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Abstract

This research project aims to develop an intelligent object detection algorithm optimized

for firefighters operating in smoke-filled environments to enhance safety and operational

efficiency during rescue missions. The algorithm’s primary goal is to accurately identify

critical objects in firefighting scenarios, such as doors, windows, and fire hydrants,

leveraging thermal image data. The project also focuses on creating a diverse and

annotated dataset of thermal images and RGB images, serving as the fundamental

training and refinement source for the algorithm.

In this work, three distinct object detection methodologies are explored: the baseline

YOLO model, transfer learning technique, and domain adaptation with transfer learning.

Each object detection model undergoes a comprehensive evaluation using metrics such

as precision, recall, mean Average Precision at an Intersection-over-Union (IoU) value

of 0.5 (mAP50), and mean Average Precision across IoU thresholds ranging from 0.5 to

0.95 (mAP50-95).

A comparative visual analysis is carried out to highlight the respective strengths and

limitations of each approach in identifying objects within thermal imagery. Through rig-

orous experimentation and evaluation, domain adaptation with transfer learning emerges

as the most effective approach, exhibiting superior accuracy, F1 score, and probability

scores for detected objects. The transfer learning approach is the most effective in en-

hancing detection capabilities as it leverages knowledge from the red-green-blue (RGB)

domain to improve results. The domain adaptation technique significantly enhances

accuracy and localization in thermal images, with precision rising from 0.728 (baseline)

and 0.903 (transfer learning) to 0.935, recall improving from 0.673 (baseline) and 0.840

(transfer learning) to 0.859, mAP50 increasing from 0.743 (baseline) and 0.906 (transfer

learning) to 0.919, and mAP50-95 growing from 0.393 (baseline) and 0.613 (transfer

learning) to 0.673.

This method effectively addresses challenges related to data scarcity in the thermal

domain, bolstering the algorithm’s robustness and adaptability in low-visibility sce-

narios. This research lays a strong foundation for further advancements in intelligent

systems for firefighting and emergency response teams.
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Chapter 1

Introduction

1.1 Motivation

Firefighting is an inherently demanding and hazardous profession that necessitates spe-

cialized training, skills, and tools to effectively safeguard both people and property. The

primary objective of firefighters is to extinguish fires and swiftly respond to emergen-

cies across diverse settings, encompassing residential neighborhoods and commercial

buildings [1]. Despite advancements in technology and safety protocols, firefighting

remains an unpredictable and physically exhausting occupation [2]. Firefighters will-

ingly subject themselves to significant personal risk, driven by their understanding of

the inherent dangers involved, as they strive to save lives and extinguish fires [3]. The

limited visibility in such environments makes it difficult to assess the fire’s magnitude,

locate potential victims, and make effective firefighting decisions and operations. Suc-

cessfully overcoming these challenges demands adaptability, super-fast response, and a

firm commitment to public safety.

Advancements in camera technology and object detection algorithms are poised to

revolutionize firefighting in the near future [4]. While traditional visible light cameras

have limitations in smoke-filled environments, they can still be valuable in certain

firefighting scenarios, particularly during daytime or under relatively clear conditions

[5]. However, smoke rapidly impairs vision, making visual sensors ineffective in the

fire scenario. In such situations, thermal imaging cameras play a crucial role [6]. These

cameras utilize infrared ray, which has a longer wavelength than visible lights and shows

a stronger smoke penetration ability, to detect the heat signatures of objects, enabling

firefighters to perceive their surroundings even through smoke and flames [7]. By

providing enhanced visibility, thermal imaging devices assist in identifying individuals,

1



Chapter 1. Introduction 2

animals, and other objects in smoke-filled environments, empowering firefighters to

make informed decisions and take prompt and appropriate actions.

Firefighting demands rapid thinking, stamina, and attentiveness to navigate its

hazardous environment [3]. Yet, firefighters encounter hindrances like low lighting and

potential dangers when approaching burning structures, impeding their firefighting and

life-saving efforts [8]. To overcome these challenges, the introduction of a smart device

(e.g., helmet or potable detector) equipped with cutting-edge technologies offers a

promising solution [9]. This innovative gear assists firefighters in efficiently navigating

smoke-filled areas and promptly identifying vital elements such as doors, windows, and

fire hydrants. By improving operational effectiveness and ensuring safety, the smart

detector will greatly enhance the potential for saving lives during firefighting operations.

The main objective of this research is to create an intelligent object detection

algorithm specifically designed for firefighters, capable of accurately identifying crucial

objects like doors, windows, tables, and fire hydrants in a firefighting environment using

thermal image data. To achieve this goal, the research involves collecting and annotating

thermal image data for training purposes and focusing on developing and optimizing

thermal detection algorithms that offer high accuracy and reliability. To overcome

the challenge of limited data availability and enhance the algorithm’s performance in

real-world scenarios, the research incorporates domain adaptation and transfer learning

techniques. These approaches enable the algorithm to generalize better to new, unseen

data by leveraging knowledge from related domains or pre-trained models, ultimately

improving the algorithm’s adaptability and effectiveness in real firefighting situations.

The integration of the developed algorithm into the smart detection device empowers

firefighters with real-time feedback, augmenting their spatial awareness and reducing

the potential risks due to dangerous actions. This integration significantly improves

the effectiveness and safety of firefighting tasks, making the proposed algorithm an

invaluable tool for firefighters. It enables them to execute their duties with heightened

confidence and efficiency, ultimately leading to more successful outcomes in firefighting

missions.

1.2 Research Hypothesis and Objectives

The idea is based on the hypothesis that firefighters might benefit significantly from the

usage of a real-time algorithm capable of recognising and precisely detecting essential

objects. It is predicted that by enhancing their spatial awareness, navigation skills, and
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task execution, both firemen and victims will benefit.

This thesis presents a study into the critical issue of detecting objects, with an

emphasis on enhancing firefighter operational effectiveness and safety during rescue

missions. The main goal of this project is to create and implement an intelligent

object detection algorithm that can work well in smoke-filled environments. This

research aims to advance technologies dedicated to firefighter safety and emergency

response by limiting the study to the development and evaluation of the object detection

algorithm for field use by firefighters. This research may find applications in sectors that

require precise object identification under demanding environmental conditions. Instead

of addressing more general issues relating to fire safety, prevention, or emergency

management, this thesis concentrates on the specific objective of improving object

detection capabilities to increase the overall safety and effectiveness of firefighters

during rescue missions.

1.3 Thesis Overview

The thesis aims to create an intelligent object detection algorithm tailored for firefighters,

capable of accurately identifying crucial objects in a firefighting environment using

thermal image data. It begins with a comprehensive introduction in Chapter 1, laying

the groundwork for the study. Chapter 2 explores the background of thermal cameras

for object detection and various techniques, including traditional methods, two-stage

detectors, and one-stage detectors. It also covers domain adaptation and transfer

learning, crucial for real-world algorithm enhancement. In Chapter 3, data collection is

discussed, encompassing the setup for data acquisition and the methodology used to

collect and annotate thermal image data. Bounding box calibration to thermal images is

also addressed. Chapter 4 presents the methodology, starting with data and object class

analysis. It further explores the development of baseline models, enhanced through

transfer learning, and incorporates domain adaptation techniques for improved real-

world performance. Chapter 5 provides a comprehensive analysis and evaluation of the

developed object detection models. It assesses the baseline model’s performance, the

impact of transfer learning, and the effectiveness of domain adaptation, accompanied

by a comparative visual analysis. Chapter 6 concludes the thesis by summarizing key

findings and accomplishments while discussing potential future enhancements to the

intelligent object detection algorithm for firefighters.



