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Abstract

The advancements of data acquisition technologies, have resulted in neuroscience

experiments generating increasingly complex and multivariate datasets for which the

assessment of interactions between numerous variables is required. Mutual information

(MI) is a fundamental quantity for capturing the true dependence between variables,

making it a valuable tool for analyzing such data. However, MI is difficult to compute

directly from neuroscience recordings and very few approaches for calculating MI can

scale up to the size and dimensionality encountered in modern problems. To address this

issue, variational objectives utilising deep neural networks have emerged as promising

MI estimators, yet their performance on neuroscience datasets remains unclear. In this

work, we evaluate and compare three deep learning MI estimators - MINE, InfoNCE

and FLO - across simple Gaussian and simulated neuroscience datasets. Despite the

poor performance of InfoNCE in the simple Gaussian settings, it demonstrates superior

performance in the simulated neuroscience framework, making it the optimal choice for

calculating MI in real neuroscience data.
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Chapter 1

Introduction

1.1 Motivation

The brain is considered the most complex structure in existence [17]. It performs

numerous different signal processing interactions, from gene networks that regulate

the cell functions to neural circuits that control behavioural cues [58]. These signal

processing interactions can be considered as information exchange mechanisms. The

neural system acquires information in the form of sensory input, process it and adjusts

its state in accordance with the change in the environment [16]. Neuroscience, the

dedicated science for studying the nervous system’s structure and functions, seeks to

uncover these intricate mechanisms.

The brain showcases diverse functionalities that require specialized approaches

for data acquisition. However, despite the diversity of these functionalities, like gene

networks and neural circuits, in all cases the assessment of interactions among numerous

variables is required. Due to advancements in data collection methods and computing

technologies, our insights into neural processing have become more complex [29,

51]. Neuroscience experiments now generate progressively multivariate data, with

simultaneous recordings of multiple neurons and can incorporate data of different types

[58]. For instance, an in vivo calcium imaging experiment, which involves stimuli

and behaviour, produces a dataset comprising at least three distinct types: behavioural,

physiological, and stimulation data [50]. Lastly, neuroscience data is often characterized

by noise and exhibits nonlinear relationships among variables, further complicating the

task of capturing the underlying relationships within these experiments [58].

Mutual information (MI), an important concept in information theory, serves as

a highly valuable tool for analysing such complex data as it possesses the capability

1



Chapter 1. Introduction 2

to detect both linear and non-linear relationships across multi-dimensional scenarios

[59]. MI plays a fundamental role in quantifying the true dependence between variables

[31]. In essence, it quantifies how much knowing the outcome of one random variable

reduces the uncertainty about the outcome of another random variable. Information

theory including MI finds extensive application in various fields, like neuroscience

[4, 13, 46, 48, 60]. John von Neumann, for example, has emphasized through his work

that information theory is essential for understanding the functionalities of the brain

[38]. The use of MI helps gaining insight into the functioning of the neural system

and more specifically, it reveals the ability of the system to achieve its remarkable

information processing abilities [35].

However, in spite of its usefulness, it is difficult to calculate MI directly from

neural recordings especially when dealing with extensive neuroscience datasets [36]. In

order to calculate any information theoretic measure, precise knowledge of the joint

probability distribution between the states of the stimuli and the neural population is

required [59]. However, the estimation of this distribution from recordings is notoriously

difficult [31, 46, 47]. Even though many parametric and non-parametric techniques

[11, 18, 32] have been proposed for estimating MI, most of them work well for low-

dimensional data and are not capable to scale up to the size and complexity of modern

datasets.

In order to address the challenges posed by the increasing size and complexity of

modern problems, variational objectives have gained significant popularity in recent

years for scaling MI estimation. Variational approaches leverage mathematical inequali-

ties to create manageable lower or upper bounds of the mutual information [44]. These

bounds are parameterized by deep neural networks (DNN) [8] and achieve accurate

estimations that do not make any explicit assumptions about the underlying distribution

of the data. Therefore, they are characterized as general-purposed estimators and more

flexible as they can scale to large datasets, like the ones recorded from neuroscience

studies [3]. However, despite the theoretical potential of deep learning mutual infor-

mation estimators to perform effectively with neuroscience data, it is still unclear as to

which of those estimators performs best on common neuroscience datasets.

1.2 Objectives

The purpose of this paper is to evaluate the efficiency of three recently proposed deep

learning mutual information estimators, MINE [3], InfoNCE [40] and FLO [20], when
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applied on common neuroscience datasets. Each estimator has been shown to over-

come the hurdles of previous estimators. They can effectively handle high-dimensional

datasets and large sample sizes while also demonstrating increased flexibility and con-

sistency. However, research focused on evaluating the goodness of these MI estimators

specifically when applied on datasets produced during neuroscience experiments is

lacking. To address this gap, we assess and compare the performance of each estimator

in regard to datasets with properties similar to a common neuroscience dataset but for

which the ground truth MI can be attained. By the end of the analysis, the most effective

estimator will be employed to calculate the MI of real neuroscience data.

1.3 Results and Outcome

After an extensive comparative analysis of the three estimators across two Gaussian

datasets of different dimensionality and one transformed Gaussian dataset similar to

a real neuroscience one, it has been found that even though MINE and FLO perform

best in simple Gaussian frameworks, InfoNCE outperforms them in the simulated

neuroscience framework. By tuning the hyper-parameters: learning rate, number of

epochs and hidden layers within its neural structure and finding its optimal negative

sample parameter K, InfoNCE converges towards the ground truth MI value with the

highest accuracy and stability.

1.4 Structure of Dissertation

The rest of the paper is structured in the following order. In Chapter 2, we offer compre-

hensive background material on important concepts and definitions from information

theory alongside an introduction of the underlying structure of the three deep learning

estimators. In Chapter 3 a concise review of current literature around the performance

and the comparison of the three deep learning estimators is provided. Subsequently,

in Chapter 4, we outline the methodology employed to generate our results which

are clearly demonstrated and discussed in Chapter 5, along with which estimator is

concluded to perform best on neuroscience datasets . Finally, in Chapter 6 we draw

conclusions related to the results and discuss further directions of research.



Chapter 2

Background material

This chapter introduces the three deep learning mutual information estimators with

a closer look on their structure and properties. In order to do so, however, we first

highlight some relevant theoretical measures and definitions from information theory.

Important to note that natural logarithm is used to measure the information in nats.

2.1 Entropy

Entropy is a fundamental concept in information theory, and it measures the level of

uncertainty contained in a variable [58]. Entropy plays a key role in quantifying how

much information is contained in a random variable. Mutual information which is

introduced below uses entropy to quantify the information shared between two random

variables.

Given two random discrete variables X and Y with possible states {x1,x2, . . . ,xN} and

{y1,y2, . . . ,yN} respectively.

Definition 2.1.1. The discrete entropy is defined as [9]

H(X) :=−E[log(px(x))] =−
N

∑
x

px(x)log(px(x)),

where px(x) is the probability mass function of X, E[·] is the expectation operator.

Definition 2.1.2. The joint entropy of X and Y is given by

H(X ,Y ) :=−E[log(px,y(x,y))] =−
N

∑
x

N

∑
y

px,y(x,y)log(px,y(x,y)),

where px,y(x,y) is the joint probability mass function of (X,Y) and it expresses the

uncertainty of the combination of these two variables.

4
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Now, given two continuous random variables X ∈ RdX and Y ∈ RdY , we can define the

differential entropy as below.

Definition 2.1.3. The differential entropy is defined as [9]

H(X) :=−E[log(px(x))] =−
∫

X
px(x)log(px(x))dx,

where px(x) the probability density function of X.

Definition 2.1.4. The joint differential entropy is defined as

H(X ,Y ) :=−E[log(px,y(x,y))] =−
∫

X ,Y
px,y(x,y)log(px,y(x,y))dxdy

in which px,y(x,y) is the joint density function of (X,Y) [9].

2.2 Mutual information

Mutual information was first introduced by C. E. Shannon (1948) in Mathematical theory

of communication [52]. It is a quantity that measures the decrease of the uncertainty in a

variable X which is resulted by knowing a variable Y. Ever since its initial introduction,

it has been a powerful tool in many disciplines, including neuroscience [4, 46, 48, 60].

The definition of mutual information is as follows.

Definition 2.2.1. The mutual information between X and Y is defined as

I(X ,Y ) := H(X)+H(Y )−H(X ,Y ),

where H(X,Y) the joint entropy of the two variables.

Equivalently mutual information can be calculated using the probability density func-

tions.

Definition 2.2.2. The mutual information of two jointly discrete random variables is

defined as [9]

I(X ,Y ) = ∑
y∈Y

∑
x∈X

px,y(x,y)log
(

px,y(x,y)
px(x)py(y)

)
in which px,y(x,y) the joint probability mass function of X and Y, and px(x) and py(y)

are the marginal probability mass functions of X and Y respectively. In literature the

integrand log px,y(x,y)
px(x)py(y)

is often known as the point-wise mutual information (PMI) [5].
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Definition 2.2.3. The mutual information of two continuous random variables is given

by [9]

I(X ,Y ) =
∫

Y

∫
X

px,y(x,y)log
(

px,y(x,y)
px(x)py(y)

)
dxdy

where px,y(x,y) the joint probability density function of X and Y, and px(x) and py(y)

the marginal probability density functions of X and Y respectively that satisfy px(x) =∫
px,y(x,y)dy and py(y) =

∫
px,y(x,y)dx.

