
A Framework for Modular Syntax and
Proofs in Agda

Manuel Brea Carreras
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science
Computer Science

School of Informatics
University of Edinburgh

2023

Abstract
Proof assistants have the potential to greatly aid researchers in programming

language theory, but their use remains hard and time-consuming. One aspect of
this is the lack of elegant component reuse, forcing researchers to copy and paste
definitions and proofs, patching as necessary in an ad-hoc manner. This causes a
proliferation of duplicated code, which is a practical issue for both researchers and
writers of teaching materials, as it makes proof developments hard to maintain.
Some approaches to writing modular datatypes, predicates and proofs about them
have been presented, but most are specialized for the Coq proof assistant. I present
an improvement over the previous-best published approach to modular proofs
in the Agda proof assistant in order to bridge the gap between Coq and Agda
in this regard. I demonstrate the usefulness of this approach by implementing a
modular version of the PCF calculus—which supports first-class functions, natural
numbers as a primitive and recursion—and its proof of type-safety as a case study,
which was not possible with the approach I improve upon. Finally, I explore the
limitations of the approach with an application to the meta-theory of gradually
typed languages.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics
policy. It did not involve any aspects that required approval from the Informatics
Research Ethics committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

(Manuel Brea Carreras)

ii

Acknowledgements
Thank you to my supervisor, Prof Philip Wadler, for the valuable feedback and
guidance provided throughout this project.

iii

Table of Contents

1 Introduction 1
1.1 My Contribution . 4
1.2 Expected Background . 5

2 Background 6
2.1 Monolithic Implementation and the Expression Problem 6
2.2 Data Types à la Carte . 7
2.3 Modular Type-Safety Proofs in Agda 9

3 Proposed Methodology 13
3.1 Modular Syntax . 13
3.2 Modular Recursive Functions . 14
3.3 Structuring the Project . 17
3.4 Delayed Lifting . 20
3.5 Modular Predicates . 21
3.6 Type Preservation . 23

4 Case Study: PCF 25
4.1 Type Syntax . 25
4.2 Expression Syntax . 27
4.3 Context and Lookup Relation . 27
4.4 Typing Relation . 27
4.5 Values . 28
4.6 Substitution . 29
4.7 Reduction Relation . 31
4.8 Preservation . 32
4.9 Progress . 35

iv

5 Limitations: Cast Calculus 38

6 Conclusions and Future Work 40

Bibliography 41

A Additional Listings 45
A.1 Helper Script for Instantiating Language Variant 45
A.2 Helper Script for Checking Instantiated Variant 46
A.3 Modular PCF Listings . 47

A.3.1 Expression Syntax . 47
A.3.2 Context . 48
A.3.3 Lookup Relation . 48
A.3.4 Typing . 49
A.3.5 Substitution . 51
A.3.6 Value . 57
A.3.7 Reduction Relation . 58
A.3.8 Preservation . 60
A.3.9 Progress . 62

v

Chapter 1

Introduction

Research in programming language theory usually involves long proofs about a
language definition. The difficulty in these proofs often stems from their length
and tedium, which makes it hard to keep track of necessary changes to a proof
whenever the corresponding language definition changes (Aydemir et al., 2005).

Proof assistants are well-equipped to help with these proofs. First, they
enforce consistency between definitions and proofs about them. Second, they
provide a very high degree of trust: if a proof assistant accepts a proof, the
researcher can be confident that the statement is true. Lastly, they enable new
avenues for automatic verification of a compiler implementation: it is possible
to prove correctness of programs in cases where verification via testing would be
computationally expensive (Cockx et al., 2022).

The POPLMark (Aydemir et al., 2005) and POPLMark Reloaded (Abel et al.,
2019) challenges provide benchmarks to evaluate and compare the usability of
proof assistants, with the ultimate goal of driving adoption. One aspect they
consider is component reuse, that is, the ability to reuse parts of definitions and
proofs. Unfortunately, this is an unsolved problem (Forster and Stark, 2020).
Reuse of proofs is commonly done through copy-pasting code and patching parts
of it as needed. Besides being inelegant, developments written in this way are
hard-to-maintain due to the large amount of code duplication.

This is not just a theoretical problem: it is a common pattern in both academic
research and teaching materials for proof developments about the theory of
programming languages to be based on a well-known base language with an
interesting component added to it. The focus is on the new component, but the
whole language must be formalized. Academic examples are the multitude of cast

1

Chapter 1. Introduction 2

and blame calculi in the theory of gradual typing (Siek and Chen, 2021; Siek and
Taha, 2006, 2007; Siek, Thiemann, et al., 2021; Siek, Vitousek, et al., 2015), which
often use a STLC (Simply Typed Lambda Calculus) (Pierce, 2002) as the base.
In teaching, the problem is even more exacerbated: if an author wishes to iterate
on the formalization of the base language in their textbook, they will need to also
update all subsequent chapters that add constructs to that base language. Chapter
More of PLFA, for example, (Wadler et al., 2022) introduces a variety of additional
language features to PCF (Programming Computable Functions), which they use
as their base language. In Types and Programming Languages (Pierce, 2002),
while not using a proof assistant, the problem is clear: many chapters consider
some additional interesting construct added to the STLC. In fact, the authors
developed the specialized preprocessor TinkerType (Levin and Pierce, 2003) to
generate the multiple definitions and keep them consistent; however while the
authors speculate on ways this tool can be integrated with proof assistants, they
do not attempt to do this.

To explore possible solutions to this problem in proof assistants, we must first
consider the simpler case in traditional programming languages. In this context,
Wadler (1998) named it the expression problem. In his own words:

“The goal is to define a datatype by cases, where one can add new
cases to the datatype and new functions over the datatype, without
recompiling existing code, and while retaining static type safety (e.g.,
no casts).”

The proposed solutions to the problem in proof assistants find their roots in
Data Types à la Carte (DTC) (Swierstra, 2008), which uses Haskell. In DTC, a
monolithic datatype is broken down into smaller features, each of them represented
as a functor. Swierstra (2008) gives the example of integer and addition features,
represented as:

data Val e = Val Int
data Add e = Add e e

Features are combined via the functor co-product :+:, and the expression type is
instantiated as the fixpoint of the feature functors:

data Fix f = In (f (Fix f))
type Expr = Fix (Val :+: Add)

Chapter 1. Introduction 3

With some additional machinery for defining usable constructors and an interface
to define recursive functions over the modular datatype, this approach elegantly
solves the expression problem in Haskell. Unfortunately, a naive translation of
this technique into a proof assistant will be rejected: the Fix datatype will fail the
strict positivity check, and the suggested approach of defining recursive functions
over the modular datatype will fail the termination check.

These issues are significant. Proof assistants generally work by taking ad-
vantage of the Curry-Howard correspondence (Pierce, 2002). Informally, this
highlights a correspondence between logic systems and programming languages:
every logical statement corresponds to a type in the programming language, and
every proof of the statement corresponds to a procedure that constructs an element
of the type. Thus, in order to ensure the logic of a proof assistant is consistent (i.e.
free of contradictions), we must make sure it is impossible to construct an element
of the empty type. Non-terminating functions and non-strictly-positive datatypes
can be used to construct elements of the empty type, so they are forbidden. How-
ever, since it is undecidable to determine whether a program is terminating, these
checks are generally very conservative and reject many terminating programs.

Exploration on how to solve the expression problem in proof assistants has
been limited, and since the first attempt over ten years ago, we mainly have four
approaches to consider; all of them are adaptations of DTC. First, Schwaab and
Siek (2013) suggest appeasing the strict positivity checks by replacing the general
formulation of functors with the more restrictive class of polynomial functors. This
works, but at the cost of limiting the expressiveness of the approach. On top of
this, they do not manage to solve the issue with the termination checker.

Delaware et al. (2013) and Keuchel and Schrijvers (2013) respectively use
Church encodings and techniques from Datatype-Generic Programming to define
appropriate fixpoint types, folds and algebras over them (as an alternative to
recursive functions). This resolves both the strict-positivity and termination
errors while being more expressive than the approach of Schwaab and Siek (2013).
However, the resulting definitions are lengthy and hard to understand for non-
experts (Forster and Stark, 2020).

Finally, Forster and Stark (2020) present a new observation. Rather than
instantiating the fixpoint of functors dynamically (i.e. at runtime), we can do
it statically (i.e. before compile-time). In the context of the previous Haskell
example, this would be done by writing:

Chapter 1. Introduction 4

data Expr = InVal (Val Expr) | InAdd (Add Expr)

Translated to a proof assistant, this would pass the strict positivity check because
the compiler is able to statically check that both the functors Val and Add are
strictly-positive, whereas it knows nothing about an arbitrary functor argument f.
Forster and Stark (2020) then provide an external tool—an extension to Autosubst
2 (Kaiser et al., 2017)—to generate such definitions with less boilerplate, and
use MetaCoq (Sozeau et al., 2020) commands to aid in the definition of modular
functions and proofs. The resulting approach is very expressive, and results in
modular code closer to the monolithic version than previous alternatives.

Out of these four approaches, only Schwaab and Siek (2013) targets Agda,
with the remaining three being written for Coq. This fact is not insignificant for
an Agda programmer: Delaware et al. (2013) and Keuchel and Schrijvers (2013)
each provide more than 1000 lines of supporting code that would need to be
translated to Agda, with no guarantee that it would be possible due to the slight
theoretical differences in the two languages. The approach from Forster and Stark
(2020) suffers worse from this, as it relies on an external tool that is specialized
for Coq, as well as in Coq meta-programs.

1.1 My Contribution

I provide a new approach that bridges the gap between Coq and Agda in modular
proof techniques. My approach improves upon Schwaab and Siek (2013) in two
ways. First, it solves the lack of expressiveness by replacing the dynamic fixpoint
of polynomial functors with statically instantiated modular datatypes, similarly
to Forster and Stark (2020). The side effect of this change is that the resulting
definitions are more idiomatic and easy to read. Second, I fix the issue with
termination using an external Agda preprocessing tool built from scratch for this
project. This tool inlines the contents of one module into another, which when
used in tandem with consistent use of module parameters lets Agda recognize the
mutual induction present in our modular functions and prove termination. As an
addendum, I provide some build scripts that help with the use of this tool.

In order to demonstrate the usefulness of my approach, I use it to formalize a
modular version of PCF (Wadler et al., 2022) and its proof of type-safety. PCF is
a simple functional language that can be broken down into four modular features:

Chapter 1. Introduction 5

lambda abstractions, variables, fixpoint construction and natural numbers (acting
as a base type for the language). Lambda abstractions enable first-class functions,
and the fixpoint construction enables recursion. A subset of these features—
lambda abstractions, variables and naturals—constitutes the STLC, which is also
a very common base language in the literature and teaching materials. Nonetheless,
PCF still is a non-trivial language with variable binding, substitution and support
for recursion. The widespread use and interesting features make it an appropriate
case study for my approach.

Finally, I explore the applicability of my approach to a version of the internal
cast calculus (Siek and Taha, 2006; Siek, Vitousek, et al., 2015), which raises an
old software engineering question in a new context: What are the limits of modular
proof techniques, and do we need to design languages with proof modularity in
mind?

1.2 Expected Background

Ideally, the reader would be familiar with functional programming, programming
language theory and its formalization in proof assistants—preferably Agda—at the
level of an introductory course in the topic: Programming Language Foundations
in Agda (Wadler et al., 2022) is the text I use as reference.

While I have aimed to make the explanations as accessible as possible, the
topics at hand often require lengthy explanations even when targeted at other
researchers in the same field (Forster and Stark, 2020; Schwaab and Siek, 2013;
Siek and Chen, 2021; Swierstra, 2008). Adding any further background would
detract from the coverage of my own contributions.

Chapter 2

Background

The development of my approach is easier to understand with appropriate context
on the expression problem, the methods that my approach improves upon and
their limitations. With that in mind, this chapter contains an overview of the
expression problem, how Swierstra (2008) aimed to solve it, the refinements made
by Schwaab and Siek (2013) to make it work in Agda, and the limitations of the
latter method.

To turn the presentation into a cohesive story, I will be using the same calculus
throughout this chapter and my own development in Chapter 3. This calculus
is a simple arithmetic expression language with natural numbers and booleans
as two separate features; the full specification is shown in Figure 2.1. Note that
while this language is not very practical, it serves as a concise example on which
to demonstrate the concepts I will be discussing. Discussions of existing methods
will only work with the expression syntax and recursive functions over it—this
is enough to highlight the limitations—, but for my own method I will discuss
modular predicates, relations and proofs. Lastly, unless otherwise stated, all
remaining code will be in Agda.

