income category (e.g., High-Income) was assigned the value 5.

The ordinal encoding of the income band variable converts the categorical values into nu-

merical representations while preserving the inherent order among the income categories[25].

This numerical representation allows machine learning algorithms to understand the relative

relationships among the income levels during analysis and modeling[20].

By reducing the income band categories and applying ordinal encoding, the dataset became

more manageable and suitable for various data analysis and machine learning tasks. The re-

sulting ordinal representation of income band enables researchers to analyze the relationship

between household income and other variables in the dataset while considering the natural hier-

archy among income levels. It also facilitates statistical computations and helps in identifying

trends or patterns related to income and energy usage in the IDEAL dataset.

4.3 Integrating different metadata’s dataframes

Each of the data (other than the home data) had to be integrated with the home data through

the home id column present in each of the dataframes because home id served as the unique

attribute common in all which linked each of the metadata. Since each metadata served a

different purpose, their integration with the home data was done differently depending on what

kind of information was needed. They are explained in more detail in the following subsections

-

4.3.1 Integrating tariff data with home data

Within the tariff metadata, two pivotal tariff components held significant importance: the daily

standing charge and the unit charge per kilowatt-hour (kWh). However, a notable challenge

emerged when dealing with certain households where multiple unit charge per kWh values were
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recorded, potentially causing data redundancy. To address this, a rationalization process was

undertaken, whereby the mean of all recorded unit charge per kWh values for such households

was computed. This approach ensured that each household was represented by a single row,

effectively consolidating the tariff information. Thereby, homeid column was used to integrate

these two columns with the home data so that it had two additional columns now.

4.3.2 Integrating meter readings with home data

The meter reading was used to compute the monthly average consumption (in kWh) for the

households. Thus, for households that had two or more meter readings recorded at different

dates, the difference in meter readings as well as the number of days between the readings were

computed and the average monthly consumption was computed as follows -

If reading1 and reading2 are two meter readings associated with a home dataframe and

date1 and date2 which are the dates after conversion to the python’s datetime library and are

the dates on which these readings were recorded, then -

monthly consumption = |reading2 − reading1

date2 −date1
| ∗30

4.3.3 Integrating appliance data with home data

The count of total appliances owned and used per household was required. To find this out,

initially appliances categorized with a ”powertype” of ”electric” were chosen from the appli-

ance metadata. This careful filtering narrowed down the scope to appliances primarily utilizing

electric power. Subsequently, a crucial aggregation step was implemented, wherein the selected

electric appliances were grouped based on ”home id.” This grouping facilitated the accumula-

tion of the number of electric appliances within each household. By summing up the electric

appliances for each home, this methodology provided a comprehensive overview of the preva-

lence and distribution of electric-powered devices among households. The following python

code was used to find the total count of all the appliances per household -

sum_appliances = appliance_df.groupby([’homeid’])["number"].sum()

4.3.4 Integrating room data with home data

In the room metadata, the essential information sought was the number of rooms in each house-

hold. To extract this vital detail, a strategic approach was adopted, involving a grouping opera-

tion on the room dataframe based on the ”homeid,” which serves as a unique identifier for each
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household. By grouping the data using this identifier, it became possible to aggregate the room

data within each household, resulting in the count of rooms for every individual household.

The following python code represents the grouping to count the number of rooms -

room_groupings = room_df.groupby(["homeid"])["homeid"].count()

As a result of this grouping and aggregation process, a new column aptly named ”rooms”

was introduced within the dataframe. This ”rooms” column stored the calculated counts of

rooms, effectively capturing the spatial dimension of each household

4.4 Finding patterns

In the process of generating insights from the IDEAL dataset, several key analyses and method-

ologies were employed:

1. Average Consumption per Family Size: The home data was grouped by family size into

categories such as small, medium, and large families. By aggregating energy consump-

tion data based on family size, researchers studied the average energy usage patterns for

each group. This analysis aimed to identify any correlations between family size and

energy consumption, helping to understand how household dynamics influence energy

usage.

2. Usage of Households by Income Bands: The home data was further grouped by income

bands, which were reduced to five categories using ordinal encoding. This analysis al-

lowed researchers to study the energy usage patterns of households belonging to different

income levels. Additionally, the number of households in each income band was studied

to observe the distribution of energy usage across different income groups. The usage of

smart automation within each income band was also examined, providing insights into

the adoption of energy-efficient technologies by different income levels.