Mutual information is a non negative quantity, I(X ,Y )⩾ 0, where zero indicates that

the two variables, X and Y, are independent.

Additionally, the invariance of mutual information under reparameterizations is a sig-

nificant property and is demonstrated in Theorem 2.2.4. This pivotal theorem shows

that the ground truth MI between two variables remains unaltered subsequent to certain

transformations applied to them.

Theorem 2.2.4. Given transformations X ′ = F(X) and Y ′ = G(X), the joint probability

density function of the random variables X ′ and Y ′ is denoted as p′x,y(x
′,y′). Thus, we

obtain [32]

I(X ′,Y ′) =
∫ ∫

p′x,y(x
′,y′)log

(
p′x,y(x

′,y′)
p′x(x′)p′y(y′)

)
dx′dy′

=
∫ ∫

px,y(x,y)log
(

px,y(x,y)
px(x)py(y)

)
dxdy

= I(X ,Y )

2.3 Kullback-Leibler divergence

The Kullback-Leibler divergence is a measure that assesses how one probability distri-

bution P is different from a second, reference probability distribution Q [24, 33]. This

measure alongside its dual representation are the foundation from which the MINE

estimator was created [3].

Definition 2.3.1. The Kullback-Leibler divergence (KLD), also known as the relative

entropy, between two probability distributions P and Q is defined as

DKL(P ∥Q) := EP

[
log

dP
DQ

]
⩾ 0
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Definition 2.3.2. The mutual information is equivalent to the Kullback–Leibler (KL)

divergence between the joint distribution PXY and the product of the marginals distribu-

tions PX ⊗PY :

I(X ,Y ) = DKL(PXY ∥ PX ⊗PY ).

The dual representation of KL-divergence
The following Theorem provides a representation of the KL-divergence as outlined in

the work of Donsker and Varadhan (1983).

Theorem 2.3.3. (Donsker-Varadhan representation) The Kullback-Liebler Divergence

admits the following dual representation [14]

DKL(P ∥Q) = sup
T :Ω→R

EP[T ]− log(EQ[eT ]),

where the supremum is evaluated over all functions T for which both expectations are

finite.

Lemma 2.3.4. (Lower bound for the Kullback Liebler Divergence) For any F class of

functions T : Ω → R that satisfy the constraints of the Theorem 2.3.3, the following

inequality holds

DKL(P ∥Q)⩾ sup
T∈F

EP[T ]− log(EQ[eT ]).

2.4 MI and unnormalized statistical models

In this section, we introduce some key definitions which are essential for the introduction

of the FLO estimator in Section 2.5.3. To begin, we aim to connect the mutual

information to unnormalized statistical models. Therefore, we first consider the classical

MI estimator called Barber-Agarov (BA) as presented by D. Barber et al [2].

Definition 2.4.1. (Barber-Agavok MI estimator) Considering a variational approxima-

tion q(y | x) of the posterior p(y | x) = px,y(x,y)
px(x)

we obtain

I(X ,Y ) = Epx,y(x,y)

[
log

px,y(x,y)
px(x)py(y)

]
= Epx,y(x,y)

[
log

p(y | x)
py(y)

]
= Epx,y(x,y)

[
log

q(y | x)
py(y)

]
+Epx(x)[KL(p(y | x) ∥ q(y | x))]

⩾ Epx,y(x,y)

[
log

q(y | x)
py(y)

]
∆
= IBA(X ,Y | q)
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This naı̈ve BA bound is used to estimate an estimator called unnormalized Barber-

Agavok bound (UBA) that is applicable to unnormalized statistical modelling [44].

Definition 2.4.2. (Unnormalized Barber-Agavok MI estimator) Setting qθ(y | x) =
py(y)
Zθ(x)

egθ(x,y) in which egθ(x,y) the tilting function and Zθ(x) = Epy(y)[e
gθ(x,y)] the associ-

ated partition function, we end up with the bound

IUBA(X ,Y | gθ)
∆
= Epx,y(x,y)[gθ(x,y)− logZθ(x)] = Epx(x)

[
Ep(y|x)

[
log

egθ(x,y)

Zθ(x)

]]

This intractable UBA bound has been the foundation for several MI bounds.

2.5 Deep learning Mutual information estimators

Deep learning mutual information estimators are based on the idea of using the popular

machine learning technique called artificial neural networks and specifically deep neural

networks to produce more accurate estimations between multidimensional variables.

An artificial neural network (ANN) is a machine learning algorithm that draws

inspiration from biological neural networks [27]. Similar to the cells in biological

systems, an ANN consists of nodes that correspond to cell bodies. These nodes

communicate with each other through connections, similar to the axons and dendrites

in biological neurons. In biological neural networks, synapses between neurons are

strengthened when their neurons exhibit correlated outputs. Similarly, in an ANN,

the connections between nodes are assigned weights based on their ability to produce

the desired outcome. Deep neural networks have multiple hidden layers with deep

architecture and are used in estimating the MI due to its ability to learn complex patterns

and relationships in data [8].

Below, we introduce three deep learning mutual information estimators, MINE,

InfoNCE and FLO, which we will compare and analyse.

2.5.1 Mutual Information Neural Estimator (MINE)

Mutual Information Neural Estimator (MINE) was proposed by Belghazi et al (2018)

as a general-purposed estimator which relies on the characterization of the mutual

information as the Kullback-Leibler (KL-) divergence. As mentioned in Definition
2.3.1, the Kullback-Leibler (KL-) divergence, as introduced by Kullback in 1997,

quantifies the difference between the joint distribution and the product of the marginals.
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Based on the equation for mutual information (Definition 2.3.2) and the dual

representation of KL-divergence (Definition 2.3.3), the approach involves selecting F to

be the set of functions Tθ : X ×Y → R, which is parametrized by a deep neural network

with parameters θ ∈ Θ. This neural network is referred to as the statistics network.

Employing the following bound,

I(X ;Y )≥ IΘ(X ,Y )

where the neural information measure, denoted as IΘ(X ,Y ), is defined as follows,

IΘ(X ,Y ) = sup
θ∈Θ

EPXY [Tθ]− log(EPX⊗PY [e
Tθ ]).

In order for the expectations to be estimated in the above equation, empirical samples

from PXY and PX ⊗PY are used, or the samples from the joint distribution are shuffled

along the batch axis. Maximizing the objective can be achieved through gradient ascent.

Definition 2.5.1.1. (Mutual Information Neural Estimator) Suppose that F = {Tθ}θ∈Θ

the set of functions parametrized by a neural network, then MINE is defined as [3],

Î(X ;Y )n = sup
θ∈Θ

EP(n)
XY
[Tθ]− log(EP(n)X ⊗P̂(n)

Y
[eTθ])

in which given a distribution P, we denote P̂(n) to be the empirical distribution associ-

ated to n i.i.d. samples.

Properties
Capture of nonlinear dependencies:

An important property of mutual information is its ability to be invariant towards

nonlinear transformation between random variables which have the relationship Y =

f (X)+σ⊙ ε where f a deterministic nonlinear transformation and ε a random noise.

MINE has been proved to capture the important property called equitability [31] which

ensures the quantification dependence without bias for the relationship [3].

Consistency:

MINE relies on two main characteristics: the choice of statistical network and the

number of samples of the data distribution PXY . An estimator, Î(X ;Y )n, is considered

to be strongly consistent if for any given value of ε > 0 there exists a positive integer N

and a selection of a statistics network such that

∀n ≥ N,
∣∣∣I(X ,Y )− Î(X ;Y )n

∣∣∣≤ ε, a.e.
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for which the probability is over a set of samples.

Generally, consistency is divided into two problems. An approximation problem

related to the size of the family, F , which is addressed by the universal approximation

theorems for neural networks [25]. As well as an estimation problem in regard to the

use of empirical measures which involve classical consistency theorems for extremum

estimators, as outlined in the work of Van de Geer in 2000 [12]. Based on two Lemmas

that are shown in Appendix A.1, the MINE estimator has been proven to accurately ap-

proximate mutual information, as well as almost surely converge to a neural information

measure with increasing samples.

2.5.2 InfoNCE estimator

InfoNCE information estimator was first introduced by van den Oord, et al. (2018) as

part of their paper called “Representation Learning with Contrastive Predictive Coding”

[40] and later formalized in the work of [44]. This estimator aims to optimize a loss

function which is based on the idea of Noise Contrastive Estimation (NCE). NCE is

a method for estimating the parameters of a statistical model by contrasting positive

samples from the target distribution with carefully chosen ”negative” samples from

a noise distribution [21]. Below we introduce InfoNCE’s loss function as well as its

formal MI estimator definition.

Definition 2.5.2.1. (InfoNCE Loss function) Given a set X = x1, . . . ,xK of K random

samples that contains a positive sample from p(xt+k|yt) and K −1 negative samples

from the ’proposal’ distribution p(xt+k). Then we aim to optimize the loss function

LK =−E
X

[
log

fk(xx+k,yt)

∑x j∈X fk(x j,yt)

]
,

where fk(xt+k,yt) the density ratio which holds the following property

fk(xt+k,yt) ∝
p(xt+k|yt)

p(xt+k)

.

Definition 2.5.2.2. (InfoNCE MI estimator) The mutual information constructed using

the InfoNCE loss function (Definition 2.5.2.1) is

I(xt+k,ct)≥ log(K)−LK.