Chapter 2

Background

Object detection is a crucial task in computer vision, finding diverse applications [10].

Recent progress in deep learning algorithms and the availability of large datasets have

significantly advanced object detection techniques [11]. One area gaining traction is

thermal cameras for object detection, excelling in challenging conditions like low-light

and smoky environments [12]. This chapter explores current research and developments

in thermal camera usage for accurate and efficient object detection. The chapter covers

various object detection techniques, including traditional methods, two-stage detectors

like Faster Regions with Convolutional Neural Networks (R-CNN) and Mask R-CNN,

and one-stage detectors like You Only Look Once (YOLO) and SSD. Transfer learning, a

powerful approach, is also discussed for adapting pre-trained models to object detection

tasks. Additionally, the concept of domain adaptation is examined to address the

challenge of limited availability of data. By reviewing advancements in thermal object

detection techniques, such as transfer learning, and domain adaptation, this chapter

aims to identify state-of-the-art methods and discuss challenges and opportunities.

The insights gained will aid future research in thermal object detection and domain

adaptation, ensuring improved performance in real-world scenarios.

2.1 Thermal Cameras for Object Detection

Thermal cameras have gained considerable attention in recent years due to their excep-

tional performance in object detection, particularly in demanding environments where

traditional visible cameras are limited [13]. Distinguishing them from conventional red-

green-blue (RGB) cameras is their ability to capture and process the infrared radiation

emitted by objects, thereby enabling the detection of heat signatures and facilitating

4



Chapter 2. Background 5

enhanced visibility even in low-light scenarios, areas filled with smoke, and other visu-

ally challenging conditions [14]. This distinctive attribute empowers thermal cameras

to prove remarkably effective across a diverse range of applications, encompassing

surveillance systems, search and rescue missions [15], industrial inspections [16], and

automotive safety measures [17].

Thermal cameras have emerged as the preferred option in firefighting due to their

superior capabilities compared to RGB cameras [18]. In firefighting scenarios, visibility

is often severely impaired by smoke and low-light conditions, making it challenging

for firefighters to assess the situation accurately. Thermal cameras, equipped with

infrared technology, overcome these obstacles by detecting heat signatures emitted by

objects [19]. This enables firefighters to see through smoke and darkness, effectively

identifying individuals, hotspots, and crucial elements like doors and windows. The

real-time thermal imaging provided by these cameras enhances situational awareness,

allowing firefighters to navigate hazardous environments and make informed decisions

[20]. Moreover, thermal cameras enable the visualization of temperature variations,

helping to detect hidden sources of fire and structural weaknesses. With their ability

to improve visibility, enhance situational awareness, and aid decision-making, thermal

cameras have proven to be an invaluable tool in firefighting operations, ultimately

leading to more effective fire suppression and increased safety for firefighters and

victims [21].

In the realm of object detection using thermal cameras, significant progress has

been made in recent studies. One notable paper by Dai et al. [22] introduces an object

detection algorithm specifically designed for thermal images, demonstrating impressive

performance in detecting humans and vehicles. Similarly, other studies [23, 24, 25] have

focused on the detection of pedestrians and vehicles using thermal cameras, showcasing

promising results. However, it is worth noting that the majority of these research efforts

[26, 27] have primarily concentrated on the identification of individuals and vehicles,

with less emphasis on other critical objects such as doors and windows in firefighting

scenarios. This presents an important gap in the existing literature, highlighting the

need for further research and development to address the specific challenges faced by

firefighters in identifying these crucial elements during firefighting operations.

Firefighter safety in smoke-filled environments is of paramount importance. Pre-

vious research by Tsai et al. [28] has proposed a deep learning-based approach that

focuses on detecting humans in thermal images specifically in heavy smoke conditions.

While this study addresses the crucial task of human detection, it overlooks the recog-
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nition of other vital objects that play a significant role in firefighting scenarios. The

identification of objects such as doors, windows, and potential obstacles is essential for

effective firefighting operations. Another study [29] addresses this gap by developing an

object detection algorithm using thermal cameras, specifically designed to enhance fire-

fighters’ safety. However, this approach heavily relies on large datasets for training the

object detection models, which can be challenging in real-world firefighting situations

where annotated data is limited. Therefore, this research aims to explore alternative

methods that can overcome the constraints of data availability and successfully detect

various important objects in smoke-filled environments.

2.2 Object Detection Techniques

This section aims to explore the various approaches and advancements in object detec-

tion, a fundamental task in computer vision. Object detection involves the identification

and localization of objects of interest within images or videos. Over the years, numerous

techniques have been developed, each with its own unique strengths and limitations.

To provide a comprehensive overview, object detection techniques are categorised into

three broader groups.

2.2.1 Traditional Methods

Traditional object detection techniques, such as Viola-Jones [30], Histogram of Oriented

Gradients (HOG) [31], and Deformable Parts Models (DPM) [32], have made significant

contributions to computer vision [33]. The Viola-Jones algorithm efficiently detects

objects using Haar-like features and cascaded classifiers, originally gaining popularity

in face detection [34]. HOG-based detectors capture object appearance through local

gradient distributions and employ classifiers like Support Vector Machine (SVM) [35].

DPM represents objects as deformable parts and models their spatial relationships using

a pictorial structure framework [36].

These traditional methods have advantages such as computational efficiency and

interpretability. They excel in scenarios with simpler object appearances or limited

computational resources. However, they may struggle with complex object variations,

requiring manually designed features that may not fully capture object complexities

[37]. Deep learning-based approaches have surpassed traditional techniques by au-

tomatically learning discriminative features from data [38]. Nevertheless, traditional
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object detection methods laid the foundation for subsequent advancements and retain

relevance in specific applications and research contexts.

2.2.2 Two-Stage Detectors

Two-stage detectors are a popular class of object detection algorithms that consist of two

main components: a region proposal network (RPN) and a classifier. These detectors

excel at accurately localizing and classifying objects in images, making them widely

used in computer vision tasks [39]. Two-stage detectors are a popular class of object

detection algorithms that consist of two main components: a region proposal network

(RPN) and a classifier. These detectors excel at accurately localizing and classifying

objects in images, making them widely used in computer vision tasks.

One prominent example of a two-stage detector is R-CNN [40]. R-CNN generates

region proposals using a selective search algorithm, which identifies potential object

regions in an image. These proposed regions are then individually classified using a

convolutional neural network (CNN), enabling accurate object detection. However,

R-CNN can be computationally expensive due to the independent processing of each

proposed region [41].

To make it faster, Fast R-CNN [42] was introduced. It shares the work by using

the same convolutional features for multiple region proposals at once. This reduces the

time needed for computations and improves the speed of detection.

A further improvement came with Faster R-CNN [41]. It added the RPN, which

generates region proposals and predicts objectness scores and bounding box offsets. By

training the RPN and the detection network together, Faster R-CNN achieves better

accuracy and efficiency.

These two-stage detectors are essential for various computer vision applications,

such as self-driving cars [43] and surveillance systems [44]. They combine precise

object localization with efficient processing, helping identification objects more effec-

tively.

2.2.3 One-Stage Detectors

One-stage detectors, such as YOLO [45] and SSD (Single Shot MultiBox Detector)

[46], are widely used object detection algorithms that directly predict object bounding

boxes and class probabilities from fixed grids or anchor boxes. These detectors offer a



Chapter 2. Background 8

different approach compared to two-stage detectors, simplifying the detection process

and achieving real-time performance.

YOLO divides the input image into a grid and processes it as a whole, making

predictions for bounding boxes and class probabilities for each grid cell in a single

pass. This grid-based approach enables YOLO to efficiently detect objects, but it may

struggle with accurately localizing small objects due to the coarser grid resolution.