3. Cluster Analysis: Cluster analysis was conducted based on income bands, the number of

residents in each household, and their monthly energy consumption. This methodology

aimed to identify distinct groups or clusters of households with similar energy usage

patterns and demographic characteristics. By clustering households, researchers can gain

a deeper understanding of the energy consumption behaviors and demographic profiles

associated with each group.
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4. Relationship between Carbon Emissions and Monthly Consumption: Researchers ana-

lyzed the relationship between carbon emissions and monthly energy consumption. This

analysis sought to understand how carbon emissions are influenced by the amount of

energy consumed by households. It provides valuable insights into the environmental

impact of energy usage and identifies potential areas for energy conservation and carbon

footprint reduction.

5. Relationship between Carbon Emissions and Monthly Cost: Monthly cost was calcu-

lated using tariff data provided, including the daily standing charge in pence and the unit

charge in pence per kilowatt-hour (kWh). This calculated monthly cost was then ana-

lyzed in relation to carbon emissions. The goal was to identify any correlations between

the cost of energy usage and the resulting carbon emissions, offering insights into the

environmental implications of varying energy consumption patterns.

By conducting these analyses, meaningful insights were uncovered regarding energy consump-

tion trends, environmental impact, and the factors influencing energy usage in different house-

hold settings. The findings from these analyses can inform policymakers, energy companies,

and individuals on energy management strategies, sustainability initiatives, and the importance

of energy efficiency in different socioeconomic contexts. Additionally, the insights gained from

these methodologies contribute to the development of data-driven energy management systems,

promoting responsible and sustainable energy practices.

4.4.1 Consumption pattern analysis

The consumption analysis initially involved computing the monthly average consumption for

each household that was explained in section 4.3.2. This data was subsequently dissected from

two key perspectives: income bands and family size.
Income

band

Salary range Income group

1 £16,199 and below Lower Income Group

2 £16,200 to £26,999 Lower Middle Income Group

3 £27,000 to £43,199 Middle Income Group

4 £43,200 to £65,999 Upper Middle Income Group

5 £66,000 and higher High Income Group

Table 4.1
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Figure 4.1: Consumption Analysis by income bands 1 - low income group, 2- lower middle, 3 -

Middle Income, 4 - Upper Middle Income, 5 - high income

While examining consumption distribution by income bands, intriguing findings emerged.

Table 4.1 shows what each of the income bands indicate. Despite the initial anticipation that

income bands might be a dominant factor in consumption variation, Figure 4.1 reveals that

the average consumption within each income band exhibited only marginal distinctions. This

suggests that income band alone is not a defining factor in energy consumption; other variables

such as family size, the number of appliances, and the size of the dwelling may have more

significant influence.

In contrast, delving into consumption distribution based on family size yielded noteworthy

insights. Figure 4.2 clearly demonstrates a direct relationship between family size and average

consumption. As family size increased, so did the average energy consumption of the house-

holds. This finding underscores the importance of the number of residents as a pivotal feature

in determining the energy consumption of a household.

These results indicate that while income bands have limited predictive power regarding

energy consumption, family size emerges as a more influential factor. Understanding this rela-

tionship empowers households and energy management initiatives to tailor strategies to specific

family compositions, potentially optimizing energy usage based on family needs. By incorpo-

rating the insights garnered from both the income bands and family size analyses, this project

takes a holistic approach, paving the way for more precise energy management strategies that

acknowledge the complex interplay of factors impacting consumption behavior.
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Figure 4.2: Consumption Distribution by Family size

4.4.2 Tariff Analysis

The three major columns useful for tariff analysis are -

1. Monthly cost (average) 2. Unit charge per kWh (in pence) 3. Daily standing charge pence

Among these, the daily standing charge pence was not too useful as it is a fixed component

in the tariff which is set according to the tariff plan and does not depend on consumption

patterns. Hence, the unit charge and monthly cost were studied. The figure 4.3 shows the

relationship between monthly cost and unit charge.

The visual representation of monthly cost plotted against the unit charge per kilowatt-hour

(kWh) in pence offers intriguing insights into the relationship between these two variables. The

scatter plot reveals a concentration of data points within a specific region, primarily clustered

around the range of 60 to 80 GBP for monthly cost and 12 to 15 pence for unit charge per kWh.

