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Abstract

Non-intrusive load monitoring (NILM) is a popular home energy monitoring solution

that uses smart meter data to predict the operation of the target appliances in households.

The deep neural network-based NILM approach has better performance, but there is no

evidence that it is effective for households with low-carbon appliances installed. In this

project, we evaluated and improved the applicability of existing NILM techniques to

heat pumps, a type of low-carbon appliance. Firstly, we extended the IDEAL dataset

using the DECC RHPP dataset to obtain a dataset of simulated households that included

virtual heat pumps. Secondly, we evaluated the performance of the NILM model on the

new dataset and compared the results with the baseline to observe the impact of the new

data on the model predictions. Finally, we retrained the model with the new data and

evaluated it again to observe the impact of the new data on model training. The results

show that the original model has poor prediction performance on the heat pump data.

After retraining, this prediction performance can be improved to some extent, but it still

cannot reach the level of handling the heat pump-free dataset. However, the addition of

heat pump data did not contaminate the model training process.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, environmental protection and energy conservation and emission reduction

are topics of widespread concern. For the short term, saving energy can bring economic

benefits to individuals or enterprises; for the long term, paying attention to conserva-

tion and protection while developing natural resources can promote the sustainable

development of the ecosphere. In practice, energy conservation requires everyone

to start with their daily lives, e.g. individuals and families can endeavour to reduce

energy consumption in their households. To achieve this, efficient and accurate energy

monitoring is in demand.

Non-intrusive load monitoring (NILM) [1] is a popular energy monitoring solution.

Typically, a NILM system is deployed in a user’s home and connected to the home’s

smart electric meter to obtain the home’s electric mains energy consumption data.

The system uses this information to predict the energy consumption and operating

status of specific appliances in the home in real time. In contrast to traditional energy

monitoring solutions, it does not need to monitor each appliance individually, but only

needs to obtain the total smart meter data at regular intervals, which is why it is called

”non-intrusive”. Therefore, it is easy to implement and cost-effective for the user. To

summarise, the spread of this technology makes it easier for people to monitor energy

in the homes.

However, the single-channel blind source separation (BBS) task [2] faced by NILM

technically is more challenging than expected. Nowadays, popular solutions to the

NILM problem introduce machine learning methods. Specifically, developers input

smart data and energy consumption data of several target appliances to the machine
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Chapter 1. Introduction 2

learning system in order for the model to perform supervised learning from these data.

Although current NILM systems using machine learning methods have demonstrated

good generalisation performance [3], there is still no evidence that the generalisation

performance of current models will not be affected when more new appliances are

introduced. For example, no deep neural network-based NILM method has yet been

shown to maintain good performance with the addition of devices that adopt low-carbon

technologies.

It is worth noting that research in NILM technology has been driven by the need for

applications. One of its key applications is to monitor the electricity consumption of

the elderly and vulnerable groups in order to provide assistance at the right time. The

reliability of NILM technology in deployment is particularly important as it relates to

the security of users’ health and property. Therefore, we have sufficient motivation to

evaluate the effects of equipment employing low carbon technologies, represented by

heat pumps, on existing NILM technologies in this project.

1.2 Problem Statement

As a new appliance, heat pumps may pose the following potential pitfalls to existing

NILM technologies:

1. Heat pumps have a different pattern of energy consumption than traditional

appliances. When this unknown pattern appears in new data, the prediction of the

machine learning system may be misguided as the pattern may be similar or have

a similar trend to existing appliances.

2. Heat pumps may have a more flexible control strategy. This control strategy

may lead to frequent changes in its energy consumption pattern, for example

when the operating state is divided into multiple gears, or when there is frequent

feedback regulation. Such variations may increase the complexity of the energy

data, thus making the task of distinguishing between different loads challenging

for machine learning systems.

In summary, the introduction of these low-carbon devices with unique and flexible

energy consumption patterns may have a misleading effect on the system’s prediction

of the target appliances, which could seriously affect the reliability and accuracy of the

NILM technology. Therefore, we would like to answer the following questions in our

study:
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1. Whether the introduction of heat pump data affects the performance of existing

NILM models and whether this impact is significant.

2. How the predictive performance of the model for the target device will change

after retraining with the new data.

1.3 Achieved Result

First, in this work, we augmented the home energy records in the IDEAL dataset with

heat pump data from the DECC RHPP dataset. After adapting the data to the needs of

the NILM task, we created two datasets for training and evaluation: the heat pump-free

energy dataset and the simulated energy dataset with virtual heat pumps.

Next, we evaluated the two datasets separately using the heat pump-free model. The

evaluation results of the two datasets were compared to investigate the impact of the

newly added heat pump data on the original model. We find that the performance of

the decomposition task performed with the new data is disturbed to varying degrees for

different target appliances.

Finally, we retrained the NILM model using the new simulation dataset. We

evaluated the performance improvement of the new model for the decomposition task,

as well as the impact of training with the new data on the performance of the original

model.

1.4 Dissertation Outline

In the rest of the dissertation, the content is divided into four main sections: In Chapter

2, we provided a brief introduction to the background of the NILM methodology and

low carbon devices for which machine learning has been used, and described in detail

the two main datasets that we have used in our experiments. In Chapter 3, we explain

the overall design and technical details of this experiment, with the two main focuses

being our approach for processing the data and the methodology for evaluating the

results. In Chapter 4, we provide a detailed description of the entire experimental

process, which includes a chronological record of the procedure, the results obtained

from the experiment, a critical analysis of the results, and further exploration based

on the results. In Chapter 5, we summarise the findings of the study and present the

limitations of the work and future directions.



Chapter 2

Background

2.1 Related Work

As mentioned above, Non-intrusive load monitoring (NILM) is an energy monitoring

solution that identifies the energy consumption of multiple appliances by disaggregating

the readings from a single mains meter in a household, dating back to the early 1980s

[4]. The application of this technology in society gained momentum after smart meters

were popularised. Research on this technology was further accelerated after machine

learning methods were found to provide excellent solutions to the BBS problem [2]. In

November 2022, the 6th International Workshop on Non-Intrusive Load Monitoring

was organised, where the latest trends in the technology and the industry were widely

discussed by the participants [5].

Researchers have tried to solve the problem using methods such as Hidden Markov

Models [6]. These methods are characterised by learning from features, so features

such as state changes in energy consumption or duration of states need to be artificially

organised and input to the machine. This limitation hinders convenient implementations.

After the development of deep neural networks [7], it became a common approach

to solve NILM tasks because it does not require feature engineering and enables the

model to learn directly from the data and achieve good performance. Depending on

the inputs and outputs of the model, these solutions are classified into ”sequence to

sequence” methods (S2S) [8] and ”sequence to point” (S2P) [2] methods. Due to the

translational invariance and temporal order of energy consuming data, the introduction

of convolutional neural networks [9] and recurrent neural networks [10] added an

infinitely strong prior to the features of the data, which made the networks significantly

better at handling every type of data that matched these features. On top of this,
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Chapter 2. Background 5

researchers have further progressively improved model performance through various

complementary methods. In 2018, the NILM network architecture proposed by Nigel

Goddard’s team significantly improved computational efficiency [3]. By now, deep

neural networks have become a powerful support for the practical application of NILM

technology.

2.2 Low Carbon Technologies and Heat Pumps

Low-carbon (LC) technologies are technologies that aim to reduce emissions of green-

house gases or other pollutants, and their development history can be traced back to the

early 1970s [11]. Electric vehicles, equipment that reduces industrial emissions, and

home appliances that conserve electricity all fall into this category. Usually, household

appliances using LC technology introduce innovative energy regulation methods, such

as automatic load sensing, in order to cut energy consumption as much as possible.

Heat pumps are heat transfer devices that perform both heating and cooling functions,

often replacing gas boiler-based temperature regulation systems in low-carbon homes.

The technology was first invented in the mid-19th century [12] and has been widely used

for temperature regulation in buildings since the 20th century [13]. Unlike traditional

thermoregulation devices, heat pumps work by absorbing heat from a heat source and

releasing it to a target location with the help of refrigerant fluid circulation [14]. Air-

source heat pumps use outdoor air as their heat source, while ground-source heat pumps

use buried pipes to absorb heat from the ground. Typically, the energy consumption of

a heat pump is measured by the ratio of its heat output to its electrical input, which is

known as the coefficient of performance (COP) of the heat pump [15].

2.3 Datasets

In this study, the datasets we use are the IDEAL dataset [16] and the DECC RHPP

dataset [17]. The IDEAL dataset, which contains the time series of the total energy

readings in the target households without heat pumps, and the time series of the energy

readings for each of the individual target appliances, plays the role of the basic training

data for the NILM method. We use this data to train the baseline model for electricity

disaggregation and use this dataset as the basis for creating the simulation dataset con-

taining heat pumps. The DECC RHPP dataset, which contains the energy consumption
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time series data for the heat pumps, our target low-carbon technology appliances, will

be used as an expansion data source for building the simulation dataset.

2.3.1 IDEAL Dataset

The IDEAL Household Energy Dataset [16] is a multifunctional dataset containing a

large amount of real household data on electricity, gas and other energy sources. The

data related to household energy consumption in this dataset was collected from 255

UK households over a 23-month period ending June 2018. As the dataset was created

with the aim of broadly examining household energy use patterns and motivations, and

with a balance of versatility to provide as universal support as possible for subsequent

research, data were collected as comprehensively and exhaustively as possible for each

of the target households within the collection period. Specifically, with the consent of

the subjects, various types of sensors were installed in the homes to collect data. The

sensors were able to capture the true energy consumption of the homes for the duration

of the experiment, as the subjects maintained a normal life throughout the test period

and the installation of the sensors had no feedback effect on the operating status of the

appliances in the homes. The energy information collected by these sensors includes

not only electricity data, but also gas, temperature and other indicators. All data were

recorded as time series. In addition to sensor readings, metadata and survey data on

household information are also important components of the dataset. Since our study

only deals with electricity disaggregation, we only need to use the subset of sensor data

in this dataset that deals with electricity use by appliances.