(proof given by [40])
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Definition 2.5.2.3. InfoNCE is formally defined by B. Poole et al. (2019) as

IK
In f oNCE(X ;Y | f ) ∆

=EpK(x,y)

[
log

f (x1,y⊕1 )
1
K ∑k′ f (x1,y⊖k′ )

]
, IK

In f oNCE(X ;Y ) ∆
=max

f∈F
{IK

In f oNCE(X ;Y | f )}

Using its formal Definition, InfoNCE is shown to be related to the MINE estimator

(Appendix A.2)

In InfoNCE, a heuristic is used to differentiate positive samples from negative

samples. The positive samples originate from the joint data distribution p(x,y), while

the negative samples are randomly paired samples derived from the corresponding

marginal distributions p(x) and p(y). In this case, f (x,y) > 0 is known as the critic

function. The notation pK(x,y) is used to represent K independent draws or the sample

size (often referred to as the mini-batch size). The symbols ⊕ and ⊖ represent the

positive and negative samples, respectively.

It has been shown that when the sample labels are clean, increasing the negative

sampling ratio K results in a tighter lower bound of variable mutual information [40, 63].

This typically leads to improved performance, as a greater amount of information from

negative samples is utilised during model training.

Lemma 2.5.2.4. InfoNCE is an asymptotically tight mutual information lower bound

[44]

I(X ;Y )≥ IK
In f oNCE(X ;Y | f ), lim

K→inf
IK
In f oNCE(X ;Y )→ I(X ;Y ).

2.5.3 Fenchel-Legendre Optimization (FLO)

The Fenchel-Legendre Optimization (FLO) is a novel contrastive learning framework

for estimating mutual information that was introduced by Q. Guo et al (2022) in

their paper “Tight Mutual Information Estimation With Contrastive Fenchel-Legendre

Optimization”. FLO is trying to overcome the limitations that previous estimators face

like the InfoNCE [40] which requires a large and very costly batch training as well as

reducing variance by sacrificing bound tightness. In order to succeed this the estimator

exploits the connection between MI estimation, unnormalized statistical modelling and

convex optimization.

The key into the construction of the FLO estimator is the lower bound MI using the

Fenchel-Legendre transform technique. The technique is defined as follows.
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Definition 2.5.3.1. (Fenchel-Legendre duality) Consider a proper and lower-semicontinuous

convex function f (t). We define its convex conjugate function f ∗(v) = supt∈D( f ){tv−
f (t)} , where D( f ) represents the domain of function f . The function f ∗(v) is referred

to as the Fenchel-Legendre conjugate of f (t) and satisfies the properties of convexity

and lower-semicontinuity. The Fenchel-Legendre conjugate pair ( f , f ∗) are dual to

each other, meaning that f ∗∗ = f giving f (t) = supv∈D( f ∗){vt − f ∗(v)}.

For example, the Fenchel-Legendre dual for f (t) =−log(t) is f ∗(v) =−1− log(−v).

To begin, we take the integrand from the UBA in Definition 2.4.2 and proceed with

the following steps to structure the FLO lower bound.

log
egθ(x,y)

Zθ(x)
=−logEp(y′)[e

g(x,y′)−g(x,y)]

Using the Fenchel inequality of −log(t) from Definition 2.5.3.1

log
egθ(x,y)

Zθ(x)
≥ {−u− e−uEp(y′)[e

g(x,y′)−g(x,y)]}+1 for all u ∈ R

So, the following inequality holds for any function uφ(x,y) : X ×Y → R

log
egθ(x,y)

Zθ(x)
≥−{uφ(x,y)+ e−uφ(x,y)Ep(y′)[e

g(x,y′)−g(x,y)]}+1

Finally, substituting the final result into the implementation of the UBA lower bound in

Definition 2.4.2 we obtain the Fenchel-Legendre Optimization (FLO) MI lower bound.

Definition 2.5.3.2. The FLO mutual information lower bound is

IFLO(X ;Y |gθ,uφ)
∆
= Ep(x,y)

[
−{uφ(x,y)+ e−uφ(x,y)Ep(y′)[e

gθ(x,y′)−gθ(x,y)]}
]
+1

Definition 2.5.3.3. The FLO mutual information can be estimated using the following

naı̈ve empirical K estimator [20]

ÎK
FLO(X ;Y |gθ,uφ)

∆
=−

{
uφ(xi,yi)+ e−uφ(xi,yi)

1
K −1 ∑

j ̸=i
egθ(xi,y j)−gθ(xi,yi)

}
+1

It is important to note that since ÎK
FLO is not enclosed by a convex log transformation then

IK
FLO

∆
= EpK [ÎK

FLO] is an unbiased estimator for IFLO(X ;Y |gθ,uφ) that does not depend

on the batch size K.

Properties of FLO:

• IFLO is a tight estimator, which means that the ground truth mutual information

can be estimated using a specific choice of gθ(x,y) and uφ(x,y).

• IK
FLO can be effectively optimized for any batch size K.
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Literature review

The MI metric was first introduced and analysed by C. Shannon in his landmark paper

“ A Mathematical Theory of Communication”. Since then, it has been a fundamental

measure in information theory. Its applications span across various domains, including

neuroscience [13, 42, 58, 64], where it played a pivotal role in uncovering complex

relationships between neurons.

Classical MI estimators have been extensively studied and compared in the literature

[6, 15, 62]. Numerous studies have investigated the applicability and performance of

these classical methods in the neuroscience domain [1, 26, 28, 45]. For example, it

was shown that MI estimators outperform the commonly used Statistical Parametric

Mapping technique for identifying regionally specific effects in neuroimaging data [19]

with the k Nearest Neighbours estimator (k-NN) [32] being the best alternative.

Another example of the applicability of MI in neuroscience research is given by

the study of B.C. Souza et al [57]. Here, the focus was given on the identification of

the types of cells that are related to the hippocampal circuitry. Accurately recognizing

these cells involves assessing the information carried by spikes regarding navigation

characteristics. Skaggs et al. [54, 55] introduced key measures, derived from Shannon’s

MI [52], for estimating such information. The main task of the paper was to investigate

the performance of those metrics against the Shannon’s original MI metric. After using

both simulated and real neuroscience data, it was observed that the existing information

metrics have a weaker connection with spatial decoding accuracy compared to the

original MI metric, which performed well under a variety of different scenarios.

Nevertheless, even though the valuable contribution of classical MI estimators in

uncovering the functionalities of the brain, as neuroscience data have become increas-

ingly complex and high-dimensional, their limitations are more apparent, prompting

13
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the exploration of alternative approaches [10]. The authors of [49] had studied the

effectiveness of various upper and lower bound techniques on neural codes, discovering

their unreliability and their tendency on making strong assumptions about the data. Re-

cently, deep learning MI estimators have been proposed showcasing improved accuracy

and robustness [3, 20, 56]. So far, however, limited papers can be found around the

comparison of deep learning MI estimators and are mainly in the context of validating

the effectiveness of newly proposed estimators.

In their paper titled ”Mutual Information Neural Estimation,” Belghazi et al. pro-

posed a framework based on deep neural networks to estimate mutual information.

They introduced a variational lower bound on mutual information and utilised deep

generative models to approximate it. The resulting estimator is called MINE. In order

to demonstrate the effectiveness of their estimator, MINE was compared to the k-NN

based non-parametric estimator [32], showing clear improvement when estimating the

MI between 20D multivariate Gaussian random variables. Subsequently, MINE was

applied on more complex settings of machine learning such as palliate mode-dropping

in GANs and Information Bottleneck method, demonstrating its effectiveness.

However, MINE was one of the first deep learning estimators proposed and no

comparison of MINE with other deep learning estimators is included in the paper. On the

other hand, Q. Guo et al (2022) in their paper have introduced FLO which was compared

with various other estimators like InfoNCE [40], NWJ [39] and TUBA [2]. The

experiments conducted involved the comparison of estimators on multivariate random

Gaussian variables (2D and 20D) as well as using the Bayesian optimal experiment

design (BOED) and a novel meta-learning framework. All clearly showed strong

empirical evidence of the superiority of the new FLO bound over its predecessors. Even

though, FLO was proved to be performing better on these applications, the focus was

mainly to prove the superiority of FLO in comparison to InfoNCE as both estimators

are built on contrastive MI bounds. In the study, MINE estimator was only mentioned

regarding its theoretical approach but was not included in the experiments. Lastly, the

experiments included in [20] lack the applicability of the estimators on more complex

data such as neuroscience data and their performance to estimate MI between high

dimensional noisy recordings.

B. Poole et al in their paper called “On Variational Bounds of Mutual Information”

provide a detailed review of existing estimators, including MINE and InfoNCE, and

discuss their relationships and trade-offs. They have also conducted some experiments

to evaluate the performance of the MI bounds on two tractable toy problems. The first
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one followed the same 20D correlated Gaussian problem as shown in [3] to assess the

estimations of MI of (x,y) over the correlation value. The second problem used samples

for which a linear transformation followed by a cubic non linearity was applied on y

giving (x,(Wy)3).

For both problems, a thorough analysis of the bias/variance trade-offs was conducted

showing that multi-sample estimates of InfoNCE result in low variance but saturate at

log(batch size). Moreover, the influence of the critic structure on the efficiency-accuracy

trade-off was highlighted. The MINE estimator uses a joint critic in which x and y

are fed together as an input to the network, whereas the InfoNCE estimator which is

mentioned in the study but also FLO, are structured with a separable critic. Separable

critics require 2N forward passes for a batch size N and joint ones require N2 forward

passes. Through their experiments on the two problem settings mentioned above, it

was deducted that joint critics generally performed worse but separable critics required

larger neural networks to provide similar performance. These two key findings will also

be seen in our analysis.
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Methodology

The main focus of this paper is to test and assess the performance of each deep learning

estimator when it comes to high dimensional continuous data recorded from neuro-

science studies. A detailed description regarding the methodology to achieve that can

be found in the respective subsections below.