SSD [46] emerged as a significant advancement in object detection by utilizing the

VGG-16 [47] architecture and introducing additional layers for improved performance.

It stood out as the first single-stage detector capable of matching the performance

of traditional two-stage detectors in terms of accuracy metrics. However, despite its

advantages over YOLO and faster R-CNN in terms of both speed and accuracy, SSD

faced certain limitations. It encountered challenges in accurately detecting smaller

objects within images. To overcome these limitations and further enhance object

detection, subsequent versions of YOLO, including YOLOv3 [48], and YOLOv4 [49],

were introduced. These iterations of YOLO offered even better speed, accuracy and

addressed the specific issues that the earlier versions faced.

RetinaNet [50] revolutionized object detection with the introduction of its novel focal

loss and feature pyramid network (FPN). The focal loss, a key component of RetinaNet,

focuses the training process on challenging examples, leading to improved accuracy.

By combining this focal loss with the ResNet [51] backbone, RetinaNet achieved

increased accuracy and speed compared to traditional two-stage detectors. Additionally,

RetinaNet is known for its ease of implementation, faster training convergence, and

efficient utilization of the FPN, which effectively captures objects at various scales.

2.3 Domain Adaptation in Object Detection

In the domain of thermal object detection, the utilization of synthetic thermal images

generated from visible images has become a prevalent technique to enhance detection

performance. For instance, in the work presented by Liu et al. [52], an innovative

unsupervised domain adaptation method for thermal object detection employs an image

generation network to create synthetic thermal images. Similarly, Guo et al. [53]

proposed a domain adaptation approach for pedestrian detection in thermal images

using a CycleGAN-based (Cycle-Consistent Generative Adversarial Network) image

translation technique to produce synthetic thermal images from visible light images.

Both of these methods leverage synthetic images for either unsupervised or supervised
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training, leading to improved object detection performance compared to existing domain

adaptation approaches.

In thermal object detection, Lee et al. [54] introduced a distinctive approach

for domain adaptation. Emphasizing edge information preservation during image

translation, it accurately transfers details from RGB to synthetic thermal images. This

strategy bridges the domain gap, enhancing object detection effectiveness in thermal

imagery. The project leverages this technique to explore better ways of improving

thermal object detection and robustness in real-world scenarios.

Another notable study by Kieu et al. [55] introduced a compelling LSGAN-based

(Least Squares Generative Adversarial Network) method that facilitates the transforma-

tion of visible spectrum photos into thermal spectrum representations. This technique,

accomplished through mixing training, greatly enhances pedestrian detection in thermal

images. The demonstrated success of these domain adaptation techniques in adapting

object detection models to different domains, even with limited data, underscores their

suitability and relevance for the proposed research project. By leveraging the power of

synthetic thermal images, the project can explore novel and effective ways to improve

thermal object detection performance and robustness in real-world scenarios.

2.4 Transfer Learning

Transfer learning is a machine learning technique that allows the transfer of knowledge

gained from one domain to another, typically by using a pre-trained model on a source

domain to improve performance in a target domain [56]. In the case of transferring

learning from RGB to thermal imaging, the objective is to leverage the knowledge

learned from RGB images (with three color channels) to enhance the analysis of thermal

images (with a single channel representing heat signatures).

The Transfer learning from RGB to thermal imaging is valuable because RGB

images capture visual information for object recognition, while thermal images reveal

heat patterns and anomalies. By transferring learned features from RGB to thermal,

models gain a general understanding of objects and improve tasks like object detection,

anomaly detection, and activity recognition in thermal images. This approach leverages

the strengths of both modalities, enhancing the analysis of thermal data and enabling

insights that are not visible to the human eye alone.

Several recent papers have explored transfer learning from RGB to thermal imaging.

For example, a study by Mantau et al. [57] proposed using the YOLOv5 framework
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and pre-trained models from the MS COCO dataset [58] to enhance object detection

in surveillance systems employing RGB and thermal imaging from UAVs. A semi-

supervised transfer learning method was proposed by Weipeng et al. [59] for infrared

object detection, utilizing a pre-trained RGB model to improve efficiency and gener-

alization on limited-scale IR datasets. These papers demonstrate the effectiveness of

transfer learning from RGB to thermal imaging.

2.5 Summary

The exploration of thermal cameras for accurate and efficient object detection reveals

their efficacy in challenging conditions such as low-light and smoky environments,

making them highly valuable in firefighting, surveillance, and industrial inspection

applications. This investigation highlights advancements in object detection techniques,

categorizing them into traditional methods, two-stage detectors, and one-stage detectors.

Notable algorithms like R-CNN, Faster R-CNN, YOLO, SSD, and RetinaNet are

discussed, each offering unique strengths in detecting objects.

Additionally, the concept of domain adaptation is addressed, which deals with the

challenge of deploying algorithms trained in one domain, such as RGB images, to

effectively work in another domain, such as thermal images. Techniques like using

synthetic thermal images and applying transfer learning from RGB to thermal imaging

demonstrate promising potential in enhancing object detection performance in thermal

imagery, even when faced with limited data availability.

2.6 Research Gaps

1. Unavailability of Indoor Thermal Data

One of the major gaps in current literature is the absence of any open-source

dataset that provides annotated indoor thermal data suitable for training an object

detection algorithm. There are no existing studies that have tackled this specific

issue, and therefore, there is no dataset available that adequately represents indoor

thermal conditions. This severe data scarcity poses a significant challenge in

developing a robust and accurate object detection model for indoor environments.

Hence, the project aims to address this critical gap by exploring innovative and

feasible data collection strategies to create a comprehensive and diverse dataset
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tailored to indoor thermal conditions.

2. Transfer Learning from RGB to Thermal

This research area faces challenges in training an accurate object detection algo-

rithm for indoor thermal environments, primarily due to the limited availability of

annotated thermal data. While some existing studies have explored transfer learn-

ing techniques from RGB to thermal domains, they have predominantly focused

on outdoor scenarios, leaving a significant gap in the literature for indoor thermal

datasets. The key research gap lies in investigating effective transfer learning

techniques that can leverage pre-trained models from RGB image domains to

improve the performance of the object detection model on the collected indoor

thermal dataset. By addressing this unexplored area, this project aims to develop

a robust and efficient object detection algorithm tailored specifically for indoor

thermal scenarios, where transfer learning from RGB to thermal has not been

adequately studied yet.

3. Domain Adaptation for Indoor Thermal Environments

The existing literature on thermal object detection has primarily focused on

domain adaptation methods for outdoor scenarios, with limited exploration for

indoor thermal environments. This research gap poses a challenge in achiev-

ing accurate and robust object detection in indoor thermal settings. Thus, this

project tries to address this gap by adapting existing domain adaptation methods

developed for outdoor scenarios to suit indoor thermal datasets. By exploring

the effectiveness of these adapted domain adaptation techniques in indoor scenar-

ios, the project aims to contribute to the advancement of indoor thermal object

detection.
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Data Collection

Data collection is an essential aspect of training machine learning models, providing

the necessary foundation for their development and evaluation. While datasets for

outdoor environments exist, primarily consisting of objects like cars, they are not

suitable for our needs. To address this gap and facilitate effective indoor thermal

analysis, a dedicated dataset needs to be collected. The dataset should capture thermal

properties and temperature variations of indoor objects, including doors, windows, and

fire hydrants. This dataset will serve as the foundation for developing machine learning

models capable of accurately detecting and analyzing these indoor objects.

This chapter presents a comprehensive overview of the methodology and procedures

adopted for data collection. The details of the data acquisition setup, including the

specialized hardware employed, are discussed. The techniques and processes involved in

capturing thermal data along with RGB images for bounding box labeling are explained.