This concentration suggests that the majority of households fall within this cost range while

experiencing a relatively consistent unit charge per kWh. The trend observed here indicates a

potential correlation between the unit charge and monthly cost. As the unit charge per kWh

increases, there is a tendency for the monthly cost to rise as well, highlighting the influence of

energy consumption on the overall cost.

Of particular interest are the outliers in the plot, which are households exhibiting monthly

costs exceeding 100 GBP. These outliers serve as notable deviations from the general trend

and warrant further examination. Isolating and analyzing these outliers can provide valuable
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Figure 4.3: Cost vs Unit charge per kWh

Figure 4.4: Monthly cost distribution of households
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Figure 4.5: Outlier Analysis of high cost households

insights into the unique factors contributing to their elevated energy costs.

Thereafter the outliers having monthly consumption greater than 100 were analysed as

shown in Figure 4.7.

The household having the highest consumption seemed to have just two residents, however

this household also has the highest number of appliances and thereby the highest consumption

as well, thus this shows a direct correlation between the number of appliances and the monthly

cost. The household with homeid 146 seems to have low unit charge but high consumption,

4 residents and more than average appliances(16). Thus this shows that it is important to

consider multiple factors while deciding what are the important features while determining the

consumption and cost which are done in the later sections in cluster analysis (section 4.4.2) as

well as building the predictive model for predicting consumption and cost (chapter 5).

4.4.3 Cluster Analysis

An iterative clustering approach was adopted to identify clusters of households with each clus-

ter representing a different energy use characteristics. Python’s Scikit-learn library’s K-means

clustering algorithm[20] was applied where different columns were used as variables with the

monthly consumption being the major variable that determined the cluster for a household

among other variables.

There have been past attempts to perform clustering and cluster analysis to understand dis-

tinct household energy usage behaviours. A study by Tureczek et. al.[29] collected data from

a sample of residential users equipped with smart meters, measuring their electricity consump-

tion at fine-grained intervals. The patterns analysed were characterized by differences in peak

load periods, overall consumption levels, and variations in energy usage throughout the day

and week.

Initially the monthly consumption, income band and the number of residents were used as

the feature variables for clustering. The clusters are represented in Figure 4.6. The median

of each of these clusters, although belonging to different consumption levels, did not really
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(a) (b)

Figure 4.6: Cluster Analysis

belong to different income levels. However, all of them were neither from the same income

level too. So it is hard to say that income levels played a major role in the consumption pattern,

even though they did to a small extent. The number of residents however indicated that higher

residents always implied higher consumption but lower family size could have consumption

values in a wide range.

In response to the above findings, the number of appliances owned by each household was

introduced as an alternative variable to income levels. The 2-d cluster is shown in Figure

4.7. This alteration in feature variables provided more insightful results. Notably, the median

consumption levels within each cluster were now more distinctly distributed and tied to the

number of appliances. This change enhanced the clarity of the clusters’ characteristics.

In detail, clusters 1 and 3 displayed households with relatively lower consumption levels,

while clusters 2 and 4 represented households with higher consumption patterns. Cluster 4,

in particular, stood out as it encapsulated households with the highest number of appliances,

residents, and consumption levels. This shift in approach, replacing income levels with the

number of appliances, resulted in more meaningful and coherent clustering outcomes.

The significance of this evolution in the clustering process lies in the identification of a

more influential variable, the number of appliances, in determining consumption patterns. This

adjustment highlighted the role of appliance usage in shaping households’ energy consumption

behaviors. By leveraging the number of appliances as a key feature in clustering, the project ef-

fectively unveiled deeper insights into the intricate relationship between appliance ownership,

consumption levels, and potentially other underlying factors influencing household energy us-

age.
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Figure 4.7: 2-D cluster where income band is replaced with Appliances

4.4.4 Carbon Emissions and its relation with consumption and cost

The scatter plot (Figure 4.8 (a)) depicting the relationship between monthly consumption and

carbon emissions (measured in nCO2) reveals an interesting trend. As monthly consumption

increases, there is a discernible upward trend in carbon emissions, suggesting a positive corre-

lation between these two variables. This linear increase signifies that households with higher

energy consumption tend to produce higher levels of carbon emissions, which aligns with our

understanding of the environmental impact of energy use.

A notable concentration of data points is observed within a specific range: monthly con-

sumption values ranging from approximately 100 to 300 kilowatt-hours (kWh) correspond to

carbon emissions around 50,000 nCO2. This cluster of data points suggests a significant group-

ing of households with similar energy consumption levels and a consistent emission rate. The

fact that a substantial portion of data points aligns closely within this range indicates a consis-

tent carbon emissions pattern across these households.