The environment chosen to perform this analysis is Python due to the rich set of

numerical computation libraries for result and graph production such as numpy [22],

scipy[61] and holoviews. Moreover, all the machine learning implementations and

model training tasks of the deep learning MI estimators is conducted using PyTorch

[43], a highly regarded and versatile deep learning framework. To be more precise, the

pytorch implementations used in the analysis below for InfoNCE and FLO are the ones

generated in the original proposal paper of FLO [20] whereas for MINE can be found

in https://github.com/MasanoriYamada/Mine_pytorch.git.

Using the above implementations we have established a baseline setup which

remains constant throughout the analysis unless explicitly stated otherwise. For the

FLO and InfoNCE estimators, the critic functions g(x, y), u(x, y) and u(x), use multi-

layer perception (MLP) network construction with 2 hidden layers (512 × 512) and a

default batch size of 128. Similarly, MINE also employs a 2 hidden layer structure (512

x 512). In all models, the ReLU activation function and the Adam optimizer is applied.

4.1 Neuroscience dataset

For the purpose of applying and assessing the performance of the three deep learning

MI estimators on real neuroscience data, we make use of the dataset that contains the

results of the study conducted by Henschke et al. [23]. In their paper called “Reward

16
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Association Enhances Stimulus-Specific Representations in Primary Visual Cortex”,

they describe the use of two-photon calcium imaging placed in fixed head position on

various animals including mice. This way they could monitor the neuronal activity that

expresses the genetically encoded calcium indicator GCaMP6 in the primary visual

cortex (V1). The main task was for the subjects to be placed on the linear virtual

corridor and lick on a specific spatial location that was marked by a visual cue, in order

to be rewarded. During this process, neural signals were captured before, during and

after the subjects acquired the ability to locate a reward on the corridor. The resulting

dataset contains recordings of the V1 neural activity, alongside the position and time

of the subjects on the linear corridor for different training days, combining multiple

continuous variables of high dimensionality. Similar data were also produced by [41]

using only mice.

After choosing a specific training day of an animal, we focus on the continuous

recordings of the raw calcium signals of multiple neurons in regard to the speed [ position
time ]

of this animal on the linear virtual corridor. The raw calcium signal variable of each

neuron of the V1 cortex contain 22,366 signal points. Similarly, the position variable

contains 22,366 data points measuring the distance on the linear corridor and the time

variable provides the time when each of the data points was captured.

For the purpose of our analysis, we will selectively utilise a reduced subset compris-

ing only 5 out of the 34 neurons from which their raw calcium signal recordings are

captured. Therefore, from this point on any mention of the ”original/real neuroscience

dataset”, Xoriginal , refers to the 22,366 x 6 matrix containing the speed and the raw

calcium signal recordings of 5 V1 cortex neurons. Subsequently, using the different MI

estimators under investigation we will examine the extend of the information that these

5 neuron signals provide about the speed of the subject on the linear virtual corridor.

4.2 Comparison of the deep learning estimators

The deep learning MI estimators, MINE, InfoNCE and FLO, will undergo a com-

parative analysis using three distinct datasets: a 2-dimensional Gaussian dataset, a

20-dimensional Gaussian dataset, and a simulated Gaussian dataset designed to emulate

the properties of the original neuroscience data. Throughout the comparison, careful

consideration will be given to the performance of each estimator in relation to the

characteristics of the datasets, including the number of samples and the correlation.

However, the main focus will be given on which values of the different hyper-
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parameters of the deep neural network (DNN) that is incorporated in each MI estimator

result in better estimations. This process is called hyper-parameter tuning and refers to

the iterative process of selecting the best combination of hyper-parameters that leads to

significant improvement in the performance of a DNN model [34]. It is computationally

expensive but a very important process for the convergence of the estimator towards the

true MI value. In our analysis the learning rate (lr), the number of epochs and the number

of hidden layers will be examined to discern their individual and combined impacts

on the estimator’s performance. Studies have shown that these hyper-parameters are

generally the most influential [30, 37, 53].

The hyper-parameters of a neural network mentioned above are defined as:

• Learning rate: determines the step size at which the optimizer updates the model

weights during training.

• Number of epochs: is the number of times the whole training data is shown to

the network.

• Number of hidden layers: defines how many layers are between the input layer

and the output layer of the neural network.

4.2.1 Simple Gaussian distribution

First, we test the estimators on simple 2-dimensional and 20-dimensional Gaussian

models. The Gaussian models are selected as we can easily calculate their ground truth

MI and therefore using that we can evaluate whether the estimators perform well.

The Gaussian model has the general form of:

(X ,Y )∼ N (0,Σ)

where Σ represents the joint covariance of X and Y. This allows us to calculate the

ground truth MI using the formula:

I(X ,Y )true =
1
2

log
(
|ΣX ||ΣY |

|Σ|

)
(4.1)

Specifically, the precise value of I(X ,Y ) for the bivariate Gaussian distribution can be

derived analytically using the Definition 2.2.1 (proof in Appendix A.3), resulting in

I(X ,Y )true =−1
2

log(1−ρ
2) (4.2)

To begin, we examine the bivariate Gaussian distribution with unit variance for each

marginal. Having the value of the ground truth mutual information, we can estimate
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the Error = |Î(X ,Y )− I(X ,Y )true| which can be plotted against the number of samples

(N) for different correlations values (ρ). This graph will show how each estimator

performs under the different samples sizes when the number of epochs is fixed to 100.

Additionally, for the same 2-dimensional variables we investigate the resulting estimate

against a varying level of correlation ρ ∈ [0,0.9], as outlined in Belghazi et al [3]. The

InfoNCE estimator will be additionally tested with different values of its extra parameter

called negative samples (K) [20]. From the Properties of FLO in Section 2.5.3, the FLO

estimator’s performance is independent of K.

For the 20D Gaussian models we will conduct a more thorough investigation on

how the different hyper-parameters that are integrated in the DNN affect the resulting

estimations generated with each MI estimator. To assess that, multiple graphs featuring

different values of the correlation between the variables of the dataset, as well as the

hyper-parameters; learning rate and number of epochs [20] will be used. Subsequently,

using the best performing hyper-parameter values, we proceed to plot the resulting

estimators against the varying value of the correlation as described in the 2D case.

4.2.2 Simulated Gaussian data

The main deliverable of the analysis is the choice of the most appropriate MI estimator

for neuroscience data. In order to accomplish that, an evaluation of the different deep

learning MI estimators must be conducted using transformed multivariate Gaussian

distribution data that hold properties and correlations as close to the ones of the original

neuroscience data in Section 4.1. Based on the Definition 2.2.4, it can be established that

the ground truth mutual information of the transformed (simulated) data is equivalent to

the mutual information of the initial multivariate Gaussian data which can be computed

using the Formula 4.1. The detailed process for the creation of the simulated dataset

follows the pipeline shown in Figure 4.1 and is detailed described in the below steps.

Uniformly Distributed 
Variable

Normally 
Distributed Variable

Modified Sample of 
Gaussian Distribution 

(Simulated neuroscience  
variable)

Inverse transformation 
using the CDF of gaussian variable

Linear interpolation using the inverse 
CDF of real neurosicence variable

Figure 4.1: Process of generating each variable of the simulated neuroscience dataset.
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First we generate six variables, one for the speed (Xspeed) and the rest for the raw

calcium signals of the five neurons (Xneurons), using the multivariate Gaussian distri-

bution with a zero mean vector and a correlation matrix. The correlation matrix is

carefully selected to minimize the sum of absolute differences between the upper trian-

gular portion of the original correlation matrix obtained from the original neuroscience

data (Xoriginal) and the resulting correlation matrix derived from the simulated data

(Xsimulated). Furthermore, the size of each variable in the multivariate Gaussian matches

that of the original dataset, which consists of 22,366 data points.

In accordance with the inverse transform theorem (ITT), the subsequent step involves

the transformation of each Gaussian-distributed variable into a uniformly distributed

variable by using its respective cumulative density function (CDF). For example, let

Xspeed be the continuous normal variable for Speed (Figure 4.2 (A)) with CDF equal to

F(xspeed). Then F(Xspeed)∼Uni f orm[0,1], which is shown in Figure 4.2 (B).
Upon obtaining the uniformly distributed variables, the subsequent course of action

involves determining the empirical cumulative distribution function (CDF) for each

variable present in the original neuroscience dataset. Subsequently, employing linear

interpolation, we can map the values of each simulated uniformly distributed variable

with respect to its original inverse empirical CDF. For reference, Figure 4.2 (C) exhibits

the empirical CDF (y) of the original speed variable. This process yields the resulting

simulated variables, denoted as Xsimulated , which exhibit distributions resembling those

observed in the original neuroscience dataset. This concludes the steps for generating

the simulated data which are the result of a transformation on the initial Gaussian ones.

For example, the process for generating the simulated speed variable is:

Xspeed
F(Xspeed)−−−−−→Uspeed

F−1
ECDF (Uspeed)−−−−−−−−→ Xspeed′

This process is also graphically illustrated in Figure 4.2. The resulting histogram of the

simulated data for all variables are shown Figure 4.3 where high similarity between the

distributions of the simulated and the original variables can be observed.