In addition, the 39 households in this dataset form a data enhanced group, which was

specifically prepared for potential follow-up NILM studies and is of particular interest

to us. The main difference between the enhanced group data and the regular data is that

these households additionally recorded data on the electricity consumption of a wide

range of appliances in the home, in addition to the total power consumption. These data

are measured by a large number of additional specialised sensors, which require a higher

level of fitness and technological environment in the target homes, and therefore the

number of homes able to provide these data is significantly reduced compared to the total

number of homes participating in the experiment. These device-specific data are not

necessary for a machine learning task where the goal of the task is to make predictions

about the potential future direction of a sequence based on energy consumption patterns

or regularities. However, these data are crucial for our study because in the NILM task
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we have to use the energy consumption of individual appliances as training labels for

supervised learning, i.e., the output of the readings disaggregation. Therefore, we must

use a subset of the augmented set of this dataset.

2.3.2 DECC RHPP Dataset

The DECC RHPP dataset [17] records the operation of 700 heat pumps during the

period of data collection from October 2013 to March 2015. The project to build this

dataset was initiated by the Department for Energy and Climate Change (DECC) and

the Renewable Heat Premium Payment (RHPP) grant scheme to support a research

programme of 14,000 trial heat pumps installed between 2009 and 2024 to investigate

and improve the actual deployment performance of these heat pumps. For low carbon

equipment, the energy consumption during the operating hours is an important part of

the performance evaluation and is the main subject of recording in this dataset, therefore

the information provided by this dataset fits well with our project needs.

Unlike the more versatile IDEAL data, the DECC RHPP dataset focuses on record-

ing the operation of a single piece of equipment, the heat pump, including energy

consumption information. Furthermore, the data is recorded around the metrics of the

target heat pump, rather than the target household, and thus the data can be easily used

in our project as a simulation extension to the IDEAL dataset. In the simulation dataset,

the heat pump can be considered as one of the individual appliances recorded in the

IDEAL enhanced set.

Another positive aspect of the DECC RHPP data is the existence of a data-cleaned

version, B2. For raw data acquired directly by the sensors, RAPID-HPC was com-

missioned to perform sensible completions and pruning of missing and duplicated

time-series readings, as well as systematic removal of defective measurements caused

by the equipment. The systematic removal of defective measurements due to equipment

was carried out. After filtering, 418 heat pumps that met the requirements were exported

as cleaned data. These processes allowed us to apply the dataset more directly.

2.4 Network Model

As described in 2.1, deep neural network models have now demonstrated superior

performance and strong applicability in NILM tasks. Currently, the dominant deep

neural network models being used for NILM tasks all adopt similar problem modelling



Chapter 2. Background 8

and infrastructure. In the NILM task, our goal is to acquire a mapping to predict the

energy consumption time series of individual target appliances in a house, provided

the total power consumption time series of the house. Unlike the traditional idea of

single-channal blind source separation (BBS), in the understanding of the task objective,

the neural network treats it as a mapping of multiple sets of single input sequences to

single output sequences, rather than a mapping of one set of single input sequences to

multiple sets of single output sequences, i.e., the so-called ”separation”. Specifically,

for each target appliance, a separate model will be learned. At this point, for each

individual point in the input time series, the total power consumption is considered to be

the sum of that target appliance’s energy consumption and the energy consumption of

other appliances (including noise). The model learns a direct mapping of this aggregate

sequence to the target sequence from the data, without taking into account the joint

effects or interactions of multiple appliances.

After the neural networks were introduced to the BBS problem, the importance

of the principle problem of power disaggregation decreased, since the learning of

such mappings was always based on black-box systems. Instead, the performance of

predictive models on applications became the focus. In this project, we use the Fully

Convolutional Network (FCN) model proposed by Cillian Brewitt and Nigel Goddard

for solving the NILM problem [3]. As one of the most advanced models for the NILM

problem, it is able to combine high computational efficiency with high performance for

the prediction task, making it well suited for real-world deployments of NILM systems.

The superiority of the model can be summarised by its removal of redundant

processing of sliding windows and the use of dilated convolution. The focus of this

project was on the evaluation of the dataset rather than on model improvement, so the

use of a high-performance existing model was able to satisfy our needs for training and

prediction. For more detailed information about the technical principles of the model,

please read the original paper [3]. For the new dataset, we used the same network

architecture as the baseline model to maintain consistency of evaluation. In order to

work with the model, the preprocessing of the dataset can be divided into two parts:

1. The format of the data is modified in order to make it match the input and output

formats required by the model.

2. The data that is fed into the model is normalised as well as windowed in order to

enhance the learning performance of the neural network.

The former is one of our main tasks in the data processing phase.



Chapter 3

Methodogy

3.1 Experiment Design

The experiments of this project can be divided into three phases.

The first phase is the dataset preparation phase. Within this phase, the main work is

the processing of the IDEAL dataset and the heat pump dataset. Our goal is to evaluate

the predictive performance of the NILM model in homes with heat pumps, so we need

a dataset consisting of a collection of homes without heat pumps as a baseline for the

evaluation, as well as a dataset consisting of homes with heat pumps.The IDEAL data

can fulfil the former requirement, but we do not have a complete data case from homes

with heat pump installations, and therefore we need to create that simulation dataset.

The specific way to do this is to augment the IDEAL dataset with information on heat

pump installations from the DECC RHPP data to simulate the case where heat pumps

are installed in these homes. Firstly, the two datasets will be processed separately into a

form suitable for network modelling, which involves extracting the subset we need from

the huge dataset and adapting its format. Secondly, the forms of the two datasets will be

unified, the key aspect of which is the unification of the temporal resolution. Finally, the

two datasets are merged, i.e., the IDEAL dataset is expanded with the heat pump dataset.

Each dataset consists of several households. The data for each household contains time

series of electrical energy consumption for several target appliances during the data

collection period, one of which is a sequence of electric-mains readings. In the dataset

containing the heat pump data, an additional data sequence for a virtual heat pump was

added to the collection. After this stage, we created two datasets prepared for the NILM

task, namely the real home energy dataset without heat pump data and the simulated

home energy dataset with heat pump data.

9
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However, there are prerequisites for our heat pump simulation through the method

described above. A detail worth noting is that when we assume that the simulated

households use heat pumps instead of the pre-existing heating appliances, we not only

need to add the heat pump data to the energy consumption of the households, but we

also have to remove the energy consumption of the pre-existing heating appliances

from the sum, which can be a complex issue. For this work, the households in the

IDEAL dataset we selected were previously heated with gas boilers and there was no

electricity supply involved, so the energy consumption that needs to be removed is zero,

and therefore we can avoid this problem.

The second stage is to train and evaluate the model on the unmodified IDEAL

dataset. Within this phase, we train with data sets that do not contain heat pump data.

The homes were divided into a training set, a validation set and a test set. The use

of homes rather than specific data for the division is to ensure that the evaluation is

consistent across the two datasets. An early stopping strategy based on the performance

evaluation of the validation set is adopted during model training, which shrinks the

training duration while preventing the risk of overfitting. For each target appliance, one

predictive model will be generated. We tested the models on each of the two datasets

and compared the performance of the models. If, for a particular appliance, the model’s

prediction performance in the home with the simulated heat pump installed is inferior

to the other dataset, the model is poorly adapted to the new data, i.e., the installation

of the heat pump in the home interferes with the model’s ability to predict the energy

consumption of the target appliances from the total energy consumption of the home.

If the model obtained in the absence of the heat pump training data proves to

be inapplicable to homes with heat pumps, the experiment will proceed to the third

phase. Within this phase we will attempt to train a new model on the simulated dataset

containing the heat pump data. Again, we will evaluate the predictive performance of

the model on both datasets. In this phase we will look at how the introduction of new

training data affects the model’s ability to generalise. Specifically, if training the model

on new data improves its performance, what may be happening is that more information

in the training phase improves the model’s adaptability to data with new features; if the

model’s performance decreases instead, what may be happening is that the introduction

of new data makes it more difficult for the model to learn the correct features, i.e., the

introduction of the heat pump ” pollutes” the training data.
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3.2 Processing of the IDEAL Dataset

Data processing plays an important role in this project, and the IDEAL dataset is the

base dataset for subsequent training as well as merging work. Its processing will be

divided into three main segments:

1. Dataset-level processing. In this session, we filter the subset of data that we need

for our experiments from the huge dataset. As mentioned above, we first filter out

the data subset of the augmented group of families and take only the electricity

data records.

2. Sequence-level processing. Both the input and output of the model are one-

dimensional time series of electricity data. Therefore, we need to extract the data

sequence that matches the format of the model. The information we need is the

total electricity consumption of the target households over time and the electricity

consumption of each target appliance. It is important to note that the former is

not equivalent to the sum of the latter, as the total electricity consumption also

includes any power-consuming devices present in the household other than the

target appliances, as well as noise due to factors such as measurements. Therefore,

we keep only these one-dimensional data series from the dataset, which are the

power data with the energy consumption of individual appliances.

3. Data point level processing. In this session, we clean and fix the data series to

make the raw data complete. This includes resampling of the time series and

filling of missing data.