The dense concentration of data points in this particular consumption-emission range may

suggest several implications. It could indicate a common energy usage behavior prevalent

among a certain subset of households, which might be influenced by factors such as similar

appliance usage patterns, household size, or specific geographic factors. Furthermore, this
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(a) Consumption vs Carbon Emissions (b) Cost vs Carbon Emissions

Figure 4.8: Carbon Emissions Analysis

concentration within a specific carbon emissions range could be indicative of consistent energy

efficiency practices or technology adoption within this subset.

The cost vs carbon emissions graph (Figure 4.8 (b)) also suggests a linear relationship

between these two variables. The majority of data points are situated below 80 GBP for cost

and below 100,000 nCO2 for carbon emissions, indicating that there is a correlation between

lower costs and relatively lower carbon emissions. As the data pertains to the historical context

of 2018, it’s essential to recognize that the cost values likely reflect electricity rates prevalent

at that time, which are expected to be lower than current rates.

While the historical cost data provides valuable insights into past energy expenses, a com-

pelling aspect lies in the exploration of carbon emissions over time. Given the evolution of

energy awareness and potential shifts in energy consumption patterns among households in

Scotland, it’s intriguing to assess whether carbon emissions have remained stable, increased, or

decreased since 2018. The contemporary energy landscape may have witnessed advancements

in renewable energy adoption, improved energy efficiency practices, and a growing focus on

sustainability. Consequently, there’s a possibility that households have become more energy-

conscious, potentially leading to reduced carbon emissions despite changing costs. Hence this

insight can serve useful for researchers who are collecting current household data to compare

with the previous in order to determine what has changed over time. Such an evaluation holds

significance not only for energy management strategies but also for understanding the broader

environmental implications of evolving energy practices. The potential to observe a diver-

gence between the linear cost-emissions relationship and the actual carbon emissions trend in

the present day adds a layer of complexity and underscores the importance of ongoing data

analysis in the context of energy conservation and environmental consciousness.
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(a) smart devices distirbution (b) appliance distribution

Figure 4.9

4.4.5 Other Insights

This includes two particular insights that were generated -

1. Distribution of smart home appliances by income band

2. Distribution of count of appliances across households

The examination of the distribution of smart home appliance usage across different income

bands in the IDEAL dataset reveals a compelling disparity. The graph in Figure 4.9(a) dis-

tinctly highlights a scarcity of households adopting smart home devices, particularly within

the lower income brackets. The orange bars indicate the number of household which do not

use any smart devices while the blue bars indicate the number of households that own and

use smart devices. A striking observation is that none of the families categorized in the lower

income group seem to have embraced smart devices during the data collection period. This

finding also underscores the influential role of economic factors, symbolized by income levels,

in determining the adoption of advanced technological solutions like smart home devices. This

is mainly because the data is from the year 2018 and there wasn’t much awareness about using

smart devices back then and also there weren’t many smart devices available in the stores dur-

ing that time. it is a good sign that smart home devices and smart home automation systems are

becoming more prevalent these days and current data would definitely show the start difference

in the increasing number of households that use them.

The distribution analysis of the number of appliances per household (Figure 4.9 (b)) reveals

an interesting trend reminiscent of a Gaussian-like distribution[17]. The peak of the distribution

is observed around 10 appliances, indicating that a substantial number of households utilize this

range of devices. However, as the number of appliances surpasses this peak, the frequency of
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households with such high appliance counts begins to decline gradually.

An intriguing aspect emerges when considering the presence of an outlier, a household

recorded with the highest number of appliances at 25. This outlier stands out within the dataset

due to its significantly elevated number of appliances compared to the majority of households.

The presence of such an outlier provides a unique opportunity for further exploration and anal-

ysis.

Studying this outlier household, which deviates from the typical distribution, can yield valu-

able insights. By examining the reasons behind the exceptionally high number of appliances

in this specific household, we can uncover patterns, usage behaviors, and potentially identify

underlying factors driving such a distinctive profile. It’s essential to understand whether this

household’s appliance count is the result of specific requirements, lifestyle choices, or other

unique circumstances.