Below, we also demonstrate the correlation matrix of the simulated data, Xsimulated ,

and the correlation matrix of the original neuroscience data, Xoriginal . By calculating

the sum of the absolute differences between their upper triangular elements, we obtain

an approximate value of 0.13564.
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Corr(Xsimulate) =



1.000000 0.020278 0.219279 0.409766 0.052962 −0.229867

0.020278 1.000000 0.795651 0.102481 0.115814 0.024715

0.219279 0.795651 1.000000 0.284051 0.118855 −0.063783

0.409766 0.102481 0.284051 1.000000 −0.287832 −0.138513

0.052962 0.115814 0.118855 −0.287832 1.000000 0.006407

−0.229867 0.024715 −0.063783 −0.138513 0.006407 1.000000



Corr(Xoriginal) =



1.000000 0.067342 0.218823 0.409769 0.083801 −0.234602

0.067342 1.000000 0.795653 0.109486 0.115823 70.030216

0.218823 0.795653 1.000000 0.284051 0.138580 −0.063492

0.409769 0.109486 0.284051 1.000000 −0.282916 −0.138449

0.083801 0.115823 0.138580 −0.282916 1.000000 −0.008621

−0.234602 0.030216 −0.063492 −0.138449 −0.008621 1.000000



Figure 4.2: Graphical representation of the process for generating the simulated Speed

variable starting from the multivariate Gaussian. (A) Gaussian distribution of Speed,

Xspeed (B) Uniform distribution of Speed, Uspeed (C) Empirical CDF of original Speed,

FECDFspeed (D) Histogram of the simulated Speed, Xspeed′

With the simulated dataset at hand, it remains to calculate the ground truth (GT)

mutual information using the initial multivariate Gaussian data and the Formula 4.1.

Specifically, in this case we have:

I(X ′
speed,X

′
neurons)GT = I(Xspeed,Xneurons) = 0.5787373599348244,

which is the GT MI between the simulated one-dimensional speed variable and the

five-dimensional simulated matrix containing the raw calcium signals of the 5 neurons.
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Figure 4.3: Histogram of each simulated variable side-by-side its respective histogram

from the original neuroscience dataset. In comparison, the distributions are almost

identical.
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In order to proceed with the application of the simulated data and later of the real

neuroscience data on our three deep learning MI estimators we first need to make a few

alternations on the original implementations. The existing ones can only take equal

dimensional X and Y inputs for estimating I(X ,Y ). However in our case X is one

dimensional whereas Y is five dimensional. To fix that a few changes were made on

how the estimators’ implementations take and process the matrix containing the input

data. For the MINE implementation we also needed to set two extra input parameters

which define the dimensionality of X and Y.

Proceeding with the evaluation of each deep earning MI estimator when applied

on the simulated neuroscience data, we will adopt a comprehensive strategy for hyper-

parameter tuning. By leveraging the insights gained from analyzing the results obtained

from the 2D and 20D Gaussian datasets, we make targeted decisions regarding the

values of the hyper-parameters to investigate.

Initially, we will construct a grid search of possible combinations of the hyper-

parameters; learning rate, number of hidden layers, and number of epochs. Subsequently,

we will evaluate each MI estimator against the ground truth value for each combination,

employing a 3 by 3 figure to better visualize the outcomes.

Given that the estimators are trained on a neural network, it is important to acknowl-

edge that the resulting MI estimations may not always be identical. Therefore, the next

step will involve computing the Mean Absolute Error (MAE) of the hyper-parameter

combinations of each estimator that yields the most promising performance during the

grid search.

MAE is a metric of the average magnitude of the errors within a set of estimations.

Its formula is defined as:

MAE =
1
n

n

∑
i=1

|yi − ŷi|,

where n represents the number of estimations being evaluated, yi the ground truth

value and ŷi the estimated value. In our case we will execute each estimator five

times, employing the best-performing combinations of hyper-parameters and show the

resulting MAE values in a table for comprehensive analysis.

Furthermore, the InfoNCE estimator incorporates an extra parameter, denoted as

K, which represents the size of the negative sample used for training as explained in

Definition 2.5.2.1. While a higher negative sampling ratio K theoretically results in a

more precise lower bound for variable mutual information, leading to improved perfor-

mance, real datasets, such as those in neuroscience, contain noise [58]. Consequently,
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incorporating a large number of noisy negative samples during model training may

produce counterproductive outcomes [63]. To determine the optimal value of K for neu-

roscience data, a graph of InfoNCE will be generated using the best hyper-parameters

identified through the previous analysis. This graph will demonstrate the estimated

MI for K = 5,10,20 and 40, in order to identify the most effective value for the given

dataset.

Lastly, the three estimators will be executed ten times using the best-performing

hyper-parameter values obtained overall. The MAE will be extracted from these

executions and recorded on a table. The estimator yielding the smallest MAE will be

considered as the most suitable estimator among the three for neuroscience data.

4.3 Application on real neuroscience data

For the final step of our analysis, the resulting most promising deep learning MI

estimator between MINE, InfoNCE, and FLO will be applied, using its best hyper-

parameter combination, on the original neuroscience dataset mentioned in Section
4.1.
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Results

In this Section, we provide the results from testing the three deep learning mutual

information estimators and comparing their performance against each other. In the first

section, we provide the plots from testing the estimators on simple Gaussian generated

samples. Then, we proceed to apply them to the simulated data as mentioned in Section
4.2.2. Lastly, the value of the real neuroscience data (Section 4.1) MI is showcased as

estimated using the resulting best deep learning MI estimator based on the results that

arises from the comparison analysis.

5.1 Gaussian distributions

5.1.1 2D Gaussian variables

Previous studies [3, 20] have demonstrated the efficacy of MINE, InfoNCE, and FLO

in accurately estimating MI between two-dimensional Gaussian variables, regardless of

their correlation. InfoNCE has been shown to provide improved estimations with larger

negative sample sizes (K) [40, 63], while FLO’s performance remains independent of

K [20]. Building on these findings, our investigation aims to evaluate and compare

the three estimators across various correlation values and sample sizes of 2D Gaussian

variables.

To begin with, we examine the bivariate Gaussian distribution with unit variance for

each marginal and estimate the Error for correlations ρ = 0.3,0.5 and 0.8 and plot the

results against the number of samples (N) for each estimator. The leaning rate hyper-

parameter used for the 2D Gaussian data is 0.01 for MINE and 0.0001 for InfoNCE and

FLO, as provided by the implementations. The results are shown in Figure 5.1.

25
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For the correlation value of ρ = 0.3, as the number of samples (N) increases, the

error decreases consistently for all three estimators and converges towards 0. However,

this is not the case for all estimators when ρ increases.

When the correlation value increases to ρ = 0.5, we still observe a general trend of

decreasing error as the number of samples (N) increases. However, the convergence to

zero is less pronounced compared to the case of ρ = 0.3. Moreover, the error decrease

seems to be less stable in this case especially for MINE. Overall, the FLO estimator

performs favorably, producing lower errors compared to MINE and InfoNCE.

The most substantial observation can be made for the correlation value of ρ = 0.8.

In this case, MINE and InfoNCE even with increasing numbers of samples (N), the

error does not exhibit a clear convergence to zero. The errors for these two estimators

remain relatively high, indicating a greater difficulty in accurately estimating the mutual

information with a high correlation coefficient. Despite this observation for ρ = 0.8,

the FLO estimator still indicates superior performance.

Figure 5.1: Errors of estimate for three different correlations (r) of the 2-D Gaussian data

against sample size (N), where number of epochs is fixed at 100. The FLO estimator

outperforms both MINE and InfoNCE for all three correlation by providing decreasing

errors that converge to 0 as N increases.

Additionally, for the same 2-dimensional variables the resulting plots of the estima-
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tions against the varying level of correlation ρ ∈ [0,0.9] are shown in Figure 5.2. In

this case, we trained each estimator using 100 epochs and the baseline hyper-parameter

values and kept the number of samples to N = 10000. The resulting Figure 5.2 shows

how each deep learning MI estimator perform as the correlation between X and Y

increases. In order to evaluate the accuracy of each estimator we additionally include

the values of the ground truth MI.

The FLO estimator consistently produces estimates that closely align with the

baseline ground truth MI across the entire range of correlation values. Its estimates

exhibit a high level of accuracy and are almost identical to the ground truth. This

indicate that the FLO estimator can accurately capture the mutual information in the

given 2D Gaussian dataset, which align with the finding in [20].

The MINE estimator also performs well, demonstrating accurate estimations, espe-

cially for low correlation values. However, it is important to note that as the correlation

coefficient ρ exceeds 0.75, a very slight margin of error becomes noticeable in its

estimates. This observation can also be captured in Figure 1 of [3]. Nonetheless, it

overall performs well in estimating the MI for the dataset.

The InfoNCE estimator’s performance indeed relies on the number of negative sam-

ples (K) used during the estimation process. As shown in Figure 5.2 we demonstrated

the performance of InfoNCE when K = 5,10 and 20. It is clearly observed that as the

value of K increases, the estimates provided by InfoNCE become increasingly aligned

with the ground truth MI. Therefore, it is crucial to select an adequately high value of K

to ensure accurate predictions from the estimator. However, it is important to note that

even with an optimal value of K, the InfoNCE estimator may exhibit slightly higher

estimation errors compared to FLO and MINE, particularly for higher correlation.