2.1 Monolithic Implementation and the Expression
Problem

The most straightforward way of implementing the syntax for our arithmetic lan-
guage is to define a single monolithic datatype. Suppose we begin by implementing
the syntax for natural numbers and addition:

6

Chapter 2. Background 7

data Expr : Set where
nat : N → Expr
u : Expr → Expr → Expr

Consider now that we implement a simple recursive function over this datatype
which counts the number of natural number literals in the expression:

count : Expr → N
count (nat n) = 1
count (e1 u e2) = (count e1) + (count e2)

If we now wish to go back and extend Expr with the syntax for booleans, our
only option is to patch both Expr and count with new cases:

data Expr : Set where
nat : N → Expr
u : Expr → Expr → Expr
true : Expr
false : Expr
if_then_else_ : Expr → Expr → Expr → Expr

count : Expr → Expr
count (nat n) = 1
count (e1 u e2) = count e1 + count e2
count true = 0
count false = 0
count (if e1 then e2 else e3) = count e1 + count e2 + count e3

This is the expression problem. Note that the same issue can be extended to
proofs, since such proofs are just dependently typed functions over the datatype.

2.2 Data Types à la Carte

We can now attempt to rewrite the same expression syntax using the approach
proposed by Swierstra (2008). Note that I will be using Haskell for this section.
The original approach makes heavy use of Haskell type classes, so the Agda
translation quickly becomes very verbose.

Chapter 2. Background 8

Rather than defining a single datatype as in the monolithic approach, we break
down the Expr type into two feature functors, and instantiate the expression type
as a fixpoint of their co-product:

data Fix f = In (f (Fix f))
data ExprN e = Nat Int | Sum e e
data ExprB e = ETrue | EFalse | If e e e

data (f :+: g) a = Inl (f a) | Inr (g a)
type Expr = Fix (ExprN :+: ExprB)

Swierstra (2008) provides two ways of defining recursive functions over this
datatype: with a generic fold over functors—using the Haskell Functor type
class—and by directly defining the recursive function. Both suffer from the same
termination issue when translated to Agda; I will focus on the latter approach.
We define the count function modularly using type classes:

class Count f where
countMod :: Count g ⇒ f (Fix g) → Int

count :: Count f ⇒ Fix f → Int
count (In t) = countMod t

Finally, all that is left is to close the recursive knot by defining instances of
Count:

instance Count ExprN where
countMod (Nat n) = 1
countMod (Add e1 e2) = count e1 + count e2

instance Incr ExprB where
countMod ETrue = 0
countMod EFalse = 0
countMod (If e1 e2 e3) = count e1 + count e2 + count e3

Unfortunately, a naive translation of this approach is rejected by Agda. There
are two main hurdles to overcome:

1. The translated Fix datatype does not satisfy the strict positivity requirements
that are imposed on inductive datatypes in Agda to maintain soundness.
This is because if f is an arbitrary functor, it is assumed that it may use its
argument in a non-strictly-positive way.

Chapter 2. Background 9

2. Agda is not able to verify termination of their version of count. In general,
the mutual recursion needed to define these modular functions is beyond
the capability of the termination checker, as it is not known until runtime
which instance of countMod will be called by count.

Nonetheless, DTC is the foundation for the approach presented in the next
section.

2.3 Modular Type-Safety Proofs in Agda

The key insight from Schwaab and Siek (2013) is that it becomes possible for Agda
to verify strict positivity by restricting the universe of functors Expr is abstracted
over so that by definition the argument to each functor can only be used strictly
positively. This is because Agda must always be able to verify strict positivity
statically. Consider the universe of polynomial functors, defined in Agda as:

infixl 6 _⊕_
infixr 7 _⊗_
data Functor : Set1 where

Id : Functor
Const : Set → Functor
⊕ : Functor → Functor → Functor
⊗ : Functor → Functor → Functor

Additionally, we have the interpretation function that gives the above datatype a
meaning as a functor (i.e. a Set → Set mapping):

[_] : Functor → Set → Set
[Id] B = B
[Const C] B = C
[F ⊕ G] B = [F] B � [G] B
[F ⊗ G] B = [F] B × [G] B

Armed with this, Schwaab and Siek (2013) define a fixpoint type that is be
accepted by Agda:

data Fix (F : Functor) : Set where
inn : [F] (Fix F) → Fix F

Chapter 2. Background 10

The first issue with this approach is the restrictiveness of polynomial functors:
it is impossible to encode first-class functions. This is not an issue for our simple
arithmetic language, whose syntax is encoded as follows:

ExprN : Functor
ExprN = Const N ⊕ (Id ⊗ Id)
ExprB : Functor
ExprB = Const > ⊕ Const > ⊕ (Id ⊗ Id ⊗ Id)
FExpr : Functor
FExpr = ExprN ⊕ ExprB
Expr : Set
Expr = Fix FExpr

pattern nat n = (inj1 n)
pattern _u_ n m = (inj2 (n , m))
pattern true = (inj1 (inj1 tt))
pattern false = (inj1 (inj2 tt))
pattern if_then_else_ e1 e2 e3 = (inj2 (e1 , e2 , e3))

The authors face an issue with the termination checker when implementing
their proof of type preservation. However, the problem is inherent to the way
they write modular recursive functions; our simple count function is enough to
illustrate it:

count-N : ∀ {F : Functor}
→ (count : Fix F → N)
→ [ExprN] (Fix F)
→ N

count-N count (nat n) = 1
count-N count (e1 u e2) = (count e1) + (count e2)

count-B : ∀ {F : Functor}
→ (count : Fix F → N)
→ [ExprB] (Fix F)
→ N

count-B count true = 0

Chapter 2. Background 11

count-B count false = 0
count-B count (if e1 then e2 else e3)

= count e1 + count e2 + count e3

count : Expr → N
count (inn (inj1 exprN)) = count-N count exprN
count (inn (inj2 exprB)) = count-B count exprB

Agda is unable to prove termination of count, as it does not recognize the
mutual induction between count, count-+ and count-N. In fact, this is exactly the
second issue that prevented DTC from being naively adapted to proof assistants.

Chapter 2. Background 12

Types τ,δ ::= N | Bool

Expressions e ::= nat n | e1+ e2 | true | false | if e1 then e2 else e3

Typing Γ ` e : τ

` nat n : N
Nat

` e1 : N ` e2 : N

` e1+ e2 : N
Sum

` true : Bool
True

` false : Bool
False

` e1 : Bool ` e2 : τ ` e3 : τ

` if e1 then e2 else e3 : τ

If

Reduction e1 −→ e2

e1 −→ e′1

e1+ e2 −→ e′1+ e2
ξ-+1

e2 −→ e′2

e1+ e2 −→ e1+ e′2
ξ-+2

nat n1+nat n2 −→ nat (n1+N n2)
β-+

e1 −→ e′1

if e1 then e2 else e3 −→ if e′1 then e2 else e3
ξ-if

if true then e2 else e3 −→ e2
β-if-true

if false then e2 else e3 −→ e3
β-if-false

Figure 2.1: Specification of the simple arithmetic language used throughout this
chapter.

Chapter 3

Proposed Methodology

Recall that the two issues that prevent DTC (Swierstra, 2008) from being usable
in Agda are: the fixpoint of signature functors does not pass the strict positivity
check, and recursive functions defined modularly fail the termination check.

My proposed approach brings two key changes to solve these issues. First,
I instantiate the modular datatype statically—as done by Swierstra (2008)—to
appease the strict positivity checker without having to encode modular datatypes
using a restricted class of functors. Second, I provide an external tool that
automates the inlining of Agda modules at build time. Paired with consistent use
of module parameters, this enables Agda to statically determine that modular
functions use valid mutual induction, and thus pass the termination check.

I first introduce my method using the syntax of the simple language specified in
Figure 2.1 and the count function from Chapter 2. Next, I show how to structure
a larger project and how to define modular predicates, relations and proofs with
my method. For this, I implement modular versions of the typing and reduction
relations shown in Figure 2.1, as well as a proof of type preservation. For brevity,
imports will be omitted from code listings except when needed to highlight a
particular point.

3.1 Modular Syntax

Recall the fixpoint type from Schwaab and Siek (2013):

data Fix (F : Functor) : Set where
inn : [F] (Fix F) → Fix F

13

Chapter 3. Proposed Methodology 14

The issue is that, in order for Agda to allow this definition, it needs to first be
able to verify that every element of the Functor datatype is strictly positive. The
restriction to polynomial functors achieves this, but at great cost in expressiveness.
Instead, with a little refactoring we can rely on Agda’s positivity checker more
effectively. The key idea is to define the signature functors ahead of the fixpoint
type, and hardcode said functors into its definition. In other words, we would
build the datatype as follows:

data ExprN (Expr : Set) : Set where
nat : N → ExprN Expr
u : Expr → Expr → ExprN Expr

data ExprB (Expr : Set) : Set where
true : ExprB Expr
false : ExprB Expr
if_then_else_ : Expr → Expr → Expr → ExprB Expr

data Expr : Set where
↑exprN : ExprN Expr → Expr
↑exprB : ExprB Expr → Expr

This way, Agda can verify that each signature functor (ExprN and ExprB) is
strictly positive when building the polarity graph, and thus allow the definition of
Expr to pass the strict positivity check.

3.2 Modular Recursive Functions

In order to understand the issue with termination in modularly-defined recursive
functions, consider the count function defined over the Expr datatype from Section
3.1, counting the number of natural literals in an expression:

count-N : (Expr → N) → ExprN Expr → N
count-N count (nat _) = 1
count-N count (e1 u e2) = count e1 + count e2
count-B : (Expr → N) → ExprB Expr → N
count-B count true = 0
count-B count false = 0
count-B count (if e1 then e2 else e3) = count e1 + count e2 + count e3

Chapter 3. Proposed Methodology 15

count : Expr → N
count (↑exprN e) = count-N count e
count (↑exprB e) = count-B count e

The function count will fail the termination check because it passes itself as an
argument to another function, and Agda fails to identify the mutual recursion. In
this case, the obvious solution is to rewrite this making use of forward declarations:

count : Expr → N
count-N : ExprN Expr → N
count-N (nat _) = 1
count-N (e1 u e2) = count e1 + count e2
count-B : ExprB Expr → N
count-B true = 0
count-B false = 0
count-B (if e1 then e2 else e3) = count e1 + count e2 + count e3
count (↑exprN e) = count-N e
count (↑exprB e) = count-B e

However, once each modular feature is separated into its own file, this will
no longer be possible; passing the top-level count function as an argument to
the modular functions will be inevitable. Therefore, to enable these modular
functions to work with the current termination checker in Agda, we must somehow
automate the rewriting of the first form into the second. Since this is only an
issue whenever each function is in a separate file, we focus on that case.

My proposed solution combines the use of parameterized modules with a new
external tool that inlines the content of a module into another. Consider the
following code, split among several files in the same directory:

-- In file CountTemplate.agda
module CountTemplate where
count : Expr → N
---!!!(INLINE_MODULE CountN)
---!!!(INLINE_MODULE CountB)
count (↑exprN e) = count-N e
count (↑exprB e) = count-B e
-- In file CountN.agda

Chapter 3. Proposed Methodology 16

module CountN (count : Expr → N) where
count-N : ExprN Expr → N
count-N (nat _) = 1
count-N (e1 u e2) = count e1 + count e2
-- In file CountB.agda
module CountB (count : Expr → N) where
count-B : ExprB Expr → N
count-B true = 0
count-B false = 0
count-B (if e1 then e2 else e3) = count e1 + count e2 + count e3

We then run the command

agda-inline CountTemplate.agda Count.agda Count

where the arguments, in order, are the input template file, output file, and name
of the top-level module in the output file.

After running the command, the file Count.agda will be created with the
following contents:

module Count where
count : Expr → N
countLeaf : (Expr → N) → LeafExpr Expr → N
countLeaf base = 1
countNode : (Expr → N) → NodeExpr Expr → N
countNode (node t1 t2) = count t1 + count t2
count (↑exprLeaf t) = countLeaf t
count (↑exprNode t) = countNode t

While this solves the problem, it is time-consuming to repeatedly run the
agda-inline command during development, and your preferred editor plugin will
likely not work as intended in the template file. To avoid this, we can make the
template file compile in the interim without changing the output of agda-inline
with the following code:

module CountTemplate where
count : Expr → N
---!!!(INLINE_MODULE CountN)

Chapter 3. Proposed Methodology 17

---!!!(INLINE_MODULE CountB)
---!!!(REMOVE_START)
open import CountN count
open import CountB count
{-# TERMINATING #-}
---!!!(REMOVE_END)
count (↑exprN e) = count-N e
count (↑exprB e) = count-B e

Everything between the REMOVE_START and REMOVE_END commands
will be removed from the file by agda-inline during processing. The termination
error in this template file can optionally be silenced in this way by adding {-#
TERMIATING #-} right before the REMOVE_END command.

3.3 Structuring the Project

The meta-programming tool covered in Section 3.2 relies on an appropriate division
of the project into separate files. Thus, before proceeding to develop functions and
proofs over modular datatypes, this division warrants a detailed explanation. Note
that, while there may be alternative ways to structure a project, this structure
proved useful with the case studies I worked with. See Figure 3.1 for an overview
of the final file structure of our simple arithmetic language (excluding any files
autogenerated at build time).