Furthermore, the calibration procedure utilized to align the bounding boxes with the

corresponding thermal images ensuring accurate object labeling is explored.

3.1 Data Acquisition Setup

The data acquisition setup utilized for this project involved the combination of an RGB

camera and a FLIR Boson 640 camera as shown in Figure 3.1. These cameras were

strategically positioned next to each other along the same axis to facilitate alignment

and reduce the calibration effort. The RGB camera was placed above the FLIR Boson

640 camera, ensuring that both cameras captured the same scene to the largest extent.

The RGB camera used in the setup had a resolution of 1920x1080 pixels and an

FPS (frame per second) of 30. It was capable of capturing high-quality color images,

12
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Figure 3.1: Platform with RGB and Thermal sensor

providing visual details and context for the objects of interest. On the other hand, the

FLIR Boson 640 camera offered a thermal imaging capability with a resolution of

640x512 pixels and an FPS of 9. This specialized camera was specifically chosen for

its high sensitivity and ability to capture fine-grained thermal data.

Both the RGB and thermal cameras were connected to an NVIDIA processor, which

played a crucial role in real-time data collecting, processing, and storage. The processor

facilitated efficient communication and synchronization between the cameras, ensuring

that the captured RGB and thermal data were properly aligned and timestamped.

During the data acquisition process, the synchronized RGB and thermal data were

stored as ’.bag’ packages, a file format commonly used in the Robot Operating System

(ROS) framework. ’.bag’ files are capable of storing time-stamped messages, making

them ideal for storing and managing sensor data in ROS applications. From these ’.bag’

files, individual images were extracted and saved for further analysis and annotation.

To ensure accurate pairing of RGB and thermal images, the images with nearby

timestamps were carefully paired together. This allowed for synchronized visual and

thermal data, ensuring a coherent dataset for subsequent analysis and modeling tasks.

This setup facilitated the collection of comprehensive and properly aligned data for

subsequent analysis, annotation, and machine learning model development.
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3.2 Thermal Data Collection

During the data collection process, a variety of objects related to safety and security in

indoor environments were included. This includes doors, windows, fire extinguishers,

free pathways, and fire exits, as they are crucial for ensuring proper evacuation routes

and identifying potential hazards. By incorporating these objects into the dataset, the

project aims to develop comprehensive models that can accurately detect and analyze

relevant objects in smoke-filled environments.

Figures 3.2 and 3.3 show some examples from the dataset. These examples showcase

image pairs that combine thermal and RGB images, allowing to observe the captured

data from both thermal and visual perspectives.

(a) RGB image of fire extinguisher (b) Thermal image of fire extinguisher

Figure 3.2: Example of fire extinguisher image

(a) RGB image of exit sign (b) Thermal image of exit sign

Figure 3.3: Example of exit sign image

Privacy protection was given utmost importance throughout the data collection

process. As the dataset focused solely on objects and did not contain any personal

information or images of humans, there was no risk to privacy. Data collection was
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conducted exclusively during daytime within the university premises. The selected

locations for data collection included office corridors, lecture theaters, study rooms, and

labs, providing a diverse set of indoor environments. These locations were specifically

chosen to capture thermal patterns in areas commonly found within indoor settings.

To ensure a comprehensive dataset, a substantial number of images were collected

for each object class. The data collection process yielded a dataset consisting of 920

thermal images. Each image represented a specific object class, such as doors, windows,

fire extinguishers, free pathways, or fire exits. The dataset encompassed a wide range

of thermal patterns and temperatures associated with these objects, enabling accurate

analysis and modeling.

3.3 Bounding Box Labeling in RGB Images

The process of bounding box labeling in RGB images plays a pivotal role in generating

annotated data. The RGB labeled data generated through the bounding box labeling

process serves a specific purpose in this research project. Its primary role is to facilitate

the acquisition of thermal labels for the corresponding objects.

RGB images are crucial for generating annotations as direct labeling in thermal

images presents challenges. Thermal images primarily capture temperature differences,

making it difficult to precisely identify and label objects. By utilizing RGB images as

a reference, the labeling process can accurately assign annotations to corresponding

thermal images. This approach ensures the training of an effective object detection

algorithm for recognizing critical objects.

The first step in the labeling process involved acquiring RGB images, which served

as the basis for generating annotations. These RGB images provided visual represen-

tations of the objects of interest in the indoor environments. Once the RGB images

were obtained, they were processed using the LangSAM [60] algorithm, specifically

designed for object detection and segmentation tasks.

The LangSAM algorithm utilizes text prompts to predict masks, bounding boxes,

labels, and logits associated with the objects within the RGB images. By providing text

prompts related to the objects of interest, such as “door”, “window”, “fire extinguisher”,

“emergency sign”, and “clear pathway”, the algorithm can accurately identify and

localize these objects within the images.

During the implementation phase, the LangSAM algorithm was applied to each

RGB image, generating bounding boxes as outputs. These bounding boxes were then
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stored for further analysis and use. The next section focuses on the calibration process,

which is undertaken to calibrate and annotate corresponding thermal images.

3.4 Calibration of Coordinate System of RGB-Thermal

Images

Calibration is a crucial process that establishes a connection between the RGB and

thermal domains, allowing for the transfer of labels from RGB images to corresponding

thermal images. The calibration process involves the following steps:

1. Preparation

The calibration process involved using a checkerboard pattern as seen in Figure

3.4 with a 4x3 grid, which had 48 points in total. This pattern was carefully

prepared to work with both the RGB and thermal cameras. It helped establish a

connection between the RGB and thermal images by providing a reference for

matching points. This step was important for transferring labels from RGB to

thermal images accurately.

Figure 3.4: Checkboard Pattern

2. Image Capture

Sets of calibration images were captured using both the RGB and thermal cameras.

The checkerboard pattern was placed at various angles and positions within the

camera frame to ensure visibility and accommodate different perspectives. Special

attention was given to capturing clear and well-exposed images to ensure accurate

calibration results.
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3. Point Selection

The subsequent step required the manual selection of corresponding points in

both the RGB and thermal images. This was accomplished by using a mouse click

program, which allowed for accurate marking of the corners on the checkerboard

pattern. The program provided the coordinates of the mouse clicks, ensuring

precise selection in both types of images. The use of specialized software and

careful mouse clicking ensured the accurate identification of corresponding points

for an effective calibration procedure.

4. Point Correspondence

Once the points were selected in both the RGB and thermal images, point cor-

respondence was established by pairing the corresponding points. Each pair

represented the same physical location in the real world, but captured by differ-

ent cameras. This correspondence formed the basis for subsequent calibration

computations.

5. Calibration Computation

The calibration step involved a calibration algorithm that determined the transfor-

mation between the RGB and thermal domains. This algorithm used manually

selected corresponding points from the RGB and thermal images and applied

techniques like least-squares estimation to calculate a transformation matrix. This

matrix captured the geometric relationship between the two camera systems,

enabling accurate calibration. It facilitated the transfer of labels and informa-

tion between the RGB and thermal domains, ensuring precise correspondence

and reliable label transfer. The calibration algorithm employed sophisticated

mathematical calculations to achieve an optimal alignment between the RGB and

thermal cameras.