Figure 5.2: Mutual information between the 2-D Gaussian dataset with component-

wise correlation ρ ∈ [0,0.9]. The number of epochs is fixed at 100. The most recently

proposed estimator FLO provides tighter estimations.
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5.1.2 20D Gaussian variables

Proceeding with the more challenging 20-dimensional Gaussian distribution dataset,

previous research [20] indicates that increasing the dimensionality of Gaussian variables

leads to less accurate estimations for InfoNCE and FLO, particularly as their correlation

value increases. However, FLO outperforms InfoNCE under these conditions. In

contrast, MINE has been demonstrated to efficiently scale up to higher dimensionality

and consistently provide accurate estimations across all correlation values [3]. However,

it has been observed to demonstrate slower convergence when compared to other

proposed estimators [7, 56].

As the estimators’ behavior changes with the increase of dimensionality, we aim

to further investigate and compare InfoNCE, FLO, and MINE in the context of 20D

Gaussian variables with varying correlation values and different values for the hyper-

parameters: learning rate and number of epochs.

First, an ablation study was conducted, as shown in the Figure 5.3. The aim was to

investigate the impact of two very crucial hyper-parameters, the learning rate and the

number of epochs on the performance of each deep learning MI estimators in achieving

estimations close to the ground truth value calculated using the Formula 4.1 . This

investigation was carried out across three different correlation settings, ρ = 0.2,0.5 and

0.8, in order to discern the contributions of the different hyper-parameters combinations

to the performance of the estimator when the correlation between the 10D X and 10D Y

increases.

It can be observed from the results that the MINE estimator overall performs

best when the learning rate has a higher value, in this case 0.001, This indicates that

MINE benefits from a larger step size during the optimization process. Moreover, in

comparison to InfoNCE and FLO, MINE exhibits slower convergence to the ground

truth MI estimation. It is evident from the Figure 5.3 that MINE may requires a higher

number of epochs to achieve accurate estimations which aligns with previous findings

[7, 56].

As for the InfoNCE estimator, the number of negative samples K is set to 20, based

on observations from the 2D Gaussian case, where K = 20 yielded more accurate esti-

mations. The grid analysis Figure 5.3 highlights the strong dependence of InfoNCE’s

performance on the correlation between X and Y. It shows that different correlations

require different learning rates to achieve accurate estimations. As the correlation

increases, a higher learning rate is necessary to obtain MI predictions closer to the
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ground truth. Moreover, the figure indicates that 60 epochs are generally sufficient for

InfoNCE to reach stable estimations.

Figure 5.3: Ablation study for network complexity of each MI estimator for the 20-

dimensional Gaussian variables generated using different correlations ρ = 0.2,0.5 and

0.8. The hyper-parameters that change are the learning rate (0.001, 0.0001 and 0.00001)

and the number of epochs (0 to 60).
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Similar to InfoNCE, the FLO estimator achieves more accurate estimations by

utilising different learning rate values for different correlations between X and Y.

For a lower correlation like ρ = 0.2 a lower learning rate works best (for example

lr = 0.00001). Conversely, for a higher correlation like ρ = 0.5, a learning rate of

lr = 0.0001 performs better. Moreover, compared to MINE and InfoNCE, the FLO

estimator demonstrates the highest convergence speed.

Lastly, it is important to highlight that there are notable differences in the running

times of each estimator. Specifically, MINE requires approximately 10 times less time

than InfoNCE and 5 times less time than FLO.

To further evaluate the impact of learning rate values on the estimators’ performance,

we present a plot in Figure 5.4, showcasing their estimations using their respective best-

performing learning rates across varying correlation values (ρ ∈ [0,0.9]). The results

corroborate the observations made during the grid analysis. MINE consistently performs

well with a learning rate of 0.001 and an increased number of epochs, irrespective of

the correlation between X and Y. These findings align with the conclusions presented in

[3].

On the other hand, InfoNCE and FLO indeed provide more accurate estimations

for lower correlation values when a lower learning rate is employed. Conversely, for

higher correlation values, a higher learning rate yields improved results. Notably, FLO

demonstrates superior performance when compared to InfoNCE, which aligns with the

initial findings reported in the original paper introducing the FLO estimator.

Figure 5.4: Mutual information between the 20-D Gaussian dataset with component-

wise correlation ρ ∈ [0,0.9]. For MINE the number of epochs is set at 180, while for FLO

and InfoNCE is at 60. For higher dimensions, MINE scale up best and provides better

accuracy as the correlation increases.
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5.2 Simulated dataset

In this section, we undertake an evaluation and comparison of the three deep learning

estimators using the simulated data generated in Section 4.2.2. These simulated data

follow a multivariate Gaussian distribution which is transformed to possess very similar

properties and correlations as the real neuroscience data (Section 4.1). Due to their

Gaussian properties, we can still calculate the ground truth MI using the Formula 4.1.

Based on our previous analysis results and findings on relevant papers we shape the

following hypothesis. First, due to low correlation values between the variables that are

observed in the correlation matrix (Section 4.2.2), we expect that both InfoNCE and

FLO estimators will perform better when using a lower learning rate. Conversely, for

the MINE estimator, we hypothesize that it will demonstrate improved performance

with a larger learning rate based on our findings in Section 5.1.2.

Additionally, extending on our previous analysis, we predict that FLO will outper-

form InfoNCE in the same experimental settings. Moreover, similar to the Gaussian

cases, we anticipate that more epochs will be required for MINE to achieve better

accuracy and convergence towards the ground truth MI. MINE’s slower convergence is

a known characteristic, and extending the training process with more epochs is likely to

improve its accuracy in estimating the mutual information.

Lastly, based on [44], it is noted that due to the different critic architecture within

the neural network between MINE and InfoNCE/FLO, it is possible that InfoNCE and

FLO require a larger neural network to achieve comparable or superior results to MINE.

By considering these hypotheses, we start by conducting a comprehensive grid search

for three crucial hyper-parameters; number of epochs, learning rate, and the number of

hidden layers. The results of this grid search are presented in Figure 5.5.

The top three sub-figures illustrate the performance of MINE in estimating the MI

of the simulated dataset across a range of 200 epochs, utilising various combinations

of learning rates and numbers of hidden layers. Subsequently, the following three

sub-figures display the results for InfoNCE, and the final three sub-figures pertain to

the FLO estimator across a range of 100 epochs.

The MINE estimator demonstrates optimal performance when its neural structure

is relatively shallow, consisting of 2 or 3 layers, and when the learning rate is set to a

larger value, specifically lr = 0.01. To validate the most effective layer structure, the

Mean Absolute Error (MAE) was computed after running each configuration five times.

The 3 hidden layer structure exhibited instability, resulting in NaN values. In contrast,
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the 2-layer structure with lr=0.01 yielded a MAE of approximately 0.03979.

Figure 5.5: Grid search of the hyper-parameter tuning including different values for

learning rate (lr = 0.01, 0.001 and 0.0001), number of epochs (range from 0 to 100) and

number of hidden layers (2, 3 and 4 layers) incorporated in the DNN structure of the

estimators. Any missing combinations did not result in viable estimations.
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The InfoNCE estimator achieves higher accuracy as the learning rate decreases

and more hidden layers are introduced to its neural structure. By analyzing Figure
5.6 (B), which illustrates the error over the number of epochs for the best performing

hyper-parameter combinations, the most promising combination for InfoNCE consists

of a neural structure with 4 hidden layers and lr = 0.0001. This yields the most accurate

estimations, as confirmed by the MAE, which is calculated for all four combinations,

resulting in a value of less than 0.01 (Table 5.1).

The FLO estimator converges toward the ground truth mutual information, but its

progress across epochs can be considered somewhat unstable. This is evidenced by

sudden drops in the plots. The best performing hyper-parameter combinations for FLO

all have a learning rate of 0.0001, with the 3 hidden layer configuration yielding the

lowest MAE (Table 5.1).

Figure 5.6: Isolated plots of the Error of the best performing hyper-parameter combina-

tions of learning rate (lr) and number of hidden layers for (A) MINE, (B) InfoNCE and (C)

FLO estimators over the number of epochs.

An important factor to also consider is the running time of each estimator. MINE
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achieves an accuracy of 0.04 within a few minutes, whereas FLO requires five times

more time to reach the same accuracy. This difference can be attributed to the deep

neural structure and architecture of separable critics in FLO. The best combination for

InfoNCE takes approximately over an hour to complete, which is considerably longer

than the other two estimators, but it offers five times less error.

Estimator Learning rate Number of Layers Number of epochs Time Mean Absolute Error

MINE 0.01 2 Layers 200 ≈ 3′ 0.039788872

0.01 3 Layers 200 ≈ 6′ nan

InfoNCE (K=20) 0.001 2 Layers 100 ≈ 40′ 0.029277305

0.001 3 Layers 100 ≈ 45′ 0.027629111

0.0001 3 Layers 100 ≈ 50′ 0.023780812

0.0001 4 Layers 100 ≈ 80′ 0.008717371

FLO 0.0001 2 Layers 100 ≈ 12′ 0.049237186

0.0001 3 Layers 100 ≈ 16′ 0.037322811

0.0001 4 Layers 100 ≈ 25′ 0.044616963

Table 5.1: Best Performing Hyper-parameter Combinations and resulting Mean Abso-

lute Error (MAE) for each of the three Deep Learning MI Estimators in the simulated

neuroscience framework.