With this project structure, each modular datatype and function is defined in
multiple files. First, there is one file for each feature in the src/Features directory
that implements the datatype or function. This is used to define the modular
implementations (e.g. count-N and count-B). Second, we have one file for each
language in the src/Languages directory, where the particular datatype or function
is instantiated from the modular implementations provided by each feature.

Each modular datatype and function should have access to previously defined
datatypes and functions. In our example, the count function needs access to the
Expr datatype. This is done by importing the complete datatype that is needed;
in our example, we would rewrite the modular expression syntax to follow this
structure as follows:

-- In file src/Features/Naturals/Expr.agda

Chapter 3. Proposed Methodology 18

src
Features

Naturals
Expr.agda
Typing.agda
Step.agda
Preservation.agda

Booleans
Expr.agda
Typing.agda
Step.agda
Preservation.agda

Languages
ArithExpr

Expr.agda
Typing.agda
Step.agda
PreservationTemplate.agda
Type.agda

Figure 3.1: File tree of the development of our simple arithmetic language. Each
directory inside Features contains all the modular code for a given feature. Conversely,
directories inside Languages contain the global code for a given language formed from
a set of features. Generally every file in the feature folders should have a matching
file in the language folder.

module Features.Naturals.Expr (Expr : Set) where
data ExprN : Set where

nat : N → ExprN
u : Expr → Expr → ExprN

-- ... ExprB is done similarly, omitted here ...

-- In file src/Languages/ArithExpr/Expr.agda
module Languages.ArithExpr.Expr where
data Expr : Set
open import Features.Naturals.Expr Expr public
open import Features.Booleans.Expr Expr public
data Expr where
↑exprN : ExprN → Expr

Chapter 3. Proposed Methodology 19

↑exprB : ExprB → Expr

Then, the next modular datatype or function can import Languages.ArithExpr.Expr
if needed:

-- In file Features/Naturals/Count.agda
open import Languages.ArithExpr.Expr
module Count (count : Expr → N) where
count-N : ExprN → N
count-N (nat _) = 1
count-N (e1 u e2) = count e1 + count e2

There are two issues with this so far:

1. Code within a modular feature should only be able to explicitly mention
global types/functions it explicitly depends on, constructors/functions pro-
vided by that same feature, or from other features when there are explicit
dependencies. However, this is not enforced by Agda; the author is respon-
sible for ensuring this restriction is respected.

2. Directly importing modules defined under Languages/ArithExpr from mod-
ular feature code is not a good pattern, as whenever we may want to reuse a
feature in a different language, we would need to rewrite all of these imports
to point to the corresponding modules in the new language.

The first issue was already present before factoring out code into different files.
Furthermore, it can be useful when it is not possible to fully express a proof or
datatype related to a feature modularly. The author may want to break out of
the modular structure for the problematic lines in the proof, but write everything
else modularly.

The second issue has a simple solution. We can use an external script (presented
in Appendix A.1) to generate stubs at the top level of the source directory
automatically for each file in a given language folder. These stubs simply re-export
the corresponding module from the language. An example generated stub is:

-- In file src/Expr.agda
open import Languages.ArithExpr.Expr public

Chapter 3. Proposed Methodology 20

We can now replace all imports of Languages.ArithExpr.Expr with imports of
Expr, and whenever we wish to work with a different language we can simply run
the script again to update the stubs. This approach extends effortlessly to the
rest of the constructions we will present.

3.4 Delayed Lifting

Similarly to Swierstra (2008) and Schwaab and Siek (2013), we need to introduce
a relation that keeps track of a way to inject a smaller datatype into a larger one.

variable
` : Level

record _<:_ (A B : Set `) : Set ` where
field

inj : A → B
retr : B → Maybe A
retract-works : ∀ {x} → just x ≡ retr (inj x)

apply : {A B : Set `} → {{A <: B}} → A → B
apply {{A<:B}} a = _<:_.inj A<:B a
retract : {A B : Set `} → {{A <: B}} → B → Maybe A
retract {{A<:B}} b = _<:_.retr A<:B b

data LazyCoercion (B : Set `) : Set (lsuc `) where
delay : {A : Set `} → {{A <: B}} → A → LazyCoercion B

coerce : {B : Set `} → LazyCoercion B → B
coerce (delay a) = apply a

The name LazyCoercion is used to emphasize that the coercion is delayed until
the last moment possible. This avoids issues with unification in Agda (Schwaab
and Siek, 2013).

Note that we are applying instance arguments to emulate the use of typeclasses
in Haskell. This lets us avoid having to explicitly pass an instance of A <: B to
apply, retract and delay. All that is left is to define the relevant instances for the
modular expression syntax. For example, the instace for ExprN would be defined
as follows

Chapter 3. Proposed Methodology 21

-- In file src/Languages/ArithExpr/Expr.agda
instance

<:exprN : ExprN <: Expr
<:.inj <:exprN = ↑exprN
<:.retr <:exprN (↑exprN x) = just x
<:.retr <:exprN _ = nothing
<:.retract-works <:exprN = refl

Instances of _<:_ are mechanical and repetitive, so they will be omitted from
listings except to highlight a particular point. Assume that such instances are
defined for every modular datatype and relation unless otherwise noted.

3.5 Modular Predicates

Modular predicates, such as typing and reduction relations, are defined similarly
to the modular expression syntax. Consider first the modular typing relation:

-- In file src/Features/Naturals/Typing.agda
module Features.Naturals.Typing (`_⦂_ : Expr → Type → Set) where
data `N_⦂_ : ExprN → Type → Set where
`nat : ∀ {n} → `N (nat n) ⦂ `N
`sum : ∀ {e1 e2} → ` e1 ⦂ `N → ` e2 ⦂ `N
→ `N e1 u e2 ⦂ `N

-- In file src/Features/Booleans/Typing.agda
module Features.Booleans.Typing (`_⦂_ : Expr → Type → Set) where
data `B_⦂_ : ExprB → Type → Set where
`true : `B true ⦂ `Bool
`false : `B false ⦂ `Bool
`if : ∀ {e1 e2 e3 τ} → ` e1 ⦂ `Bool → ` e2 ⦂ τ → ` e3 ⦂ τ

→ `B if e1 then e2 else e3 ⦂ τ

-- In file src/Languages/ArithExpr/Typing.agda
module Languages.ArithExpr.Typing where
data `_⦂_ : Expr → Type → Set
open import Features.Naturals.Typing `_⦂_
open import Features.Booleans.Typing `_⦂_
data `_⦂_ where

Chapter 3. Proposed Methodology 22

↑`N : ∀ {τ e} → `N e ⦂ τ → ` apply e ⦂ τ

↑`B : ∀ {τ e} → `B e ⦂ τ → ` apply e ⦂ τ

Next, the modular reduction relation can be defined similarly:

-- In file src/Features/Naturals/Step.agda
module Features.Naturals.Step (_—→_ : Expr → Expr → Set1) where
data _—→N_ : ExprN → LazyCoercion Expr → Set1 where

ξ-+1 : ∀ {e1 e1' e2} → e1 —→ e1'
→ (e1 u e2) —→N delay (e1' u e2)

ξ-+2 : ∀ {e1 e2 e2'} → e2 —→ e2'
→ (e1 u e2) —→N delay (e1 u e2')

β-+ : ∀ {n m}
→ ((apply (nat n)) u (apply (nat m))) —→N delay (nat (n + m))

-- In file src/Features/Booleans/Step.agda
module Features.Booleans.Step (_—→_ : Expr → Expr → Set1) where
data _—→B_ : ExprB → LazyCoercion Expr → Set1 where

ξ-if : ∀ {e1 e1' e2 e3} → e1 —→ e1'
→ (if e1 then e2 else e3) —→B delay (if e1' then e2 else e3)

β-if-true : ∀ {e2 e3}
→ (if (apply true) then e2 else e3) —→B delay e2

β-if-false : ∀ {e2 e3}
→ (if (apply false) then e2 else e3) —→B delay e3

-- In file src/Languages/ArithExpr/Step.agda
module Languages.ArithExpr.Step where
data _—→_ : Expr → Expr → Set1
open import Features.Naturals.Step _—→_
open import Features.Booleans.Step _—→_
data _—→_ where
↑stepN : ∀ {e1 e2} → e1 —→N e2 → apply e1 —→ coerce e2
↑stepB : ∀ {e1 e2} → e1 —→B e2 → apply e1 —→ coerce e2

In the case of the step relation, it is not possible to define an instance of _<:_
due to a strict positivity error I was unable to resolve. Fortunately, this is not
relevant for my approach, as in this case I can instead define a simpler relation
that is sufficient for my purposes:

Chapter 3. Proposed Methodology 23

record _↑_ (A B : Set `) : Set ` where
field

inj : A → B
lift : {A B : Set `} → {{A ↑ B}} → A → B
lift {{A↑B}} a = _↑_.inj A↑B a

We then define instances of _↑_ as in the following example:

instance
lift-stepN : ∀ {e1 : ExprN} {e2 : LazyCoercion Expr}
→ (e1 —→N e2) ↑ (apply e1 —→ coerce e2)

lift-stepN = record { inj = ↑stepN }

3.6 Type Preservation

The statements for type preservation for naturals and booleans mirror the global
statement, but replacing the global typing relation and step relation in the
arguments with the version for naturals and booleans respectively. The proofs are
also very similar to what we would write in a monolithic version of this language:

-- In file Features/Naturals/Preservation.agda
module Features.Naturals.Preservation

(preservation : ∀ {e e' : Expr} {τ : Type}
→ (e —→ e')
→ ` e ⦂ τ

→ ` e' ⦂ τ)
where

preservationN : ∀ {e : ExprN} {e' : LazyCoercion Expr} {τ : Type}
→ (e —→N e')
→ `N e ⦂ τ

→ ` coerce e' ⦂ τ

preservationN (ξ-+1 e1→e1') (`sum `e1 `e2) =
apply (`sum (preservation e1→e1' `e1) `e2)

preservationN (ξ-+2 e2→e2') (`sum `e1 `e2) =
apply (`sum `e1 (preservation e2→e2' `e2))

preservationN β-+ (`sum `e1 `e2) = apply `nat

Chapter 3. Proposed Methodology 24

-- In file Features/Booleans/Preservation.agda
module Features.Booleans.Preservation

(preservation : ∀ {e e' : Expr} {τ : Type}
→ (e —→ e')
→ ` e ⦂ τ

→ ` e' ⦂ τ)
where

preservationB : ∀ {e : ExprB} {e' : LazyCoercion Expr} {τ : Type}
→ (e —→B e')
→ `B e ⦂ τ

→ ` coerce e' ⦂ τ

preservationB (ξ-if cond→cond') (`if `cond `t `f) =
apply (`if (preservation cond→cond' `cond) `t `f)

preservationB β-if-true (`if `cond `t `f) = `t
preservationB β-if-false (`if `cond `t `f) = `f

For the global type preservation proof, we need to make use of the external
program presented in Section 3.2. We write the following template file:

-- In file Languages/ArithExpr/PreservationTemplate.agda
preservation : ∀ {e e' : Expr} {τ : Type}
→ (e —→ e')
→ /0 ` e ⦂ τ

→ /0 ` e' ⦂ τ

---!!!(INLINE_MODULE PreservationN)
---!!!(INLINE_MODULE PreservationB)
preservation (↑stepN st) (↑`N wt) = preservationN st wt
preservation (↑stepB st) (↑`B wt) = preservationB st wt

To generate the full proof, we need to run the following command in the same
directory as the template file:

agda-inline PreservationTemplate.agda Preservation.agda Preservation

The script presented in Appendix A.1 can also automatically process all
template files in a given language directory.

Chapter 4

Case Study: PCF

The arithmetic language presented in Chapter 3 is very primitive, and lacks more
interesting features such as variable binding and first-class functions. In order to
demonstrate the applicability of the proposed methodology to a more practical
language, this chapter presents a modular development and type-safety proof of
PCF (Wadler et al., 2022). In total, the resulting formalization takes 1053 lines
of code (741 excluding imports).

The syntax and semantics of PCF are summarized in Figure 4.1. The language
decomposes naturally into four modular features: variables, lambda abstractions,
naturals and fixpoint. PCF has the convenient property that all the typing
and reduction rules mention only a single feature, so we need not worry about
dependencies between features.

For conciseness, definitions that are unchanged from the monolithic version or
are otherwise not relevant to the discussion are omitted and listed in Appendix A.
I will refer to those definitions as appropriate. I will also continue to omit import
statements except when instantiating parameterized modules, and instances of
<: and _↑_.