3.3 Processing of Heat Pump Dataset

The role of the heat pump data in this project is to expand the IDEAL dataset to obtain

a home simulation dataset containing heat pump data. Therefore, the processing of the

heat pump dataset can be regarded as a process of creating virtual heat pumps. The

complete portrayal of the properties of these virtual heat pumps is the sequence of

their power during the measurement time. The same three aspects of heat pump data

processing apply to the IDEAL dataset. Firstly, the heat pump dataset has a relatively

simple structure, all of which are stored as parallel tables indexed by heat pumps. We

chose dummy heat pumps equal to the number of target households selected in the

IDEAL dataset. These heat pumps were matched one-to-one with the target household



Chapter 3. Methodogy 12

in preparation for playing the role of the virtual heat pump that was ported to that

household. Secondly, of all the statistics for that heat pump, only the sequence of

electricity readings was retained. In this way, the data for each heat pump would obtain

the same one-dimensional time series form as the IDEAL electrical readings. Finally,

the modification of data points is greatly simplified because that original dataset has

already been cleaned. Our task is to perform unit conversion and resampling of the

cleaned data to match the temporal resolution we require.

It is worth noting that the design of the simulation data is a relatively open problem.

Our needs are to evaluate the performance of the model in homes with heat pumps and

to improve that performance by retraining it again, so we make some modifications to

the heat pump time series to meet our needs while retaining the characteristics of the

data. Here I present five approaches to create new simulations based on the original

heat pump data.

3.3.1 Realistic Heat Pump Simulation

The first approach is that we do not make any changes to the original sequence of

electricity readings from the heat pump and use it directly for merging with the cor-

responding household data. This is the easiest and most straightforward option to

implement, and it is also completely feasible because the actual data of the virtual heat

pump is completely independent from the real household energy consumption data. The

transplantation of the virtual heat pump would not affect the energy consumption of

other independent appliances, but would only change the total power consumption.

However, I soon discovered a potential problem. Due to the seasonal nature of the

operation of the heat pump unit, the time period in which the heat pump operates is

very sparse throughout the data series. This leads to the fact that in most cases the

heat pumps in the households remain inactive in the new household dataset. Due to

the translational invariance of the prediction model window, the data set is in fact not

altered during these time periods and therefore its predictions do not change. In addition

to this, there are more potential low activity operating states for the heat pump. In this

case, it is likely that the model is insensitive to changes in the dataset, which will result

in a performance evaluation that does not truly reflect the impact of the heat pump

installation on the model.
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3.3.2 High-intensity Operation Simulation

Based on the first approach, the second attempts to address its shortcomings. Here we

will drastically modify the original sequence of heat pump data to weaken its sparsity.

The basic idea is that we set a specific threshold for the operating energy consumption

of the heat pump to filter the states in which it operates at high intensity. We extract

fragments of these states as sub-sequences of the virtual heat pump’s ”high intensity

operation”. We select and assemble (or repeat) such sub-sequences to form a simulation

sequence of a target length, in which the heat pump is continuously operating at high

intensity in the output simulation sequence.

However, we soon realised that this destroys some of the realism of the simulation

data, as such filtering amounts to ” cutting off” specific parts of the heat pump’s natural

behaviour, leading to the creation of unnatural jumps. As neural network learning is

likely to learn the pattern of the appliance’s operation from changes in state, it is likely

that such changes would prevent the network from learning correctly from the data.

3.3.3 Intensive Operation Simulation

The third approach tries to think in a different way to avoid the potential pitfalls of

option two. Now, we have to figure out how to preserve all the useful patterns and

structures present in the data while trying to reduce sparsity. Due to the black-box

nature of neural networks, it’s difficult to assert what patterns will play an important

role, so preserving the realism of the data would be a good starting point. In the new

data series, I tried to ensure that the following three occurrences could be present in the

data window intercepted by the model’s sensory field:

1. The heat pump is in operation.

2. The heat pump gradually starts from a silent state.

3. The heat pump is gradually switched off from the running state.

In terms of specifics, I removed only the longer periods of time when the heat pump

was continuously off (i.e., when the reading was 0) and spliced and expanded the data

segments in a similar manner as in the second approach. In this way, although the data

still retains some sparsity, the simulation data has made the original sequence denser

while retaining all the full operating cycles of the heat pump.
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3.3.4 Average Operation Simulation

We soon discovered that Method 3 also posed a subsequent problem: we managed

to generate a dataset that could be used to assess the impact of heat pumps on the

baseline model, but it was clear that it was unsuitable to be used to train a new model

because it lacked information about the data in the home when the heat pumps were not

working. In a real-world deployment, heat pumps in the home would not work at such

an unnaturally high intensity. Therefore, if whether the heat pump is working or not is

indeed an influencing factor in the predictive performance of the model, training with

this dataset is likely to result in overfitting of the model. That is, the performance of

the trained new model on the new simulation dataset may be dramatically improved,

but the performance on the original dataset may be reduced sharply. This is not what

we expect to see in training. Therefore, we propose a more eclectic solution based on

approach 3: we record the duration of heat pump operation in each subperiod, and then

fill in a silent time period of the same length corresponding to the gaps between heat

pumps’ operation, which ultimately ensures that the times when the heat pumps are

working and not working are averaged over the simulation sequence.

3.3.5 Data Enhancement Simulation

In order to address the above issues, a fifth scenario was proposed as we wanted to utilise

more information for training. We realised that we do not need to keep the size of the

dataset constant if the problem involves actual deployment rather than just performance

evaluation, so we could introduce both the real dataset without heat pumps and the

simulated dataset with intensive heat pump operation during training. At this point,

the number of homes used for training becomes twice as large, including the IDEAL

dataset augmented with homes and the same number of ”virtual homes” augmented

with virtual heat pumps. If the model is able to correctly learn features from the data

when the heat pumps are operating, then training with this enhanced dataset is expected

to maximise the performance of the model in real-world deployments, even when the

introduction of the heat pumps has an impact on the performance of the base model.

3.4 Combining of Datasets

As mentioned above, the combining of the IDEAL dataset with the heat pump dataset

means adding the heat pump as a virtual appliance to the IDEAL dataset’s household
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electricity records. The process involves two main actions:

1. Placing the heat pump data into the catalogue in a form consistent with the

individual appliances in the IDEAL enhanced dataset. This means that we

simulate the presence of heat pump appliances in the homes.

2. Using the sum of the heat pump energy consumption sequence and the electric-

mains sequence to replace the latter. This means that the energy consumption

when the heat pump is working becomes part of the total energy consumption at

the corresponding point in time, i.e. it is overlaid with the sum of the electricity

consumption of all other appliances. Such a change does not affect the real energy

consumption of any other appliance individually.

In the specific operation of the merging, two key points were noted:

1. The units of measure and time resolution of the IDEAL data and the heat pump

data need to be unified. In terms of temporal resolution, the electric-mains

readings and appliance readings in the IDEAL dataset and were recorded at a

maximum of once per second, and there were cases of omitted recordings where

readings varied slowly; the appliance readings for the heat pumps were sampled

at a very standard two-minute interval. For the input data to the network model,

we expected a sampling interval of 10 seconds, so the IDEAL sequence was

uniformly padded first to 1 Hz and then downsampled to 10 Hz; the data for the

heat pumps was upsampled, i.e., padded backwards to 10 Hz.

2. Before merging, the timestamps of the two datasets should be unified. In the case

of the real data simulation scenario for the heat pump data, for example, although

for a set of IDEAL homes and heat pumps, both of them have data collection

lengths of approximately up to 1-2 years, they cannot be directly aligned and

merged. A better approach here would be to extract only the sequence of readings

for the heat pump data without extracting the timestamps, since we assume

that the operating state of the virtual heat pump has a translational invariance.

For other simulation scenarios, we can also manually control the length of the

sequences to coincide with the acquisition duration of the IDEAL data to create

convenience for the experiment.
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3.5 Selection of Target Appliances

There are a large number of specific appliances that were measured in the IDEAL

dataset. In the experimental phase, it was not possible to train separate models for

all appliances, so we chose four of these common household appliances as our target

appliances, which are cooker, shower, kettle, and washingmachine. Our criteria for

selecting the target appliances are as follows:

1. These appliances should be common in households and recorded a high number

of times in the dataset. With a relatively small number of households in the

augmented group, choosing appliances that are commonly installed in a larger

number of households can provide a larger amount of data and a higher confidence

level of evaluation for our model training. Ensuring the performance stability of

common appliances also benefits the system being deployed in practice.

2. These appliances have functionally similar units to heat pumps. In heat pumps,

the main energy-consuming units are a booster heater and a circulation pump. In

the target appliances, the cooker, the shower and the kettle all have a heating unit

as the main part; and the washingmachine has both a heating unit and a motor

unit.

3. These appliances operate at similar power levels to the heat pumps, so their

evaluation allows for maximum testing of the interference of the heat pumps with

the model. Heat pumps operate at peak power readings of thousands of watts.

In comparison, the target appliances all operate in the range of at least several

hundred watts.

In subsequent experiments, we will train the corresponding prediction model sep-

arately for each target appliance, and our performance evaluation will always be for

these appliances, even after the heat pump has been introduced. This is because what

we are concerned with is whether the predictive performance of the model for the target

appliances is affected by the heat pump data.