6. Calibration Transformation

The computed transformation matrix was then applied to map points from the

RGB image domain to the thermal image domain. This step facilitated the

transfer of labels from RGB images to corresponding thermal images based on the

established point correspondence. By leveraging the calibration transformation,

the labeled data in the RGB domain was effectively utilized and applied to the

thermal domain.
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Methodology

4.1 Data Analysis

The dataset at hand comprises 920 RGB images and 920 thermal images, meticulously

collected from diverse sources within a real-world environment. This comprehensive

dataset encompasses a total of 3079 annotated objects. The dataset encompasses four

distinct classes, namely “exit point”, “fire extinguisher”, “emergency sign”, and “clear

pathway”. The “exit point” class encompasses annotated doors and windows, while the

other classes refer to specific elements essential for safety and accessibility within the

observed context. The objects within the dataset have been annotated using the widely

adopted YOLO format, ensuring compatibility and ease of use for further analysis and

research purposes. To provide a visual reference, an example image is presented in

Figure 4.1. This example image showcases a scenario where a clear pathway, an exit

point, and a fire extinguisher are present.

(a) RGB imager (b) Thermal imager

Figure 4.1: Example of RGB and thermal image

18
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4.2 Object Class Analysis

The dataset includes four distinct object classes: “exit point”, “fire extinguisher”,

“emergency sign”, and “clear pathway”. The distribution of images per object class is

visualized in Figure 4.2. As seen in the graph, the “exit point” class has the highest

number of images, with 743 instances. Following that, the “emergency sign” class has

539 images, the “fire extinguisher” class has 499 images, and the “clear pathway” class

has 429 images.

Figure 4.2: Distribution of Objects per Object Class

To further analyze the dataset, an examination of the number of objects per object

class was conducted, as illustrated in Figure 4.3. This graph provides a visual represen-

tation of the distribution of annotated objects across the different object classes. The

“exit point” class exhibits the highest count, with 1101 annotated objects, indicating its

prominence within the dataset. Following this, the “fire extinguisher” class is repre-

sented by 739 objects, highlighting its significant presence. The “emergency sign” class

comprises 540 objects, while the “clear pathway” class demonstrates an equal count of

429 objects.

The analysis of the object class distribution provides valuable insights into the

relative importance and occurrence of safety-related objects within the observed envi-

ronment. By examining the number of objects per class, we gain a deeper understanding

of the dataset’s composition. This information is crucial for developing object detection
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algorithms as it guides the training process and ensures a balanced representation of

object categories. Algorithms trained on such datasets can accurately detect and classify

safety-related objects, enhancing safety planning, emergency response preparedness,

and accessibility assessments. The object class analysis serves as a foundation for

developing effective object detection algorithms that can recognize and understand

safety-related objects in real-world environments.

Figure 4.3: Distribution of Images per Object Class

4.3 Baseline Model

The baseline model selected for this research project is the YOLO algorithm [45],

renowned for its robust object detection capabilities. The choice of YOLO as the

baseline stems from its exceptional performance and suitability for the task at hand.

The YOLO algorithm offers several advantages that make it an ideal candidate for

object detection. One of its notable strengths is its real-time performance, enabling

efficient processing of live video or image streams. This real-time capability is of

utmost importance in scenarios where quick and accurate object detection is required to

make timely decisions and take appropriate actions.

The training process for the baseline YOLO model involved several crucial steps.

Firstly, a dataset of annotated images specifically tailored to the object detection task was



Chapter 4. Methodology 21

collected. These annotated images serve as the foundation for training and evaluating

the YOLO algorithm.

The collected dataset was divided into three distinct subsets: the training set, the test

set, and the development (or validation) set. This division allows for effective training,

evaluation, and fine-tuning of the baseline YOLO model. The training set constitutes the

largest portion and was used to train the YOLO model, enabling it to learn to recognize

and localize objects of interest. The development set provides a separate set of images

to fine-tune the model and assess its generalization capabilities. Finally, the test set

remains unseen during training and serves as an unbiased benchmark to evaluate the

final performance of the model.

During the training phase, the YOLO architecture was adapted and optimized to suit

the object detection task. The network architecture, consisting of 157 layers, includes

convolutional layers followed by fully connected layers that extract discriminative

features from the input images. The network was trained to predict both the bounding

box coordinates and class probabilities for the objects of interest.

Optimization techniques such as backpropagation, using stochastic gradient descent

(SGD) algorithm [61], were employed to iteratively update the model’s parameters.

This process minimizes the discrepancy between the predicted bounding boxes and

class labels and the ground truth annotations.

Once the baseline YOLO model was trained and optimized, its performance was rig-

orously evaluated using appropriate metrics. Commonly used metrics include precision,

recall, and mean average precision (mAP). The evaluation process involved comparing

the model’s predictions against the ground truth annotations to measure its accuracy,

reliability, and overall effectiveness in detecting objects.

The YOLO algorithm was selected as the baseline model due to its real-time

performance and suitability for object detection tasks. The training process involved

adapting and optimizing the YOLO architecture, dividing the dataset into training,

test, and development sets, iteratively updating the model’s parameters, and evaluating

its performance using relevant metrics. This comprehensive approach ensured the

baseline model’s ability to accurately detect objects and lays the foundation for further

enhancements and improvements in object detection algorithms.
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4.4 Transfer Learning Model

Transfer learning is a powerful technique utilized in computer vision, specifically for

object detection tasks [62]. When confronted with limited annotated data in the target

domain, transfer learning enables the transfer of knowledge gained from a source

domain with abundant labeled data.

One of the challenges in thermal object detection arises from the scarcity of anno-

tated thermal data. However, by employing transfer learning, the unique characteristics

of RGB images can be leveraged to enhance the performance of the thermal object

detector. While RGB images encompass three color channels, thermal images predom-

inantly have a single channel. By utilizing transfer learning, the distinctive features

learned from RGB images can be harnessed to improve the performance of thermal

object detection.

By utilizing a pretrained RGB object detector, the knowledge and feature extraction

capabilities acquired during training on the RGB dataset are transferred to the thermal

object detection task. The pretrained RGB weights provide a valuable starting point

for the thermal detector, allowing it to benefit from the learned knowledge. Although

the number of channels differs between the RGB and thermal images, the transferred

weights serve as a foundation for effective feature extraction and object detection in the

thermal domain.

This transfer of knowledge addresses the limitations posed by the scarcity of labeled

thermal data. The pretrained RGB detector captures valuable insights from the RGB

domain, which can be applied to enhance the performance of the thermal object detector.

Through the integration of transfer learning, the model leverages the strengths of

the RGB and thermal domains. By initializing the thermal object detector with the pre-

trained weights of the RGB detector, the model benefits from the knowledge acquired

in the RGB domain and gains the ability to detect objects effectively in the thermal

domain. This approach enhances the thermal object detection system and expands

its applicability in various domains, including surveillance, autonomous driving, and

search and rescue missions.

4.5 Domain Adaptation with Transfer Learning Model

Incorporating domain adaptation techniques in thermal object detection research is

crucial to address the challenges posed by the scarcity of thermal data, which can limit
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the system’s performance. Leveraging the wealth of annotated data available in the

source domain, such as RGB images, allows us to generate synthetic images in the

thermal domain. Augmenting the training dataset with synthetic images enhances the

thermal object detection system’s performance, as it increases data size and improves

the model’s generalization capabilities.

To achieve domain adaptation, a specialized approach based on the method proposed

by Lee et al. [54] was employed. This model was carefully designed with a strong

emphasis on preserving edge information during the image translation process. By

ensuring the accurate transfer of critical details from the original RGB images to the

synthetic thermal images, the aim was to bridge the gap between the two domains,

consequently boosting the effectiveness of the object detection system in thermal

imagery.

Through the application of this translation model, a mixed dataset was carefuly

constructed, intelligently combining approximately 10% synthetic thermal images with

90% real-world thermal images. This strategic dataset composition was crucial in

effectively addressing the limited availability of labeled thermal data while preserving

the authenticity and realism of the majority real-world samples.

Domain adaptation plays a pivotal role in this research, empowering the thermal

object detection system to directly benefit from the specialized image translation method.