4.1 Type Syntax

The modular type syntax for naturals and lambda abstractions is defined similarly
to what we have seen before:

module Features.Lambda.Type (Type : Set) where
data Typeλ : Set where

⇒ : Type → Type → Typeλ

25

Chapter 4. Case Study: PCF 26

module Features.Naturals.Type (Type : Set) where
data TypeN : Set where

`N : TypeN

However, we have not considered what to do when a feature does not introduce
any new types. There are two options: either do not create a definition and skip
the module when assembling a top-level definition, or create a datatype definition
with no members. We use the latter in order to maintain a uniform structure
for all modular features. Thus, the type syntax for variables would be defined as
follows:

module Features.Variables.Type (Type : Set) where
data TypeV : Set where

empty : ⊥ → TypeV

The type syntax for the fixpoint operator is also empty and defined similarly,
so it is omitted here.

Finally, we define the type syntax for the PCF language by combining the
modular definitions as we have done before:

module Languages.PCF.Type where
data Type : Set
open import Features.Naturals.Type Type public
open import Features.Variables.Type Type public
open import Features.Fixpoint.Type Type public
open import Features.Lambda.Type Type public
data Type where
↑typeN : TypeN → Type
↑typeV : TypeV → Type
↑typeλ : Typeλ → Type
↑typeF : TypeF → Type

Note that the instances of TypeX <: Type (where X stands for any appropriate
suffix) are omitted here to avoid excessive repetition.

Chapter 4. Case Study: PCF 27

4.2 Expression Syntax

The modular expression syntax is also similar to the monolithic version from
Wadler et al. (2022). The modular syntax for the lambda feature is listed below;
the rest are defined similarly in Appendix A.3.1.

module Features.Lambda.Expr (Expr : Set) where
data Exprλ : Set where

λ_⇒_ : Id → Expr → Exprλ
· : Expr → Expr → Exprλ

Combining the modular definitions into the expression syntax for PCF is also
done in the same way as before; refer to the aforementioned appendix for the full
listing.

4.3 Context and Lookup Relation

Both the Context datatype and the lookup relation _3_⦂_ do not depend on
any particular feature. Therefore, we can use a single shared definition for each,
unchanged from the monolithic definition. They are defined in Appendix A.3.2
and A.3.3, respectively.

4.4 Typing Relation

The typing relation is defined modularly. Not much is changed from the modular
typing relation we defined for the primitive arithmetic language, but it is worth
highlighting that each of the modular typing relations is only indexed by the
modular expression syntax datatype from that same feature, not the global
expression syntax.

The modular typing relation for the lambda feature is listed below for illustra-
tion; the rest are defined similarly and can be found in Appendix A.3.4.

module Features.Lambda.Typing
(_`_⦂_ : Context → Expr → Type → Set1) where

infix 4 _`λ_⦂_
data _`λ_⦂_ : Context → Exprλ → Type → Set1 where

Chapter 4. Case Study: PCF 28

`λ : ∀ {Γ τ δ x e}
→ (Γ . x ⦂ τ) ` e ⦂ δ

→ Γ `λ λ x ⇒ e ⦂ apply (τ ⇒ δ)

`· : ∀ {Γ τ δ} {e1 : Expr} {e2 : Expr}
→ Γ ` e1 ⦂ apply (τ ⇒ δ)
→ Γ ` e2 ⦂ τ

→ Γ `λ e1 · e2 ⦂ δ

Remarkably, the typing rules are still very similar to the monolithic counter-
parts; the only additional boilerplate that has been added is the need to call apply
wherever we mention concrete type syntax. Unfortunately, this does not seem
to be easily avoidable: some typing rules require the relation to be indexed over
arbitrary types, such as `·.

The global typing relation is defined as in the previous case study, and is listed
in Appendix A.3.4.

4.5 Values

Values can also be defined modularly, as each feature may introduce its own.
However, just as in the syntax for types, both the variables and fixpoint features
provide an empty Value relation. Listed below is the definition of values for the
lambda feature:

module Features.Lambda.Value (Value : Expr → Set) where
data Valueλ : Exprλ → Set where

V-λ : ∀ {x e}
→ Valueλ (λ x ⇒ e)

Note that the modular value relations are also indexed over their respective
modular syntax types rather than the global syntax type Expr.

The rest of the modular value datatype definitions and the global instantiation
for PCF are listed in Appendix A.3.6.

Chapter 4. Case Study: PCF 29

4.6 Substitution

For PCF, it is enough to restrict ourselves to substitution by closed terms, which
simplifies the development (Wadler et al., 2022). We can divide the work needed
in two parts: the first is the substitution function _[_:=_] : Expr → Id → Expr →
Expr, which is not dependently typed and acts on expression syntax. The second
part is the proof that such a substitution function preserves types. Since we will
repeat the type declarations for the latter and its related lemmas in every feature,
it is worth defining the types in an auxiliary file for later reuse. As an example,
we show how to define the type for the rename lemma:

module Shared.TypeSignaturesSub where
tp-rename : Set1
tp-rename = ∀ {Γ Δ}
→ (∀ {x τ} → Γ 3 x ⦂ τ → Δ 3 x ⦂ τ)
→ (∀ {e τ} → Γ ` e ⦂ τ → Δ ` e ⦂ τ)

The types for the rest of the lemmas are defined similarly; the types themselves
are unchanged from the monolithic version, and they are listed in Appendix A.3.5.

The lemmas ext, weaken, drop and swap do not need to be defined recursively,
and thus can be defined just once. Since their definitions are the same as the
monolithic version, they are listed in Appendix A.3.5.

With all this set up, we can now define the modular functions. We show
the definition for the lambda feature as an example; refer to the aforementioned
appendix for the rest.

module Features.Lambda.Substitution
(_[_:=_] : Expr → Id → Expr → Expr)
(rename : tp-rename)
(subst : tp-subst _[_:=_])
(ext : tp-ext)
(weaken : tp-weaken)
(drop : tp-drop)
(swap : tp-swap)
where

infix 9 _[_:=_]λ
[:=_]λ : Exprλ → Id → Expr → Expr

Chapter 4. Case Study: PCF 30

(λ y ⇒ e1) [x := e2]λ with y ?
= x

... | yes _ = apply (λ y ⇒ e1)

... | no _ = apply (λ y ⇒ (e1 [x := e2]))
(e1 · e1′) [x := e2]λ = apply ((e1 [x := e2]) · (e1′ [x := e2]))
renameλ : ∀ {Γ Δ}
→ (∀ {x τ} → Γ 3 x ⦂ τ → Δ 3 x ⦂ τ)
→ (∀ {e τ} → Γ `λ e ⦂ τ → Δ `λ e ⦂ τ)

renameλ ρ (`λ `e) = `λ (rename (ext ρ) `e)
renameλ ρ (`· `e1 `e2) = `· (rename ρ `e1) (rename ρ `e2)
substλ : ∀ {Γ x} {e1 : Exprλ} {e2 : Expr} {τ δ}

→ /0 ` e2 ⦂ τ

→ (Γ . x ⦂ τ) `λ e1 ⦂ δ

→ Γ ` apply (e1 [x := e2]λ) ⦂ δ

substλ {x = y} `e2 (`λ {x = x} `e) with x ?
= y

... | yes refl = apply (`λ (drop `e))

... | no x6≡y = apply (`λ (subst `e2 (swap x 6≡y `e)))
substλ `e2 (`· x y) = apply (`· (subst `e2 x) (subst `e2 y))

We can now combine the modular definitions shown before:

module Languages.PCF.SubstitutionTemplate where
infix 9 _[_:=_]
[:=_] : Expr → Id → Expr → Expr
rename : tp-rename
subst : tp-subst _[_:=_]
-- ... ext, weaken, drop, swap definitions go here ...
---!!!(INLINE_MODULE Features.Naturals.Substitution)
---!!!(INLINE_MODULE Features.Variables.Substitution)
---!!!(INLINE_MODULE Features.Lambda.Substitution)
---!!!(INLINE_MODULE Features.Fixpoint.Substitution)
↑exprN a [x := b] = a [x := b]N
↑exprV a [x := b] = a [x := b]V
↑exprλ a [x := b] = a [x := b]λ
↑exprF a [x := b] = a [x := b]F
rename ρ (↑`N wt) = ↑`N (renameN ρ wt)

Chapter 4. Case Study: PCF 31

rename ρ (↑`V wt) = ↑`V (renameV ρ wt)
rename ρ (↑`λ wt) = ↑`λ (renameλ ρ wt)
rename ρ (↑`F wt) = ↑`F (renameF ρ wt)
subst `e1 (↑`N `e2) = substN `e1 `e2
subst `e1 (↑`V `e2) = substV `e1 `e2
subst `e1 (↑`λ `e2) = substλ `e1 `e2
subst `e1 (↑`F `e2) = substF `e1 `e2

4.7 Reduction Relation

The modular step relation is also similar to the monolithic version, although it is
necessary to make use of the apply function whenever the left-hand side of a rule
goes more than one level deep in the expression syntax tree. Note also that the
right-hand side of the modular step relation is a LazyCoercion Expr; this is because
the right-hand side could contain an expression provided by a different feature.

The modular step relation for lambda is listed below; the rest are defined
similarly and can be found in Appendix A.3.7.

module Features.Lambda.Step (_—→_ : Expr → Expr → Set1) where
data _—→λ_ : Exprλ → LazyCoercion Expr → Set1 where

ξ-·1 : ∀ {e1 e1′ e2}
→ e1 —→ e1′

→ (e1 · e2) —→λ delay (e1′ · e2)

ξ-·2 : ∀ {e1 e2 e2′}
→ e2 —→ e2′

→ (e1 · e2) —→λ delay (e1 · e2′)

β-λ : ∀ {e1 e2 : Expr} {x : Id}
→ Value e2

→ (apply (λ x ⇒ e1) · e2) —→λ delay (e1 [x := e2])

The global step relation is defined just like the previous example; refer to
Appendix A.3.7 for the full listing.

Chapter 4. Case Study: PCF 32

4.8 Preservation

Just as in substitution, the type of the preservation proof will be needed for every
feature, so it makes sense to factor it out into an auxiliary file:

tp-preservation : Set1
tp-preservation = ∀ {e e′ : Expr} {τ : Type}
→ (e —→ e′)
→ /0 ` e ⦂ τ

→ /0 ` e′ ⦂ τ

However, attempting to prove the modular preservation statements will high-
light a new issue. Consider the preservation proof for the lambda feature; the first
two cases are straightforward, but the third one is problematic:

module Features.Lambda.Preservation (preservation : tp-preservation) where
preservationλ : ∀ {e : Exprλ} {e′ : LazyCoercion Expr} {τ : Type}
→ e —→λ e′

→ /0 `λ e ⦂ τ

→ /0 ` (coerce e′) ⦂ τ

preservationλ (ξ-·1 e1—→e1′) (`· `e1 `e2) =
apply (`· (preservation e1—→e1′ `e1) `e2)

preservationλ (ξ-·2 e2—→e2′) (`· `e1 `e2) =
apply (`· `e1 (preservation e2—→e2′ `e2))

preservationλ (β-λ v-e2) (`· `f `e2) = ?

Note that the rule β-λ implies that `f is an instance of type /0 ` apply (λ x ⇒
e1) ⦂ apply (τ ⇒ δ). While we know that `f must be equal to apply (`λ `e) for
appropriate `e, we cannot match on that pattern directly without peeking into
constructors for the global relation _`_⦂_, which would break our abstraction.

A solution is to require a canonical forms lemma, which I define as follows:

module Shared.CanonicalForms
(SubType : Set) {{<:type : SubType <: Type}}
(SubExpr : Set) {{<:expr : SubExpr <: Expr}}
(SubValue : SubExpr → Set)

Chapter 4. Case Study: PCF 33

{{<:val : ∀ {e : SubExpr} → (SubValue e) <: Value (apply e)}}
(_`Sub_⦂_ : Context → SubExpr → Type → Set1)
{{<:val : ∀ {Γ e τ} → (Γ `Sub e ⦂ τ) <: (Γ ` (apply e) ⦂ τ)}}
where

tp-canonical-forms : Set1
tp-canonical-forms = ∀

{Γ : Context} {τ : SubType} {e : Expr}
→ (val-e : Value e)
→ (`e : Γ ` e ⦂ apply τ)
→ Σ[s ∈ SubExpr]

Σ[`s ∈ Γ `Sub s ⦂ apply τ]
Σ[val-s ∈ SubValue s]
Σ[e≡s ∈ e ≡ apply s]
(subst (λ {x → Γ ` x ⦂ apply τ}) e≡s `e ≡ apply `s

× subst Value e≡s val-e ≡ apply val-s)

Informally, the lemma states that given a well-typed expression whose type is
provided by a given feature A, if that expression is also a value then

1. the expression syntax is provided by feature A,

2. the typing derivation is provided by feature A and

3. the value is provided by feature A.