From the prior analysis conducted on a simple Gaussian dataset, it was found that

setting K = 20 for InfoNCE yielded accurate estimations with low errors. Similarly, the

current results obtained for the simulated data so far also indicated that this value of

K for the negative samples led to highly accurate estimations. Nevertheless, to make

sure that this value of negative sample K is the optimal one for the InfoNCE estimator

within this experimental framework, we proceeded to plot the estimations of InfoNCE

for different values of K, specifically K = 5,10,20 and 40.

Analyzing Figure 5.7, it becomes evident that as the value of K increases, the

estimations tend to converge more closely towards the ground truth value over the course

of epochs. However, when K is set to a larger value, such as K = 40 as illustrated in the

plot, the estimations surpass the ground truth value once the number of epochs reaches

100. This observation aligns with the findings presented in [63], which emphasize that

while theoretically, increasing K leads to improved estimator performance, in practical

scenarios such as in neuroscience, the data may be noisy and therefore, cause excessive

negative examples resulting in misleading gradients. Consequently, higher values of K

result in estimations that do not converge towards the ground truth MI value.

Overall, setting K=20 seems to be a good choice for estimating the MI between the

simple Gaussian data, as seen in our above analysis, and especially between the neuro-
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science simulated data. Applying InfoNCE with K = 20 on the simulated neuroscience

data has resulted in estimations very close to the ground truth, yielding the lowest Mean

Absolute error compared to MINE and FLO as seen in Table 5.1.

Figure 5.7: Estimation progress over the number of epochs for four different values of the

negative sample parameter K = 5,10,20 and 40 of best hyper-parameter combination

of InfoNCE.

In Table 5.2, we present the results after conducting a last calculation of the Mean

Absolute Error (MAE) obtained from the one hyper-parameter combination of each

estimator, which demonstrated the best performance. This time, the MAE was deter-

mined based on 10 runs of each estimator. Notably, the InfoNCE and FLO estimators

exhibit improved performance when employing a larger network structure and fewer

epochs compared to the MINE estimator. Additionally, the MINE estimator requires a

substantially larger learning rate, whereas the InfoNCE and FLO estimators require a

much smaller one.

Prior to applying these estimators to the simulated data, we initially expected FLO to

outperform InfoNCE as we have seen with the simple Gaussian datasets [20]. However,

contrary to our expectations, this was not the case in this practical scenario. It is

evident that the InfoNCE estimator performs exceptionally well when applied to the

simulated dataset, which contains properties similar to those found in real neuroscience

data. Overall, all three estimators appear to perform well, but InfoNCE demonstrates

significantly lower error rates, approximately four times lower than FLO and six times

lower than MINE (Table 5.2). Furthermore, InfoNCE exhibits greater stability in its
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estimation progress over the number of epochs, with a smoother reduction in error

towards zero, as shown in Figure 5.6 (B).

Estimator Learning rate Number of Layers Number of epochs Time Mean Absolute Error

MINE 0.01 2 Layers 200 ≈ 3′ 0.035544258

InfoNCE (K=20) 0.0001 4 Layers 100 ≈ 90′ 0.006853117

FLO 0.0001 3 Layers 100 ≈ 35′ 0.025924197

Table 5.2: Best Performing hyper-parameter combination of each estimator, MINE,

InfoNCE and FLO and the resulting Mean Absolute Error (MAE) of running each 10

times on the simulated neuroscience dataset.

However, it is important to highlight that the dependence of InfoNCE on the negative

samples K introduces an additional parameter that requires regulation whose value

significantly influences the estimator’s capacity to deliver accurate MI estimations.

While setting K=20 appears promising within this framework and in the context of the

simple Gaussian data application, it should be recognized that this choice might not

be optimal when applying InfoNCE to other neuroscience datasets characterized by

diverse metrics and dimensionality.

5.3 Neuroscience application

Through our analysis of simulated neuroscience data, we have concluded that InfoNCE,

after utilising specific hyper-parameter values such as learning rate, number of epochs,

and number of hidden layers in its DNN architecture, can be deemed the most effective

deep learning MI estimator for neuroscience data when compared to MINE and FLO.

Subsequently, we applied the InfoNCE estimator to the real neuroscience data as

mentioned in Section 4.1, comprising the original Speed variable (X) and five neuron

recordings (Y). The calculated estimation of the mutual information between the speed

variable and these five neurons is as follows:

I(X ,Y )In f oNCE ≈ 0.70777611.

It should be noted that the time required for InfoNCE to finalize this estimation was

approximately 110 minutes.
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Furthermore, estimators MINE and FLO have been applied to the same dataset in

order to discern disparities in their respective estimations:

I(X ,Y )MINE ≈ 0.42232007

I(X ,Y )FLO ≈ 0.59827593.

Observing these outcomes, it becomes evident that there are differences among

the estimations produced by each estimator. Considering InfoNCE’s estimation as the

approximation closest to the true MI value, it is revealed that FLO yields the second

most accurate estimation, whereas MINE provides an estimation deviating the most

from the true value. These outcomes are consistent with the findings derived from our

comprehensive analysis conducted on the simulated neuroscience dataset.



Chapter 6

Conclusions

In this paper we aim to assess and compare the performance of three recently proposed

deep learning MI estimators: MINE, InfoNCE and FLO, when applied on common

neuroscience data.

In the beginning, we demonstrated their performance on simple 2D and 20D Gaus-

sian variables. Building on prior studies [3, 20], we compared them across various

correlation values and sample sizes of the 2D Gaussian variables. Our findings have

shown that for simple 2D Gaussian variables all three estimators provide accurate

estimations. However, the estimations of FLO are tighter and closer to the ground truth

values which align with the findings of [20].

When evaluating the 20D Gaussian variables, our research indicated that the FLO

estimator outperformed InfoNCE in higher dimensional spaces, particularly as the

correlation increased. Similar findings were also highlighted in [20]. On the other

hand, MINE showcased consistent and accurate estimations across all correlation

values in this context as shown in [3]. However, despite its accuracy, MINE exhibited

slower convergence compared to other estimators. This is due to MINE’S network

limitation that fails to learn at the initial training phase as explained in [7]. For this

setting, a detailed analysis of the hyper-parameters; learning rate and number of epochs,

revealed that hyper-parameter tuning is essential for retrieving accurate results from

each estimator. This analysis indicated which hyper-parameter values work better for

each estimator helping us make more targeted choices in the subsequent simulated

dataset framework.

Our most important findings are around the application of the three estimators

on the simulated neuroscience data. In this case we explored the performance of

the estimators in conditions resembling real-world neuroscience recordings but for

38
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which the ground truth MI could still be calculated. We performed an extensive hyper-

parameter tuning of the learning rate, the number of hidden layers, and the number

of epochs, which are the most influential in the performance of a DNN [30, 37, 53].

Contrary to expectations, InfoNCE displayed exceptional performance on the simulated

dataset when its best performing hyper-parameter values were used (4 hidden layers,

100 epochs and lr=0.0001). Despite its additional reliance on the negative sample

parameter K, which needs to be determined, InfoNCE consistently delivered accurate

MI estimations, outperforming both FLO and MINE in terms of accuracy and stability.

Our comprehensive evaluation highlights the significance of selecting appropriate

hyper-parameter values for each estimator in various scenarios. While FLO and MINE

were expected to perform best as they had indicated under the simple Gaussian settings,

InfoNCE exhibited remarkable stability and precision on the simulated neuroscience

data. This suggests that InfoNCE is an optimal choice for estimating the MI of real-

world neuroscience data.

Nonetheless, our study showcases several limitations that need consideration. We

analyzed and compared the three estimators using a singular simulated neuroscience

dataset. However, to confirm the superior performance of InfoNCE within neuroscience

data, it is necessary to assess its applicability on more simulated neuroscience datasets

encompassing varying dimensions and sample sizes.

Furthermore, InfoNCE’s dependence on the negative sample parameter K, a value

that profoundly impacts the estimator’s capacity to provide precise estimations, and

its increased computational time are two important drawbacks. Given the diversity of

neuroscience datasets, particularly those arising from extensive experimental settings,

the determination of an optimal K value becomes more complex. As pointed in [63], real

data, including neuroscience [58], may be noisy resulting in the inclusion of excessive

negative examples for which a higher value of K may provide counter results. Therefore,

not a single K value can work for all cases.

Additionally, neuroscience experiments simultaneously capture recordings from

various different neurons [58], resulting in the need for the quantification of MI between

numerous variables. As observed in our analysis, the time necessary for InfoNCE to

generate results between a few variables is already substantially increased. Thus, in a

real-world problem, each estimation may require a tremendous amount of time.

Overall, having these in mind, potentially a different estimator like FLO which is

much faster, fairly accurate and independent of the negative sample parameter K be a

better choice.
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Collectively, these findings should motivate further in-depth investigations into

the applicability of InfoNCE within the domain of neuroscience, accompanied by

comprehensive comparison against the FLO estimator whose performance was also

noteworthy. Future works could also extend the comparative analysis, by additionally

including more proposed deep learning estimators into the framework of neuroscience

research.



Bibliography

[1] S. Baillet, L. Garnero, G. Marin, and J.P. Hugonin. Combined meg and eeg source

imaging by minimization of mutual information. IEEE transactions on biomedical

engineering, 46(5):522–534, 1999.

[2] D. Barber and F. V Agakov. The im algorithm : A variational approach to

information maximization. NIPS, 16, 2003.