3.6 Selection of Target Households

Of the 255 families recorded in the IDEAL dataset, only 34 families in the enhanced data

subset with relatively complete power data records could be used in our experiments.
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We divide these households into training, validation and test sets. The distribution of

target appliances is different in different households. Therefore, an important criterion

for the division is to ensure that the appearances of each target appliance in the three

subsets are relatively even. We ensure that at least each target appliance appears at least

twice in each of the three sets to ensure the balance of the data and the generalisation

performance of the model. Here, we adopt a division consistent with the baseline paper

[3], as shown in table 3.1. The number of occurrences of each target appliance in each

of the three subsets is shown in table 3.2. 18 Household data from the training set is

used for model training. The optimisation target of the deep neural network is the error

between its prediction and the real appliance energy consumption. 8 validation sets are

used to evaluate the generalisation performance of the model in real time during the

training process. The early stop mechanism is triggered to prevent overfitting when

the model’s performance improves on the training set but no longer increases on the

validation set. 8 test sets are used to generate evaluation metrics for the model during

the evaluation phase. The prediction errors of the model on these electric-mains data

were aggregated and counted to measure the generalisation performance of the final

model for each appliance.

Homes

Training 62, 65, 96, 105, 106, 128, 136, 145, 162, 168, 169,

175, 228, 231, 238, 255, 263, 328

Validation 61, 63, 139, 140, 146, 208, 225, 268

Test 73, 171, 212, 227, 242, 249, 264, 266

Table 3.1: Division of the data set

Appliance Type Training Validation Test Total

Cooker 5 1 2 8

Shower 6 2 3 11

Kettle 8 3 4 15

Washingmachine 13 3 5 21

Table 3.2: The count of each appliance type

Here, the use of cross-validation methods can lead to stronger evaluation results.

Specifically, we can choose a variety of different ways of dividing the training, valida-

tion, and test sets, and then train/evaluate each set and average the evaluation results.
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The advantage of this method is that it can substantially reduce the randomness asso-

ciated with the choice of datasets, thus improving the confidence of the results. The

disadvantage of this method is that when the amount of data is small, it is difficult to

find a variety of divisions that can balance the number of appliances, which leads to a

potential degradation of training quality.

3.7 Evaluation Metrics

The evaluation of the model’s predictive performance is an important part of this

project. The electric-mains data from the target dataset is fed into the model we wish

to evaluate. The predictions obtained from forward propagation are compared to real

data for a specific appliance. These evaluation metrics are categorised as energy metrics

and activation metrics. The quantified energy sequences obtained from the model

predictions can be used directly in the calculation of the energy metrics. The difference

is that, before the calculation of the activation metrics, the energy sequences need to

be converted into binary activation sequences, i.e., labels that determine whether the

appliance is in operation or not, by means of activation detection.

An important application of the product is to monitor the electricity consumption of

elderly and vulnerable people in order to decide when to provide help. Therefore the

need for model deployment is to determine the working status of individual appliances

in the home (e.g., whether cookers are turned on abnormally), rather than how much

power they are specifically consuming. That is, we are more concerned with activation

metrics than energy metrics.

3.7.1 Energy Metrics

The energy evaluation metrics are aggregated in different forms to calculate the predic-

tion error between the predicted energy sequence and the true energy sequence. Data

points in the true energy sequence are denoted by xi; data points in the predicted energy

sequence are denoted by x̂i; and the length of the sequence of readings is denoted by n.

There are four energy metrics for prediction error: (1) Mean Absolute Error (MAE), as

in equation 3.1. (2) Signal Aggregate Error (SAE), as in equation 3.2. (3) Match Rate

(MR), as in equation 3.3. (4) Normalised Disaggregated Error (NDE), as in equation

3.4.



Chapter 3. Methodogy 19

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3.1)
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n
i=1 x̂i|

∑
n
i=1 xi

(3.2)
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n
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∑
n
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(3.3)

NDE =
∑

n
i=1(xi − x̂i)

2

∑
n
i=1 x2

i
(3.4)

Since the timestamps of the real energy series do not exactly overlap with the

electric-mains data, whereas the timestamps of the appliance prediction energy series

are the same as the electric-mains data, data points with no real values for that time

period were excluded from the evaluation.

Each sequence is derived from the readings of a specific appliance in a specific

household, so the above predictors also correspond to specific appliances in a specific

household. Therefore in order to measure the total predictive performance of the target

appliance across all households, we also compute two aggregated energy metrics:

1. Average statistics: first obtain statistics for each household and then average these

statistics.

2. Aggregate statistics: first the series of all different households are aggregated and

then the evaluation results are computed for this collection of series.

3.7.2 Activation Detections

The activation of an appliance is defined as the period of time during which it performs

its major function. The purpose of activation detection is to convert the sequence of

values obtained from the regression into a sequence of activations that determines

whether the appliance is operating or not. This conversion is achieved through a series

of thresholds that are predefined for the appliance:

1. Minimum activation power. This is a common metric, and when the appliance

power reading exceeds this threshold, the appliance is determined to be in opera-

tion.
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2. Minimum and maximum duration of activation. When the duration of an ac-

tivation is below the minimum threshold, the activation is removed; above the

maximum threshold, it is replaced with a shorter activation period.

3. Minimum time interval between adjacent activations. When the time interval

between two activations is below the threshold, remove that too short offs and

subsequent activations.

The specific rules for determining that a target appliance is active are shown in table

3.3, where the parts except for the heat pump are provided by the IDEAL code base.

Appliance Type Minimum

Activation

Minimum

Duration

Maximum

Duration

Minimum In-

terval

Cooker 200 10 10000 120

Shower 300 20 5000 30

Kettle 1000 10 600 10

Washingmachine 50 1200 30000 600

Heatpump 100 10 5000 10

Table 3.3: Specific appliances activation rules

When we train and evaluate heat pump models in augmented data, we also need to

develop appropriate activation rules for heat pumps. For this purpose, we conducted an

exploratory data analysis of the heat pump data.

Firstly, we counted the power distribution of the data points in the heat pump

sequence, and the results are shown in figure 3.1, where logarithmic coordinates were

used for the vertical axis. The results showed that 100 Watt is a significant cut-off point

for the power statistics, and 200 Watt is another cut-off point, but not as significant as

the former. Here we consider the characteristics of heat pumps. When conventional

appliances are in operation, energy consumption is generally maintained at a relatively

constant level. Unlike them, heat pumps are different because their energy consumption

changes frequently and is in a large range of instability when they are in operation,

depending on the need for heat transfer. Therefore, in order to ensure that the normal

operation of the heat pump is not neglected while filtering out the noise, we set the

minimum activation power threshold to 100.

Secondly, we aggregated the statistics of the features related to the length of the

heat pump data sequence. When the activation power is set to 100, the activation
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Figure 3.1: The Power Distribution of the Data Points in the Heat Pump Sequences

segment length of the sequence is a minimum of 12 and a maximum of 45504. When

the activation power is set to 200, the activation segment length of the sequence is a

minimum of 12 and a maximum of 45492. Here, we again consider the characteristics

of heat pumps. When a heat pump is used to maintain a constant indoor temperature,

it tends to be turned on or off frequently in response to heating or cooling demands,

and the duration of this operation is very flexible. Therefore, we should try to relax

the restrictions on the operating cycles of heat pumps. Therefore, the minimum and

maximum duration thresholds are set to 10 and 50,000, respectively; the minimum

interval is set to 10.

3.7.3 Activation Metrics

After activation detection, true and predicted sequences described by state change labels

(on or off) are used to compute the evaluation results. Activation evaluation replaces the

error metric in energy evaluation with a correctness metric. The activation evaluation

metrics include Recall, Precision, and F1 score. Similar to the evaluation of a general

binary labelled machine learning model, Recall indicates how much of all the data in

the activated state is correctly predicted, and Precision indicates how much of all the

data predicted to be activated matches the true state. F1 score is used to combine the

performance in Recall and Precision. They are formally expressed as equation 3.5,
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equation 3.6 and equation 3.7.

precision =
truepositives

truepositives+ f alsepositives
(3.5)

recall =
truepositives

truepositives+ f alsenegatives
(3.6)

F1 = 2× precision× recall
precision+ recall

(3.7)
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Experiment Description and Result

Analysis

4.1 Experiment Environment

The dataset processing and evaluation part of the experiment was run on a Windows

PC. The Python version was 3.10. We used the pandas library to perform the reading,

processing, and writing of all the csv and hdf files from the datasets and the cached

data.

The training and prediction part of the experiment was realised by remote access to

a Linux PC on the DICE system provided by Informatics of the University of Edinburgh.

The host provided hardware computing support with four NVIDIA Titan X GPUs. The

code used to train the deep neural network models and obtain predictions used the deep

learning library keras2.4.3 based on the framework tensorflow2.4.1. The Python version

was 3.9.

4.2 Creation of the Heat Pump-free Dataset

The first task of the project was to build a heat pump-free dataset based on the IDEAL

dataset. This process mainly involved screening, pre-processing and format conversion

of the data. During data collection, the time series of readings from each sensor in the

IDEAL dataset were stored in separate csv files. The sensor information can be indexed

by its file name, which includes the household the sensor belongs to, the numerical

identification of the location, the sensor category, and the appliance function being

measured.

23
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After initially filtering out the broad categories of electricity data, we filtered the

sensors by their household serial numbers and functional identifiers to get a subset of

data for all target households and target appliances. This is done by extracting the target

household fields and target appliance fields from the file names. The target households

include the 34 augmented group households that were discussed in 3.6. The variable

”install type” in the household list indicates whether the household has a standard or

enhanced system installed. The target appliances include the electric-mains readings

named ”electric-combined” and the data for the four target appliances discussed in 3.5:

cooker, shower, kettle, and washingmachine. The size of the dataset is significantly

reduced after filtering.

Inside each csv file, the raw data format presents concise two columns. The first

column records the detailed sampling timestamp. The raw sampling interval is 1 s. The

second column records the sensor reading at the corresponding time, which is in watts.