We now prove such a lemma for the lambda feature. Another such lemma is
needed for the fixpoint feature, but the proof is no different than the former and
so it is omitted.

module Languages.PCF.CanonicalForms where
canonical-forms-λ : tp-canonical-forms Typeλ Exprλ Valueλ _`λ_⦂_
canonical-forms-λ (↑val-λ {e = e} V-e) (↑`λ `e) =

e , `e , V-e , refl , refl , refl
canonical-forms-λ (↑val-N ()) (↑`N (`caseN _ _ _))
canonical-forms-λ (↑val-V (empty ()))
canonical-forms-λ (↑val-F (empty ()))

Chapter 4. Case Study: PCF 34

Note that this lemma is proved globally: I have not found a way to make this
proof modular. Nonetheless, using this we can now complete the preservation
proof for the lambda feature:

preservationλ (β-λ v-e2) (`· `f `e2) with canonical-forms-λ (apply V-λ) `f
... | _ , `λ `e1 , _ , refl , refl , refl = subst `e2 `e1

A preservation proof for the naturals follows similarly now:

module Features.Naturals.Preservation (preservation : tp-preservation) where
preservationN : ∀ {e : ExprN} {e′ : LazyCoercion Expr} {τ : Type}
→ e —→N e′

→ /0 `N e ⦂ τ

→ /0 ` (coerce e′) ⦂ τ

preservationN (ξ-suc st) (`suc wt) = apply (`suc (preservation st wt))
preservationN (ξ-caseN e1—→e1′) (`caseN `e1 `e2 `e3) =

apply (`caseN (preservation e1—→e1′ `e1) `e2 `e3)
preservationN β-zero (`caseN `e1 `e2 `e3) = `e2
preservationN (β-suc v-v) (`caseN `e1 `e2 `e3)

with canonical-forms-N (apply (v-suc v-v)) `e1
... | _ , `suc `v , _ , refl , refl , refl = subst `v `e3

Finally, the proofs for fixpoint and variables do not require the canonical forms
lemma:

module Features.Fixpoint.Preservation (preservation : tp-preservation) where
preservationF : ∀ {e : ExprF} {e′ : LazyCoercion Expr} {τ : Type}
→ e —→F e′

→ /0 `F e ⦂ τ

→ /0 ` (coerce e′) ⦂ τ

preservationF β-µ (`µ `e) = subst (apply (`µ `e)) `e

module Features.Variables.Preservation (preservation : tp-preservation) where
preservationV : ∀ {e : ExprV} {e′ : LazyCoercion Expr} {τ : Type}
→ e —→V e′

→ /0 `V e ⦂ τ

→ /0 ` (coerce e′) ⦂ τ

preservationV (empty ())

Chapter 4. Case Study: PCF 35

The only thing left to do is to combine the modular statements into the
preservation theorem for PCF. This is done just as in our previous case study,
and we leave it for Appendix A.3.8.

4.9 Progress

The techniques discussed so far allow us to prove progress without further compli-
cations. First, we need an auxiliary datatype:

module Shared.Prog where
data Prog (e : Expr) : Set1 where

step : ∀ {e′} → (e —→ e′) → Prog e
done : Value e → Prog e

The type for progress is also used in every feature, so we factor it out to an
auxiliary module:

tp-progress : Set1
tp-progress = ∀ {e τ}
→ /0 ` e ⦂ τ

→ Prog e

Then, the canonical form lemma makes the modular progress proofs straight-
forward:

module Features.Lambda.Progress
(progress : tp-progress)

where
progressλ : {e : Exprλ} {τ : Type}
→ /0 `λ e ⦂ τ

→ Prog (apply e)
progressλ (`λ _) = done (apply V-λ)
progressλ (`· `f `v) with progress `f
... | step f—→f′ = step (lift (ξ-·1 f—→f′))
... | done val-f with canonical-forms-λ val-f `f | progress `v
... | _ | step v—→v′ = step (lift (ξ-·2 v—→v′))
... | (λ x ⇒ t) , _ , _ , refl , _ , _ | done val-v = step (lift (β-λ val-v))

Chapter 4. Case Study: PCF 36

module Features.Naturals.Progress
(progress : tp-progress)
where

progressN : {e : ExprN} {τ : Type}
→ /0 `N e ⦂ τ

→ Prog (apply e)
progressN `zero = done (apply (v-zero))
progressN (`suc `e) with progress `e
... | done v-e = done (apply (v-suc v-e))
... | step e—→e′ = step (lift (ξ-suc e—→e′))
progressN (`caseN `e1 `e2 `e3) with progress `e1
... | step e1—→e1′ = step (lift (ξ-caseN e1—→e1′))
... | done v-e1 with canonical-forms-N v-e1 `e1
... | `zero , _ , _ , refl , refl , refl = step (lift (β-zero))
... | `suc _ , _ , v-suc v , refl , refl , refl = step (lift (β-suc v))

module Features.Variables.Progress (progress : tp-progress) where
progressV : {e : ExprV} {τ : Type}
→ /0 `V e ⦂ τ

→ Prog (apply e)
progressV (`` ())

module Features.Fixpoint.Progress
(progress : tp-progress)

where
progressF : {e : ExprF} {τ : Type}
→ /0 `F e ⦂ τ

→ Prog (apply e)
progressF (`µ `e) = step (lift β-µ)

Finally, we combine the modular statements into the progress theorem for
PCF using INLINE_MODULE tool commands as before. The listing can be found
in Appendix A.3.9.

Chapter 4. Case Study: PCF 37

Types τ,δ ::= N | τ → δ

Expressions e ::= x | λx ⇒ e | e1 · e2 | zero | suc e

| case e1 [zero ⇒ e2 | suc x ⇒ e3] | µx ⇒ e

Context Γ ::= /0 | Γ,x : τ

Values v ::= λx ⇒ e | zero | suc v

Lookup Γ 3 x : τ

Γ,x : τ 3 x : τ

Z
x 6= y Γ 3 x : τ

Γ,y : δ 3 x : τ

S

Typing Γ ` e : τ

Γ 3 x : τ

Γ ` x : τ

Var
Γ,x : τ ` e : δ

Γ ` λx ⇒ e : τ → δ

Abs
Γ ` e1 : τ → δ Γ ` e2 : τ

Γ ` e1 · e2 : δ

App

Γ ` e1 : N Γ ` e2 : τ Γ,x : N ` e3 : τ

Γ ` case e1 [zero ⇒ e2 | suc x ⇒ e3] : τ

Case
Γ ` zero : N

Zero

Γ ` e : N

Γ ` suc e : N
Suc

Γ,x : τ ` e : τ

Γ ` µx ⇒ e : τ

Fix

Reduction e1 −→ e2

e1 −→ e′1

e1 · e2 −→ e′1 · e2
ξ·1

e2 −→ e′2

e1 · e2 −→ e1 · e′2
ξ·2

(λx ⇒ e) · v −→ e⟦x := v⟧
βλ

e1 −→ e′1

case e1 [zero ⇒ e2 | suc x ⇒ e3]−→ case e′1 [zero ⇒ e2 | suc x ⇒ e3]
ξcase

e −→ e′

suc e −→ suc e′
ξsuc

case zero [zero ⇒ e2 | suc x ⇒ e3]−→ e2
βzero

case suc v [zero ⇒ e2 | suc x ⇒ e3]−→ e3⟦x := v⟧
βsuc

µx ⇒ e −→ e⟦x := µx ⇒ e⟧
βµ

Figure 4.1: Specification of the PCF language, as presented in Programming Language
Foundations in Agda (Wadler et al., 2022).

Chapter 5

Limitations: Cast Calculus

After successfully implementing a modular version of PCF, it is natural to ask how
far this approach can be taken. To answer this, the latter part of this project was
spent attempting to implement a modular version of the internal Cast Calculus
from Siek and Taha (2006); in particular the variation used by Siek, Vitousek,
et al. (2015) which includes blame tracking. This chapter briefly summarizes the
findings.

The main issue we encounter lies with the following case for values

Values v ::= . . . | 〈τ1 → δ1 ` τ2 → δ2〉v

where 〈τ ` δ〉e stands for a cast from type τ to type δ of expression e. Informally,
this means that casts of a value are also values if both the source and target
types are function types. What this implies is that when you have a function
application, a proof that the expression in the left-hand side (function position)
has a function type and is a value is not sufficient to prove that it is in fact a
lambda abstraction, as it may also be a cast. This is a problem for two reasons:

1. My statement of the canonical forms lemma from Section 4.8 no longer
holds, and thus an alternative must be found for the proofs that need them.

2. The proof of progress for the lambda abstraction feature will need to consider
the case of a function application where the left-hand side is a value with
function type. This could be either a lambda abstraction (thus necessitating
an application of the lambda β-reduction rule) or a cast (producing the cast
application rule). In this way, the casts feature pollutes the lambda feature.
Since the casts feature already explicitly depends on the lambda feature (i.e.

38

Chapter 5. Limitations: Cast Calculus 39

needs to directly mention some of its syntax and relations), this causes a
circular dependency.

The second issue appears to be the most severe one. I see two possible solutions.
An option is to include casts as part of the lambda feature; this sidesteps both
issues, and is the option I have currently implemented in approximately 1300
lines of code. This option, however, would not scale well to larger languages with
more non-trivial features (e.g. product types) as it essentially brings together
all interdependent features into a monolithic block, defeating the purpose of a
modular approach.

The second solution is to reformulate the cast calculus in such a way that
casts do not pollute other features. As per the suggestion of P. Wadler, this could
be achieved via an adaptation of the cast application rule (or wrap rule) (Siek,
Vitousek, et al., 2015). However, this is non-trivial to achieve and out of scope for
this project: P. Wadler reports that making this adaptation in a development of
The Gradual Guarantee (Siek, Vitousek, et al., 2015) took several months.

These issues raise an interesting question. In conventional software engineering,
designing programs with low coupling between components is widely accepted to
be a good idea (Gamma et al., 1995), and the assumption has been implicitly
made that this is also possible for the mechanization of programming language
meta-theory. However, it may be worthwhile to explore in future research whether
high coupling between features is a necessary evil for designing more complex
programming languages, in which case the trade-off of designing for modularization
in research applications could be too great.

Chapter 6

Conclusions and Future Work

My proposed approach presents a way to break apart definitions and proofs of
programming languages into modular features in Agda. Compared to previous
similar work in Agda (Schwaab and Siek, 2013), this approach supports more
languages, does not suffer from the termination error which caused the previous
method to be rejected by Agda and is closer in style to how monolithic proofs
would be written. I have also demonstrated how to mechanize a modular type-
safety proof for PCF as a case study, something which was not possible with the
previous approach. Finally, I have demonstrated that the approach is not without
its limitations, using an example from the meta-theory of gradual typing that
cannot be elegantly modularized.

Regarding possible future improvements to this approach, explicit polarity
annotations (Poiret et al., 2023) are currently being worked on for Agda. If merged,
this would allow the dynamic fixpoint of functors as defined by Swierstra (2008) to
be accepted by Agda. Furthermore, adding an fmap primitive has been discussed,
which would solve the termination error that causes Agda to reject the approach
from Swierstra (2008). Both of these improvements would improve the flexibility
of my approach, and the latter may be enough to remove the meta-programming
from the workflow.

In the meantime, it should also be possible to use Agda’s built-in meta-
programming tools to substitute the external program, which would simplify
the workflow (removing a dependency on an external executable) and improve
compatibility with existing editor tooling.

40

Bibliography

Abel, Andreas, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto Momigliano,
Steven Schäfer, and Kathrin Stark (2019). “POPLMark reloaded: Mechaniz-
ing proofs by logical relations”. In: Journal of Functional Programming 29.
Publisher: Cambridge University Press, e19. issn: 0956-7968, 1469-7653. doi:
10.1017/S0956796819000170. (Visited on 04/23/2023).

Aydemir, Brian E., Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn,
Stephanie Weirich, and Steve Zdancewic (2005). “Mechanized Metatheory
for the Masses: The PoplMark Challenge”. In: Theorem Proving in Higher
Order Logics. Ed. by Joe Hurd and Tom Melham. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, pp. 50–65. isbn: 978-3-540-31820-0. doi:
10.1007/11541868_4.

Cockx, Jesper, Orestis Melkonian, Lucas Escot, James Chapman, and Ulf Norell
(Sept. 6, 2022). “Reasonable Agda is correct Haskell: writing verified Haskell us-
ing agda2hs”. In: Proceedings of the 15th ACM SIGPLAN International Haskell
Symposium. Haskell 2022. New York, NY, USA: Association for Computing
Machinery, pp. 108–122. isbn: 978-1-4503-9438-3. doi: 10.1145/3546189.
3549920. url: https://doi.org/10.1145/3546189.3549920 (visited on
11/17/2022).

Delaware, Benjamin, Bruno C. d. S. Oliveira, and Tom Schrijvers (Jan. 23, 2013).
“Meta-theory à la carte”. In: Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. POPL ’13. New
York, NY, USA: Association for Computing Machinery, pp. 207–218. isbn:
978-1-4503-1832-7. doi: 10.1145/2429069.2429094. url: https://dl.acm.
org/doi/10.1145/2429069.2429094 (visited on 04/10/2023).