Furthermore, exploring the characteristics of this outlier household might help distinguish

between factors that significantly impact energy consumption patterns. By contrasting this

outlier with the broader distribution, we can assess the potential implications of such high

appliance usage on energy consumption, costs, and environmental impact. This analysis could

contribute to a deeper understanding of the relationship between the number of appliances and

other variables within the dataset, such as monthly consumption, cost, or carbon emissions.

The presence of this outlier serves as a valuable case study, offering insights that go beyond

the general distribution pattern. By delving into the unique features of this household, we can

expand our comprehension of the diverse factors influencing energy consumption and inform

strategies for energy management and efficiency, even in scenarios that deviate from the norm.
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Chapter 5

Predicting monthly household

consumption and cost

5.1 The need of a machine learning predictive tool

The incorporation of a machine learning tool was crucial due to the intricacies inherent in

household energy consumption. These patterns are influenced by a myriad of variables like user

behaviors, appliance usage, etc. Traditional methods often struggle to capture these nonlinear

relationships and dynamic dependencies comprehensively. Machine learning, with its ability

to handle complex, multidimensional data, emerged as an ideal solution to unravel the intricate

connections driving consumption trends.

Predictive capability stands as a pivotal advantage. By training the machine learning model

on historical consumption data, it learned underlying patterns, enabling accurate forecasts of

future energy usage. This predictive power would empowered users with valuable foresight,

helping in proactive energy management.

Furthermore, the machine learning tool would also allow for the identification of influential

factors. By analyzing feature importance, the model can reveal the key drivers impacting en-

ergy consumption. This knowledge provides a deeper understanding of the intricate dynamics

at play, helping users pinpoint areas for energy-saving strategies, promote sustainable prac-

tices, and make informed choices about appliances, usage patterns, and resource allocation.

The adaptability of these models ensures their relevance across diverse scenarios, effectively

bridging the gap between observed consumption data and the actionable insights needed for ef-

fective energy management. This approach is aimed at shifting the focus from mere predictions

to insightful understanding, mainly about what drives energy usage, leading to more informed

energy management decisions, cost optimization, and sustainable consumption practices.
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5.2 Choosing the algorithms for model building

Choosing the right algorithms for energy consumption prediction is pivotal, with Random For-

est[26] and Multiple Linear Regression[30] emerging as top contenders. The selection deci-

sion hinges on their distinctive strengths aligned with the intricacies of the use case. Random

Forest’s ensemble nature and ability to capture non-linear relationships suit the complexity of

energy consumption prediction, offering insights into variables’ importance and interactions.

This is particularly crucial for deciphering multi-faceted energy usage patterns and understand-

ing the significance of different factors.

Conversely, Linear Regression’s simplicity and interpretability rendered it an excellent

choice. The algorithm’s transparency, along with its emphasis on linear relationships, aligns

well with the project’s goal of providing users with clear and actionable insights. Given the na-

ture of energy consumption data, where direct correlations between variables might be present,

Linear Regression’s capability to unveil direct influences aids in making practical and informed

decisions. Furthermore, its computational efficiency and speed hold value in real-time appli-

cations. The balance between the sophistication of Random Forest and the intuitive nature of

Linear Regression empowers the project to offer accurate and accessible energy consumption

predictions to users.

5.3 Predicting consumption with 4 features (including income

band)

In the process of developing a prediction model for energy consumption using four variables,

namely the Number of Residents, Number of Rooms, Number of Appliances, and Income

Band, two machine learning algorithms were employed: Random Forest Regression and Lin-

ear Regression for reasons stated in the previous section. Both of these methods aimed to

uncover relationships between a set of four carefully chosen predictor variables and the energy

consumption output variable. The dataset was divided into training and testing sets to evaluate

the model’s performance accurately.

During training, the algorithms learned the relationships between the input variables and

the energy consumption data from historical records. The evaluation results are depicted in

section 7.1.
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5.4 Predicting consumption with 3 features (without income

band)

Since not all users would be willing to share their income bands to which their households

belonged too, it was important to build a model that did not use income band as a feature and

only made use of the columns - number of residents, number of appliances and number of rooms

as features. Also, the cluster analysis also indicated that income band was not that important of

a feature in determining the average monthly consumption of the households. Hence, having

another model that did not use income band among the dependent variables was significantly

important.

Again for this prediction, two different models were run, one that used random forest re-

gression and the other that used multiple linear regression. The model performance for this is

evaluated in the section 7.2 as well.