When reading the file, we use the time data in the first column as row labels in the

dataframe. Since then, the data format is transformed into a 1-dimensional sequence

of readings. For each sequence of sensor readings, we perform the following data

preprocessing:

1. Remove unreasonably spiky data. For electric-mains, readings over 20,000 are

set to 20,000; for appliances, readings over 4,000 are set to 0.

2. Filling of missing values. The electric-mains and appliance sampling intervals

in the raw data were not strictly 1 s. Therefore, we resampled the raw data by

padding forward to make the sampling intervals strictly 1 s. Specifically, the

range of forward padding for the electric-mains and appliance readings were 1

min and 1 h, respectively.

3. Downsampling the data sequences at sampling intervals of 10 s. The 10 s is

the uniform sampling interval that we set for the IDEAL dataset and heat pump

dataset.

In practice, preprocessing of the dataset is used as part of the training process. The

script first tries to read data from the pre-specified raw data directory or cached data

directory. If there is no data in the cache directory, the preprocessing of the data is

performed preferentially and then the preprocessed data is saved in the cache directory

in the form of an hdf file. Meanwhile, the information being recorded in the filename

was simplified to the id of the residence, the appliance name and the sampling interval
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(default 10s). These filenames were used as a uniform index format in subsequent

experiments. By setting the ”prepare-only” parameter in the training script, we can

make the programme stop after caching the data without subsequent training. Since then,

we have obtained these heat-pump-free datasets in the form of cached files, reaching a

milestone in the dataset creation phase of the project.

4.3 Training and Evaluation of Heat Pump-free House-

holds

After the heat pump-free dataset is ready, the next step is to train using that dataset.

The training of the model is done individually for each target appliance. After running

the script that was used to train the model with the target appliance as a parameter, the

program takes priority to read from the cache directory all the corresponding appliance

sequences of the households belonging to the training and validation sets.

4.3.1 The Second Data Preprocessing

The data used for training will undergo a second preprocessing after being fed into the

model:

1. The sequence is normalised. The data points of the electric-mains are subtracted

from the mean of the sequence and divided by the standard deviation of the

sequence. The data points for each appliance are divided by its maximum value.

2. The sequence was windowed. The processed sequence is overlaid and intercepted

into a data window that conforms to the input dimensions of the NILM model.

3. Data windows with missing appliance readings were recorded or discarded.

The main purpose of the above preprocessing is to make the data suitable for the model,

to improve model performance, or to increase training speed.

4.3.2 Model Training

The FCN neural network model which was discussed in 2.4 is used for training. The

number of dilation layers of the network is 9. The dilation filter size is 3. The initial

filter size is 9. The number of filters is 128. The loss measure for training is the mean
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square error and the optimiser used is adam. The initial learning rate is set to 0.001.

The batchsize of the training data is 256. The data of each appliance is trained for a

maximum of 200 epochs.

After each training epoch, the model of the specified appliance is always saved.

An optimal model is additionally saved and is continuously updated. The early stop

mechanism is triggered when the training error continues to decrease but the validation

error no longer does. After training, the best models corresponding to the four target

appliances are saved as the results of the training phase.

4.3.3 Prediction and Evaluation

After the training of the model is complete, we get the predicted readings on the test

set to prepare for the evaluation. First, the prediction script is loaded with a sequence

of electric-mains readings from the homes in the test set. Secondly, the sequence is

pre-processed and fed into the model. The output sequence obtained from the model

feed-forward is the prediction result of the target appliance. Finally, the prediction

results are saved as a three-column hdf file of ” Mains Readings - Predicted Appliance

Readings - True Appliance Readings”.

Subsequently, the models for each target appliance were evaluated individually on

the test set. The evaluation includes the energy metrics and activation metrics discussed

in 3.7. It is worth noting that prior to the activation evaluation, the appliance readings

including the predicted sequences are subjected to activation detection to generate

activation labelled sequences. For the model obtained by training using the heat pump-

free dataset, the activation evaluation results on its own test set are shown in table 4.1.

The aggregated evaluation results for multiple households take the aggregated statistics

presented in 3.7.1. The complete energy evaluation statistics can be found in Appendix

B. The results of this evaluation are used as a baseline for the model performance on

the different datasets.

4.4 Creation and Evaluation of the Simulated Heat Pump

Dataset

The next task of the project was to augment the IDEAL dataset with the DECC RHPP

dataset to create a simulation dataset with heat pump households. The cleaned DECC

RHPP dataset contains the operating records of 418 heat pumps during the data col-
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Appliance Type Recall Precison F1 Score

Cooker 0.77 0.10 0.18

Shower 0.99 0.60 0.75

Kettle 0.85 0.88 0.87

Washingmachine 0.78 0.83 0.81

Table 4.1: The aggregated activation statistics of the heat pump-free model on the heat

pump-free dataset

lection period. Each heat pump’s is saved as a csv file. Unlike the independence of

the sequences in the IDEAL dataset, multiple sequences of readings are combined in a

single heat pump file, which includes records of energy consumption, heat production,

and relevant details of energy conversion.

4.4.1 Processing of Heat Pump Data

We extracted only the sequence of electrical readings with the field ”E hp” and the

line labels with the time in the format ”YYYY-MM-DD hh:mm:ss”. Thus, a one-

dimensional sequence having a consistent format with the IDEAL specific electrical

reading sequence is initially obtained. Further, the data was subjected to the following

processing in preparation for merging with IDEAL data:

1. Unit conversion.The DECC RHPP dataset records the energy consumed by the

heat pump in Wh over a 2-minute period. We converted it to units of Watts

consistent with the IDEAL dataset.

2. Upsampling. The heat pump data was sampled at 2 min intervals. we backfilled

the data to get a new sequence with a target sampling interval of 10 s.

4.4.2 Data Combining

As indicated in 3.4, we selected the first 34 files in the heat pump dataset to augment

the IDEAL dataset in order to simulate the installation of heat pumps in the homes.The

correspondence between the IDEAL homes and the virtual heat pumps can be found in

Appendix A. In order to avoid the hassle of unifying the timelines, the electric-mains

sequences of each home were read as the basis for the two new sequences. Therefore,

the heat pump data will be used directly for merging with the pre-processed IDEAL
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data instead of the original IDEAL data. The result of the data combining will be the

cached dataset with the heat pump household version mentioned in 4.2.

For the virtual heat pumps, we take the realistic data simulation approach that

was discussed in 3.3.1, which is the most basic simulation approach. When using

this method, we do not make any changes to the content of the heat pump readings.

Firstly, we modify the length of the heat pump reading sequence by the length of the

energy reading sequence. Insufficient parts are made up with zeros, while excesses

are discarded. Second, the energy sequence in the base dataframe is replaced by the

heat pump sequence. The result is saved as a heat pump cache hdf file. Finally, the

energy sequence in the base dataframe is replaced by the sum of itself and the heat

pump sequence. The result is saved as a new electric-mains cache dhf file. After the

data of all households are updated, the complete new simulation dataset is obtained.

4.4.3 Evaluation and Discussion

Evaluating the performance of the original model for the heat pump dataset is an

important goal of this project. As operated in 4.3.3, the previously obtained model was

used to test the model on the dataset with heat pumps that we just obtained. The results

of the evaluation are shown in table 4.2 and Appendix B. This result is compared to the

performance of the model on the data without heat pumps as shown in figure 4.1, 4.2,

4.3.

Appliance Type Recall Precison F1 Score

Cooker 0.81 0.10 0.18

Shower 0.98 0.08 0.15

Kettle 0.78 0.53 0.63

Washingmachine 0.80 0.31 0.44

Table 4.2: The aggregated activation statistics of the heat pump-free model on the heat

pump dataset(Realistic heat pump simulation)
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Figure 4.1: Recall: comparing the difference in heatpump-free model performance

between heatpump-free dataset and heatpump dataset
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Figure 4.2: Precision: comparing the difference in heatpump-free model performance

between heatpump-free dataset and heatpump dataset

The results of the comparisons show that for the four target appliances evaluated,

the performance of the models is affected to varying degrees by the heat pump data. For

the cooker, the difference in evaluation before and after the change in the dataset was

the smallest. Even though its precision is already very low, in this project we focus only

on the change in performance and do not discuss the prediction performance itself. For

kettle, shower, and washingmachine, the predicted precisions all experienced significant

decreases, suggesting that the addition of heat pumps is often incorrectly recognised by

the model as the switching on of the target device. For kettle, the predicted recall also

showed a small decrease, suggesting that when kettle is operating normally, the model
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Figure 4.3: F1 Score: comparing the difference in heatpump-free model performance

between heatpump-free dataset and heatpump dataset

is misled by the power fluctuations brought on by the heat pump and thus misjudge

kettle to be off.

Meanwhile, there is a pitfall here. As we discussed in 3.3.1, when using real data

simulation methods for simulation dataset creation, we may suffer from data sparsity.

Thus, we conducted an investigation into the sparsity of the heat pump sequence. In the

case of heat pump 5104, for example, the length of the sampled sequence is 3153589,

of which there are 2297149 data points with the value of 0, accounting for 72.84%.

This further supports the validity of our concern. Therefore, we suspect that perhaps

this better evaluation result does not reflect the actual situation. Specifically, we are

concerned that the smaller performance difference may come from the fact that the

actual change in the dataset is smaller than we expected. When the simulated heat pump

in the heat pump dataset is left inactive for long periods of time, the model is actually

still demonstrating its performance for the no heat pump data.