Forster, Yannick and Kathrin Stark (Jan. 22, 2020). “Coq à la carte: a practical
approach to modular syntax with binders”. In: Proceedings of the 9th ACM

41

https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1007/11541868_4
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/2429069.2429094
https://dl.acm.org/doi/10.1145/2429069.2429094
https://dl.acm.org/doi/10.1145/2429069.2429094

BIBLIOGRAPHY 42

SIGPLAN International Conference on Certified Programs and Proofs. CPP
2020. New York, NY, USA: Association for Computing Machinery, pp. 186–
200. isbn: 978-1-4503-7097-4. doi: 10.1145/3372885.3373817. url: https:
//dl.acm.org/doi/10.1145/3372885.3373817 (visited on 04/10/2023).

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides (Mar. 14, 1995).
Design patterns : elements of reusable object-oriented software. 1st edition.
Reading, Mass: Addison-Wesley. 416 pp. isbn: 978-0-201-63361-0.

Kaiser, Jonas, Steven Schäfer, and Kathrin Stark (Sept. 8, 2017). “Autosubst 2: To-
wards Reasoning with Multi-Sorted de Bruijn Terms and Vector Substitutions”.
In: Proceedings of the Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice. LFMTP ’17. New York, NY, USA: Association for Com-
puting Machinery, pp. 10–14. isbn: 978-1-4503-5374-8. doi: 10.1145/3130261.
3130263. url: https://dl.acm.org/doi/10.1145/3130261.3130263

(visited on 08/12/2023).
Keuchel, Steven and Tom Schrijvers (Sept. 28, 2013). “Generic datatypes à la carte”.

In: Proceedings of the 9th ACM SIGPLAN workshop on Generic programming.
WGP ’13. New York, NY, USA: Association for Computing Machinery, pp. 13–
24. isbn: 978-1-4503-2389-5. doi: 10.1145/2502488.2502491. url: https:
//doi.org/10.1145/2502488.2502491 (visited on 04/10/2023).

Levin, Michael Y. and Benjamin C. Pierce (Mar. 2003). “TinkerType: a lan-
guage for playing with formal systems”. In: Journal of Functional Program-
ming 13.2. Publisher: Cambridge University Press, pp. 295–316. issn: 1469-
7653, 0956-7968. doi: 10.1017/S0956796802004550. url: https://www.
cambridge.org/core/journals/journal-of-functional-programming/

article/tinkertype-a-language-for-playing-with-formal-systems/

48B7A773D0B8FDB7D1A3E644F8BEA9CA (visited on 08/16/2023).
Pierce, Benjamin C. (Feb. 5, 2002). Types and Programming Languages. Cambridge,

Mass: MIT Press. 648 pp. isbn: 978-0-262-16209-8.
Poiret, Josselin, Lucas Escot, Joris Ceulemans, Malin Altenmüller, and Andreas

Nuyts (June 15, 2023). “Read the Mode and Stay Positive”. In: 29th Interna-
tional Conference on Types for Proofs and Programs, Location: Valencia, Spain.
url: https://lirias.kuleuven.be/4087236 (visited on 08/13/2023).

Schwaab, Christopher and Jeremy G. Siek (Jan. 22, 2013). “Modular type-safety
proofs in Agda”. In: Proceedings of the 7th workshop on Programming languages
meets program verification. PLPV ’13. New York, NY, USA: Association for

https://doi.org/10.1145/3372885.3373817
https://dl.acm.org/doi/10.1145/3372885.3373817
https://dl.acm.org/doi/10.1145/3372885.3373817
https://doi.org/10.1145/3130261.3130263
https://doi.org/10.1145/3130261.3130263
https://dl.acm.org/doi/10.1145/3130261.3130263
https://doi.org/10.1145/2502488.2502491
https://doi.org/10.1145/2502488.2502491
https://doi.org/10.1145/2502488.2502491
https://doi.org/10.1017/S0956796802004550
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/tinkertype-a-language-for-playing-with-formal-systems/48B7A773D0B8FDB7D1A3E644F8BEA9CA
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/tinkertype-a-language-for-playing-with-formal-systems/48B7A773D0B8FDB7D1A3E644F8BEA9CA
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/tinkertype-a-language-for-playing-with-formal-systems/48B7A773D0B8FDB7D1A3E644F8BEA9CA
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/tinkertype-a-language-for-playing-with-formal-systems/48B7A773D0B8FDB7D1A3E644F8BEA9CA
https://lirias.kuleuven.be/4087236

BIBLIOGRAPHY 43

Computing Machinery, pp. 3–12. isbn: 978-1-4503-1860-0. doi: 10.1145/
2428116.2428120. url: https://dl.acm.org/doi/10.1145/2428116.

2428120 (visited on 04/10/2023).
Siek, Jeremy G. and Tianyu Chen (2021). “Parameterized cast calculi and reusable

meta-theory for gradually typed lambda calculi”. In: Journal of Functional
Programming 31. Publisher: Cambridge University Press, e30. issn: 0956-
7968, 1469-7653. doi: 10.1017/S0956796821000241. url: https://www.
cambridge.org/core/journals/journal-of-functional-programming/

article/parameterized-cast-calculi-and-reusable-metatheory-for-

gradually-typed-lambda-calculi/7A6E772C5AEB832ED157E80C5D2085D4

(visited on 01/20/2023).
Siek, Jeremy G. and Walid Taha (2006). “Gradual Typing for Functional Lan-

guages”. In: Scheme and Functional Programming Workshop, p. 12.
— (2007). “Gradual Typing for Objects”. In: ECOOP 2007 – Object-Oriented

Programming. Ed. by Erik Ernst. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, pp. 2–27. isbn: 978-3-540-73589-2. doi: 10.1007/978-
3-540-73589-2_2.

Siek, Jeremy G., Peter Thiemann, and Philip Wadler (2021). “Blame and coercion:
Together again for the first time”. In: Journal of Functional Programming
31. 0 citations (Crossref) [2022-11-01] Publisher: Cambridge University Press,
e20. issn: 0956-7968, 1469-7653. doi: 10.1017/S0956796821000101. url:
https://www.cambridge.org/core/journals/journal-of-functional-

programming/article/blame-and-coercion-together-again-for-the-

first-time/657CEF36278FE66B039DEF1D06DF8178 (visited on 10/18/2022).
Siek, Jeremy G., Michael M. Vitousek, Matteo Cimini, and John Tang Boyland

(2015). “Refined Criteria for Gradual Typing”. In: 1st Summit on Advances
in Programming Languages (SNAPL 2015). Ed. by Thomas Ball, Rastislav
Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett.
Vol. 32. Leibniz International Proceedings in Informatics (LIPIcs). ISSN: 1868-
8969. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 274–293. isbn: 978-3-939897-80-4. doi: 10.4230/LIPIcs.SNAPL.2015.274.
url: http://drops.dagstuhl.de/opus/volltexte/2015/5031 (visited on
11/01/2022).

Sozeau, Matthieu, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster,
Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter

https://doi.org/10.1145/2428116.2428120
https://doi.org/10.1145/2428116.2428120
https://dl.acm.org/doi/10.1145/2428116.2428120
https://dl.acm.org/doi/10.1145/2428116.2428120
https://doi.org/10.1017/S0956796821000241
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/parameterized-cast-calculi-and-reusable-metatheory-for-gradually-typed-lambda-calculi/7A6E772C5AEB832ED157E80C5D2085D4
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/parameterized-cast-calculi-and-reusable-metatheory-for-gradually-typed-lambda-calculi/7A6E772C5AEB832ED157E80C5D2085D4
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/parameterized-cast-calculi-and-reusable-metatheory-for-gradually-typed-lambda-calculi/7A6E772C5AEB832ED157E80C5D2085D4
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/parameterized-cast-calculi-and-reusable-metatheory-for-gradually-typed-lambda-calculi/7A6E772C5AEB832ED157E80C5D2085D4
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1017/S0956796821000101
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/blame-and-coercion-together-again-for-the-first-time/657CEF36278FE66B039DEF1D06DF8178
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/blame-and-coercion-together-again-for-the-first-time/657CEF36278FE66B039DEF1D06DF8178
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/blame-and-coercion-together-again-for-the-first-time/657CEF36278FE66B039DEF1D06DF8178
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
http://drops.dagstuhl.de/opus/volltexte/2015/5031

BIBLIOGRAPHY 44

(June 1, 2020). “The MetaCoq Project”. In: Journal of Automated Reasoning
64.5, pp. 947–999. issn: 1573-0670. doi: 10.1007/s10817-019-09540-0. url:
https://doi.org/10.1007/s10817-019-09540-0 (visited on 08/12/2023).

Swierstra, Wouter (July 2008). “Data types à la carte”. In: Journal of Functional
Programming 18.4. Publisher: Cambridge University Press, pp. 423–436. issn:
1469-7653, 0956-7968. doi: 10.1017/S0956796808006758. url: https://www.
cambridge.org/core/journals/journal-of-functional-programming/

article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409

(visited on 03/26/2023).
Wadler, Philip (Nov. 12, 1998). The Expression Problem. E-mail. url: https://

homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

(visited on 04/12/2023).
Wadler, Philip, Wen Kokke, and Jeremy G. Siek (Aug. 2022). Programming

Language Foundations in Agda. url: https://plfa.inf.ed.ac.uk/22.08/.

https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1017/S0956796808006758
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://plfa.inf.ed.ac.uk/22.08/

Appendix A

Additional Listings

A.1 Helper Script for Instantiating Language Variant

#!/bin/sh

lang_name="$1"

generate_stub() {

feature_name="$1"

echo "open import Languages.$lang_name.$feature_name public"

>src/"$feature_name".agda↪→

}

process_template() {

name_base="$1"

without_ext="$2"

without_template="${without_ext%Template}"

(cd "src/Languages/$lang_name" && agda-inline "$name_base"

"$without_template.agda"

"Languages.$lang_name.$without_template") || exit 1

↪→

↪→

}

echo "Instantiating language $lang_name..."

for file in src/Languages/"$lang_name"/*.agda; do

name_base="$(basename "$file")"

without_ext="${name_base%.*}"

45

Appendix A. Additional Listings 46

case "$name_base" in

*Template.agda)

process_template "$name_base" "$without_ext"

generate_stub "$without_template"

;;

*.agda)

generate_stub "$without_ext"

;;

esac

done

A.2 Helper Script for Checking Instantiated Variant

#!/bin/sh

variant_name="$1"

curr_dir="$(dirname "$0")"

cd "$curr_dir/src" || exit 1

variant_dir="Languages/$variant_name"

for file in "$variant_dir"/*.agda; do

case "$file" in

*Template.agda)

echo "Skipping template $file"

;;

*.agda)

echo "Checking $file"

output_stderr="$(agda "$file")"

If exit code is not 0, print stderr

if [$? -ne 0]; then

printf "\033[31m%s\n%s\033[0m\n" "Failed on $file

with output:" "$output_stderr"↪→

exit 1

Appendix A. Additional Listings 47

fi

;;

esac

done

A.3 Modular PCF Listings

The listings in this section exclude all required imports for conciseness, just as in
chapter 4. The complete source can be viewed in the attached code archive.

A.3.1 Expression Syntax

module Features.Lambda.Expr (Expr : Set) where
data Exprλ : Set where

λ_⇒_ : Id → Expr → Exprλ
· : Expr → Expr → Exprλ

module Features.Variables.Expr (Expr : Set) where
data ExprV : Set where

var : Id → ExprV

module Features.Fixpoint.Expr (Expr : Set) where
data ExprF : Set where

µ_⇒_ : Id → Expr → ExprF

module Features.Naturals.Expr (Expr : Set) where
data ExprN : Set where

`zero : ExprN
`suc : Expr → ExprN
`caseN_[zero⇒_|suc_⇒_] : Expr → Expr → Id → Expr → ExprN

module Languages.PCF.Expr where
data Expr : Set
open import Features.Naturals.Expr Expr public
open import Features.Variables.Expr Expr public
open import Features.Lambda.Expr Expr public
open import Features.Fixpoint.Expr Expr public

Appendix A. Additional Listings 48

data Expr where
↑exprN : ExprN → Expr
↑exprV : ExprV → Expr
↑exprλ : Exprλ → Expr
↑exprF : ExprF → Expr

-- ... Omitted instances of ExprX <: Expr ...

A.3.2 Context

module Shared.Context where
infixl 5 _._⦂_
data Context : Set where

/0 : Context
.⦂_ : Context → Id → Type → Context

A.3.3 Lookup Relation

module Shared.Lookup where
infix 4 _3_⦂_
data _3_⦂_ : Context → Id → Type → Set where

Z : ∀ {Γ : Context} {τ : Type} {x : Id}
→ (Γ . x ⦂ τ) 3 x ⦂ τ

S : ∀ {Γ τ δ x y}
→ x 6≡ y
→ Γ 3 x ⦂ τ

→ (Γ . y ⦂ δ) 3 x ⦂ τ

S′ : ∀ {Γ x y A B}
→ {x 6≡y : False (x ?