By effectively bridging the gap between the RGB and thermal domains, this method

significantly improved the system’s accuracy and robustness. The integration of the

proposed translation model and the mixed dataset offers a promising solution to tackle

the challenges of thermal object detection, thus paving the way for further improvements

in this critical area of computer vision research. Figure 4.4 shows some examples of

synthetic images generated using the image translation method employed in this study.

The images show corresponding pairs of original images and their corresponding

synthetic thermal images. Notwithstanding the imperfections, these synthetic thermal

images can be suitably employed for training purposes.
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(a) Original RGB Image (Consisting of Fire

Extinguisher)

(b) Synthetic Thermal Image (Consisting of

Fire Extinguisher)

(c) Original RGB Image (Contains Exit Point

and Emergency Sign)

(d) Synthetic Thermal Image (Contains Exit

Point and Emergency Sign)

(e) Original RGB Image (Contains Exit

Points and Fire Extinguisher)

(f) Synthetic Thermal Image (Contains Exit

Points and Fire Extinguisher)

Figure 4.4: Comparison of Original RGB Images and Synthetic Thermal Images
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4.6 Performance Evaluation Metric

This section presents a method for comprehensive evaluation of the object detection

models developed in this study using specific evaluation metrics. The metrics used for

assessment include ‘precision’, ‘recall’, mean Average Precision at an Intersection-over-

Union (IoU) value of 0.5 (mAP50), and mean Average Precision across IoU thresholds

from 0.5 to 0.95 (mAP50-95) to thoroughly analyze the detection capabilities of each

model.

‘Precision’ quantifies the models’ selectivity in identifying objects by measuring

the ratio of correctly predicted instances to all instances predicted as a particular class.

It can be calculated as:

Precision =
True Positives

True Positives+False Positives
(4.1)

‘Recall’ evaluates the models’ sensitivity in capturing objects by calculating the

proportion of correctly predicted instances to all instances of the class present in the

ground truth. It can be calculated as:

Recall =
True Positives

True Positives+False Negatives
(4.2)

The mAP50 metric gauges the models’ overall object detection performance, con-

sidering detections with an IoU of 0.5 or higher as correct.The mAP50-95 provides a

comprehensive assessment across a broader range of IoU thresholds, and is calculated

as:

mAP50-95 =
1
|C|

|C|

∑
i=1

APi (4.3)

where APi is the Average Precision for class i, and |C| is the total number of classes.

By employing these evaluation metrics,the performance of each object detection

model is analyzed on individual classes and across all classes, assisting in the identifica-

tion of strengths and weaknesses. This analysis enables optimization and refinement of

the algorithms, ultimately enhancing their object detection capabilities in real-world

applications.

The results of this evaluation are further discussed in the next chapter, where a

detailed comparison of the models’ performances is presented.
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Results Analysis and Evaluation

5.1 Baseline Model

This section shows the evaluation results of the trained baseline model for object

detection. Its performance is demonstrated on 184 images, comprising of a total of

604 instances of objects. Precision and recall are crucial indicators of the model’s

performance, which shows an overall precision of 72.8% and a recall of 67.3%, as

seen in Table 5.1. The mAP50 score, assessing bounding box localization accuracy, is

74.3% for this model. This signifies the model’s capability to accurately predict object

locations with an average IoU of 0.39.

Table 5.1: YOLOv5s Baseline Model Evaluation Results

Class Images Instances Precision Recall mAP50 mAP50-95

All 184 604 0.728 0.673 0.743 0.393

Exit Point 184 241 0.701 0.614 0.690 0.380

Fire Extinguisher 184 150 0.823 0.753 0.795 0.416

Emergency Sign 184 120 0.824 0.908 0.925 0.502

Clear Pathway 184 93 0.564 0.417 0.562 0.274

The confusion matrix shown in Figure 5.1 provides a more detailed analysis of the

model’s performance for each class. As seen in the confusion matrix, the “emergency

sign” class demonstrates a remarkable ability to be correctly identified by the model.

However, the model faced challenges in accurately identifying instances of other classes.

For example, the “exit point” class has relatively low accuracy, as it was misclassified

in some cases. Similarly, while the model performed well in detecting the “fire extin-

26
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guisher” class, it still had some false positives. The “clear pathway” class presented

significant difficulties, with relatively low accuracy in detection.

Figure 5.1: Confusion Matrix for Baseline Model

The confusion matrix offers valuable insights into the strengths and weaknesses of

the model’s predictions for different classes, helping identify areas for improvement.

By addressing the challenges faced by the model, such as enhancing the detection of

“clear pathway” instances, its overall performance can be further improved, achieving

better object detection capabilities for all classes.

The F1 score is another essential metric that evaluates the model’s accuracy and

completeness of predictions. As seen in Figure 5.2, the trained model achieved an F1

score of 70% for all classes, at a confidence level of 0.129. The highest F1 score is

obtained for the “emergency sign” class, showcasing impressive precision of 82.4% and

recall of 90.8%. This indicates that the model’s predictions for the “emergency sign”

class are both accurate and comprehensive. However, the F1 score reveals that there is

room for improvement for other classes, especially for the “clear pathway” class, where

the F1 score is lower (56.4%), reflecting challenges in correctly identifying instances of

this class.

The trained model shows promising results in detecting the “emergency sign” class.

However, there is significant room for improvement for other object classes. The

analysis from the confusion matrix and the F1 score highlights specific areas where
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Figure 5.2: F1 Score for Baseline Model

the model’s accuracy and completeness can be enhanced. By applying strategies like

transfer learning and domain adaptation, the model’s performance can be enhanced,

surpassing the baseline and improving object detection across all classes.

5.2 Transfer Learning Model

This section investigates the integration of transfer learning to enhance the performance

of the baseline thermal object detection model. The baseline model exhibited promising

results, but its effectiveness was constrained by the scarcity of annotated thermal data.

To overcome this challenge, transfer learning was employed by leveraging a pretrained

RGB object detector, which had undergone extensive training on a diverse dataset

containing rich visual information. By leveraging the pretrained RGB model’s weights,

the thermal object detection system was able to capitalize on the general features and

patterns learned from RGB images, as illustrated by the precision and recall values in

Table 5.2.

The transfer of knowledge from the RGB domain to the thermal domain significantly

improves the model’s ability to detect objects in thermal images, despite the differences

in image characteristics. The transferred weights were fine-tuned to adapt them specif-

ically to the thermal domain, refining the model’s representations and enhancing its

localization accuracy, as demonstrated in Table 5.2.
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Table 5.2: YOLOv5s Baseline Model with Transfer Learning Evaluation Results

Class Images Instances Precision Recall mAP50 mAP50-95

All 184 604 0.903 0.840 0.906 0.613

Exit Point 184 241 0.890 0.807 0.904 0.633

Fire Extinguisher 184 150 0.935 0.780 0.836 0.599

Emergency Sign 184 120 0.905 0.958 0.964 0.667

Clear Pathway 184 93 0.883 0.814 0.919 0.554

As a result, the enhanced model achieves an overall precision of 90.3% and a recall

of 84.0%. The mAP50 score is enhanced to 90.6%, indicating the model’s capability to

accurately predict object locations with an average IoU of 0.613.

The F1 score shows significant improvement, reaching a value of 0.87. This shows

a substantial advancement over the baseline model’s performance, as seen in Figure

5.3. Classes that previously had lower accuracy rates, such as the “clear pathway” class,

witness remarkable progress, showcasing the efficacy of transfer learning in enhancing

object detection across all classes.