4.4.4 Creating Low-sparsity Datasets

In order to solve the above mentioned problems and to give a more reliable evaluation,

we chose the alternative method of building a virtual heat pump sequence that has been

proposed in 3.3.3 - intensive working simulation - to be tested again. For the evaluation

only, on the one hand, the use of this method does not cause problems of overfitting,

and on the other hand, this allows to test to a greater extent the reflection of the model

on the newly introduced heat pump data, as it increases as significantly as possible the



Chapter 4. Experiment Description and Result Analysis 31

proportion of time that the heat pump is in operation in the sequence. Moreover, it is

not unrealistic to create a virtual heat pump like this, as it still simulates the operating

modes of the appliance as they might exist in reality.

After 4.4.1, for heat pump sequences that have been downsampled, we additionally

made the following modifications in accordance with the intensive working simulation

methodology:

1. Detecting and replacing consecutive zeros in the sequences in order to avoid

excessively long silences of the heat pump. Specifically, all sequences of consecu-

tive zeros with a length of more than 12 were retained up to 12, i.e., the maximum

length of complete silence of the heat pump was set to 2 minutes.

2. After the sequence length was significantly shortened, the sequence was repeated

until the length of the sequence reached the requirement.

We investigated the sparsity of the sequence again after modification. In the case of heat

pump 5104, for example, there are 109,008 data points with the value of 0, accounting

for 3.34%, which shows a significant decrease in the sparsity of the sequence compared

to the previous one.

4.4.5 Re-evaluation and Discussion

Using the modified dataset, we ran the evaluation of the model again, and the results

are shown in table 4.3 and Appendix B. The results are compared with the previous two

evaluations as shown in figure 4.4, 4.5 and 4.6.

Appliance Type Recall Precison F1 Score

Cooker 0.79 0.08 0.15

Shower 0.97 0.06 0.11

Kettle 0.65 0.54 0.59

Washingmachine 0.84 0.15 0.26

Table 4.3: The aggregated activation statistics of the heat pump-free model on the heat

pump dataset(Intensive operation simulation)
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Figure 4.4: Recall: comparing the difference in heatpump-free model performance

among heatpump-free dataset, heatpump dataset and heatpump dataset(sparsity re-

duced)
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Figure 4.5: Precision: comparing the difference in heatpump-free model performance

between heatpump-free dataset, heatpump dataset and heatpump dataset(sparsity

reduced)

The results show a further decrease in the predictive performance of the model

on the four target devices, almost maintaining the decreasing trend shown in the first

comparison. For recall, a more significant decrease in the prediction performance

of kettle can be observed, while no significant change is found for the other devices.

For precision, washingmachine’s performance shows a more drastic downward trend

compared to the previous comparison. The combined F1 score shows that the prediction

performance of all four devices is lower on the new heat pump dataset compared to
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Figure 4.6: F1 Score: comparing the difference in heatpump-free model performance

between heatpump-free dataset, heatpump dataset and heatpump dataset(sparsity

reduced)

on the sparse heat pump dataset. Such a result supports the weakening of the model

brought about by the heat pump data that was observed in the first comparison. At the

same time, it suggests that using sparse data for the evaluation does to some extent

make the model less affected than it actually appears to be, although it is also able to

capture the trend of this effect. The model is more heavily influenced by the heat pump

data than is reflected in the evaluation results.

4.5 Training and Evaluation of the New Model

The above analysis shows that it is necessary to retrain the model using an updated

dataset to try to solve the problem of the original model not adapting to the heat pump

data. Here, we use the heat pump dataset created from the real simulation data instead

of the sparsity-reduced heat pump dataset, as the latter suffers from imbalance in the

training data, as mentioned in 3.3.4. After training, we obtained a new model trained

on the energy consumption records of homes with virtual heat pumps installed. We

evaluate the performance of this model on the dataset with and without heat pumps and

compare it with the evaluation of the model without heat pumps on the same dataset.
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4.5.1 Evaluation of the New Model on Heatpump Data

Using the updated dataset, we run the evaluation of the new model and the results are

shown in table A.1 and Appendix B. The results are compared with the evaluation of

the heat pump-free model on this dataset as shown in figure 4.7, 4.8 and 4.9.

Appliance Type Recall Precison F1 Score

Cooker 0.71 0.12 0.20

Shower 0.98 0.08 0.15

Kettle 0.74 0.66 0.70

Washingmachine 0.80 0.74 0.77

Table 4.4: The aggregated activation statistics of the new model on the heat pump

dataset
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Figure 4.7: Recall: comparing the performance difference in new model and heatpump-

free model on heatpump dataset
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Figure 4.8: Precision: comparing the performance difference in new model and

heatpump-free model on heatpump dataset
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Figure 4.9: F1 Score: comparing the performance difference in new model and

heatpump-free model on heatpump dataset

Comparison of the results for the two models shows that retraining improves the

predictive performance of the models to some extent on the dataset with heat pumps.

For cooker and kettle, the recall of the new model shows small fluctuations. However,

for kettle and washingmachine, the training of the new model significantly improves the

precision performance, which is the main disadvantage of the model without heat pump.

In terms of combined F1 score performance, for cooker, kettle and washingmachine,

the new model can be observed to improve prediction performance on the heat pump

dataset compared to the previous model. However, retraining does not seem to work for

shower, as it fails to produce any improvement in its low precisions.
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4.5.2 Evaluation of the New Model on Heatpump-free Data

At the end of the experiment, we again ran the evaluation of the new model on the no-

heat-pump dataset, and the results are shown in 4.5 and Appendix B. On this basis, we

can observe whether training on the heat-pump dataset has an impact on the prediction

performance of the other devices. Also, we can compare the performance of the new

model on the two datasets. The comparison results are shown in figure 4.10, 4.11 and

4.12.

Appliance Type Recall Precison F1 Score

Cooker 0.71 0.11 0.19

Shower 0.99 0.68 0.81

Kettle 0.81 0.91 0.85

Washingmachine 0.77 0.82 0.80

Table 4.5: The aggregated activation statistics of the new model on the heatpump-free

dataset
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Figure 4.10: Recall: comparing the performance difference in new model and heatpump-

free model on heatpump-free dataset
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Figure 4.11: Precision: comparing the performance difference in new model and

heatpump-free model on heatpump-free dataset
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Figure 4.12: F1 Score: comparing the performance difference in new model and

heatpump-free model on heatpump dataset

First, we compare the performance of the new model and the heat pump-free model

on the heat pump-free dataset (Observe columns 1 and 2). The results show that for all

four target devices, the predicted recall, precision, and F1 scores fluctuate only slightly

before and after the model replacement, without significant differences. This suggests

that the inclusion of the heat pump data did not make it more difficult for the new model

to learn the true characteristics of the energy consumption patterns of the target devices

during the training phase.

Then, we compare the performance of the new model on two datasets (observation

column 2 and column 3). The results show that there is no significant difference in
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recall for all four devices. However, for kettle and shower, the performance of the new

model on the heat pump-free data is significantly higher than that on the heat pump

data. This shows a similar trend to the difference in performance of the heat pump-free

model on the two datasets. Combined with the comparison results in 4.5.1, we can

say that model retraining has some mitigating effect on the model adaptation problem

on the new data, but does not fundamentally address the low model decomposition

performance for the target device in the case of the heat pump operation (compared to

the case of the no-heat-pump operation).



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, we created a simulation dataset of households with low-carbon technology

appliances - heat pumps - based on the IDEAL dataset and DECC RHPP data. We first

trained the NILM power disaggregation model using the dataset of households without

heat pumps and compared the predictive performance of the model on the dataset with

heat pumps versus the dataset without heat pumps. To reliably verify that the model was

not affected by the heat pump data that was introduced, we used two different virtual

heat pump simulation datasets.We then retrained the model and evaluated it again to

analyse the performance and impact of the new model.

The evaluation results show that for all three target appliances (except for the

cooker, which already has low predictive performance), the addition of heat pump

data significantly reduces the predictive performance of the original models, especially

the precision, i.e., the original models are not able to adapt to the new dataset. For

kettle and washingmachine, retraining significantly improves model performance on

the new dataset, but this does not work for shower. Despite these improvements, the

performance of the new model on the heat pump dataset is still significantly lower than

on the heat pump-free dataset, suggesting that the misleading nature of the heat pump

data for prediction has not been fundamentally addressed in this way. At the same time,

it is encouraging that training on the new data does not affect the model’s ability to

disaggregate the appliances themselves.

39
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5.2 Limitations and Future Work

The project has the following limitations, so we have more room for improvement and

exploration in the future.

5.2.1 Reliability of Results

Although we have avoided the evaluation results being affected by the sparse heat pump

data by reducing the sparsity, the reliability of the results of this evaluation remains to

be tested. For the IDEAL dataset, the number of augmented-group households that can

be used for the experiment only accounts for a relatively small portion of it. To make

things worse, many more data were discarded during the experiment for reasons such

as insufficient data in the corresponding window, which further reduced the amount of

data actually used for the experiment. Therefore, in the future, we may be able to obtain

more reliable validation results by collecting more dedicated data. In addition, more

rigorous statistical testing of the data is also an important task.

5.2.2 Generalisation of Results

Our work is currently limited to discussing the impact of the introduction of heat pump

data on the four target appliances we have chosen, and cannot be simply generalised to

a wider range of low carbon technologies and target appliances. Until we gain more

understanding of the models and the appliances themselves, we can only examine the

effects of new appliances on a case-by-case basis in the future.