= y)}
→ Γ 3 x ⦂ A

→ (Γ . y ⦂ B) 3 x ⦂ A

S′ {x6≡y = x 6≡y} x = S (toWitnessFalse x6≡y) x

Appendix A. Additional Listings 49

A.3.4 Typing

-- In file src/Features/Lambda/Typing.agda
module Features.Lambda.Typing

(_`_⦂_ : Context → Expr → Type → Set1) where
infix 4 _`λ_⦂_
data _`λ_⦂_ : Context → Exprλ → Type → Set1 where
`λ : ∀ {Γ τ δ x e}
→ (Γ . x ⦂ τ) ` e ⦂ δ

→ Γ `λ λ x ⇒ e ⦂ apply (τ ⇒ δ)

`· : ∀ {Γ τ δ} {e1 : Expr} {e2 : Expr}
→ Γ ` e1 ⦂ apply (τ ⇒ δ)
→ Γ ` e2 ⦂ τ

→ Γ `λ e1 · e2 ⦂ δ

-- In file src/Features/Variables/Typing.agda
module Features.Variables.Typing

(_`_⦂_ : Context → Expr → Type → Set1) where
infix 4 _`V_⦂_
data _`V_⦂_ : Context → ExprV → Type → Set1 where
`` : ∀ {Γ τ x}
→ Γ 3 x ⦂ τ

→ Γ `V var x ⦂ τ

-- In file src/Features/Fixpoint/Typing.agda
module Features.Fixpoint.Typing

(_`_⦂_ : Context → Expr → Type → Set1) where
infix 4 _`F_⦂_
data _`F_⦂_ : Context → ExprF → Type → Set1 where
`µ : ∀ {Γ x e τ}
→ (Γ . x ⦂ τ) ` e ⦂ τ

→ Γ `F µ x ⇒ e ⦂ τ

Appendix A. Additional Listings 50

-- In file src/Features/Naturals/Typing.agda
module Features.Naturals.Typing

(_`_⦂_ : Context → Expr → Type → Set1) where
infix 4 _`N_⦂_
data _`N_⦂_ : Context → ExprN → Type → Set1 where
`zero : ∀ {Γ}

→ Γ `N `zero ⦂ apply `N

`suc : ∀ {Γ} {e1 : Expr}
→ Γ ` e1 ⦂ apply `N

→ Γ `N `suc e1 ⦂ apply `N

`caseN : ∀ {Γ τ x} {e1 e2 e3 : Expr}
→ Γ ` e1 ⦂ apply `N
→ Γ ` e2 ⦂ τ

→ (Γ . x ⦂ (apply `N)) ` e3 ⦂ τ

→ Γ `N `caseN e1 [zero⇒ e2 |suc x ⇒ e3] ⦂ τ

-- In file src/Languages/PCF/Typing.agda
module Languages.PCF.Typing where
infix 4 _`_⦂_
data _`_⦂_ : Context → Expr → Type → Set1
open import Features.Naturals.Typing _`_⦂_ public
open import Features.Variables.Typing _`_⦂_ public
open import Features.Lambda.Typing _`_⦂_ public
open import Features.Fixpoint.Typing _`_⦂_ public
data _`_⦂_ where
↑`N : ∀ {Γ} {e : ExprN} {τ : Type}
→ Γ `N e ⦂ τ

→ Γ ` apply e ⦂ τ

↑`V : ∀ {Γ} {e : ExprV} {τ : Type}
→ Γ `V e ⦂ τ

→ Γ ` apply e ⦂ τ

↑`λ : ∀ {Γ} {e : Exprλ} {τ : Type}
→ Γ `λ e ⦂ τ

Appendix A. Additional Listings 51

→ Γ ` apply e ⦂ τ

↑`F : ∀ {Γ} {e : ExprF} {τ : Type}
→ Γ `F e ⦂ τ

→ Γ ` apply e ⦂ τ

-- ... Omitted instances of Γ `X e ⦂ τ <: Γ ` apply e ⦂ τ ...

A.3.5 Substitution

-- In file src/Shared/TypeSignaturesSub.agda
module Shared.TypeSignaturesSub where
tp-rename : Set1
tp-rename = ∀ {Γ Δ}
→ (∀ {x τ} → Γ 3 x ⦂ τ → Δ 3 x ⦂ τ)
→ (∀ {e τ} → Γ ` e ⦂ τ → Δ ` e ⦂ τ)

tp-ext : Set
tp-ext = ∀ {Γ Δ}
→ (∀ {x A} → Γ 3 x ⦂ A → Δ 3 x ⦂ A)
→ (∀ {x y A B} → (Γ . y ⦂ B) 3 x ⦂ A → (Δ . y ⦂ B) 3 x ⦂ A)

tp-weaken : Set1
tp-weaken = ∀ {Γ M A}
→ /0 ` M ⦂ A
→ Γ ` M ⦂ A

tp-drop : Set1
tp-drop = ∀ {Γ x M A B C}
→ (Γ . x ⦂ A . x ⦂ B) ` M ⦂ C
→ (Γ . x ⦂ B) ` M ⦂ C

tp-swap : Set1
tp-swap = ∀ {Γ x y M A B C}
→ x 6≡ y
→ (Γ . y ⦂ B . x ⦂ A) ` M ⦂ C
→ (Γ . x ⦂ A . y ⦂ B) ` M ⦂ C

Appendix A. Additional Listings 52

tp-subst : tp-[:=] → Set1
tp-subst _[_:=_] = ∀ {Γ x e1 e2 τ δ}
→ /0 ` e2 ⦂ τ

→ (Γ . x ⦂ τ) ` e1 ⦂ δ

→ Γ ` e1 [x := e2] ⦂ δ

-- In file src/Features/Lambda/Substitution.agda
module Features.Lambda.Substitution

(_[_:=_] : Expr → Id → Expr → Expr)
(rename : tp-rename)
(subst : tp-subst _[_:=_])
(ext : tp-ext)
(weaken : tp-weaken)
(drop : tp-drop)
(swap : tp-swap)
where

infix 9 _[_:=_]λ
[:=_]λ : Exprλ → Id → Expr → Expr
(λ y ⇒ e1) [x := e2]λ with y ?

= x
... | yes _ = apply (λ y ⇒ e1)
... | no _ = apply (λ y ⇒ (e1 [x := e2]))
(e1 · e1′) [x := e2]λ = apply ((e1 [x := e2]) · (e1′ [x := e2]))

renameλ : ∀ {Γ Δ}
→ (∀ {x τ} → Γ 3 x ⦂ τ → Δ 3 x ⦂ τ)
→ (∀ {e τ} → Γ `λ e ⦂ τ → Δ `λ e ⦂ τ)

renameλ ρ (`λ `e) = `λ (rename (ext ρ) `e)
renameλ ρ (`· `e1 `e2) = `· (rename ρ `e1) (rename ρ `e2)

substλ : ∀ {Γ x} {e1 : Exprλ} {e2 : Expr} {τ δ}
→ /0 ` e2 ⦂ τ

→ (Γ . x ⦂ τ) `λ e1 ⦂ δ

Appendix A. Additional Listings 53

→ Γ ` apply (e1 [x := e2]λ) ⦂ δ

substλ {x = y} `e2 (`λ {x = x} `e) with x ?
= y

... | yes refl = apply (`λ (drop `e))

... | no x6≡y = apply (`λ (subst `e2 (swap x 6≡y `e)))
substλ `e2 (`· x y) = apply (`· (subst `e2 x) (subst `e2 y))

-- In file src/Features/Naturals/Substitution.agda
module Features.Naturals.Substitution

(_[_:=_] : Expr → Id → Expr → Expr)
(rename : tp-rename)
(subst : tp-subst _[_:=_])
(ext : tp-ext)
(weaken : tp-weaken)
(drop : tp-drop)
(swap : tp-swap)
where

[:=_]N : ExprN → Id → Expr → Expr
nat n [x := v]N = apply (nat n)
sum e1 e2 [x := v]N = apply (sum (e1 [x := v]) (e2 [x := v]))

renameN : ∀ {Γ Δ}
→ (∀ {x τ} → Γ 3 x ⦂ τ → Δ 3 x ⦂ τ)
→ (∀ {e τ} → Γ `N e ⦂ τ → Δ `N e ⦂ τ)

renameN ρ `N = `N
renameN ρ (`+ `e1 `e2) = `+ (rename ρ `e1) (rename ρ `e2)

substN : ∀ {Γ x} {e1 : ExprN} {e2 : Expr} {τ δ}
→ /0 ` e2 ⦂ τ

→ (Γ . x ⦂ τ) `N e1 ⦂ δ

→ Γ ` apply (e1 [x := e2]N) ⦂ δ

substN `v `N = apply `N
substN `v (`+ `e1 `e2) = apply (`+ (subst `v `e1) (subst `v `e2))

Appendix A. Additional Listings 54

-- In fiole src/Features/Variables/Substitution.agda
module Features.Variables.Substitution

(_[_:=_] : Expr → Id → Expr → Expr)
(rename : tp-rename)
(subst : tp-subst _[_:=_])
(ext : tp-ext)
(weaken : tp-weaken)
(drop : tp-drop)
(swap : tp-swap)
where

[:=_]V : ExprV → Id → Expr → Expr
var x [y := v]V with x ?

= y
... | yes _ = v
... | no _ = apply (var x)

renameV : ∀ {Γ Δ}
→ (∀ {x τ} → Γ 3 x ⦂ τ → Δ 3 x ⦂ τ)
→ (∀ {e τ} → Γ `V e ⦂ τ → Δ `V e ⦂ τ)

renameV ρ (`` 3x) = `` (ρ 3x)

substV : ∀ {Γ x} {e1 : ExprV} {e2 : Expr} {τ δ}
→ /0 ` e2 ⦂ τ

→ (Γ . x ⦂ τ) `V e1 ⦂ δ

→ Γ ` apply (e1 [x := e2]V) ⦂ δ

substV {x = x} v (`` {x = y} Z) with x ?
= y

... | yes _ = weaken v

... | no x 6≡y = ⊥-elim (x 6≡y refl)
substV {x = y} v (`` {x = x} (S x6≡y 3x)) with x ?

= y
... | yes refl = ⊥-elim (x 6≡y refl)
... | no _ = apply (`` 3x)

module Features.Fixpoint.Substitution
(_[_:=_] : Expr → Id → Expr → Expr)

Appendix A. Additional Listings 55

(rename : tp-rename)
(subst : tp-subst _[_:=_])
(ext : tp-ext)
(weaken : tp-weaken)
(drop : tp-drop)
(swap : tp-swap)
where

infix 9 _[_:=_]F
[:=_]F : ExprF → Id → Expr → Expr
(µ x ⇒ e1) [y := e2]F with x ?