Figure 5.3: F1 Score for Transfer Learning

The model’s performance can be analyzed in more detail using the confusion

matrix shown in Figure 5.4. For instance, the “emergency sign” class demonstrates
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exceptional performance, with a high true positive count of 120 instances and very few

misclassifications. On the other hand, the “exit point” class has a lower true positive

count of 193 and a notable number of false negatives, indicating challenges in accurately

identifying instances of this class. Similarly, while the model performs well in detecting

the ”fire extinguisher” class, it still has some false positives.

Figure 5.4: Confusion Matrix for Transfer Learning

Thus, the integration of transfer learning is shown to boost the capabilities of the

thermal object detection system. Leveraging the knowledge acquired from the RGB

domain for the thermal domain leads to substantial improvements in accuracy and

detection capabilities.

5.3 Domain Adaptation with Transfer Learning Model

The results for the domain adaptation with transfer learning model are shown in Table

5.3. For the “exit point” class, the model exhibits enhanced performance with a

precision of 92.6% and a recall of 88.2%. Similarly, the “fire extinguisher” class shows

an increased precision of 97.2% and a recall of 78.7%, indicating more accurate and

reliable detections.

The F1 score analysis as seen in Figure 5.5 reveals substantial improvements across

all classes. The F1 score graph highlights that the domain adaptation technique achieves

higher accuracy and completeness of predictions for all object classes, surpassing the
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Table 5.3: YOLOv5s with Domain adpataion and Transfer Learning Evaluation Results

Class Images Instances Precision Recall mAP50 mAP50-95

All 184 604 0.935 0.859 0.919 0.673

Exit Point 184 241 0.926 0.882 0.935 0.681

Fire Extinguisher 184 150 0.972 0.787 0.833 0.634

Emergency Sign 184 120 0.942 0.939 0.971 0.719

Clear Pathway 184 93 0.900 0.828 0.935 0.659

performance of both the baseline model and transfer learning. This demonstrates the

model’s ability to strike a balance between precision and recall for each class.

Figure 5.5: F1 Score for Domain Adaptation with Transfer Learning

The results from the confusion matrix in Figure 5.6 and the F1 score show the

effectiveness of using domain adaptation in addressing challenges posed by data scarcity

and domain differences. By generating extra training data that aligns with the target

domain’s characteristics, the model becomes more proficient at handling variations

and uncertainties in the data. This synthetic data acts as a bridge, aiding the model in

improving its overall performance and enhancing accuracy and robustness of thermal

object detection. The ability to leverage knowledge from a different domain leads

to more accurate and reliable predictions, further validating the benefits of domain



Chapter 5. Results Analysis and Evaluation 32

adaptation in cross-domain computer vision tasks.

Figure 5.6: Confusion Matrix for Domain Adaptation with Transfer Learning

5.4 Comparative Visual Analysis

This section presents a comprehensive comparative analysis of three object detection

models applied to a thermal imagery dataset. The primary objective is to assess the

performance of each approach in accurately identifying and localizing objects of interest

in thermal images. To facilitate a comprehensive evaluation, the analysis showcases

ground truth annotations obtained through calibration from visible images to thermal

images. The corresponding RGB images are displayed alongside the thermal results,

providing visual context and aiding in the understanding of the real-world scenarios

captured in the thermal data.

The following figures display examples of results obtained from each method, i.e.,

baseline model, transfer learning approach, and domain adaptation technique. This

gives insights into the respective strengths and weaknesses of these models to identify

the best approach for thermal object detection.

As seen in the first example of a fire extinguisher in Figure 5.7, both the baseline

and transfer learning models show limitations in detecting the object, whereas the

domain adaptation combined with transfer learning demonstrates superior performance

in accurately identifying it. However, it is important to note that the ground truth for
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Example 1 only comprises the fire extinguisher, and there were no additional points of

interest present.

RGB Image Thermal Ground Truth Baseline Model

with Transfer Learning with Domain Adaptation

Figure 5.7: Comparison of different models - Example 1

In the more complex example in Figure 5.8, both the baseline and transfer learning

models exhibit limited detection capabilities, where the baseline model does not detect

any objects while the transfer learning model only detects the fire extinguisher while

overlooking the exit points and clear pathway present in the ground truth. Conversely,

the domain adaptation combined with transfer learning shows better accuracy, success-

fully detecting all objects in the scene, including the exit points and clear pathway.

The ground truth in the example in Figure 5.9 consists of a fire extinguisher, exit

points, and a clear pathway. In this case, both the baseline and transfer learning

models only identify the fire extinguisher, falling short of detecting the exit points and

clear pathway. In contrast, the domain adaptation combined with transfer learning

successfully detects all the ground truth objects in the scene.

In Figure 5.10, the ground truth consists of three exit points, two fire extinguishers,

and one emergency sign. In this case, all the models detect one exit point, one fire

extinguisher and the emergency sign. However, the transfer learning model shows

better probability values for all three objects than the baseline model, and the domain

adaptation with transfer learning model shows the highest probabilities.
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RGB Image Thermal Ground Truth Baseline Model

with Transfer Learning with Domain Adaptation

Figure 5.8: Comparison of different models - Example 2

RGB Image Thermal Ground Truth Baseline Model

with Transfer Learning with Domain Adaptation

Figure 5.9: Comparison of different models - Example 3
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RGB Image Thermal Ground Truth Baseline Model

with Transfer Learning with Domain Adaptation

Figure 5.10: Comparison of different models - Example 4

Lastly, Figure 5.11 presents one instance of each class in the ground truth. The

baseline model solely detects the emergency light, while the transfer learning model

detects both the emergency light and the clear pathway with better probability. The

domain adaptation combined with transfer learning detects all the objects in the scene

with even higher accuracy.

In the comparative visual analysis, it is evident that the object detection results vary

significantly among different models across several examples. It is evident that the

transfer learning model and the domain adaptation method consistently outperform the

baseline model, exhibiting significantly higher probability scores. This improvement

in probability scores indicates a greater level of confidence and accuracy in the object

detection results obtained through these advanced approaches. This enhancement is

particularly valuable in practical applications where reliable and precise object detection

is vital for making critical decisions and ensuring safety. The elevated probability scores

of transfer learning and domain adaptation underscore their effectiveness and potential

in addressing real-world object detection challenges.
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GB Image Thermal Ground Truth Baseline Model

with Transfer Learning with Domain Adaptation

Figure 5.11: Comparison of different models - Example 5

5.5 Run-time Analysis

This section focuses on evaluating the run-time performance of the thermal object

detection methods used. The aim here is to measure how fast and efficient each model

is for processing thermal images for object detection. The evaluation considers the time

required for the three key stages, i.e., pre-processing (image preparation), inference

(model execution), and non-maximum suppression (result refinement).

Table 5.4 shows the processing times for the key detection stages in all the models.

The pre-processing stage involves readying input thermal images via resizing, enhancing

and formatting. The inference time is the time required for computation, i.e., for

deciphering images and detecting objects. The non-maximum suppression (NMS) time

is the time required for streamlining the results by retaining the most accurate bounding

box. The total time helps compare the efficiency of each method.

The three thermal object detection models – baseline, transfer learning and domain

adaptation – show comparable pre-processing and inference times, with slight variations

in NMS times. The variations in total run-time among the three models arise from

differences in their model complexities. The domain adaptation model, being more

complex than the others, takes more time to complete the computations. While the
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Table 5.4: Run-time Analysis of Thermal Object Detection Models

Model Pre-process (ms) Inference (ms) NMS (ms) Total (ms)

Baseline 0.2 4.0 0.4 4.6

Transfer Learning 0.2 4.0 0.5 4.7

Domain Adaptation 0.2 4.0 0.6 4.8

differences may appear small, they are significant in critical scenarios like real-time

surveillance or autonomous driving, where even small time variations matter. The

choice of model should therefore align with the needs of the application, prioritizing

either speed or precision based on the context.