5.2.3 Interpretability

As mentioned above, we are currently unable to understand how this black-box system

works internally, and therefore it is difficult for us to work on the principle level to

improve the performance of the system.. If its predictive principles cannot be thoroughly

investigated, then this work will never be able to be widely promoted, especially when

it is applied to such a sensitive area as personal safety and security. Indeed, this is the

challenge for the entire field of ”applying machine learning to NILM problems”. When

breakthroughs are made in this area, we will also have a deeper understanding of the

blind source decomposition problem itself.
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Appendix A

Correspondence of Data Combining

The correspondence of IDEAL households(34) and virtue heat pumps(34) in data

combining is in table A.1

IDEAL Household Virtue Heat Pump

home-105 processed rhpp5104

home-106 processed rhpp5105

home-128 processed rhpp5106

home-136 processed rhpp5107

home-139 processed rhpp5108

home-140 processed rhpp5111

home-145 processed rhpp5112

home-146 processed rhpp5113

home-162 processed rhpp5114

home-168 processed rhpp5117

home-169 processed rhpp5118

home-171 processed rhpp5119

home-175 processed rhpp5121

home-208 processed rhpp5123

home-212 processed rhpp5124

home-225 processed rhpp5126

home-227 processed rhpp5128

home-228 processed rhpp5129

home-231 processed rhpp5132

home-238 processed rhpp5136

home-242 processed rhpp5141
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home-249 processed rhpp5144

home-255 processed rhpp5145

home-264 processed rhpp5149

home-266 processed rhpp5150

home-268 processed rhpp5152

home-328 processed rhpp5154

home-61 processed rhpp5155

home-62 processed rhpp5156

home-63 processed rhpp5157

home-65 processed rhpp5159

home-73 processed rhpp5160

home-96 processed rhpp5161

Table A.1: The correspondence of IDEAL households and virtue heat pumps in data

combining



Appendix B

Detailed Result of Evaluations

B.1 Evaluation 1 (4.3.3)

This section shows the complete results of predicting and evaluating the test set in

the heatpump-free using the heatpump-free model. See 3.5 for the selection of target

appliances and 3.7 for details of the evaluation metrics.

homeid NDE MAE MR SAE

242 0.93 55.09 0.06 0.90

264 0.21 38.04 0.43 0.68

Aggregated 0.57 48.06 0.22 0.79

Averaged 0.57 46.56 0.25 0.79

Table B.1: Cooker: Energy Metrics

homeid TP FP FN Recall Precision F1

242 99.0 1150.0 43.0 0.70 0.08 0.14

264 68.0 320.0 6.0 0.92 0.18 0.29

Aggregated 167.0 1470.0 49.0 0.77 0.10 0.18

Averaged - - - 0.81 0.13 0.22

Table B.2: Cooker: Activation Metrics

45
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homeid NDE MAE MR SAE

73 0.09 1.26 0.68 0.04

227 0.27 15.59 0.47 0.18

249 0.30 24.64 0.47 0.34

264 0.20 8.95 0.52 0.20

Aggregated 0.22 5.56 0.53 0.17

Averaged 0.22 12.61 0.53 0.19

Table B.3: Kettle: Energy Metrics

homeid TP FP FN Recall Precision F1

73 384.0 10.0 39.0 0.91 0.97 0.94

227 322.0 46.0 113.0 0.74 0.88 0.80

249 256.0 84.0 24.0 0.91 0.75 0.83

264 348.0 33.0 59.0 0.86 0.91 0.88

Aggregated 1310.0 173.0 235.0 0.85 0.88 0.87

Averaged - - - 0.85 0.88 0.86

Table B.4: Kettle: Activation Metrics

homeid NDE MAE MR SAE

73 0.23 13.45 0.46 0.31

227 0.47 61.89 0.29 0.22

249 0.22 21.00 0.48 0.33

Aggregated 0.34 27.96 0.38 0.27

Averaged 0.31 32.11 0.41 0.29

Table B.5: Shower: Energy Metrics
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homeid TP FP FN Recall Precision F1

73 112.0 6.0 3.0 0.97 0.95 0.96

227 167.0 166.0 1.0 0.99 0.50 0.67

249 68.0 59.0 1.0 0.99 0.54 0.69

Aggregated 347.0 231.0 5.0 0.99 0.60 0.75

Averaged - - - 0.98 0.66 0.77

Table B.6: Shower: Activation Metrics

homeid NDE MAE MR SAE

73 0.10 4.06 0.65 0.17

212 0.20 7.32 0.61 0.28

171 0.39 30.63 0.46 0.42

227 0.48 17.56 0.40 0.12

242 0.47 27.22 0.36 0.54

264 0.08 6.13 0.72 0.10

Aggregated 0.30 10.83 0.51 0.30

Averaged 0.29 15.49 0.53 0.27

Table B.7: Washingmachine: Energy Metrics

homeid TP FP FN Recall Precision F1

73 137.0 2.0 0.0 1.00 0.99 0.99

212 69.0 3.0 27.0 0.72 0.96 0.82

171 48.0 5.0 15.0 0.76 0.91 0.83

227 89.0 84.0 17.0 0.84 0.51 0.64

242 94.0 4.0 75.0 0.56 0.96 0.70

264 51.0 2.0 0.0 1.00 0.96 0.98

Aggregated 488.0 100.0 134.0 0.78 0.83 0.81

Averaged - - - 0.81 0.88 0.83

Table B.8: Washingmachine: Activation Metrics
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B.2 Evaluation 2 (4.4.3)

This section shows the complete results of predicting and evaluating the test set in the

heatpump dataset using the heatpump-free model. See 3.5 for the selection of target

appliances and 3.7 for details of the evaluation metrics.

homeid NDE MAE MR SAE

242 0.92 58.89 0.08 1.22

264 0.24 42.13 0.41 0.81

Aggregated 0.58 51.98 0.22 1.00

Averaged 0.58 50.51 0.24 1.01

Table B.9: Cooker: Energy Metrics

homeid TP FP FN Recall Precision F1

242 107.0 1154.0 35.0 0.75 0.08 0.15

264 69.0 415.0 5.0 0.93 0.14 0.25

Aggregated 176.0 1569.0 40.0 0.81 0.10 0.18

Averaged - - - 0.84 0.11 0.20

Table B.10: Cooker: Activation Metrics

homeid NDE MAE MR SAE

73 0.29 3.46 0.42 0.64

227 1.02 54.13 0.15 1.11

249 0.33 25.99 0.44 0.35

264 0.21 9.39 0.51 0.19

Aggregated 0.50 12.30 0.31 0.37

Averaged 0.46 23.24 0.38 0.57

Table B.11: Kettle: Energy Metrics
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homeid TP FP FN Recall Precision F1

73 373.0 147.0 50.0 0.88 0.72 0.79

227 238.0 818.0 197.0 0.55 0.23 0.32

249 250.0 89.0 30.0 0.89 0.74 0.81

264 345.0 37.0 62.0 0.85 0.90 0.87

Aggregated 1206.0 1091.0 339.0 0.78 0.53 0.63

Averaged - - - 0.79 0.65 0.70

Table B.12: Kettle: Activation Metrics

homeid NDE MAE MR SAE

73 0.24 14.99 0.43 0.26

227 0.73 159.15 0.12 1.21

249 0.22 21.85 0.47 0.30

Aggregated 0.47 55.43 0.22 0.45

Averaged 0.39 65.33 0.34 0.59

Table B.13: Shower: Energy Metrics

homeid TP FP FN Recall Precision F1

73 112.0 39.0 3.0 0.97 0.74 0.84

227 164.0 3707.0 4.0 0.98 0.04 0.08

249 68.0 75.0 1.0 0.99 0.48 0.64

Aggregated 344.0 3821.0 8.0 0.98 0.08 0.15

Averaged - - - 0.98 0.42 0.52

Table B.14: Shower: Activation Metrics
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homeid NDE MAE MR SAE

73 0.52 13.37 0.35 0.68

212 0.33 14.86 0.42 0.08

171 0.60 56.55 0.30 0.01

227 1.27 48.99 0.15 1.01

242 0.77 44.37 0.23 0.22

264 0.18 10.56 0.59 0.10

Aggregated 0.63 23.98 0.30 0.26

Averaged 0.61 31.45 0.34 0.35

Table B.15: Washingmachine: Energy Metrics

homeid TP FP FN Recall Precision F1

73 135.0 338.0 2.0 0.99 0.29 0.44

212 73.0 231.0 23.0 0.76 0.24 0.36

171 48.0 54.0 15.0 0.76 0.47 0.58

227 98.0 393.0 8.0 0.92 0.20 0.33

242 94.0 62.0 75.0 0.56 0.60 0.58

264 51.0 47.0 0.0 1.00 0.52 0.68

Aggregated 499.0 1125.0 123.0 0.80 0.31 0.44

Averaged - - - 0.83 0.39 0.50

Table B.16: Washingmachine: Activation Metrics

B.3 Evaluation 3 (4.4.5)

This section shows the complete results of predicting and evaluating the test set in the

heatpump dataset(sparsity reduced) using the heatpump-free model. See 3.5 for the

selection of target appliances and 3.7 for details of the evaluation metrics.
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homeid NDE MAE MR SAE