5.5 Predicting the Average Monthly Cost

Predicting the average monthly cost of electricity is a pivotal aspect of empowering users with

comprehensive insights into their energy consumption. The process involves a meticulous in-

terplay of data retrieval, calculation, and integration to provide users with accurate estimates of

their energy expenses.

To begin, the foundation of this process lies in the data sourced from the Octopus En-

ergy website. Extracting the daily standing charge in pence and the unit charge in pence per

kilowatt-hour (kWh) from Octopus Energy forms a critical step. These values, representing es-

sential components of the tariff structure, lay the groundwork for calculating the monthly cost

accurately.

The subsequent step involves the computation of the monthly cost based on the predicted

energy consumption. Leveraging the energy consumption in kWh forecasted by the model

described in sections 5.1 and 5.2, coupled with the unit charge pence per kWh, the variable

cost component of the monthly cost is ascertained. This variable cost encapsulates the actual

energy usage of the household, translating into a quantifiable expense.

However, the process doesn’t stop at variable costs. To paint a holistic picture of the

monthly expenditure, the daily standing charge pence plays a significant role. This fixed charge

is independent of energy consumption and is added regardless of how much electricity is used.

Consequently, the cumulative daily standing charge pence is fused with the variable cost to
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derive the comprehensive total cost of electricity for the month.

The result of this meticulous process is the culmination of both variable and fixed charges,

yielding the average monthly cost of electricity.

Average Monthly Cost = Daily Standing Charge Pence (Fixed Component) + (Average
Monthly consumption (in kWh) * Unit Charge Pence per kWh)

This figure equips users with insights into not only their energy consumption patterns

but also the financial implications of their usage behavior. By presenting users with a well-

rounded estimation of their monthly expenses, this approach facilitates informed decision-

making, enables the optimization of energy consumption habits, and assists in effectively man-

aging monthly costs.

In essence, the process exemplifies the synergy between data-driven insights and practical

financial implications. By considering both consumption and tariff structure, users gain a pro-

found understanding of their energy expenses, enabling them to align their consumption habits

with their financial goals.
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Chapter 6

System Implementation

6.1 Implementation details - Backend

For the several data mining stages, the code was developed in python using various useful

libraries like numpy, pandas for dealing with data as dataframes and matplotlib[21] for display-

ing the graphical visualisations. All the code related to even the predictive machine learning

model for consumption was developed in python. For developing the web application. python’s

simple and lightweight framework, Flask[12], was used. The final features generated with in-

tegrated metadata were stored in features.csv for easy access and faster data manipulation and

analyses so that the system does not spend too much time integrating the data from different

csv files.

The consolidated data features.csv alone serves as a rich data which includes additional

columns for each of the households with the tariff info, carbon emissions, number of appliances,

rooms, etc.

The python’s library - matplotlib has been used extensively throughout the ode to generate

the different kinds of plots like box plots, scatter plot, bar graph, histogram, pie chart, etc. The

library proved to be convenient as it also allowed to save the figures generated as PNG images

which could be rendered in the User interface through the HTML web pages.

6.2 System Implementation - Frontend

The user interface of the system was developed using HTML, CSS and Javascript which were

rendered by the Flask’s python backend. The visualisations are displayed on five different web

pages, each for displaying consumption analysis, tariff analysis, carbon emissions, clusters

and other insights. Additionally, a separate web page for predicting the results of the model
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Figure 6.1: System diagram

is present. An html form takes the user input like number of appliances, number of rooms,

number of residents and the income band and the button click routes the request to the backend

which sends the results of the model to the results page. The navigation bar makes it easy

for the user to move to the different web pages to view the visualisations or move to the page

where the consumption and costs can be predicted. The UI design screenshots of the system

have been added in the Appendix B.
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Chapter 7

Evaluation

7.1 Model Performance Analysis

Since both algorithms i.e Random Forest and Linear Regression were applied to the same

dataset, their performance could be objectively compared to determine which better captures

the dataset’s characteristics. The metrics used to evaluate the models’ performance are -

1. Mean Absolute Error

MAE measures the average absolute difference between the predicted and actual values. It pro-

vides a direct measure of the model’s prediction accuracy. Lower MAE values indicate better

performance.

2. R2 (R-Sqaured) - Coefficient of Determination

R-squared measures the proportion of the variance in the dependent variable (energy consump-

tion) that is predictable from the independent variables. It ranges from 0 to 1, where 1 indicates

perfect predictions and 0 indicates poor predictions. Higher R-squared values suggest a better

fit of the model to the data.