5.6 Discussion and Interpretation

The integration of domain adaptation with transfer learning is shown to be the best

approach to enhance thermal object detection compared to the baseline model and

transfer learning alone. Through domain adaptation, the model effectively leverages

knowledge from the RGB domain and fine-tunes it for thermal object detection, address-

ing data scarcity challenges in the thermal domain. As a result, the domain adaptation

technique exhibits improvements in accuracy and robustness, showcasing enhanced

object detection capabilities across all classes. The higher values of evaluation metrics,

such as precision, recall, and mAP at various IoU thresholds, along with consistently

superior probability scores, establish domain adaptation as the most effective method

among the evaluated approaches.



Chapter 6

Conclusions

6.1 Summary of Research

This research project centered around the development of an intelligent object detection

algorithm tailored specifically for firefighters to enhance their safety and operational

effectiveness during rescue missions in smoke-filled environments. The primary objec-

tive was to create an algorithm capable of accurately identifying crucial objects, such as

doors, windows, tables, and fire hydrants, using thermal image data.

The motivation behind this research stemmed from the recognition of firefighting as

a demanding and hazardous profession, where limited visibility posed significant chal-

lenges for firefighters in assessing the fire’s magnitude, locating potential victims, and

determining the best course of action. Traditional visible light cameras had limitations

in smoke-filled environments, making them ineffective. Therefore, the integration of

thermal imaging cameras, utilizing infrared technology, presented a promising solution

to perceive surroundings even through smoke and flames, empowering firefighters with

enhanced visibility.

To achieve the research objectives, the study focused on data collection and an-

notation for both thermal and RGB images. The study utilized RGB camera and a

FLIR Boson 640 thermal camera for data collection. RGB images played a crucial

role in calibrating and annotating the thermal data, and they were further utilized for

domain adaptation. The dataset collected served as a foundation for the development

and optimization of thermal detection algorithms with high accuracy and reliability.

The research employed a comprehensive approach, implementing three distinct

methodologies: the baseline YOLO model, transfer learning, and domain adaptation

with transfer learning.
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The YOLO model was selected for its real-time object detection capabilities, a

crucial feature for firefighting scenarios where timely decisions are essential. To improve

the model’s accuracy in low-visibility environments, transfer learning techniques were

explored. A pre-trained model on RGB data served as the starting point, with its weights

being used to initialize the training process for thermal data. This approach greatly

enhanced the model’s adaptability to thermal images, leading to more accurate object

detection.

The domain adaptation with transfer learning proved to be the most effective method-

ology, significantly improving the model’s performance in identifying crucial objects.

This approach involved training the model with thermal data while leveraging knowl-

edge from RGB data. Moreover, the incorporation of 10% synthetic data and the

subsequent increase in data size during training contributed to the model’s enhanced

adaptability and accuracy. The domain adaptation with transfer learning produced the

best results, exhibiting superior accuracy, F1 score, and probability scores for detected

objects. The combined power of domain adaptation and transfer learning addressed

data scarcity challenges in the thermal domain, leading to improvements in accuracy

and robustness across all classes. The domain adaptation technique increased precision

from 0.728 to 0.935, recall from 0.673 to 0.859, mAP50 from 0.743 to 0.919, and

mAP50-95 from 0.393 to 0.673. This approach demonstrated improved performance in

object detection, making it a promising and effective technique for enhancing object

detection using thermal cameras.

Therefore, this thesis successfully implemented various methodologies for object

detection using thermal cameras, with an emphasis on transfer learning and domain

adaptation. The research demonstrated their significant potential in enhancing firefighter

capabilities in low-visibility environments, ultimately leading to safer and more effective

firefighting efforts. These findings contribute valuable insights to the broader field of

object detection in challenging scenarios, with promising real-world applications such

as search and rescue missions, industrial inspections, and automotive safety measures.

The research’s impact lies in its potential to greatly improve firefighting operations

through advanced object detection capabilities. The developed algorithm offers real-

time feedback, assisting firefighters in challenging environments and enhancing rescue

missions while protecting property. By utilizing cutting-edge technology, this research

has the potential to make firefighting procedures safer, more efficient, and more effective

for both firefighters and the public.
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6.2 Future Scope

The scope for future research in this area is as follows.

1. Multi-Sensor Fusion: Future research can focus on multi-sensor fusion, inte-

grating data from both thermal and RGB sensors, to enhance the thermal object

detection model’s robustness and adaptability. Existing work has shown the

benefits of combining data from these modalities to enhance tracking accuracy

and robustness [63]. Thermal cameras are excellent at detecting heat signatures in

low-light conditions, while RGB sensors provide rich color and texture informa-

tion. By combining these modalities, the model can overcome individual sensor

limitations and make more informed and accurate predictions. This fusion will

enable the system to perform effectively in challenging environments, such as

adverse weather conditions, where thermal data alone might be insufficient. Multi-

sensor fusion holds significant potential for advancing thermal object detection

technology and its real-world applications.

2. Real-Time Performance Optimization: Real-time object detection is crucial

in firefighting scenarios to provide immediate and actionable information to

firefighters. Future research can focus on optimizing the thermal object detection

model for faster inference and improved real-time performance. Techniques like

model quantization, network pruning, and hardware acceleration can be explored

to reduce the model’s computational complexity and memory footprint without

compromising detection accuracy.
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Appendix A

Additional Insights from Experiments

The graphs below illustrate the performance curves for the developed object detection

algorithm under different methodologies: baseline, transfer learning, and domain

adaptation with transfer learning. The P curve (Precision-Confidence Curve) showcases

the algorithm’s precision at varying confidence thresholds, indicating how confident

the model is in its predictions. The R curve (Recall-Confidence Curve) depicts the

algorithm’s recall, indicating its ability to identify true positive instances while varying

confidence thresholds. The PR curve (Precision-Recall Curve) visualizes the trade-

off between precision and recall, revealing the algorithm’s overall performance in

identifying objects accurately. These curves offer valuable insights into the algorithms’

performance across different scenarios and provide critical information for optimizing

its precision and recall for real-world applications.
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A.1 Baseline Performance Curves

(a) P Curve (Precision-Confidence Curve)

(b) R Curve (Recall-Confidence Curve)

(c) PR Curve (Precision-Recall Curve)

Figure A.1: Baseline Performance Curves
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A.2 Transfer Learning Performance Curves

(a) P Curve (Precision-Confidence Curve)

(b) R Curve (Recall-Confidence Curve)

(c) PR Curve (Precision-Recall Curve)

Figure A.2: Transfer Learning Performance Curves
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A.3 Domain Adaptation with Transfer Learning Perfor-

mance Curves

(a) P Curve (Precision-Confidence Curve)

(b) R Curve (Recall-Confidence Curve)

(c) PR Curve (Precision-Recall Curve)

Figure A.3: Domain Adaptation with Transfer Learning Performance Curves



Appendix B

Additional Evaluation Results

This appendix contains additional experimental result outputs.

RGB Image Thermal Ground Truth Baseline Model

with Transfer Learning with Domain Adaptation

Figure B.1: Comparison of different methods - Example 1
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RGB Image Thermal Ground Truth

Baseline Model with Transfer Learning

with Domain Adaptation

Figure B.2: Comparison of different methods - Example 2
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RGB Image Thermal Ground Truth

Baseline Model with Transfer Learning

with Domain Adaptation

Figure B.3: Comparison of different methods - Example 3
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RGB Image Thermal Ground Truth

Baseline Model with Transfer Learning

with Domain Adaptation

Figure B.4: Comparison of different methods - Example 4