242 0.94 58.21 0.07 1.12

264 0.40 61.76 0.32 1.40

Aggregated 0.67 59.67 0.20 1.27

Averaged 0.67 59.99 0.20 1.26

Table B.17: Cooker: Energy Metrics

homeid TP FP FN Recall Precision F1

242 102.0 1158.0 40.0 0.72 0.08 0.15

264 68.0 792.0 6.0 0.92 0.08 0.15

Aggregated 170.0 1950.0 46.0 0.79 0.08 0.15

Averaged - - - 0.82 0.08 0.15

Table B.18: Cooker: Activation Metrics

homeid NDE MAE MR SAE

73 0.35 3.89 0.39 0.71

227 1.12 76.44 0.04 1.50

249 0.33 26.54 0.43 0.36

264 0.30 15.05 0.36 0.02

Aggregated 0.57 16.48 0.21 0.56

Averaged 0.53 30.48 0.30 0.65

Table B.19: Kettle: Energy Metrics

homeid TP FP FN Recall Precision F1

73 371.0 192.0 52.0 0.88 0.66 0.75

227 55.0 493.0 380.0 0.13 0.10 0.11

249 249.0 81.0 31.0 0.89 0.75 0.82

264 328.0 104.0 79.0 0.81 0.76 0.78

Aggregated 1003.0 870.0 542.0 0.65 0.54 0.59

Averaged - - - 0.67 0.57 0.62

Table B.20: Kettle: Activation Metrics
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homeid NDE MAE MR SAE

73 0.23 14.94 0.44 0.25

227 0.65 154.28 0.11 1.04

249 0.22 22.09 0.47 0.30

Aggregated 0.43 54.12 0.22 0.37

Averaged 0.37 63.77 0.34 0.53

Table B.21: Shower: Energy Metrics

homeid TP FP FN Recall Precision F1

73 112.0 48.0 3.0 0.97 0.70 0.81

227 163.0 5417.0 5.0 0.97 0.03 0.06

249 68.0 68.0 1.0 0.99 0.50 0.66

Aggregated 343.0 5533.0 9.0 0.97 0.06 0.11

Averaged - - - 0.98 0.41 0.51

Table B.22: Shower: Activation Metrics

homeid NDE MAE MR SAE

73 0.58 14.91 0.32 0.80

212 0.67 31.27 0.21 0.77

171 1.60 175.76 0.08 1.95

227 3.91 146.07 0.03 5.07

242 0.77 43.59 0.23 0.25

264 0.77 46.64 0.21 1.64

Aggregated 1.29 48.40 0.15 1.34

Averaged 1.38 76.37 0.18 1.75

Table B.23: Washingmachine: Energy Metrics
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homeid TP FP FN Recall Precision F1

73 136.0 400.0 1.0 0.99 0.25 0.40

212 82.0 653.0 14.0 0.85 0.11 0.20

171 59.0 231.0 4.0 0.94 0.20 0.33

227 99.0 1004.0 7.0 0.93 0.09 0.16

242 97.0 46.0 72.0 0.57 0.68 0.62

264 51.0 544.0 0.0 1.00 0.09 0.16

Aggregated 524.0 2878.0 98.0 0.84 0.15 0.26

Averaged - - - 0.88 0.24 0.31

Table B.24: Washingmachine: Activation Metrics

B.4 Evaluation 4 (4.5.1)

This section shows the complete results of predicting and evaluating the test set in

the heatpump-free dataset using the new model. See 3.5 for the selection of target

appliances and 3.7 for details of the evaluation metrics.

homeid NDE MAE MR SAE

242 0.90 48.39 0.05 0.49

264 0.20 35.94 0.41 0.40

Aggregated 0.56 43.26 0.21 0.44

Averaged 0.55 42.16 0.23 0.45

Table B.25: Cooker: Energy Metrics

homeid TP FP FN Recall Precision F1

242 86.0 852.0 56.0 0.61 0.09 0.16

264 67.0 276.0 7.0 0.91 0.20 0.32

Aggregated 153.0 1128.0 63.0 0.71 0.12 0.20

Averaged - - - 0.76 0.14 0.24

Table B.26: Cooker: Activation Metrics
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homeid NDE MAE MR SAE

73 0.20 1.72 0.57 0.07

227 0.70 32.41 0.20 0.08

249 0.37 26.64 0.40 0.48

264 0.26 8.84 0.49 0.36

Aggregated 0.41 8.19 0.37 0.18

Averaged 0.38 17.40 0.42 0.25

Table B.27: Kettle: Energy Metrics

homeid TP FP FN Recall Precision F1

73 373.0 37.0 50.0 0.88 0.91 0.90

227 216.0 454.0 219.0 0.50 0.32 0.39

249 237.0 70.0 43.0 0.85 0.77 0.81

264 323.0 26.0 84.0 0.79 0.93 0.85

Aggregated 1149.0 587.0 396.0 0.74 0.66 0.70

Averaged - - - 0.75 0.73 0.74

Table B.28: Kettle: Activation Metrics

homeid NDE MAE MR SAE

73 0.29 18.65 0.36 0.20

227 0.73 170.97 0.12 1.41

249 0.27 26.43 0.40 0.29

Aggregated 0.49 61.47 0.20 0.57

Averaged 0.43 72.02 0.29 0.63

Table B.29: Shower: Energy Metrics
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homeid TP FP FN Recall Precision F1

73 112.0 18.0 3.0 0.97 0.86 0.91

227 165.0 3822.0 3.0 0.98 0.04 0.08

249 68.0 25.0 1.0 0.99 0.73 0.84

Aggregated 345.0 3865.0 7.0 0.98 0.08 0.15

Averaged - - - 0.98 0.54 0.61

Table B.30: Shower: Activation Metrics

homeid NDE MAE MR SAE

73 0.15 6.24 0.56 0.11

212 0.71 17.65 0.16 0.60

171 0.48 40.62 0.36 0.34

227 0.74 28.38 0.23 0.05

242 0.50 31.11 0.31 0.50

264 0.09 9.97 0.60 0.04

Aggregated 0.46 16.34 0.36 0.23

Averaged 0.45 22.33 0.37 0.27

Table B.31: Washingmachine: Energy Metrics

homeid TP FP FN Recall Precision F1

73 137.0 3.0 0.0 1.00 0.98 0.99

212 47.0 4.0 49.0 0.49 0.92 0.64

171 56.0 11.0 7.0 0.89 0.84 0.86

227 95.0 138.0 11.0 0.90 0.41 0.56

242 109.0 16.0 60.0 0.64 0.87 0.74

264 51.0 5.0 0.0 1.00 0.91 0.95

Aggregated 495.0 177.0 127.0 0.80 0.74 0.77

Averaged - - - 0.82 0.82 0.79

Table B.32: Washingmachine: Activation Metrics
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B.5 Evaluation 5 (4.5.2)

This section shows the complete results of predicting and evaluating the test set in

the heatpump-free dataset using the new model. See 3.5 for the selection of target

appliances and 3.7 for details of the evaluation metrics.

homeid NDE MAE MR SAE

242 0.98 49.69 0.04 0.54

264 0.20 37.03 0.40 0.43

Aggregated 0.60 44.48 0.21 0.48

Averaged 0.59 43.36 0.22 0.49

Table B.33: Cooker: Energy Metrics

homeid TP FP FN Recall Precision F1

242 87.0 947.0 55.0 0.61 0.08 0.15

264 67.0 267.0 7.0 0.91 0.20 0.33

Aggregated 154.0 1214.0 62.0 0.71 0.11 0.19

Averaged - - - 0.76 0.14 0.24

Table B.34: Cooker: Activation Metrics

homeid NDE MAE MR SAE

73 0.14 1.11 0.68 0.20

227 0.34 14.63 0.44 0.40

249 0.35 25.73 0.42 0.47

264 0.26 8.66 0.50 0.37

Aggregated 0.28 5.34 0.50 0.36

Averaged 0.27 12.54 0.51 0.36

Table B.35: Kettle: Energy Metrics
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homeid TP FP FN Recall Precision F1

73 383.0 1.0 40.0 0.91 1.00 0.95

227 293.0 31.0 142.0 0.67 0.90 0.77

249 245.0 72.0 35.0 0.88 0.77 0.82

264 327.0 25.0 80.0 0.80 0.93 0.86

Aggregated 1248.0 129.0 297.0 0.81 0.91 0.85

Averaged - - - 0.81 0.90 0.85

Table B.36: Kettle: Activation Metrics

homeid NDE MAE MR SAE

73 0.29 19.20 0.34 0.19

227 0.49 62.80 0.27 0.28

249 0.29 26.64 0.39 0.31

Aggregated 0.39 32.38 0.32 0.25

Averaged 0.36 36.21 0.34 0.26

Table B.37: Shower: Energy Metrics

homeid TP FP FN Recall Precision F1

73 112.0 3.0 3.0 0.97 0.97 0.97

227 167.0 140.0 1.0 0.99 0.54 0.70

249 68.0 17.0 1.0 0.99 0.80 0.88

Aggregated 347.0 160.0 5.0 0.99 0.68 0.81

Averaged - - - 0.98 0.77 0.85

Table B.38: Shower: Activation Metrics
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homeid NDE MAE MR SAE

73 0.10 5.45 0.59 0.06

212 0.71 17.30 0.16 0.62

171 0.39 34.11 0.43 0.35

227 0.43 19.42 0.39 0.00

242 0.45 28.57 0.36 0.47

264 0.08 9.32 0.62 0.02

Aggregated 0.38 14.10 0.42 0.25

Averaged 0.36 19.03 0.43 0.25

Table B.39: Washingmachine: Energy Metrics

homeid TP FP FN Recall Precision F1

73 137.0 2.0 0.0 1.00 0.99 0.99

212 40.0 1.0 56.0 0.42 0.98 0.58

171 57.0 7.0 6.0 0.90 0.89 0.90

227 96.0 86.0 10.0 0.91 0.53 0.67

242 101.0 8.0 68.0 0.60 0.93 0.73

264 51.0 3.0 0.0 1.00 0.94 0.97

Aggregated 482.0 107.0 140.0 0.77 0.82 0.80

Averaged - - - 0.80 0.88 0.81

Table B.40: Washingmachine: Activation Metrics