= y
... | yes _ = apply (µ x ⇒ e1)
... | no _ = apply (µ x ⇒ (e1 [y := e2]))

renameF : ∀ {Γ Δ}
→ (∀ {x τ} → Γ 3 x ⦂ τ → Δ 3 x ⦂ τ)
→ (∀ {e τ} → Γ `F e ⦂ τ → Δ `F e ⦂ τ)

renameF ρ (`µ `e) = `µ (rename (ext ρ) `e)

substF : ∀ {Γ x} {e1 : ExprF} {e2 : Expr} {τ δ}
→ /0 ` e2 ⦂ τ

→ (Γ . x ⦂ τ) `F e1 ⦂ δ

→ Γ ` apply (e1 [x := e2]F) ⦂ δ

substF {x = y} `v (`µ {x = x} `e) with x ?
= y

... | yes refl = apply (`µ (drop `e))

... | no x 6≡y = apply (`µ (subst `v (swap x6≡y `e)))

-- In file src/Languages/PCF/SubstitutionTemplate.agda
module Languages.PCF.SubstitutionTemplate where
infix 9 _[_:=_]
[:=_] : Expr → Id → Expr → Expr
rename : tp-rename
subst : tp-subst _[_:=_]

Appendix A. Additional Listings 56

ext : tp-ext
ext ρ Z = Z
ext ρ (S x 6≡y 3x) = S x 6≡y (ρ 3x)

weaken : tp-weaken
weaken {Γ} `M = rename ρ `M

where
ρ : ∀ {z C}
→ /0 3 z ⦂ C

→ Γ 3 z ⦂ C

ρ ()
drop : tp-drop
drop {Γ} {x} {M} {A} {B} {C} `M = rename ρ `M

where
ρ : ∀ {z C}
→ (Γ . x ⦂ A . x ⦂ B) 3 z ⦂ C

→ (Γ . x ⦂ B) 3 z ⦂ C

ρ Z = Z
ρ (S x 6≡x Z) = ⊥-elim (x 6≡x refl)
ρ (S z 6≡x (S _ 3z)) = S z 6≡x 3z

swap : tp-swap
swap {Γ} {x} {y} {M} {A} {B} {C} x6≡y `M = rename ρ `M

where
ρ : ∀ {z C}
→ (Γ . y ⦂ B . x ⦂ A) 3 z ⦂ C

→ (Γ . x ⦂ A . y ⦂ B) 3 z ⦂ C

ρ Z = S x 6≡y Z
ρ (S z 6≡x Z) = Z
ρ (S z 6≡x (S z6≡y 3z)) = S z 6≡y (S z6≡x 3z)

---!!!(INLINE_MODULE Features.NaturalsPCF.Substitution)
---!!!(INLINE_MODULE Features.Variables.Substitution)

Appendix A. Additional Listings 57

---!!!(INLINE_MODULE Features.Lambda.Substitution)
---!!!(INLINE_MODULE Features.Fixpoint.Substitution)

↑exprN a [x := b] = a [x := b]N
↑exprV a [x := b] = a [x := b]V
↑exprλ a [x := b] = a [x := b]λ
↑exprF a [x := b] = a [x := b]F

rename ρ (↑`N wt) = ↑`N (renameN ρ wt)
rename ρ (↑`V wt) = ↑`V (renameV ρ wt)
rename ρ (↑`λ wt) = ↑`λ (renameλ ρ wt)
rename ρ (↑`F wt) = ↑`F (renameF ρ wt)

subst `e1 (↑`N `e2) = substN `e1 `e2
subst `e1 (↑`V `e2) = substV `e1 `e2
subst `e1 (↑`λ `e2) = substλ `e1 `e2
subst `e1 (↑`F `e2) = substF `e1 `e2

A.3.6 Value

module Features.Lambda.Value (Value : Expr → Set) where
data Valueλ : Exprλ → Set where

V-λ : ∀ {x e}
→ Valueλ (λ x ⇒ e)

module Features.Naturals.Value (Value : Expr → Set) where
data ValueN : ExprN → Set where

v-zero : ValueN `zero
v-suc : ∀ {e : Expr}
→ Value e
→ ValueN (`suc e)

module Features.Variables.Value (Value : Expr → Set) where
data ValueV : ExprV → Set where

empty : ∀ {e} → ⊥ → ValueV e

module Features.Fixpoint.Value (Value : Expr → Set) where

Appendix A. Additional Listings 58

data ValueF : ExprF → Set where
empty : ∀ {e} → ⊥ → ValueF e

module Languages.PCF.Value where
data Value : Expr → Set
open import Features.Naturals.Value Value public
open import Features.Variables.Value Value public
open import Features.Lambda.Value Value public
open import Features.Fixpoint.Value Value public
data Value where
↑val-N : {e : ExprN} → ValueN e → Value (apply e)
↑val-V : {e : ExprV} → ValueV e → Value (apply e)
↑val-λ : {e : Exprλ} → Valueλ e → Value (apply e)
↑val-F : {e : ExprF} → ValueF e → Value (apply e)

-- ... Omitted intances of ValueX e <: Value (apply e) ...

A.3.7 Reduction Relation

-- In file src/Features/Lambda/Step.agda
module Features.Lambda.Step (_—→_ : Expr → Expr → Set1) where
data _—→λ_ : Exprλ → LazyCoercion Expr → Set1 where

ξ-·1 : ∀ {e1 e1′ e2}
→ e1 —→ e1′

→ (e1 · e2) —→λ delay (e1′ · e2)

ξ-·2 : ∀ {e1 e2 e2′}
→ e2 —→ e2′

→ (e1 · e2) —→λ delay (e1 · e2′)

β-λ : ∀ {e1 e2 : Expr} {x : Id}
→ Value e2

→ (apply (λ x ⇒ e1) · e2) —→λ delay (e1 [x := e2])

-- In file src/Features/Naturals/Step.agda
module Features.Naturals.Step (_—→_ : Expr → Expr → Set1) where

Appendix A. Additional Listings 59

data _—→N_ : ExprN → LazyCoercion Expr → Set1 where
ξ-suc : {e1 e1′ : Expr}
→ e1 —→ e1′

→ (`suc e1) —→N delay (`suc e1′)

ξ-caseN : ∀ {x} {e1 e1′ e2 e3 : Expr}
→ e1 —→ e1′

→ (`caseN e1 [zero⇒ e2 |suc x ⇒ e3]) —→N delay (`caseN e1′ [zero⇒

e2 |suc x ⇒ e3])↪→

β-zero : ∀ {x} {e2 e3 : Expr}

→ (`caseN (apply `zero) [zero⇒ e2 |suc x ⇒ e3]) —→N (delay e2)
β-suc : ∀ {x} {e1 e2 e3 : Expr}
→ Value e1

→ (`caseN (apply (`suc e1)) [zero⇒ e2 |suc x ⇒ e3]) —→N (delay (e3 [

x := e1]))↪→

-- In file src/Features/Variables/Step.agda
module Features.Variables.Step (_—→_ : Expr → Expr → Set1) where
data _—→V_ : ExprV → LazyCoercion Expr → Set1 where

empty : ∀ {e e′} → ⊥ → e —→V e′

-- In file src/Features/Fixpoint/Step.agda
module Features.Fixpoint.Step (_—→_ : Expr → Expr → Set1) where
data _—→F_ : ExprF → LazyCoercion Expr → Set1 where

β-µ : ∀ {e : Expr} {x : Id}

→ (µ x ⇒ e) —→F delay (e [x := apply (µ x ⇒ e)])

-- In file src/Languages/PCF/Step.agda
data _—→_ : Expr → Expr → Set1

open import Features.Naturals.Step _—→_ public
open import Features.Variables.Step _—→_ public

Appendix A. Additional Listings 60

open import Features.Lambda.Step _—→_ public
open import Features.Fixpoint.Step _—→_ public

data _—→_ where
↑stepN : {e1 : ExprN} {e2 : LazyCoercion Expr}
→ e1 —→N e2
→ apply e1 —→ coerce e2

↑stepV : {e1 : ExprV} {e2 : LazyCoercion Expr}
→ e1 —→V e2
→ apply e1 —→ coerce e2

↑stepλ : {e1 : Exprλ} {e2 : LazyCoercion Expr}
→ e1 —→λ e2
→ apply e1 —→ coerce e2

↑stepF : {e1 : ExprF} {e2 : LazyCoercion Expr}
→ e1 —→F e2
→ apply e1 —→ coerce e2

-- ... Omitted intances of e1 —→X e2 ↑ apply e1 —→ coerce e2 ...

A.3.8 Preservation

module Features.Lambda.Preservation (preservation : tp-preservation) where
preservationλ : ∀ {e : Exprλ} {e′ : LazyCoercion Expr} {τ : Type}
→ e —→λ e′

→ /0 `λ e ⦂ τ

→ /0 ` (coerce e′) ⦂ τ

preservationλ (ξ-·1 e1—→e1′) (`· `e1 `e2) =
apply (`· (preservation e1—→e1′ `e1) `e2)

preservationλ (ξ-·2 e2—→e2′) (`· `e1 `e2) =
apply (`· `e1 (preservation e2—→e2′ `e2))

preservationλ (β-λ v-e2) (`· `f `e2) with canonical-forms-λ (apply V-λ) `f
... | _ , `λ `e1 , _ , refl , refl , refl = subst `e2 `e1

module Features.Naturals.Preservation (preservation : tp-preservation) where
preservationN : ∀ {e : ExprN} {e′ : LazyCoercion Expr} {τ : Type}
→ e —→N e′

Appendix A. Additional Listings 61

→ /0 `N e ⦂ τ

→ /0 ` (coerce e′) ⦂ τ

preservationN (ξ-suc st) (`suc wt) = apply (`suc (preservation st wt))
preservationN (ξ-caseN e1—→e1′) (`caseN `e1 `e2 `e3) =

apply (`caseN (preservation e1—→e1′ `e1) `e2 `e3)
preservationN β-zero (`caseN `e1 `e2 `e3) = `e2
preservationN (β-suc v-v) (`caseN `e1 `e2 `e3)

with canonical-forms-N (apply (v-suc v-v)) `e1
... | _ , `suc `v , _ , refl , refl , refl = subst `v `e3

module Features.Fixpoint.Preservation (preservation : tp-preservation) where
preservationF : ∀ {e : ExprF} {e′ : LazyCoercion Expr} {τ : Type}
→ e —→F e′

→ /0 `F e ⦂ τ

→ /0 ` (coerce e′) ⦂ τ

preservationF β-µ (`µ `e) = subst (apply (`µ `e)) `e

module Features.Variables.Preservation (preservation : tp-preservation) where
preservationV : ∀ {e : ExprV} {e′ : LazyCoercion Expr} {τ : Type}
→ e —→V e′

→ /0 `V e ⦂ τ

→ /0 ` (coerce e′) ⦂ τ

preservationV (empty ())

module Languages.PCF.PreservationTemplate where
preservation : tp-preservation
---!!!(INLINE_MODULE Features.Naturals.Preservation)
---!!!(INLINE_MODULE Features.Variables.Preservation)
---!!!(INLINE_MODULE Features.Lambda.Preservation)
---!!!(INLINE_MODULE Features.Fixpoint.Preservation)
preservation (↑stepN st) (↑`N wt) = preservationN st wt
preservation (↑stepV st) (↑`V wt) = preservationV st wt
preservation (↑stepλ st) (↑`λ wt) = preservationλ st wt
preservation (↑stepF st) (↑`F wt) = preservationF st wt

Appendix A. Additional Listings 62

A.3.9 Progress

module Features.Lambda.Progress
(progress : tp-progress)

where
progressλ : {e : Exprλ} {τ : Type}
→ /0 `λ e ⦂ τ

→ Prog (apply e)
progressλ (`λ _) = done (apply V-λ)
progressλ (`· `f `v) with progress `f
... | step f—→f′ = step (lift (ξ-·1 f—→f′))
... | done val-f with canonical-forms-λ val-f `f | progress `v
... | _ | step v—→v′ = step (lift (ξ-·2 v—→v′))
... | (λ x ⇒ t) , _ , _ , refl , _ , _ | done val-v = step (lift (β-λ val-v))

module Features.Naturals.Progress
(progress : tp-progress)
where

progressN : {e : ExprN} {τ : Type}
→ /0 `N e ⦂ τ

→ Prog (apply e)
progressN `zero = done (apply (v-zero))
progressN (`suc `e) with progress `e
... | done v-e = done (apply (v-suc v-e))
... | step e—→e′ = step (lift (ξ-suc e—→e′))
progressN (`caseN `e1 `e2 `e3) with progress `e1
... | step e1—→e1′ = step (lift (ξ-caseN e1—→e1′))
... | done v-e1 with canonical-forms-N v-e1 `e1
... | `zero , _ , _ , refl , refl , refl = step (lift (β-zero))
... | `suc _ , _ , v-suc v , refl , refl , refl = step (lift (β-suc v))

module Features.Variables.Progress (progress : tp-progress) where
progressV : {e : ExprV} {τ : Type}
→ /0 `V e ⦂ τ

→ Prog (apply e)
progressV (`` ())

Appendix A. Additional Listings 63

module Features.Fixpoint.Progress
(progress : tp-progress)

where
progressF : {e : ExprF} {τ : Type}
→ /0 `F e ⦂ τ

→ Prog (apply e)
progressF (`µ `e) = step (lift β-µ)

module Languages.PCF.ProgressTemplate where
progress : tp-progress
---!!!(INLINE_MODULE Features.Naturals.Progress)
---!!!(INLINE_MODULE Features.Variables.Progress)
---!!!(INLINE_MODULE Features.Lambda.Progress)
---!!!(INLINE_MODULE Features.Fixpoint.Progress)
progress (↑`N wt) = progressN wt
progress (↑`V wt) = progressV wt
progress (↑`λ wt) = progressλ wt
progress (↑`F wt) = progressF wt

	Introduction
	My Contribution
	Expected Background

	Background
	Monolithic Implementation and the Expression Problem
	Data Types à la Carte
	Modular Type-Safety Proofs in Agda

	Proposed Methodology
	Modular Syntax
	Modular Recursive Functions
	Structuring the Project
	Delayed Lifting
	Modular Predicates
	Type Preservation

	Case Study: PCF
	Type Syntax
	Expression Syntax
	Context and Lookup Relation
	Typing Relation
	Values
	Substitution
	Reduction Relation
	Preservation
	Progress

	Limitations: Cast Calculus
	Conclusions and Future Work
	Bibliography
	Additional Listings
	Helper Script for Instantiating Language Variant
	Helper Script for Checking Instantiated Variant
	Modular PCF Listings
	Expression Syntax
	Context
	Lookup Relation
	Typing
	Substitution
	Value
	Reduction Relation
	Preservation
	Progress