The features used in the regression models are -

Na : Number of Appliances that the household owns and uses

Nr : Number of rooms in the house

Np : Number of residents living in the household

IB: Income Band of the Household (1-5)

The Mean Absolute Percentage Error values and the R-square values for each of the models

trained (as shown in Table 7.1) indicate that in terms of MAE (percentage), linear regression
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Metric Model Features Value

Mean Absolute

Error (in percent)

Random Forest Na, Nr, Np 0.25

Linear Regression Na, Nr, Np 0.153

R-Square
Random Forest Na, Nr, Np 0.569

Linear Regression Na, Nr, Np 0.003

Mean Absolute

Error (in percent)

Random Forest Na, Nr, Np, IB 0.209

Linear Regression Na, Nr, Np, IB 0.121

R-Square
Random Forest Na, Nr, Np, IB 0.656

Linear Regression Na, Nr, Np, IB 0.033

Table 7.1: Model evaluation results

model performs better. However, in terms of R-square values, the linear regression models have

very low values of R-square values indicating that the independent variables in the linear re-

gression model are not effective in explaining the variation in the dependent variable, the MAE

values are still good and this is highly because the predicted values are close to the mean value,

however the model is not able to rightly identify the dependency of the dependent variables on

the independent variable (average monthly consumption) in case of linear regression model. .

The random forest regressor models have comparable Mean absolute errors to their respec-

tive linear regression models but have a huge difference in the R-square value (i.e they gave

higher R-square values) indicating that random forest is better able to capture the dependency

of the features on the independent variable. The R-squared score is particularly valuable as it

indicates how well the model explains the variability in the data. In both cases, where three and

four features were utilized for prediction, the Random Forest model consistently demonstrated

a higher R² score compared to other models, indicating its capacity to capture more of the vari-

ation in energy consumption. This signifies that the Random Forest model fits the data better,

suggesting it is a stronger candidate for predicting consumption patterns. Hence, random forest

regression models are chosen in both the cases to predict the monthly average consumption of

households.

Figure 7.1 shows the actual vs predicted value graph for the random forest regressor with

4 variables (including income band). It can be easily observed that most of the values lie

between 200 and 300 for both actual and predicted ones which is a good sign, but for outliers

in the dataset the model finds difficulty in capturing the variations.
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Figure 7.1: Actual vs Predicted Values

7.2 Evaluation of the overall system and UI

Users were asked to evaluate the overall system in terms of the goals and objectives met, about

the usefulness of the visualisations presented and were also asked to assess the predictive tool

to understand how close it was to their actual consumption and costs and if there were any

useful findings which could be derived through this tool to give them more understanding of

their consumption and costs and the factors that influence it.

Additionally, two of these, Jonathan Kilgour and Lynda Webb who are researchers in the

field of energy informatics at University of Edinburgh were also approached to evaluate the

predictive model. Jonathan’s house was simple and used a basic non agile tariff plan with no

experimental setup. The predicted consumption and cost was quite close the actual values. For

Lynda’s household, however, which was complex with its use of smart home devices, solar

power, electric vehicles and agile tariff plan[5], the consumption predicted was much lower

than the actual consumption, with the predicted being 238 KWh and the actual being 632 KWh.

Even then, the cost predicted using the basic daily standing charge pence from the Octopus

agile website was closer to the actual cost (actual cost was £89 while the predicted was 85.83.

This is mainly because of the appliance use time shifting to times of lower tariffs. This was

quite useful in understanding the cost savings even though the consumption was high. This

also indicated that the historical data could be useful in understanding the energy use patterns

in households which used most of the basic electric appliances and had common consumption
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patterns like most households. In case of households with sophisticated energy use practices,

it can serve as a useful tool in understanding the effects of difference in the electricity usage

patterns, especially related to costs.

The user interface’s usability, layout and other factors were qualitatively evaluated by

Jonathan and about half of the people who were involved in the initial survey of understand

user needs. A user satisfaction score of 7 on a scale of 10 was achieved for the overall system.
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Chapter 8

Conclusion

This dissertation project delved into the data-driven insights related to the household energy

consumption in parts of Scotland leveraging the IDEAL dataset. The journey embarked upon a

path of data exploration, visualization, and predictive modeling to unravel the various dynamics

that govern energy usage patterns. The visualizations obtained from diverse metadata sources

proved to be invaluable insights on their own, offering a window into the interplay of various

factors within household energy consumption.