[3] M.I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville, and

D. Hjelm. Mutual information neural estimation. Proceedings of the 35th Interna-

tional Conference on Machine Learning, pages 531–540, 2018.

[4] A. Borst and F.E. Theunissen. Information theory and neural coding. Nature

Neuroscience, 2:947–957, 1999.

[5] G. Bouma. Normalized (pointwise) mutual information in collocation extraction.

Proceedings of GSCL, 30:31–40, 2009.

[6] T. Catuogno, M. R. Camara, and M. Secondini. Non-parametric estimation of

mutual information with application to nonlinear optical fibers. IEEE International

Symposium on Information Theory (ISIT), pages 736–740, 2018.

[7] Chung Chan, Ali Al-Bashabsheh, Hingpang Huang, Michael Lim, Da Sun Han-

dason Tam, and Chao Zhao. Neural entropic estimation: A faster path to mutual

information estimation. ArXiv, 2019.

[8] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Campbell. In-

troduction to machine learning, neural networks, and deep learning. Translational

vision science technology, 92, 2020.

[9] T. Cover and J. Thomas. Elements of information theory. 2nd edition Hoboken N.

J.: Wiley-Interscience, 2006.

41



Bibliography 42
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[19] V. Gómez-Verdejo, M. Martı́nez-Ramón, J. Florensa-Vila, and A. Oliviero. Analy-

sis of fmri time series with mutual information. Medical image analysis, 16:451–

458, 2012.

[20] Q. Guo, J. Chen, D. Wang, Y. Yang, X. Deng, J. Huang, L. Carin, F. Li, and

C. Tao. Tight mutual information estimation with contrastive fenchel-legendre

optimization. Advances in Neural Information Processing Systems, 35:28319–

28334, 2022.



Bibliography 43

[21] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation

principle for unnormalized statistical models. AISTATS, 2010.

[22] C.R. Harris, K.J. Millman, S.J. van der Walt, and et al. Array programming with

numpy. Nature, 585(7825):357–362, 2020.

[23] J.U. Henschke, E. Dylda, D. Katsanevaki, N. Dupuy, S.P. Currie, T. Amvrosiadis,

J. MP. Pakan, and N.L. Rochefort. Reward association enhances stimulus-specific

representations in primary visual cortex. Current Biology, 30(10):1866–1880,

2020.

[24] J. R. Hershey and P. A. Olsen. Approximating the kullback leibler divergence

between gaussian mixture models. 4:IV–317–IV–320, 2007.

[25] K. Hornik. Multilayer feedforward networks are universal approximators. Neural

Networks, 2:359–366, 1989.

[26] R. A.A. Ince, B.L. Giordano, C. Kayser, G.A. Rousselet, J. Gross, and P.G.

Schyns. A statistical framework for neuroimaging data analysis based on mutual

information estimated via a gaussian copula. Human brain mapping, 38:1541–

1573, 2017.

[27] G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical

learning: With applications in r. New York: Springer, 2013.

[28] J. Jeong, J.C. Gore, and B.S. Peterson. Mutual information analysis of the eeg

in patients with alzheimer’s disease. Clinical neurophysiology, 112(5):827–835,

2001.

[29] J.J Jun, N.A. Steinmetz, J.H. Siegle, and D.J. Denman nd M. Bauza et al. Fully

integrated silicon probes for high-density recording of neural activity. Nature,

551(7679):232–236, 2017.

[30] Z. S. Kadhim, H. S. Abdullah, and K. I. Ghathwan. Artificial neural network

hyperparameters optimization: A survey. 18:59–87, 2022.

[31] J.B. Kinney and G.S. Atwal. Equitability, mutual information, and the maximal

information coefficient. Proceedings of the National Academy of Sciences, pages

3354–3359, 2014.



Bibliography 44

[32] A. Kraskov, H. Stogbauer, and P. Grassberger. Estimating mutual information.

Physical Review E, 69:066138, 2004.

[33] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of

Mathematical Statistics, 22:79–86, 1951.

[34] L. Liao, H. Li, W. Shang, and L. Ma. An empirical study of the impact of

hyperparameter tuning and model optimization on the performance properties of

deep neural networks. 31, 2022.

[35] M.D McDonnell, S. Ikeda, and J.H. Manton. An introductory review of informa-

tion theory in the context of computational neuroscience. Biological Cybernetics,

105:55–70, 2011.

[36] J. Mölter and GJ. Goodhill. Limitations to estimating mutual information in large

neural populations. Entropy, 22, 2020.

[37] S. Nematzadeh, F. Kiani, M. Torkamanian-Afshar, and N. Aydin. Tuning hy-

perparameters of machine learning algorithms and deep neural networks using

metaheuristics: A bioinformatics study on biomedical and biological cases. Com-

putational Biology and Chemistry, 97, 2022.

[38] J.V. Neumann. The computer and the brain. Yale University Press, second edition,

2000.

[39] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals

and the likelihood ratio by convex risk minimization. IEEE Transactions on

Information Theory, 56:5847–5861, 2010.

[40] A. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive

coding. arXiv preprint arXiv:1807.03748, 2018.

[41] J. M P Pakan, S. P. Currie, L. Fischer, and N. L. Rochefort. The impact of visual

cues, reward, and motor feedback on the representation of behaviorally relevant

spatial locations in primary visual cortex. Cell reports, 24:2521–2528, 2018.

[42] S. E. Palmer, O. Marre, M. J. Berry, and W. Bialek. Predictive information

in a sensory population. Proceedings of the National Academy of Sciences,

112(22):6908–6913, 2015.



Bibliography 45

[43] A. Paszke, S. Gross, F. Massa, and A. Lerer et al. Pytorch: An imperative style,

high-performance deep learning library. pages 8024–8035, 2019.

[44] B. Poole, S. Ozair, A. Van Den Oord, A. Alemi, and G. Tucker. On variational

bounds of mutual information. Proceedings of the 36th International Conference

on Machine Learning, 97:5171–5180, 2019.

[45] L. Qiang. Functional connectivity inference from fmri data using multivariate

information measures. Neural Networks, 146:85–97, 2022.

[46] R. Quian Quiroga and S. Panzeri. Extracting information from neuronal popula-

tions: information theory and decoding approaches. Nature Reviews Neuroscience,

10(3):173–185, 2009.

[47] A. Rhee, R. Cheong, and A. Levchenko. The application of information theory to

biochemical signaling systems. Physical biology, 9(4):045011, 2012.

[48] F. Rieke, D. Warland, R.R. de Ruyter van Steveninck, and W. Bialek. Spikes:

Exploring the neural code. MA: MIT Press, Cambridge, 1997.

[49] C.J. Rozell and D.H. Johnson. Examining methods for estimating mutual informa-

tion in spiking neural systems. Neurocomputing, 65:429–434, 2005.

[50] JT Russell. Imaging calcium signals in vivo: a powerful tool in physiology and

pharmacology. Br J Pharmacol, pages 1605–1625, 2011.
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Appendix A

Proofs

A.1 Proof of MINE estimator’s consistency

The two problems in which consistency is divided (Approximation and Estimation)

lead to two important Lemmas that justify that MINE is strongly consistent. Lemma

A.1.1 states that the neural information estimates as defined in Definition 2.5.1.1 can

accurately approximate mutual information. Lemma A.1.2 proves that with increasing

samples, MINE almost surely converges to a neural information measure.

Lemma A.1.1. (Approximation) Given an arbitrary positive value ε, there exists a

neural network with parameters θ within a compact domain Θ ∈ Rk that parametrizes

functions Tθ, satisfying the following condition,

|I(X ,Y )− IΘ(X ,Y )| ≤ ε, a.e.

Lemma A.1.2. (Estimation) For a given positive value ε, considering a family of neural

network functions Tθ parametrized by θ within a bounded domain Θ ∈ Rk, there exists

an N ∈ N such that

∀n ≥ N,
∣∣∣Î(X ;Y )n − IΘ(X ,Y )

∣∣∣≤ ε, a.e.
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A.2 Proof of relation between InfoNCE and MINE

By setting f (x,y) = eF(x,y) to InfoNCE’s formula (Definition 2.5.2.3) we get a result

equivalent to the MINE estimator,

E
X

[
log

f (x,y)
∑x j∈X f (x j,y)

]
= E

(x,y)
[F(x,y)]− E

(x,y)

[
log ∑

x j∈X
eF(x j,y)

]

= E
(x,y)

[F(x,y)]− E
(x,y)

[
log

(
eF(x,y)+ ∑

x j∈Xneg

eF(x j,y)

)]

≤ E
(x,y)

[F(x,y)]−E
y

[
log ∑

x j∈Xneg

eF(x j,y)

]

= E
(x,y)

[F(x,y)]−E
y

[
log

1
K −1 ∑

x j∈Xneg

eF(x j,y)+ log(K −1)

]

A.3 Proof of bivariate Gaussian MI formula

Let (X ,Y )∼ N (0,Σ) be two Gaussian variables with correlation ρ, where

Σ =

[
σ2 ρσ2

ρσ2 σ2

]

Then, the entropy of both X and Y is H(X) = H(Y ) = 1
2 log(2πe)σ2 and their joint

entropy is H(X ,Y ) = 1
2 log(2πe)2|Σ| = 1

2 log(2πe)2σ4(1− ρ2). Therefore, using the

Equation as described in Definition 2.2.1 we derive [9]

I(X ;Y ) = H(X)+H(Y )−H(X ,Y ) =−1
2

log(1−ρ
2).