These visualizations, each capturing a facet of household dynamics, stand not only as mean-

ingful findings but also as potential building blocks for further exploration. By integrating these

visual insights with external data sources like weather patterns, a comprehensive and integrated

understanding of energy consumption patterns can be fostered. This integration promises the

potential to discover deeper correlations, providing a more holistic view of energy consumption

in the context of diverse environmental factors.

Through the course of this project, it became evident that these insights are not just static

snapshots but windows into the evolving energy usage trends. As society shifts towards greater

energy consciousness, understanding the underlying factors that contribute to consumption

changes over time is crucial.

The predictive model developed within this work, while serving as a foundation for con-

sumption estimation, also sheds light on its limitations. While proficient at providing estimates

for basic households with common appliances and straightforward tariff structures, the model

struggles with the complexities of modern energy dynamics. Households equipped with so-

phisticated smart devices, renewable energy sources, and agile tariff plans tend to confound the

model’s predictions. Nevertheless, the model’s performance remains a valuable benchmark,

offering insights into the energy consumption of typical households and allowing comparisons

that illuminate potential savings or over-expenditures.
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In summation, this dissertation’s journey through data mining, visualization, and predictive

modeling has unveiled insights that are both enlightening and pragmatic. The visualizations

stand as testaments to the value of exploring energy data’s multifaceted dimensions, while

the predictive model serves as a stepping stone towards understanding and optimizing energy

consumption. As we peer into the future, the integrated approach of this project forms the foun-

dation for a more comprehensive and dynamic understanding of energy consumption, fostering

informed energy choices and contributing to a more sustainable future.
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Appendix A

Survey Questionnaire and Survey

Responses
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Survey - User Requirements for Data-Driven Energy
Management System

1. Rank these in the decreasing order of importance to you: 1. Reducing energy costs, 2. Increasing use of
renewable energy resources 3. Reducing carbon emissions

2. Do you use Electric Vehicles?

3. Which of these weather forecast related metrics are useful to you in order to schedule appliances or
manage your electricity use better?

12
Responses

03:03
Average time to complete

Active
Status

1 Using renewable energy resourc…

2 Reducing Energy Costs

3 Reducing carbon emissions

Yes 3

No 9

Don't know 0

Rainfall or Precipitation 3

Solar Irradiance and Cloud Cover 2

Temperature 8

Storms and Extreme Weather Inf… 4



4. Do you use Home energy storage system?

5. Which variables or metrics related to energy usage trends are most relevant to you? Select ALL that apply.

6. Which of these energy efficiency metrics or benchmarks would you like to track or visualise? Select all that
apply.

7. Do you use solar panels?

Yes 1

No 9

Don't know 2

Total carbon emissions 7

Seasonal energy consumption 2

Carbon intensity (per unit of ele… 5

Total renewable energy generati… 5

Energy consumption per applia… 5

Energy usage per square foot 3

Energy efficiency rating 10

Carbon Intensity 4

Yes 5

No 7

Don't Know 0



8. Which of these demographic factors would you like the ability to compare and benchmark energy usage
trends across? Select ALL that apply.

9. How do you utilise the generated renewable energy? Are you primarily self-consuming it or exporting it
back to the grid?

10. Are there any specific visualization formats or tools that you prefer when analyzing energy usage trends
data? Select all that apply.

Household size 4

Total household income 10

Location 10

Time of the year (season) 5

Self-consuming 7

Exporting back to the grid 0

Don't Know 5

Bar chart 5

Scatter Plot 3

Heat Maps 6

Line Chart 6

Histogram 2

Pie Chart 7

Box Plot 2



11. Are there any other visualisations that would be useful to you? Please mention them here.

12
Responses

Latest Responses
"No"

"Nope"

"NA"

5 respondents (42%) answered No for this question.

12. If you are conducting any research in Energy Informatics or related fields, would it be helpful for you to
have access to aggregated data or individual household-level data for conducting your research?

13. Any additional comments?

12
Responses

Latest Responses
"No"

"None"

"NA"

5 respondents (42%) answered No for this question.

No NilMatrix plot

Geographic Maps

idk
Nope

Not conducting research 5

Aggregated data 3

Individual household-level data 4

Both 0

No None
Nil

knope



Appendix B

System UI screenshots
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